Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The chicken embryo as an efficient model to test the function of muscle fusion genes in amniotes.

Identifieur interne : 000C78 ( PubMed/Corpus ); précédent : 000C77; suivant : 000C79

The chicken embryo as an efficient model to test the function of muscle fusion genes in amniotes.

Auteurs : Daniel Sieiro ; Nadège Véron ; Christophe Marcelle

Source :

RBID : pubmed:28520772

English descriptors

Abstract

The fusion of myoblasts into multinucleated myotubes is a crucial step of muscle growth during development and of muscle repair in the adult. While multiple genes were shown to play a role in this process, a vertebrate model where novel candidates can be tested and analyzed at high throughput and relative ease has been lacking. Here, we show that the early chicken embryo is a fast and robust model in which functional testing of muscle fusion candidate genes can be performed. We have used known modulators of muscle fusion, Rac1 and Cdc42, along with the in vivo electroporation of integrated, inducible vectors, to show that the chicken embryo is a suitable model in which their function can be tested and quantified. In addition to nuclei content, specific characteristics of the experimental model allow a fine characterization of additional morphological features that are nearly impossible to assess in other model organisms. This study should establish the chicken embryo as a cheap, reliable and powerful model in which novel vertebrate muscle fusion candidates can be evaluated.

DOI: 10.1371/journal.pone.0177681
PubMed: 28520772

Links to Exploration step

pubmed:28520772

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The chicken embryo as an efficient model to test the function of muscle fusion genes in amniotes.</title>
<author>
<name sortKey="Sieiro, Daniel" sort="Sieiro, Daniel" uniqKey="Sieiro D" first="Daniel" last="Sieiro">Daniel Sieiro</name>
<affiliation>
<nlm:affiliation>Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Veron, Nadege" sort="Veron, Nadege" uniqKey="Veron N" first="Nadège" last="Véron">Nadège Véron</name>
<affiliation>
<nlm:affiliation>Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marcelle, Christophe" sort="Marcelle, Christophe" uniqKey="Marcelle C" first="Christophe" last="Marcelle">Christophe Marcelle</name>
<affiliation>
<nlm:affiliation>Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28520772</idno>
<idno type="pmid">28520772</idno>
<idno type="doi">10.1371/journal.pone.0177681</idno>
<idno type="wicri:Area/PubMed/Corpus">000C78</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C78</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The chicken embryo as an efficient model to test the function of muscle fusion genes in amniotes.</title>
<author>
<name sortKey="Sieiro, Daniel" sort="Sieiro, Daniel" uniqKey="Sieiro D" first="Daniel" last="Sieiro">Daniel Sieiro</name>
<affiliation>
<nlm:affiliation>Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Veron, Nadege" sort="Veron, Nadege" uniqKey="Veron N" first="Nadège" last="Véron">Nadège Véron</name>
<affiliation>
<nlm:affiliation>Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marcelle, Christophe" sort="Marcelle, Christophe" uniqKey="Marcelle C" first="Christophe" last="Marcelle">Christophe Marcelle</name>
<affiliation>
<nlm:affiliation>Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Nucleus (metabolism)</term>
<term>Chick Embryo</term>
<term>Muscle Development</term>
<term>Muscle Proteins (genetics)</term>
<term>Muscle Proteins (metabolism)</term>
<term>Myoblasts (cytology)</term>
<term>Myoblasts (metabolism)</term>
<term>cdc42 GTP-Binding Protein (genetics)</term>
<term>cdc42 GTP-Binding Protein (metabolism)</term>
<term>rac1 GTP-Binding Protein (genetics)</term>
<term>rac1 GTP-Binding Protein (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Muscle Proteins</term>
<term>cdc42 GTP-Binding Protein</term>
<term>rac1 GTP-Binding Protein</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Myoblasts</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Muscle Proteins</term>
<term>Myoblasts</term>
<term>cdc42 GTP-Binding Protein</term>
<term>rac1 GTP-Binding Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chick Embryo</term>
<term>Muscle Development</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The fusion of myoblasts into multinucleated myotubes is a crucial step of muscle growth during development and of muscle repair in the adult. While multiple genes were shown to play a role in this process, a vertebrate model where novel candidates can be tested and analyzed at high throughput and relative ease has been lacking. Here, we show that the early chicken embryo is a fast and robust model in which functional testing of muscle fusion candidate genes can be performed. We have used known modulators of muscle fusion, Rac1 and Cdc42, along with the in vivo electroporation of integrated, inducible vectors, to show that the chicken embryo is a suitable model in which their function can be tested and quantified. In addition to nuclei content, specific characteristics of the experimental model allow a fine characterization of additional morphological features that are nearly impossible to assess in other model organisms. This study should establish the chicken embryo as a cheap, reliable and powerful model in which novel vertebrate muscle fusion candidates can be evaluated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28520772</PMID>
<DateCreated>
<Year>2017</Year>
<Month>05</Month>
<Day>18</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The chicken embryo as an efficient model to test the function of muscle fusion genes in amniotes.</ArticleTitle>
<Pagination>
<MedlinePgn>e0177681</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0177681</ELocationID>
<Abstract>
<AbstractText>The fusion of myoblasts into multinucleated myotubes is a crucial step of muscle growth during development and of muscle repair in the adult. While multiple genes were shown to play a role in this process, a vertebrate model where novel candidates can be tested and analyzed at high throughput and relative ease has been lacking. Here, we show that the early chicken embryo is a fast and robust model in which functional testing of muscle fusion candidate genes can be performed. We have used known modulators of muscle fusion, Rac1 and Cdc42, along with the in vivo electroporation of integrated, inducible vectors, to show that the chicken embryo is a suitable model in which their function can be tested and quantified. In addition to nuclei content, specific characteristics of the experimental model allow a fine characterization of additional morphological features that are nearly impossible to assess in other model organisms. This study should establish the chicken embryo as a cheap, reliable and powerful model in which novel vertebrate muscle fusion candidates can be evaluated.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sieiro</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Faculty of Medicine Laënnec, Lyon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Véron</LastName>
<ForeName>Nadège</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marcelle</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9612-7609</Identifier>
<AffiliationInfo>
<Affiliation>Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Faculty of Medicine Laënnec, Lyon, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009124">Muscle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020764">cdc42 GTP-Binding Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020830">rac1 GTP-Binding Protein</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 Jan 29;457(7229):589-93</RefSource>
<PMID Version="1">18987628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 2010 Nov 1;316(18):3019-27</RefSource>
<PMID Version="1">20673829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 1994 Aug 1;8(15):1787-802</RefSource>
<PMID Version="1">7958857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2008 Aug;9(8):632-46</RefSource>
<PMID Version="1">18636072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8935-40</RefSource>
<PMID Version="1">19443691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2016 Mar 14;7:10871</RefSource>
<PMID Version="1">26972991</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2011 Feb 8;21(3):R121-3</RefSource>
<PMID Version="1">21300277</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3745-50</RefSource>
<PMID Version="1">24567399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2003 Mar;13(3):382-90</RefSource>
<PMID Version="1">12618368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2008 Mar 10;180(5):1005-19</RefSource>
<PMID Version="1">18332221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11403-8</RefSource>
<PMID Version="1">11027340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 May 26;473(7348):532-5</RefSource>
<PMID Version="1">21572437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1998 Jun 12;93(6):921-7</RefSource>
<PMID Version="1">9635422</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2012 Feb;139(4):641-56</RefSource>
<PMID Version="1">22274696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 2010 Nov 1;316(18):3067-72</RefSource>
<PMID Version="1">20553712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Genet Dev. 2015 Jun;32:162-70</RefSource>
<PMID Version="1">25989064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1971 Jan;48(1):128-42</RefSource>
<PMID Version="1">5545099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1997 Mar 24;136(6):1249-61</RefSource>
<PMID Version="1">9087441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1989 Dec 1;59(5):771-2</RefSource>
<PMID Version="1">2686838</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2014 Aug 1;28(15):1641-6</RefSource>
<PMID Version="1">25085416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 Jul 18;499(7458):301-5</RefSource>
<PMID Version="1">23868259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2004 Jun;6(6):875-82</RefSource>
<PMID Version="1">15177035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 1999 Oct;22(10):1350-60</RefSource>
<PMID Version="1">10487900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2007 Sep;134(17):3145-53</RefSource>
<PMID Version="1">17670792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2003 Sep 1;551(Pt 2):467-78</RefSource>
<PMID Version="1">12813146</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Mar 28;416(6879):438-42</RefSource>
<PMID Version="1">11919634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2011 Dec;9(12):e1001216</RefSource>
<PMID Version="1">22180726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genesis. 2013 May;51(5):372-80</RefSource>
<PMID Version="1">23468129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2007 Jun;39(6):781-6</RefSource>
<PMID Version="1">17529975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 1999 Jun;1(2):E25-7</RefSource>
<PMID Version="1">10559887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2010 Nov 29;191(5):1013-27</RefSource>
<PMID Version="1">21098115</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1999 Mar 22;144(6):1235-44</RefSource>
<PMID Version="1">10087266</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2000 Jul 21;102(2):189-98</RefSource>
<PMID Version="1">10943839</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2015 Nov 1;407(1):68-74</RefSource>
<PMID Version="1">26277216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2010 May 1;341(1):66-83</RefSource>
<PMID Version="1">19932206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2014 Sep;141(18):3605-11</RefSource>
<PMID Version="1">25183875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 May 9;497(7448):263-7</RefSource>
<PMID Version="1">23615608</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002642" MajorTopicYN="N">Chick Embryo</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024510" MajorTopicYN="Y">Muscle Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009124" MajorTopicYN="N">Muscle Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032446" MajorTopicYN="N">Myoblasts</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020764" MajorTopicYN="N">cdc42 GTP-Binding Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020830" MajorTopicYN="N">rac1 GTP-Binding Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28520772</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0177681</ArticleId>
<ArticleId IdType="pii">PONE-D-17-02227</ArticleId>
<ArticleId IdType="pmc">PMC5433753</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C78 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C78 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28520772
   |texte=   The chicken embryo as an efficient model to test the function of muscle fusion genes in amniotes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28520772" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024