Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.

Identifieur interne : 000614 ( PubMed/Corpus ); précédent : 000613; suivant : 000615

Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.

Auteurs : Jürgen Knauer ; Sönke Zaehle ; Belinda E. Medlyn ; Markus Reichstein ; Christopher A. Williams ; Mirco Migliavacca ; Martin G. De Kauwe ; Christiane Werner ; Claudia Keitel ; Pasi Kolari ; Jean-Marc Limousin ; Maj-Lena Linderson

Source :

RBID : pubmed:28875526

Abstract

Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G1 , "stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G1 : (i) non-transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non-closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G1 was sufficiently captured with a simple representation. G1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC-derived water-use efficiency is interpreted in an ecophysiological context.

DOI: 10.1111/gcb.13893
PubMed: 28875526

Links to Exploration step

pubmed:28875526

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.</title>
<author>
<name sortKey="Knauer, Jurgen" sort="Knauer, Jurgen" uniqKey="Knauer J" first="Jürgen" last="Knauer">Jürgen Knauer</name>
<affiliation>
<nlm:affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zaehle, Sonke" sort="Zaehle, Sonke" uniqKey="Zaehle S" first="Sönke" last="Zaehle">Sönke Zaehle</name>
<affiliation>
<nlm:affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Medlyn, Belinda E" sort="Medlyn, Belinda E" uniqKey="Medlyn B" first="Belinda E" last="Medlyn">Belinda E. Medlyn</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reichstein, Markus" sort="Reichstein, Markus" uniqKey="Reichstein M" first="Markus" last="Reichstein">Markus Reichstein</name>
<affiliation>
<nlm:affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Williams, Christopher A" sort="Williams, Christopher A" uniqKey="Williams C" first="Christopher A" last="Williams">Christopher A. Williams</name>
<affiliation>
<nlm:affiliation>Graduate School of Geography, Clark University, Worcester, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Migliavacca, Mirco" sort="Migliavacca, Mirco" uniqKey="Migliavacca M" first="Mirco" last="Migliavacca">Mirco Migliavacca</name>
<affiliation>
<nlm:affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Kauwe, Martin G" sort="De Kauwe, Martin G" uniqKey="De Kauwe M" first="Martin G" last="De Kauwe">Martin G. De Kauwe</name>
<affiliation>
<nlm:affiliation>Department of Biological Science, Macquarie University, North Ryde, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Werner, Christiane" sort="Werner, Christiane" uniqKey="Werner C" first="Christiane" last="Werner">Christiane Werner</name>
<affiliation>
<nlm:affiliation>Department of Ecosystem Physiology, University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Keitel, Claudia" sort="Keitel, Claudia" uniqKey="Keitel C" first="Claudia" last="Keitel">Claudia Keitel</name>
<affiliation>
<nlm:affiliation>School of Life and Environmental Science, University of Sydney, Brownlow Hill, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kolari, Pasi" sort="Kolari, Pasi" uniqKey="Kolari P" first="Pasi" last="Kolari">Pasi Kolari</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Limousin, Jean Marc" sort="Limousin, Jean Marc" uniqKey="Limousin J" first="Jean-Marc" last="Limousin">Jean-Marc Limousin</name>
<affiliation>
<nlm:affiliation>Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Linderson, Maj Lena" sort="Linderson, Maj Lena" uniqKey="Linderson M" first="Maj-Lena" last="Linderson">Maj-Lena Linderson</name>
<affiliation>
<nlm:affiliation>Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28875526</idno>
<idno type="pmid">28875526</idno>
<idno type="doi">10.1111/gcb.13893</idno>
<idno type="wicri:Area/PubMed/Corpus">000614</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000614</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.</title>
<author>
<name sortKey="Knauer, Jurgen" sort="Knauer, Jurgen" uniqKey="Knauer J" first="Jürgen" last="Knauer">Jürgen Knauer</name>
<affiliation>
<nlm:affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zaehle, Sonke" sort="Zaehle, Sonke" uniqKey="Zaehle S" first="Sönke" last="Zaehle">Sönke Zaehle</name>
<affiliation>
<nlm:affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Medlyn, Belinda E" sort="Medlyn, Belinda E" uniqKey="Medlyn B" first="Belinda E" last="Medlyn">Belinda E. Medlyn</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reichstein, Markus" sort="Reichstein, Markus" uniqKey="Reichstein M" first="Markus" last="Reichstein">Markus Reichstein</name>
<affiliation>
<nlm:affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Williams, Christopher A" sort="Williams, Christopher A" uniqKey="Williams C" first="Christopher A" last="Williams">Christopher A. Williams</name>
<affiliation>
<nlm:affiliation>Graduate School of Geography, Clark University, Worcester, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Migliavacca, Mirco" sort="Migliavacca, Mirco" uniqKey="Migliavacca M" first="Mirco" last="Migliavacca">Mirco Migliavacca</name>
<affiliation>
<nlm:affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Kauwe, Martin G" sort="De Kauwe, Martin G" uniqKey="De Kauwe M" first="Martin G" last="De Kauwe">Martin G. De Kauwe</name>
<affiliation>
<nlm:affiliation>Department of Biological Science, Macquarie University, North Ryde, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Werner, Christiane" sort="Werner, Christiane" uniqKey="Werner C" first="Christiane" last="Werner">Christiane Werner</name>
<affiliation>
<nlm:affiliation>Department of Ecosystem Physiology, University of Freiburg, Freiburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Keitel, Claudia" sort="Keitel, Claudia" uniqKey="Keitel C" first="Claudia" last="Keitel">Claudia Keitel</name>
<affiliation>
<nlm:affiliation>School of Life and Environmental Science, University of Sydney, Brownlow Hill, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kolari, Pasi" sort="Kolari, Pasi" uniqKey="Kolari P" first="Pasi" last="Kolari">Pasi Kolari</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Limousin, Jean Marc" sort="Limousin, Jean Marc" uniqKey="Limousin J" first="Jean-Marc" last="Limousin">Jean-Marc Limousin</name>
<affiliation>
<nlm:affiliation>Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Linderson, Maj Lena" sort="Linderson, Maj Lena" uniqKey="Linderson M" first="Maj-Lena" last="Linderson">Maj-Lena Linderson</name>
<affiliation>
<nlm:affiliation>Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Global change biology</title>
<idno type="eISSN">1365-2486</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G1 , "stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G1 : (i) non-transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non-closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G1 was sufficiently captured with a simple representation. G1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC-derived water-use efficiency is interpreted in an ecophysiological context.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">28875526</PMID>
<DateCreated>
<Year>2017</Year>
<Month>09</Month>
<Day>06</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>10</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2486</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2017</Year>
<Month>Sep</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Global change biology</Title>
<ISOAbbreviation>Glob Chang Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/gcb.13893</ELocationID>
<Abstract>
<AbstractText>Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G1 , "stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G1 : (i) non-transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non-closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G1 was sufficiently captured with a simple representation. G1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC-derived water-use efficiency is interpreted in an ecophysiological context.</AbstractText>
<CopyrightInformation>© 2017 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Knauer</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4947-7067</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>International Max Planck Research School for Global Biogeochemical Cycles (IMPRS-gBGC), Jena, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zaehle</LastName>
<ForeName>Sönke</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Michael-Stifel-Center Jena for Data-Driven and Simulation Science, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Medlyn</LastName>
<ForeName>Belinda E</ForeName>
<Initials>BE</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5728-9827</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichstein</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Michael-Stifel-Center Jena for Data-Driven and Simulation Science, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Christopher A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Geography, Clark University, Worcester, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Migliavacca</LastName>
<ForeName>Mirco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Kauwe</LastName>
<ForeName>Martin G</ForeName>
<Initials>MG</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3399-9098</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Science, Macquarie University, North Ryde, NSW, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Werner</LastName>
<ForeName>Christiane</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecosystem Physiology, University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keitel</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Science, University of Sydney, Brownlow Hill, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kolari</LastName>
<ForeName>Pasi</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Limousin</LastName>
<ForeName>Jean-Marc</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Linderson</LastName>
<ForeName>Maj-Lena</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Glob Chang Biol</MedlineTA>
<NlmUniqueID>9888746</NlmUniqueID>
<ISSNLinking>1354-1013</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Penman-Monteith equation</Keyword>
<Keyword MajorTopicYN="N">aerodynamic conductance</Keyword>
<Keyword MajorTopicYN="N">canopy gradients</Keyword>
<Keyword MajorTopicYN="N">eddy covariance</Keyword>
<Keyword MajorTopicYN="N">energy imbalance</Keyword>
<Keyword MajorTopicYN="N">intrinsic water-use efficiency</Keyword>
<Keyword MajorTopicYN="N">slope parameter</Keyword>
<Keyword MajorTopicYN="N">surface conductance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28875526</ArticleId>
<ArticleId IdType="doi">10.1111/gcb.13893</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000614 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000614 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28875526
   |texte=   Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28875526" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024