Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers.

Identifieur interne : 000F96 ( PubMed/Corpus ); précédent : 000F95; suivant : 000F97

Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers.

Auteurs : Jing Yang ; Zheng Yuan ; Qingcai Meng ; Guoqiang Huang ; Christophe Périn ; Charlotte Bureau ; Anne-Cécile Meunier ; Mathieu Ingouff ; Malcolm J. Bennett ; Wanqi Liang ; Dabing Zhang

Source :

RBID : pubmed:28326089

Abstract

The hormone auxin is critical for many plant developmental processes. Unlike the model eudicot plant Arabidopsis (Arabidopsis thaliana), auxin distribution and signaling in rice tissues has not been systematically investigated due to the absence of suitable auxin response reporters. In this study we observed the conservation of auxin signaling components between Arabidopsis and model monocot crop rice (Oryza sativa), and generated complementary types of auxin biosensor constructs, one derived from the Aux/IAA-based biosensor DII-VENUS but constitutively driven by maize ubiquitin-1 promoter, and the other termed DR5-VENUS in which a synthetic auxin-responsive promoter (DR5rev ) was used to drive expression of the yellow fluorescent protein (YFP). Using the obtained transgenic lines, we observed that during the vegetative development, accumulation of DR5-VENUS signal was at young and mature leaves, tiller buds and stem base. Notably, abundant DR5-VENUS signals were observed in the cytoplasm of cortex cells surrounding lateral root primordia (LRP) in rice. In addition, auxin maxima and dynamic re-localization were seen at the initiation sites of inflorescence and spikelet primordia including branch meristems (BMs), female and male organs. The comparison of these observations among Arabidopsis, rice and maize suggests the unique role of auxin in regulating rice lateral root emergence and reproduction. Moreover, protein localization of auxin transporters PIN1 homologs and GFP tagged OsAUX1 overlapped with DR5-VENUS during spikelet development, helping validate these auxin response reporters are reliable markers in rice. This work firstly reveals the direct correspondence between auxin distribution and rice reproductive and root development at tissue and cellular level, and provides high-resolution auxin tools to probe fundamental developmental processes in rice and to establish links between auxin, development and agronomical traits like yield or root architecture.

DOI: 10.3389/fpls.2017.00256
PubMed: 28326089

Links to Exploration step

pubmed:28326089

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers.</title>
<author>
<name sortKey="Yang, Jing" sort="Yang, Jing" uniqKey="Yang J" first="Jing" last="Yang">Jing Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong UniversityShanghai, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Zheng" sort="Yuan, Zheng" uniqKey="Yuan Z" first="Zheng" last="Yuan">Zheng Yuan</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meng, Qingcai" sort="Meng, Qingcai" uniqKey="Meng Q" first="Qingcai" last="Meng">Qingcai Meng</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Guoqiang" sort="Huang, Guoqiang" uniqKey="Huang G" first="Guoqiang" last="Huang">Guoqiang Huang</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perin, Christophe" sort="Perin, Christophe" uniqKey="Perin C" first="Christophe" last="Périn">Christophe Périn</name>
<affiliation>
<nlm:affiliation>CIRAD, UMR AGAP Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bureau, Charlotte" sort="Bureau, Charlotte" uniqKey="Bureau C" first="Charlotte" last="Bureau">Charlotte Bureau</name>
<affiliation>
<nlm:affiliation>CIRAD, UMR AGAP Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meunier, Anne Cecile" sort="Meunier, Anne Cecile" uniqKey="Meunier A" first="Anne-Cécile" last="Meunier">Anne-Cécile Meunier</name>
<affiliation>
<nlm:affiliation>CIRAD, UMR AGAP Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ingouff, Mathieu" sort="Ingouff, Mathieu" uniqKey="Ingouff M" first="Mathieu" last="Ingouff">Mathieu Ingouff</name>
<affiliation>
<nlm:affiliation>CIRAD, UMR AGAP Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bennett, Malcolm J" sort="Bennett, Malcolm J" uniqKey="Bennett M" first="Malcolm J" last="Bennett">Malcolm J. Bennett</name>
<affiliation>
<nlm:affiliation>Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liang, Wanqi" sort="Liang, Wanqi" uniqKey="Liang W" first="Wanqi" last="Liang">Wanqi Liang</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Dabing" sort="Zhang, Dabing" uniqKey="Zhang D" first="Dabing" last="Zhang">Dabing Zhang</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; School of Agriculture, Food and Wine, University of AdelaideUrrbrae, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28326089</idno>
<idno type="pmid">28326089</idno>
<idno type="doi">10.3389/fpls.2017.00256</idno>
<idno type="wicri:Area/PubMed/Corpus">000F96</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers.</title>
<author>
<name sortKey="Yang, Jing" sort="Yang, Jing" uniqKey="Yang J" first="Jing" last="Yang">Jing Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong UniversityShanghai, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Zheng" sort="Yuan, Zheng" uniqKey="Yuan Z" first="Zheng" last="Yuan">Zheng Yuan</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meng, Qingcai" sort="Meng, Qingcai" uniqKey="Meng Q" first="Qingcai" last="Meng">Qingcai Meng</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Guoqiang" sort="Huang, Guoqiang" uniqKey="Huang G" first="Guoqiang" last="Huang">Guoqiang Huang</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perin, Christophe" sort="Perin, Christophe" uniqKey="Perin C" first="Christophe" last="Périn">Christophe Périn</name>
<affiliation>
<nlm:affiliation>CIRAD, UMR AGAP Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bureau, Charlotte" sort="Bureau, Charlotte" uniqKey="Bureau C" first="Charlotte" last="Bureau">Charlotte Bureau</name>
<affiliation>
<nlm:affiliation>CIRAD, UMR AGAP Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meunier, Anne Cecile" sort="Meunier, Anne Cecile" uniqKey="Meunier A" first="Anne-Cécile" last="Meunier">Anne-Cécile Meunier</name>
<affiliation>
<nlm:affiliation>CIRAD, UMR AGAP Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ingouff, Mathieu" sort="Ingouff, Mathieu" uniqKey="Ingouff M" first="Mathieu" last="Ingouff">Mathieu Ingouff</name>
<affiliation>
<nlm:affiliation>CIRAD, UMR AGAP Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bennett, Malcolm J" sort="Bennett, Malcolm J" uniqKey="Bennett M" first="Malcolm J" last="Bennett">Malcolm J. Bennett</name>
<affiliation>
<nlm:affiliation>Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liang, Wanqi" sort="Liang, Wanqi" uniqKey="Liang W" first="Wanqi" last="Liang">Wanqi Liang</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Dabing" sort="Zhang, Dabing" uniqKey="Zhang D" first="Dabing" last="Zhang">Dabing Zhang</name>
<affiliation>
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; School of Agriculture, Food and Wine, University of AdelaideUrrbrae, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The hormone auxin is critical for many plant developmental processes. Unlike the model eudicot plant Arabidopsis (Arabidopsis thaliana), auxin distribution and signaling in rice tissues has not been systematically investigated due to the absence of suitable auxin response reporters. In this study we observed the conservation of auxin signaling components between Arabidopsis and model monocot crop rice (Oryza sativa), and generated complementary types of auxin biosensor constructs, one derived from the Aux/IAA-based biosensor DII-VENUS but constitutively driven by maize ubiquitin-1 promoter, and the other termed DR5-VENUS in which a synthetic auxin-responsive promoter (DR5rev ) was used to drive expression of the yellow fluorescent protein (YFP). Using the obtained transgenic lines, we observed that during the vegetative development, accumulation of DR5-VENUS signal was at young and mature leaves, tiller buds and stem base. Notably, abundant DR5-VENUS signals were observed in the cytoplasm of cortex cells surrounding lateral root primordia (LRP) in rice. In addition, auxin maxima and dynamic re-localization were seen at the initiation sites of inflorescence and spikelet primordia including branch meristems (BMs), female and male organs. The comparison of these observations among Arabidopsis, rice and maize suggests the unique role of auxin in regulating rice lateral root emergence and reproduction. Moreover, protein localization of auxin transporters PIN1 homologs and GFP tagged OsAUX1 overlapped with DR5-VENUS during spikelet development, helping validate these auxin response reporters are reliable markers in rice. This work firstly reveals the direct correspondence between auxin distribution and rice reproductive and root development at tissue and cellular level, and provides high-resolution auxin tools to probe fundamental developmental processes in rice and to establish links between auxin, development and agronomical traits like yield or root architecture.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28326089</PMID>
<DateCreated>
<Year>2017</Year>
<Month>03</Month>
<Day>22</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>08</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers.</ArticleTitle>
<Pagination>
<MedlinePgn>256</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2017.00256</ELocationID>
<Abstract>
<AbstractText>The hormone auxin is critical for many plant developmental processes. Unlike the model eudicot plant Arabidopsis (Arabidopsis thaliana), auxin distribution and signaling in rice tissues has not been systematically investigated due to the absence of suitable auxin response reporters. In this study we observed the conservation of auxin signaling components between Arabidopsis and model monocot crop rice (Oryza sativa), and generated complementary types of auxin biosensor constructs, one derived from the Aux/IAA-based biosensor DII-VENUS but constitutively driven by maize ubiquitin-1 promoter, and the other termed DR5-VENUS in which a synthetic auxin-responsive promoter (DR5rev ) was used to drive expression of the yellow fluorescent protein (YFP). Using the obtained transgenic lines, we observed that during the vegetative development, accumulation of DR5-VENUS signal was at young and mature leaves, tiller buds and stem base. Notably, abundant DR5-VENUS signals were observed in the cytoplasm of cortex cells surrounding lateral root primordia (LRP) in rice. In addition, auxin maxima and dynamic re-localization were seen at the initiation sites of inflorescence and spikelet primordia including branch meristems (BMs), female and male organs. The comparison of these observations among Arabidopsis, rice and maize suggests the unique role of auxin in regulating rice lateral root emergence and reproduction. Moreover, protein localization of auxin transporters PIN1 homologs and GFP tagged OsAUX1 overlapped with DR5-VENUS during spikelet development, helping validate these auxin response reporters are reliable markers in rice. This work firstly reveals the direct correspondence between auxin distribution and rice reproductive and root development at tissue and cellular level, and provides high-resolution auxin tools to probe fundamental developmental processes in rice and to establish links between auxin, development and agronomical traits like yield or root architecture.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong UniversityShanghai, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Zheng</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meng</LastName>
<ForeName>Qingcai</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Guoqiang</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Périn</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>CIRAD, UMR AGAP Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bureau</LastName>
<ForeName>Charlotte</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>CIRAD, UMR AGAP Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meunier</LastName>
<ForeName>Anne-Cécile</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>CIRAD, UMR AGAP Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ingouff</LastName>
<ForeName>Mathieu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>CIRAD, UMR AGAP Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bennett</LastName>
<ForeName>Malcolm J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Wanqi</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Dabing</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; School of Agriculture, Food and Wine, University of AdelaideUrrbrae, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3718-23</RefSource>
<PMID Version="1">10737809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Jan 22;9(1):e87008</RefSource>
<PMID Version="1">24466314</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2006 Jan;223(2):315-28</RefSource>
<PMID Version="1">16208486</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2015 Sep;83(5):818-30</RefSource>
<PMID Version="1">26140668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2014 May 21;26(5):2068-2079</RefSource>
<PMID Version="1">24850851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Integr Plant Biol. 2014 Dec;56(12):1151-63</RefSource>
<PMID Version="1">24831283</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Plant Sci. 2015 Jan 19;5:790</RefSource>
<PMID Version="1">25646121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2016 Oct;172(2):874-888</RefSource>
<PMID Version="1">27506238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2008;179(3):751-64</RefSource>
<PMID Version="1">18557819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2015 Mar;12(3):207-10, 2 p following 210</RefSource>
<PMID Version="1">25643149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2009 Mar;69(4):429-35</RefSource>
<PMID Version="1">18974937</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2006 May;61(1-2):215-26</RefSource>
<PMID Version="1">16786302</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2005 Oct;17(10):2693-704</RefSource>
<PMID Version="1">16169896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2005 Jan;46(1):23-47</RefSource>
<PMID Version="1">15659435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2010 Apr;15(4):219-26</RefSource>
<PMID Version="1">20153971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2005 Jul;43(1):47-56</RefSource>
<PMID Version="1">15960615</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Res. 2009 Sep;19(9):1110-9</RefSource>
<PMID Version="1">19546891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2008 Aug;147(4):1913-23</RefSource>
<PMID Version="1">18550681</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Jan 15;482(7383):103-6</RefSource>
<PMID Version="1">22246322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2014 Mar;26(3):862-75</RefSource>
<PMID Version="1">24632533</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2016 Feb;67(4):1137-47</RefSource>
<PMID Version="1">26672614</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2014 Oct;166(2):603-13</RefSource>
<PMID Version="1">24958716</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2005 May;17(5):1387-96</RefSource>
<PMID Version="1">15829602</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2000 Apr;12(4):507-18</RefSource>
<PMID Version="1">10760240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Integr Plant Biol. 2016 Mar;58(3):190-2</RefSource>
<PMID Version="1">26915932</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5844-9</RefSource>
<PMID Version="1">10318972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4284-9</RefSource>
<PMID Version="1">19246387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2009 Jul;14(7):399-408</RefSource>
<PMID Version="1">19559642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2016 Jan 4;44(D1):D1154-60</RefSource>
<PMID Version="1">26476450</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Integr Plant Biol. 2014 Sep;56(9):849-63</RefSource>
<PMID Version="1">25073727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2015 May;27(5):1368-88</RefSource>
<PMID Version="1">25944102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13372-7</RefSource>
<PMID Version="1">26464512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2013 Jun;162(2):720-31</RefSource>
<PMID Version="1">23580594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2012 Jan;69(1):126-40</RefSource>
<PMID Version="1">21895812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2003 Feb;130(4):645-58</RefSource>
<PMID Version="1">12505996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 May;50(3):514-28</RefSource>
<PMID Version="1">17419848</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2007 Aug;19(8):2430-9</RefSource>
<PMID Version="1">17704214</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2003 Nov 26;115(5):591-602</RefSource>
<PMID Version="1">14651850</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2008 Aug;147(4):1947-59</RefSource>
<PMID Version="1">18562767</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4668-73</RefSource>
<PMID Version="1">22393022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2016 Oct;67(18):5325-5337</RefSource>
<PMID Version="1">27473572</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Funct Integr Genomics. 2006 Jan;6(1):47-59</RefSource>
<PMID Version="1">16200395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>DNA Cell Biol. 2012 Jun;31(6):925-38</RefSource>
<PMID Version="1">22662764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2014;65:553-78</RefSource>
<PMID Version="1">24471834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2015 Oct 27;10(10):e0141613</RefSource>
<PMID Version="1">26506227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2006 Mar;18(3):699-714</RefSource>
<PMID Version="1">16489122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Protoc. 2008;3(5):824-34</RefSource>
<PMID Version="1">18451790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Funct Integr Genomics. 2006 Jan;6(1):36-46</RefSource>
<PMID Version="1">15856348</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Protoc. 2006;1(1):104-7</RefSource>
<PMID Version="1">17406219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2006 May 12;312(5775):883</RefSource>
<PMID Version="1">16601151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 1997 Nov;9(11):1963-71</RefSource>
<PMID Version="1">9401121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2014 Mar;24(3):431-43</RefSource>
<PMID Version="1">24307553</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2003 Nov 13;426(6963):147-53</RefSource>
<PMID Version="1">14614497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Integr Plant Biol. 2014 Feb;56(2):133-50</RefSource>
<PMID Version="1">24472286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Nov 11;9(11):e112906</RefSource>
<PMID Version="1">25386911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(10):e26129</RefSource>
<PMID Version="1">22022536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2005 Nov 8;15(21):1899-911</RefSource>
<PMID Version="1">16271866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1996 May;111(1):9-17</RefSource>
<PMID Version="1">8685277</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2014;5:3090</RefSource>
<PMID Version="1">24463772</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2013 Feb 11;24(3):271-82</RefSource>
<PMID Version="1">23375585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2013 Dec;64(17):5359-69</RefSource>
<PMID Version="1">24043854</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2006 Apr 26;371(2):279-90</RefSource>
<PMID Version="1">16488558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Methods. 2015 Oct 28;11:50</RefSource>
<PMID Version="1">26516341</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">auxin</Keyword>
<Keyword MajorTopicYN="N">inflorescence</Keyword>
<Keyword MajorTopicYN="N">lateral root formation</Keyword>
<Keyword MajorTopicYN="N">meristem</Keyword>
<Keyword MajorTopicYN="N">reporter</Keyword>
<Keyword MajorTopicYN="N">rice</Keyword>
<Keyword MajorTopicYN="N">spikelet</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28326089</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2017.00256</ArticleId>
<ArticleId IdType="pmc">PMC5339295</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000F96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28326089
   |texte=   Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28326089" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024