Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stiffness mapping of lower leg muscles during passive dorsiflexion.

Identifieur interne : 000D20 ( PubMed/Corpus ); précédent : 000D19; suivant : 000D21

Stiffness mapping of lower leg muscles during passive dorsiflexion.

Auteurs : Guillaume Le Sant ; Antoine Nordez ; Ricardo Andrade ; François Hug ; Sandro Freitas ; Raphaël Gross

Source :

RBID : pubmed:28251615

English descriptors

Abstract

It is challenging to differentiate the mechanical properties of synergist muscles in vivo. Shear wave elastography can be used to quantify the shear modulus (i.e. an index of stiffness) of a specific muscle. This study assessed the passive behavior of lower leg muscles during passive dorsiflexion performed with the knee fully extended (experiment 1, n = 22) or with the knee flexed at 90° (experiment 2, n = 20). The shear modulus measurements were repeated twice during experiment 1 to assess the inter-day reliability. During both experiments, the shear modulus of the following plantar flexors was randomly measured: gastrocnemii medialis (GM) and lateralis (GL), soleus (SOL), peroneus longus (PL), and the deep muscles flexor digitorum longus (FDL), flexor hallucis longus (FHL), tibialis posterior (TP). Two antagonist muscles tibialis anterior (TA), and extensor digitorum longus (EDL) were also recorded. Measurements were performed in different proximo-distal regions for GM, GL and SOL. Inter-day reliability was adequate for all muscles (coefficient of variation < 15%), except for TP. In experiment 1, GM exhibited the highest shear modulus at 80% of the maximal range of motion (128.5 ± 27.3 kPa) and was followed by GL (67.1 ± 24.1 kPa). In experiment 2, SOL exhibited the highest shear modulus (55.1 ± 18.0 kPa). The highest values of shear modulus were found for the distal locations of both the GM (80% of participants in experiment 1) and the SOL (100% of participants in experiment 2). For both experiments, deep muscles and PL exhibited low levels of stiffness during the stretch in young asymptomatic adults, which was unknown until now. These results provide a deeper understanding of passive mechanical properties and the distribution of stiffness between and within the plantar flexor muscles during stretching between them and thus could be relevant to study the effects of aging, disease progression, and rehabilitation on stiffness.

DOI: 10.1111/joa.12589
PubMed: 28251615

Links to Exploration step

pubmed:28251615

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stiffness mapping of lower leg muscles during passive dorsiflexion.</title>
<author>
<name sortKey="Le Sant, Guillaume" sort="Le Sant, Guillaume" uniqKey="Le Sant G" first="Guillaume" last="Le Sant">Guillaume Le Sant</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nordez, Antoine" sort="Nordez, Antoine" uniqKey="Nordez A" first="Antoine" last="Nordez">Antoine Nordez</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Andrade, Ricardo" sort="Andrade, Ricardo" uniqKey="Andrade R" first="Ricardo" last="Andrade">Ricardo Andrade</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hug, Francois" sort="Hug, Francois" uniqKey="Hug F" first="François" last="Hug">François Hug</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Freitas, Sandro" sort="Freitas, Sandro" uniqKey="Freitas S" first="Sandro" last="Freitas">Sandro Freitas</name>
<affiliation>
<nlm:affiliation>Faculdade de Motricidade Humana, CIPER, Universidade de Lisboa, Lisbon, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gross, Raphael" sort="Gross, Raphael" uniqKey="Gross R" first="Raphaël" last="Gross">Raphaël Gross</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28251615</idno>
<idno type="pmid">28251615</idno>
<idno type="doi">10.1111/joa.12589</idno>
<idno type="wicri:Area/PubMed/Corpus">000D20</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stiffness mapping of lower leg muscles during passive dorsiflexion.</title>
<author>
<name sortKey="Le Sant, Guillaume" sort="Le Sant, Guillaume" uniqKey="Le Sant G" first="Guillaume" last="Le Sant">Guillaume Le Sant</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nordez, Antoine" sort="Nordez, Antoine" uniqKey="Nordez A" first="Antoine" last="Nordez">Antoine Nordez</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Andrade, Ricardo" sort="Andrade, Ricardo" uniqKey="Andrade R" first="Ricardo" last="Andrade">Ricardo Andrade</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hug, Francois" sort="Hug, Francois" uniqKey="Hug F" first="François" last="Hug">François Hug</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Freitas, Sandro" sort="Freitas, Sandro" uniqKey="Freitas S" first="Sandro" last="Freitas">Sandro Freitas</name>
<affiliation>
<nlm:affiliation>Faculdade de Motricidade Humana, CIPER, Universidade de Lisboa, Lisbon, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gross, Raphael" sort="Gross, Raphael" uniqKey="Gross R" first="Raphaël" last="Gross">Raphaël Gross</name>
<affiliation>
<nlm:affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of anatomy</title>
<idno type="eISSN">1469-7580</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Elasticity Imaging Techniques (methods)</term>
<term>Ergometry (methods)</term>
<term>Female</term>
<term>Humans</term>
<term>Knee Joint (physiology)</term>
<term>Leg (physiology)</term>
<term>Male</term>
<term>Muscle, Skeletal (physiology)</term>
<term>Range of Motion, Articular (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Elasticity Imaging Techniques</term>
<term>Ergometry</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Knee Joint</term>
<term>Leg</term>
<term>Muscle, Skeletal</term>
<term>Range of Motion, Articular</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is challenging to differentiate the mechanical properties of synergist muscles in vivo. Shear wave elastography can be used to quantify the shear modulus (i.e. an index of stiffness) of a specific muscle. This study assessed the passive behavior of lower leg muscles during passive dorsiflexion performed with the knee fully extended (experiment 1, n = 22) or with the knee flexed at 90° (experiment 2, n = 20). The shear modulus measurements were repeated twice during experiment 1 to assess the inter-day reliability. During both experiments, the shear modulus of the following plantar flexors was randomly measured: gastrocnemii medialis (GM) and lateralis (GL), soleus (SOL), peroneus longus (PL), and the deep muscles flexor digitorum longus (FDL), flexor hallucis longus (FHL), tibialis posterior (TP). Two antagonist muscles tibialis anterior (TA), and extensor digitorum longus (EDL) were also recorded. Measurements were performed in different proximo-distal regions for GM, GL and SOL. Inter-day reliability was adequate for all muscles (coefficient of variation < 15%), except for TP. In experiment 1, GM exhibited the highest shear modulus at 80% of the maximal range of motion (128.5 ± 27.3 kPa) and was followed by GL (67.1 ± 24.1 kPa). In experiment 2, SOL exhibited the highest shear modulus (55.1 ± 18.0 kPa). The highest values of shear modulus were found for the distal locations of both the GM (80% of participants in experiment 1) and the SOL (100% of participants in experiment 2). For both experiments, deep muscles and PL exhibited low levels of stiffness during the stretch in young asymptomatic adults, which was unknown until now. These results provide a deeper understanding of passive mechanical properties and the distribution of stiffness between and within the plantar flexor muscles during stretching between them and thus could be relevant to study the effects of aging, disease progression, and rehabilitation on stiffness.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28251615</PMID>
<DateCreated>
<Year>2017</Year>
<Month>03</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-7580</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>230</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of anatomy</Title>
<ISOAbbreviation>J. Anat.</ISOAbbreviation>
</Journal>
<ArticleTitle>Stiffness mapping of lower leg muscles during passive dorsiflexion.</ArticleTitle>
<Pagination>
<MedlinePgn>639-650</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/joa.12589</ELocationID>
<Abstract>
<AbstractText>It is challenging to differentiate the mechanical properties of synergist muscles in vivo. Shear wave elastography can be used to quantify the shear modulus (i.e. an index of stiffness) of a specific muscle. This study assessed the passive behavior of lower leg muscles during passive dorsiflexion performed with the knee fully extended (experiment 1, n = 22) or with the knee flexed at 90° (experiment 2, n = 20). The shear modulus measurements were repeated twice during experiment 1 to assess the inter-day reliability. During both experiments, the shear modulus of the following plantar flexors was randomly measured: gastrocnemii medialis (GM) and lateralis (GL), soleus (SOL), peroneus longus (PL), and the deep muscles flexor digitorum longus (FDL), flexor hallucis longus (FHL), tibialis posterior (TP). Two antagonist muscles tibialis anterior (TA), and extensor digitorum longus (EDL) were also recorded. Measurements were performed in different proximo-distal regions for GM, GL and SOL. Inter-day reliability was adequate for all muscles (coefficient of variation < 15%), except for TP. In experiment 1, GM exhibited the highest shear modulus at 80% of the maximal range of motion (128.5 ± 27.3 kPa) and was followed by GL (67.1 ± 24.1 kPa). In experiment 2, SOL exhibited the highest shear modulus (55.1 ± 18.0 kPa). The highest values of shear modulus were found for the distal locations of both the GM (80% of participants in experiment 1) and the SOL (100% of participants in experiment 2). For both experiments, deep muscles and PL exhibited low levels of stiffness during the stretch in young asymptomatic adults, which was unknown until now. These results provide a deeper understanding of passive mechanical properties and the distribution of stiffness between and within the plantar flexor muscles during stretching between them and thus could be relevant to study the effects of aging, disease progression, and rehabilitation on stiffness.</AbstractText>
<CopyrightInformation>© 2017 Anatomical Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Le Sant</LastName>
<ForeName>Guillaume</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Physiotherapy, IFM3R, Nantes, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nordez</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Andrade</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculdade de Motricidade Humana, CIPER, Universidade de Lisboa, Lisbon, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hug</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6432-558X</Identifier>
<AffiliationInfo>
<Affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Health and Rehabilitation Sciences, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Freitas</LastName>
<ForeName>Sandro</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Faculdade de Motricidade Humana, CIPER, Universidade de Lisboa, Lisbon, Portugal.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Benfica Lab, Sport Lisboa e Benfica, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gross</LastName>
<ForeName>Raphaël</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Gait Analysis Laboratory, Physical and Rehabilitation Medicine Department, University Hospital of Nantes, Nantes, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Anat</MedlineTA>
<NlmUniqueID>0137162</NlmUniqueID>
<ISSNLinking>0021-8782</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054459" MajorTopicYN="N">Elasticity Imaging Techniques</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016552" MajorTopicYN="N">Ergometry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007719" MajorTopicYN="N">Knee Joint</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007866" MajorTopicYN="N">Leg</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016059" MajorTopicYN="N">Range of Motion, Articular</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ankle joint</Keyword>
<Keyword MajorTopicYN="N">elastography</Keyword>
<Keyword MajorTopicYN="N">passive tension</Keyword>
<Keyword MajorTopicYN="N">plantar flexors</Keyword>
<Keyword MajorTopicYN="N">stretching</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28251615</ArticleId>
<ArticleId IdType="doi">10.1111/joa.12589</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D20 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000D20 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28251615
   |texte=   Stiffness mapping of lower leg muscles during passive dorsiflexion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28251615" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024