Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.

Identifieur interne : 001224 ( PubMed/Corpus ); précédent : 001223; suivant : 001225

An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.

Auteurs : Emily Golden ; Li-Juan Yu ; Flora Meilleur ; Matthew P. Blakeley ; Anthony P. Duff ; Amir Karton ; Alice Vrielink

Source :

RBID : pubmed:28098177

Abstract

The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.

DOI: 10.1038/srep40517
PubMed: 28098177

Links to Exploration step

pubmed:28098177

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.</title>
<author>
<name sortKey="Golden, Emily" sort="Golden, Emily" uniqKey="Golden E" first="Emily" last="Golden">Emily Golden</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Li Juan" sort="Yu, Li Juan" uniqKey="Yu L" first="Li-Juan" last="Yu">Li-Juan Yu</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meilleur, Flora" sort="Meilleur, Flora" uniqKey="Meilleur F" first="Flora" last="Meilleur">Flora Meilleur</name>
<affiliation>
<nlm:affiliation>Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blakeley, Matthew P" sort="Blakeley, Matthew P" uniqKey="Blakeley M" first="Matthew P" last="Blakeley">Matthew P. Blakeley</name>
<affiliation>
<nlm:affiliation>Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, 38000, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duff, Anthony P" sort="Duff, Anthony P" uniqKey="Duff A" first="Anthony P" last="Duff">Anthony P. Duff</name>
<affiliation>
<nlm:affiliation>Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights NSW, 2234, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karton, Amir" sort="Karton, Amir" uniqKey="Karton A" first="Amir" last="Karton">Amir Karton</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vrielink, Alice" sort="Vrielink, Alice" uniqKey="Vrielink A" first="Alice" last="Vrielink">Alice Vrielink</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28098177</idno>
<idno type="pmid">28098177</idno>
<idno type="doi">10.1038/srep40517</idno>
<idno type="wicri:Area/PubMed/Corpus">001224</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001224</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.</title>
<author>
<name sortKey="Golden, Emily" sort="Golden, Emily" uniqKey="Golden E" first="Emily" last="Golden">Emily Golden</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Li Juan" sort="Yu, Li Juan" uniqKey="Yu L" first="Li-Juan" last="Yu">Li-Juan Yu</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meilleur, Flora" sort="Meilleur, Flora" uniqKey="Meilleur F" first="Flora" last="Meilleur">Flora Meilleur</name>
<affiliation>
<nlm:affiliation>Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blakeley, Matthew P" sort="Blakeley, Matthew P" uniqKey="Blakeley M" first="Matthew P" last="Blakeley">Matthew P. Blakeley</name>
<affiliation>
<nlm:affiliation>Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, 38000, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duff, Anthony P" sort="Duff, Anthony P" uniqKey="Duff A" first="Anthony P" last="Duff">Anthony P. Duff</name>
<affiliation>
<nlm:affiliation>Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights NSW, 2234, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karton, Amir" sort="Karton, Amir" uniqKey="Karton A" first="Amir" last="Karton">Amir Karton</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vrielink, Alice" sort="Vrielink, Alice" uniqKey="Vrielink A" first="Alice" last="Vrielink">Alice Vrielink</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">28098177</PMID>
<DateCreated>
<Year>2017</Year>
<Month>01</Month>
<Day>18</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.</ArticleTitle>
<Pagination>
<MedlinePgn>40517</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep40517</ELocationID>
<Abstract>
<AbstractText>The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Golden</LastName>
<ForeName>Emily</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Li-Juan</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meilleur</LastName>
<ForeName>Flora</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blakeley</LastName>
<ForeName>Matthew P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, 38000, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duff</LastName>
<ForeName>Anthony P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights NSW, 2234, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Karton</LastName>
<ForeName>Amir</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vrielink</LastName>
<ForeName>Alice</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009 Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Jan 23;9(1):e86651</RefSource>
<PMID Version="1">24466188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2011 May 20;286(20):18048-55</RefSource>
<PMID Version="1">21385867</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2007 Mar 28;126(12):124115</RefSource>
<PMID Version="1">17411116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):440-4</RefSource>
<PMID Version="1">19122140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2010 Jun;31(8):1707-14</RefSource>
<PMID Version="1">20082388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</RefSource>
<PMID Version="1">20383002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem A. 2008 Dec 18;112(50):12868-86</RefSource>
<PMID Version="1">18714947</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12463-8</RefSource>
<PMID Version="1">11070076</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2011 May;32(7):1456-65</RefSource>
<PMID Version="1">21370243</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2008 Dec 30;47(52):13745-53</RefSource>
<PMID Version="1">19053234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2010 May 18;43(5):642-51</RefSource>
<PMID Version="1">20136160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2013 Apr 9;9(4):1918-31</RefSource>
<PMID Version="1">26583543</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1993 Nov 2;32(43):11507-15</RefSource>
<PMID Version="1">8218217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 1999 May;55(Pt 5):969-77</RefSource>
<PMID Version="1">10216293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42</RefSource>
<PMID Version="1">21460441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Health Cytoskelet. 2012 Feb 1;2012(4):11-27</RefSource>
<PMID Version="1">22593641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Biol. 2015 Oct 29;13:89</RefSource>
<PMID Version="1">26515107</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Sci. 2007 Dec;16(12):2647-56</RefSource>
<PMID Version="1">18029419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2010 Jul 13;6(7):2115-25</RefSource>
<PMID Version="1">26615939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2007 Aug 21;46(33):9495-506</RefSource>
<PMID Version="1">17655326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2013 Oct 14;15(38):16031-42</RefSource>
<PMID Version="1">23963317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1975 Sep;72(9):3374-6</RefSource>
<PMID Version="1">1059124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(1):e53567</RefSource>
<PMID Version="1">23326459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2010 Nov;66(Pt 11):1153-63</RefSource>
<PMID Version="1">21041930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2003 Mar 21;1646(1-2):112-8</RefSource>
<PMID Version="1">12637017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Chem Biol. 2006 May;2(5):259-64</RefSource>
<PMID Version="1">16604066</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305</RefSource>
<PMID Version="1">16240044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 May 09;9(5):e96262</RefSource>
<PMID Version="1">24817153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2001 Sep;9(9):803-15</RefSource>
<PMID Version="1">11566130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2014 Dec 1;70(Pt 12):3155-66</RefSource>
<PMID Version="1">25478834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2003 Mar 7;326(5):1635-50</RefSource>
<PMID Version="1">12595270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chemphyschem. 2015 Apr 7;16(5):978-85</RefSource>
<PMID Version="1">25688988</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Rec. 2001;1(3):183-94</RefSource>
<PMID Version="1">11895118</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2003 Aug 21;1650(1-2):4-9</RefSource>
<PMID Version="1">12922164</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 2015 Sep 15;485:102-8</RefSource>
<PMID Version="1">26073659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2157-60</RefSource>
<PMID Version="1">24100333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2013 Jul;280(13):3009-27</RefSource>
<PMID Version="1">23578136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2009 Nov;65(Pt 11):1196-205</RefSource>
<PMID Version="1">19923715</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biosci Biotechnol Biochem. 2011;75(9):1662-7</RefSource>
<PMID Version="1">21897046</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2008 Jun;41(6):689-98</RefSource>
<PMID Version="1">18465885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1998 Oct 2;273(40):25529-32</RefSource>
<PMID Version="1">9748211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Biochem Biophys. 2016 Jul 15;602:48-60</RefSource>
<PMID Version="1">26592456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Biochem Sci. 2000 Mar;25(3):126-32</RefSource>
<PMID Version="1">10694883</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Jan 30;279(5):3749-57</RefSource>
<PMID Version="1">14604988</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2012 Aug 21;51(33):6595-608</RefSource>
<PMID Version="1">22834786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2016 Feb 23;11(2):e0149846</RefSource>
<PMID Version="1">26905908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2006 Oct;39(10):729-38</RefSource>
<PMID Version="1">17042473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2004 Sep 21;43(37):11683-90</RefSource>
<PMID Version="1">15362852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IUCrJ. 2015 Jun 30;2(Pt 4):464-74</RefSource>
<PMID Version="1">26175905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Photosynth Res. 2009 Nov-Dec;102(2-3):443-53</RefSource>
<PMID Version="1">19238578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chembiochem. 2012 Feb 13;13(3):427-35</RefSource>
<PMID Version="1">22271643</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2005 Apr 15;122(15):154104</RefSource>
<PMID Version="1">15945622</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2005 Feb 25;1707(1):1-23</RefSource>
<PMID Version="1">15721603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7496-501</RefSource>
<PMID Version="1">8755502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2002 Jan 18;315(3):421-34</RefSource>
<PMID Version="1">11786022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2008 Jan 8;47(1):243-56</RefSource>
<PMID Version="1">18072756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2006 Oct 20;45(41):6856-9</RefSource>
<PMID Version="1">16991165</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28098177</ArticleId>
<ArticleId IdType="pii">srep40517</ArticleId>
<ArticleId IdType="doi">10.1038/srep40517</ArticleId>
<ArticleId IdType="pmc">PMC5241826</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001224 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001224 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28098177
   |texte=   An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28098177" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024