Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploiting vibrational resonance in weak-signal detection.

Identifieur interne : 000760 ( PubMed/Corpus ); précédent : 000759; suivant : 000761

Exploiting vibrational resonance in weak-signal detection.

Auteurs : Yuhao Ren ; Yan Pan ; Fabing Duan ; François Chapeau-Blondeau ; Derek Abbott

Source :

RBID : pubmed:28950458

Abstract

In this paper, we investigate the first exploitation of the vibrational resonance (VR) effect to detect weak signals in the presence of strong background noise. By injecting a series of sinusoidal interference signals of the same amplitude but with different frequencies into a generalized correlation detector, we show that the detection probability can be maximized at an appropriate interference amplitude. Based on a dual-Dirac probability density model, we compare the VR method with the stochastic resonance approach via adding dichotomous noise. The compared results indicate that the VR method can achieve a higher detection probability for a wider variety of noise distributions.

DOI: 10.1103/PhysRevE.96.022141
PubMed: 28950458

Links to Exploration step

pubmed:28950458

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploiting vibrational resonance in weak-signal detection.</title>
<author>
<name sortKey="Ren, Yuhao" sort="Ren, Yuhao" uniqKey="Ren Y" first="Yuhao" last="Ren">Yuhao Ren</name>
<affiliation>
<nlm:affiliation>Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Yan" sort="Pan, Yan" uniqKey="Pan Y" first="Yan" last="Pan">Yan Pan</name>
<affiliation>
<nlm:affiliation>Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, Fabing" sort="Duan, Fabing" uniqKey="Duan F" first="Fabing" last="Duan">Fabing Duan</name>
<affiliation>
<nlm:affiliation>Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chapeau Blondeau, Francois" sort="Chapeau Blondeau, Francois" uniqKey="Chapeau Blondeau F" first="François" last="Chapeau-Blondeau">François Chapeau-Blondeau</name>
<affiliation>
<nlm:affiliation>Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abbott, Derek" sort="Abbott, Derek" uniqKey="Abbott D" first="Derek" last="Abbott">Derek Abbott</name>
<affiliation>
<nlm:affiliation>Centre for Biomedical Engineering (CBME) and School of Electrical and Electronic Engineering, University of Adelaide, SA 5005, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28950458</idno>
<idno type="pmid">28950458</idno>
<idno type="doi">10.1103/PhysRevE.96.022141</idno>
<idno type="wicri:Area/PubMed/Corpus">000760</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000760</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exploiting vibrational resonance in weak-signal detection.</title>
<author>
<name sortKey="Ren, Yuhao" sort="Ren, Yuhao" uniqKey="Ren Y" first="Yuhao" last="Ren">Yuhao Ren</name>
<affiliation>
<nlm:affiliation>Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Yan" sort="Pan, Yan" uniqKey="Pan Y" first="Yan" last="Pan">Yan Pan</name>
<affiliation>
<nlm:affiliation>Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, Fabing" sort="Duan, Fabing" uniqKey="Duan F" first="Fabing" last="Duan">Fabing Duan</name>
<affiliation>
<nlm:affiliation>Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chapeau Blondeau, Francois" sort="Chapeau Blondeau, Francois" uniqKey="Chapeau Blondeau F" first="François" last="Chapeau-Blondeau">François Chapeau-Blondeau</name>
<affiliation>
<nlm:affiliation>Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abbott, Derek" sort="Abbott, Derek" uniqKey="Abbott D" first="Derek" last="Abbott">Derek Abbott</name>
<affiliation>
<nlm:affiliation>Centre for Biomedical Engineering (CBME) and School of Electrical and Electronic Engineering, University of Adelaide, SA 5005, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physical review. E</title>
<idno type="eISSN">2470-0053</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we investigate the first exploitation of the vibrational resonance (VR) effect to detect weak signals in the presence of strong background noise. By injecting a series of sinusoidal interference signals of the same amplitude but with different frequencies into a generalized correlation detector, we show that the detection probability can be maximized at an appropriate interference amplitude. Based on a dual-Dirac probability density model, we compare the VR method with the stochastic resonance approach via adding dichotomous noise. The compared results indicate that the VR method can achieve a higher detection probability for a wider variety of noise distributions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">28950458</PMID>
<DateCreated>
<Year>2017</Year>
<Month>09</Month>
<Day>27</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2470-0053</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>96</Volume>
<Issue>2-1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Physical review. E</Title>
<ISOAbbreviation>Phys Rev E</ISOAbbreviation>
</Journal>
<ArticleTitle>Exploiting vibrational resonance in weak-signal detection.</ArticleTitle>
<Pagination>
<MedlinePgn>022141</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1103/PhysRevE.96.022141</ELocationID>
<Abstract>
<AbstractText>In this paper, we investigate the first exploitation of the vibrational resonance (VR) effect to detect weak signals in the presence of strong background noise. By injecting a series of sinusoidal interference signals of the same amplitude but with different frequencies into a generalized correlation detector, we show that the detection probability can be maximized at an appropriate interference amplitude. Based on a dual-Dirac probability density model, we compare the VR method with the stochastic resonance approach via adding dichotomous noise. The compared results indicate that the VR method can achieve a higher detection probability for a wider variety of noise distributions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>Yuhao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Fabing</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chapeau-Blondeau</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abbott</LastName>
<ForeName>Derek</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Centre for Biomedical Engineering (CBME) and School of Electrical and Electronic Engineering, University of Adelaide, SA 5005, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Phys Rev E</MedlineTA>
<NlmUniqueID>101676019</NlmUniqueID>
<ISSNLinking>2470-0045</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>12</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28950458</ArticleId>
<ArticleId IdType="doi">10.1103/PhysRevE.96.022141</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000760 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000760 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28950458
   |texte=   Exploiting vibrational resonance in weak-signal detection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28950458" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024