Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The collαgen III fibril has a "flexi-rod" structure of flexible sequences interspersed with rigid bioactive domains including two with hemostatic roles.

Identifieur interne : 000875 ( PubMed/Corpus ); précédent : 000874; suivant : 000876

The collαgen III fibril has a "flexi-rod" structure of flexible sequences interspersed with rigid bioactive domains including two with hemostatic roles.

Auteurs : J Des Parkin ; James D. San Antonio ; Anton V. Persikov ; Hayat Dagher ; Raymond Dalgleish ; Shane T. Jensen ; Xavier Jeunemaitre ; Judy Savige

Source :

RBID : pubmed:28704418

English descriptors

Abstract

Collagen III is critical to the integrity of blood vessels and distensible organs, and in hemostasis. Examination of the human collagen III interactome reveals a nearly identical structural arrangement and charge distribution pattern as for collagen I, with cell interaction domains, fibrillogenesis and enzyme cleavage domains, several major ligand-binding regions, and intermolecular crosslink sites at the same sites. These similarities allow heterotypic fibril formation with, and substitution by, collagen I in embryonic development and wound healing. The collagen III fibril assumes a "flexi-rod" structure with flexible zones interspersed with rod-like domains, which is consistent with the molecule's prominence in young, pliable tissues and distensible organs. Collagen III has two major hemostasis domains, with binding motifs for von Willebrand factor, α2β1 integrin, platelet binding octapeptide and glycoprotein VI, consistent with the bleeding tendency observed with COL3A1 disease-causing sequence variants.

DOI: 10.1371/journal.pone.0175582
PubMed: 28704418

Links to Exploration step

pubmed:28704418

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The collαgen III fibril has a "flexi-rod" structure of flexible sequences interspersed with rigid bioactive domains including two with hemostatic roles.</title>
<author>
<name sortKey="Parkin, J Des" sort="Parkin, J Des" uniqKey="Parkin J" first="J Des" last="Parkin">J Des Parkin</name>
<affiliation>
<nlm:affiliation>From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="San Antonio, James D" sort="San Antonio, James D" uniqKey="San Antonio J" first="James D" last="San Antonio">James D. San Antonio</name>
<affiliation>
<nlm:affiliation>Operations, Stryker Global Quality and Operations, Malvern, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Persikov, Anton V" sort="Persikov, Anton V" uniqKey="Persikov A" first="Anton V" last="Persikov">Anton V. Persikov</name>
<affiliation>
<nlm:affiliation>Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Lab, Princeton, NJ, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dagher, Hayat" sort="Dagher, Hayat" uniqKey="Dagher H" first="Hayat" last="Dagher">Hayat Dagher</name>
<affiliation>
<nlm:affiliation>From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dalgleish, Raymond" sort="Dalgleish, Raymond" uniqKey="Dalgleish R" first="Raymond" last="Dalgleish">Raymond Dalgleish</name>
<affiliation>
<nlm:affiliation>Department of Genetics, University of Leicester, Leicester, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Shane T" sort="Jensen, Shane T" uniqKey="Jensen S" first="Shane T" last="Jensen">Shane T. Jensen</name>
<affiliation>
<nlm:affiliation>Wharton Business School, University of Pennsylvania, Philadelphia, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jeunemaitre, Xavier" sort="Jeunemaitre, Xavier" uniqKey="Jeunemaitre X" first="Xavier" last="Jeunemaitre">Xavier Jeunemaitre</name>
<affiliation>
<nlm:affiliation>INSERM U970 Paris Cardiovascular Research Centre, Paris France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Savige, Judy" sort="Savige, Judy" uniqKey="Savige J" first="Judy" last="Savige">Judy Savige</name>
<affiliation>
<nlm:affiliation>From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28704418</idno>
<idno type="pmid">28704418</idno>
<idno type="doi">10.1371/journal.pone.0175582</idno>
<idno type="wicri:Area/PubMed/Corpus">000875</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000875</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The collαgen III fibril has a "flexi-rod" structure of flexible sequences interspersed with rigid bioactive domains including two with hemostatic roles.</title>
<author>
<name sortKey="Parkin, J Des" sort="Parkin, J Des" uniqKey="Parkin J" first="J Des" last="Parkin">J Des Parkin</name>
<affiliation>
<nlm:affiliation>From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="San Antonio, James D" sort="San Antonio, James D" uniqKey="San Antonio J" first="James D" last="San Antonio">James D. San Antonio</name>
<affiliation>
<nlm:affiliation>Operations, Stryker Global Quality and Operations, Malvern, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Persikov, Anton V" sort="Persikov, Anton V" uniqKey="Persikov A" first="Anton V" last="Persikov">Anton V. Persikov</name>
<affiliation>
<nlm:affiliation>Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Lab, Princeton, NJ, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dagher, Hayat" sort="Dagher, Hayat" uniqKey="Dagher H" first="Hayat" last="Dagher">Hayat Dagher</name>
<affiliation>
<nlm:affiliation>From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dalgleish, Raymond" sort="Dalgleish, Raymond" uniqKey="Dalgleish R" first="Raymond" last="Dalgleish">Raymond Dalgleish</name>
<affiliation>
<nlm:affiliation>Department of Genetics, University of Leicester, Leicester, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Shane T" sort="Jensen, Shane T" uniqKey="Jensen S" first="Shane T" last="Jensen">Shane T. Jensen</name>
<affiliation>
<nlm:affiliation>Wharton Business School, University of Pennsylvania, Philadelphia, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jeunemaitre, Xavier" sort="Jeunemaitre, Xavier" uniqKey="Jeunemaitre X" first="Xavier" last="Jeunemaitre">Xavier Jeunemaitre</name>
<affiliation>
<nlm:affiliation>INSERM U970 Paris Cardiovascular Research Centre, Paris France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Savige, Judy" sort="Savige, Judy" uniqKey="Savige J" first="Judy" last="Savige">Judy Savige</name>
<affiliation>
<nlm:affiliation>From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Collagen Type III (chemistry)</term>
<term>Collagen Type III (genetics)</term>
<term>Collagen Type III (metabolism)</term>
<term>Hemostasis</term>
<term>Humans</term>
<term>Integrin alpha2beta1 (metabolism)</term>
<term>Platelet Membrane Glycoproteins (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Interaction Maps</term>
<term>Protein Stability</term>
<term>von Willebrand Factor (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Collagen Type III</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Collagen Type III</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Collagen Type III</term>
<term>Integrin alpha2beta1</term>
<term>Platelet Membrane Glycoproteins</term>
<term>von Willebrand Factor</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Hemostasis</term>
<term>Humans</term>
<term>Protein Binding</term>
<term>Protein Interaction Maps</term>
<term>Protein Stability</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Collagen III is critical to the integrity of blood vessels and distensible organs, and in hemostasis. Examination of the human collagen III interactome reveals a nearly identical structural arrangement and charge distribution pattern as for collagen I, with cell interaction domains, fibrillogenesis and enzyme cleavage domains, several major ligand-binding regions, and intermolecular crosslink sites at the same sites. These similarities allow heterotypic fibril formation with, and substitution by, collagen I in embryonic development and wound healing. The collagen III fibril assumes a "flexi-rod" structure with flexible zones interspersed with rod-like domains, which is consistent with the molecule's prominence in young, pliable tissues and distensible organs. Collagen III has two major hemostasis domains, with binding motifs for von Willebrand factor, α2β1 integrin, platelet binding octapeptide and glycoprotein VI, consistent with the bleeding tendency observed with COL3A1 disease-causing sequence variants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28704418</PMID>
<DateCreated>
<Year>2017</Year>
<Month>07</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The collαgen III fibril has a "flexi-rod" structure of flexible sequences interspersed with rigid bioactive domains including two with hemostatic roles.</ArticleTitle>
<Pagination>
<MedlinePgn>e0175582</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0175582</ELocationID>
<Abstract>
<AbstractText>Collagen III is critical to the integrity of blood vessels and distensible organs, and in hemostasis. Examination of the human collagen III interactome reveals a nearly identical structural arrangement and charge distribution pattern as for collagen I, with cell interaction domains, fibrillogenesis and enzyme cleavage domains, several major ligand-binding regions, and intermolecular crosslink sites at the same sites. These similarities allow heterotypic fibril formation with, and substitution by, collagen I in embryonic development and wound healing. The collagen III fibril assumes a "flexi-rod" structure with flexible zones interspersed with rod-like domains, which is consistent with the molecule's prominence in young, pliable tissues and distensible organs. Collagen III has two major hemostasis domains, with binding motifs for von Willebrand factor, α2β1 integrin, platelet binding octapeptide and glycoprotein VI, consistent with the bleeding tendency observed with COL3A1 disease-causing sequence variants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Parkin</LastName>
<ForeName>J Des</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>San Antonio</LastName>
<ForeName>James D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Operations, Stryker Global Quality and Operations, Malvern, PA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Persikov</LastName>
<ForeName>Anton V</ForeName>
<Initials>AV</Initials>
<AffiliationInfo>
<Affiliation>Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Lab, Princeton, NJ, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dagher</LastName>
<ForeName>Hayat</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dalgleish</LastName>
<ForeName>Raymond</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, University of Leicester, Leicester, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jensen</LastName>
<ForeName>Shane T</ForeName>
<Initials>ST</Initials>
<AffiliationInfo>
<Affiliation>Wharton Business School, University of Pennsylvania, Philadelphia, PA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jeunemaitre</LastName>
<ForeName>Xavier</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>INSERM U970 Paris Cardiovascular Research Centre, Paris France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University Paris Descartes, Paris Sorbonne Cite, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Savige</LastName>
<ForeName>Judy</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6813-0288</Identifier>
<AffiliationInfo>
<Affiliation>From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024061">Collagen Type III</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038982">Integrin alpha2beta1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010980">Platelet Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C098341">platelet membrane glycoprotein VI</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014841">von Willebrand Factor</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7275-80</RefSource>
<PMID Version="1">9636139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Genet. 2012 Jul;131(7):1137-43</RefSource>
<PMID Version="1">22241462</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Invest Dermatol. 2010 Dec;130(12):2727-35</RefSource>
<PMID Version="1">20631730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Jan 18;283(3):1234-42</RefSource>
<PMID Version="1">18003607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Dermatol. 1996 Aug;135(2):163-81</RefSource>
<PMID Version="1">8881656</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2004 Feb 1;103(3):903-11</RefSource>
<PMID Version="1">14504096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1995 Feb 10;270(6):2776-83</RefSource>
<PMID Version="1">7852349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Chem. 2009 Jan;390(1):11-8</RefSource>
<PMID Version="1">18937627</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pathol Biol (Paris). 2006 Sep;54(7):387-95</RefSource>
<PMID Version="1">16962252</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18273-7</RefSource>
<PMID Version="1">19011090</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Nov 22;277(47):45400-7</RefSource>
<PMID Version="1">12237317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2004 Aug 1;381(Pt 3):895-904</RefSource>
<PMID Version="1">15101818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2009 Sep;175(3):1338-47</RefSource>
<PMID Version="1">19700757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 May 13;280(19):19343-9</RefSource>
<PMID Version="1">15753081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 1995 Feb 1;85(3):705-11</RefSource>
<PMID Version="1">7833474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2007 Sep 14;282(37):26928-38</RefSource>
<PMID Version="1">17650501</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2011 Sep;121(9):3505-16</RefSource>
<PMID Version="1">21841309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Invest Dermatol. 2006 Jul;126(7):1549-58</RefSource>
<PMID Version="1">16557233</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Protoc Protein Sci. 2001 Aug;Chapter 21:Unit 21.4</RefSource>
<PMID Version="1">18429165</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1977 Mar 22;16(6):1158-64</RefSource>
<PMID Version="1">557335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cold Spring Harb Perspect Biol. 2011 Jan 01;3(1):a004978</RefSource>
<PMID Version="1">21421911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int Urogynecol J Pelvic Floor Dysfunct. 2009 Sep;20(9):1113-8</RefSource>
<PMID Version="1">19444361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1991 Jul 5;266(19):12703-9</RefSource>
<PMID Version="1">2061335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2011 Apr 15;286(15):12912-23</RefSource>
<PMID Version="1">21335558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Sep 16;280(37):32512-20</RefSource>
<PMID Version="1">16043429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Haematol. 2012;128(3):158-69</RefSource>
<PMID Version="1">22890291</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1980 Dec 25;255(24):12006-10</RefSource>
<PMID Version="1">6254989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Biochem Biophys. 1991 Jan;284(1):53-7</RefSource>
<PMID Version="1">1989503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2009 Aug 25;48(33):7959-68</RefSource>
<PMID Version="1">19610672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dermatol. 2004 Jul;31(7):535-9</RefSource>
<PMID Version="1">15492417</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int Wound J. 2010 Apr;7(2):87-95</RefSource>
<PMID Version="1">20529148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Thromb Res. 2007;119(1):111-9</RefSource>
<PMID Version="1">16472843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Histochemistry. 1986;85(1):41-9</RefSource>
<PMID Version="1">3733471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1981;114(1):59-62</RefSource>
<PMID Version="1">6783404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Plast Surg. 1993 Mar;30(3):244-51</RefSource>
<PMID Version="1">7684210</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 1986 Oct 1;239(1):47-52</RefSource>
<PMID Version="1">3099780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12925-30</RefSource>
<PMID Version="1">21768377</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Thromb Haemost. 1999 Sep;82(3):1160-3</RefSource>
<PMID Version="1">10494781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Adh Migr. 2009 Jan-Mar;3(1):3-6</RefSource>
<PMID Version="1">19372733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Histochem Cytochem. 2000 Mar;48(3):423-32</RefSource>
<PMID Version="1">10681396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Gene Ther. 2004 May;11(5):325-32</RefSource>
<PMID Version="1">15044958</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2006 Jun 12;203(6):1419-25</RefSource>
<PMID Version="1">16754721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 2010 Jul;78(7):3226-36</RefSource>
<PMID Version="1">20439473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1961 Oct;3:483-506</RefSource>
<PMID Version="1">14491907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2009 Dec 9;17 (12 ):1573-81</RefSource>
<PMID Version="1">20004161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Microbiol. 2007 Feb;9(2):450-62</RefSource>
<PMID Version="1">16953800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Pathol. 1997 Aug;50(4):194-7</RefSource>
<PMID Version="1">9350302</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genomics. 1995 Oct 10;29(3):588-97</RefSource>
<PMID Version="1">8575750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Spine (Phila Pa 1976). 2011 Nov 15;36(24):2031-8</RefSource>
<PMID Version="1">21311409</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1101-3</RefSource>
<PMID Version="1">11830649</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2007 Mar;274(5):1246-55</RefSource>
<PMID Version="1">17298441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1976 Feb 24;15(4):787-92</RefSource>
<PMID Version="1">174719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1979 Nov 10;254(21):10710-4</RefSource>
<PMID Version="1">91606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1990 Oct 25;18(20):6180</RefSource>
<PMID Version="1">2235526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2010 Jan;277(2):413-27</RefSource>
<PMID Version="1">20015075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2001 Apr 20;495(1-2):44-7</RefSource>
<PMID Version="1">11322944</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Sep 20;277(38):34896-901</RefSource>
<PMID Version="1">12110681</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2001 Aug;108(3):349-55</RefSource>
<PMID Version="1">11489925</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Mar 14;283(11):6861-8</RefSource>
<PMID Version="1">18201965</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2006 Nov 13;580(26):6281-5</RefSource>
<PMID Version="1">17078949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1987 Nov;105(5):2393-402</RefSource>
<PMID Version="1">2445760</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Tissue Res. 2010 Jan;339(1):269-80</RefSource>
<PMID Version="1">19693543</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 1987 Oct;6(10):2875-83</RefSource>
<PMID Version="1">2446864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Hum Genet. 2015 Dec;23 (12 ):1657-64</RefSource>
<PMID Version="1">25758994</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Med Genet. 1998 Apr 28;77(1):31-7</RefSource>
<PMID Version="1">9557891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1986;485:288-92</RefSource>
<PMID Version="1">2952037</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Jun 11;285(24):18537-44</RefSource>
<PMID Version="1">20404341</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Jul 27;287(31):26019-28</RefSource>
<PMID Version="1">22654115</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Histochem Cytochem. 1964 Jul;12:552</RefSource>
<PMID Version="1">14209992</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biopolymers. 2000;55(6):436-50</RefSource>
<PMID Version="1">11304671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1992 Dec 5;267(34):24207-16</RefSource>
<PMID Version="1">1447170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2011 Jul 29;286(30):26364-74</RefSource>
<PMID Version="1">21652703</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2008 Feb 1;180(3):1662-9</RefSource>
<PMID Version="1">18209062</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Soc Trans. 1993 May;21(2):123S</RefSource>
<PMID Version="1">8359379</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009 Sep 15;4(9):e7028</RefSource>
<PMID Version="1">19753304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2008 May 15;111(10):4986-96</RefSource>
<PMID Version="1">18305222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Struct Biol. 1990 Oct-Dec;105(1-3):162-9</RefSource>
<PMID Version="1">2100147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2005 Nov;19(13):1848-50</RefSource>
<PMID Version="1">16123172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13243-7</RefSource>
<PMID Version="1">22847422</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Nov 12;279(46):47763-72</RefSource>
<PMID Version="1">15345717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mutat. 2011 Feb;32(2):127-43</RefSource>
<PMID Version="1">21280145</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Surg Res. 2007 Nov;143(1):27-34</RefSource>
<PMID Version="1">17950069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Mar 8;277(10):8366-71</RefSource>
<PMID Version="1">11724807</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Feb 8;277(6):4223-31</RefSource>
<PMID Version="1">11704682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glycobiology. 1994 Jun;4(3):327-32</RefSource>
<PMID Version="1">7949658</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gut. 2009 Aug;58(8):1063-9</RefSource>
<PMID Version="1">19398442</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 May 23;278(21):19549-57</RefSource>
<PMID Version="1">12646579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1987 May;104(5):1413-22</RefSource>
<PMID Version="1">3571333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Jul 11;283(28):19551-60</RefSource>
<PMID Version="1">18487610</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1992 Feb;116(4):1063-70</RefSource>
<PMID Version="1">1370837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Jul 25;283(30):21187-97</RefSource>
<PMID Version="1">18487200</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Nov 21;283(47):32580-9</RefSource>
<PMID Version="1">18805790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Connect Tissue Res. 1974;2(2):137-50</RefSource>
<PMID Version="1">4138005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1985 Dec 25;260(30):16411-7</RefSource>
<PMID Version="1">3905816</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Nov 24;275(47):37110-7</RefSource>
<PMID Version="1">10956668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cells Tissues Organs. 2011;194(1):25-37</RefSource>
<PMID Version="1">21252470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2006 Dec 1;108(12):3753-6</RefSource>
<PMID Version="1">16912226</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 1991 Jul;196(1):54-60</RefSource>
<PMID Version="1">1888036</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Protein Chem. 2005;70:301-39</RefSource>
<PMID Version="1">15837519</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2012 Oct;19(10):1031-6</RefSource>
<PMID Version="1">23001006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5253-8</RefSource>
<PMID Version="1">22440751</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Biochem Biophys. 1976 Apr;173(2):631-7</RefSource>
<PMID Version="1">179470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2004 Sep;18(12 ):1339-47</RefSource>
<PMID Version="1">15333577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2000 Mar 9;342(10):673-80</RefSource>
<PMID Version="1">10706896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Oct 26;407(6807):1029-34</RefSource>
<PMID Version="1">11069186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Microbiol. 2011 Oct;13(10):1558-72</RefSource>
<PMID Version="1">21794054</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Feb 10;281(6):3432-8</RefSource>
<PMID Version="1">16326708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1996 Oct 25;271(43):26884-91</RefSource>
<PMID Version="1">8900172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2014 Aug 15;289(33):22636-47</RefSource>
<PMID Version="1">24958722</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1982 Feb;122(1):205-13</RefSource>
<PMID Version="1">6120835</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Med Genet A. 2015 Aug;167A(8):1763-72</RefSource>
<PMID Version="1">25846194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Feb 17;281(7):3821-31</RefSource>
<PMID Version="1">16326707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mutat. 2009 Jun;30(6):946-51</RefSource>
<PMID Version="1">19370761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Jan 22;285(4):2580-90</RefSource>
<PMID Version="1">19940144</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioorg Med Chem. 1998 Mar;6(3):355-64</RefSource>
<PMID Version="1">9568289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2003 Feb;25(2):142-51</RefSource>
<PMID Version="1">12539240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1978 Mar 28;533(1):270-7</RefSource>
<PMID Version="1">205266</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024061" MajorTopicYN="N">Collagen Type III</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006487" MajorTopicYN="Y">Hemostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038982" MajorTopicYN="N">Integrin alpha2beta1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010980" MajorTopicYN="N">Platelet Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060066" MajorTopicYN="N">Protein Interaction Maps</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055550" MajorTopicYN="N">Protein Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014841" MajorTopicYN="N">von Willebrand Factor</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28704418</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0175582</ArticleId>
<ArticleId IdType="pii">PONE-D-17-00972</ArticleId>
<ArticleId IdType="pmc">PMC5509119</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000875 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000875 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28704418
   |texte=   The collαgen III fibril has a "flexi-rod" structure of flexible sequences interspersed with rigid bioactive domains including two with hemostatic roles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28704418" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024