Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural signatures of thermal adaptation of bacterial ribosomal RNA, transfer RNA, and messenger RNA.

Identifieur interne : 000599 ( PubMed/Corpus ); précédent : 000598; suivant : 000600

Structural signatures of thermal adaptation of bacterial ribosomal RNA, transfer RNA, and messenger RNA.

Auteurs : Clara Jegousse ; Yuedong Yang ; Jian Zhan ; Jihua Wang ; Yaoqi Zhou

Source :

RBID : pubmed:28910383

English descriptors

Abstract

Temperature adaptation of bacterial RNAs is a subject of both fundamental and practical interest because it will allow a better understanding of molecular mechanism of RNA folding with potential industrial application of functional thermophilic or psychrophilic RNAs. Here, we performed a comprehensive study of rRNA, tRNA, and mRNA of more than 200 bacterial species with optimal growth temperatures (OGT) ranging from 4°C to 95°C. We investigated temperature adaptation at primary, secondary and tertiary structure levels. We showed that unlike mRNA, tRNA and rRNA were optimized for their structures at compositional levels with significant tertiary structural features even for their corresponding randomly permutated sequences. tRNA and rRNA are more exposed to solvent but remain structured for hyperthermophiles with nearly OGT-independent fluctuation of solvent accessible surface area within a single RNA chain. mRNA in hyperthermophiles is essentially the same as random sequences without tertiary structures although many mRNA in mesophiles and psychrophiles have well-defined tertiary structures based on their low overall solvent exposure with clear separation of deeply buried from partly exposed bases as in tRNA and rRNA. These results provide new insight into temperature adaptation of different RNAs.

DOI: 10.1371/journal.pone.0184722
PubMed: 28910383

Links to Exploration step

pubmed:28910383

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural signatures of thermal adaptation of bacterial ribosomal RNA, transfer RNA, and messenger RNA.</title>
<author>
<name sortKey="Jegousse, Clara" sort="Jegousse, Clara" uniqKey="Jegousse C" first="Clara" last="Jegousse">Clara Jegousse</name>
<affiliation>
<nlm:affiliation>UFR Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yuedong" sort="Yang, Yuedong" uniqKey="Yang Y" first="Yuedong" last="Yang">Yuedong Yang</name>
<affiliation>
<nlm:affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhan, Jian" sort="Zhan, Jian" uniqKey="Zhan J" first="Jian" last="Zhan">Jian Zhan</name>
<affiliation>
<nlm:affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jihua" sort="Wang, Jihua" uniqKey="Wang J" first="Jihua" last="Wang">Jihua Wang</name>
<affiliation>
<nlm:affiliation>Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yaoqi" sort="Zhou, Yaoqi" uniqKey="Zhou Y" first="Yaoqi" last="Zhou">Yaoqi Zhou</name>
<affiliation>
<nlm:affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28910383</idno>
<idno type="pmid">28910383</idno>
<idno type="doi">10.1371/journal.pone.0184722</idno>
<idno type="wicri:Area/PubMed/Corpus">000599</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000599</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural signatures of thermal adaptation of bacterial ribosomal RNA, transfer RNA, and messenger RNA.</title>
<author>
<name sortKey="Jegousse, Clara" sort="Jegousse, Clara" uniqKey="Jegousse C" first="Clara" last="Jegousse">Clara Jegousse</name>
<affiliation>
<nlm:affiliation>UFR Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière, Nantes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yuedong" sort="Yang, Yuedong" uniqKey="Yang Y" first="Yuedong" last="Yang">Yuedong Yang</name>
<affiliation>
<nlm:affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhan, Jian" sort="Zhan, Jian" uniqKey="Zhan J" first="Jian" last="Zhan">Jian Zhan</name>
<affiliation>
<nlm:affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jihua" sort="Wang, Jihua" uniqKey="Wang J" first="Jihua" last="Wang">Jihua Wang</name>
<affiliation>
<nlm:affiliation>Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yaoqi" sort="Zhou, Yaoqi" uniqKey="Zhou Y" first="Yaoqi" last="Zhou">Yaoqi Zhou</name>
<affiliation>
<nlm:affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (genetics)</term>
<term>Databases, Genetic</term>
<term>Models, Molecular</term>
<term>Nucleic Acid Conformation</term>
<term>RNA Folding (drug effects)</term>
<term>RNA, Bacterial (chemistry)</term>
<term>RNA, Bacterial (drug effects)</term>
<term>RNA, Messenger (chemistry)</term>
<term>RNA, Messenger (drug effects)</term>
<term>RNA, Ribosomal (chemistry)</term>
<term>RNA, Ribosomal (drug effects)</term>
<term>RNA, Transfer (chemistry)</term>
<term>RNA, Transfer (drug effects)</term>
<term>Solvents (pharmacology)</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Bacterial</term>
<term>RNA, Messenger</term>
<term>RNA, Ribosomal</term>
<term>RNA, Transfer</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>RNA Folding</term>
<term>RNA, Bacterial</term>
<term>RNA, Messenger</term>
<term>RNA, Ribosomal</term>
<term>RNA, Transfer</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Solvents</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Databases, Genetic</term>
<term>Models, Molecular</term>
<term>Nucleic Acid Conformation</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Temperature adaptation of bacterial RNAs is a subject of both fundamental and practical interest because it will allow a better understanding of molecular mechanism of RNA folding with potential industrial application of functional thermophilic or psychrophilic RNAs. Here, we performed a comprehensive study of rRNA, tRNA, and mRNA of more than 200 bacterial species with optimal growth temperatures (OGT) ranging from 4°C to 95°C. We investigated temperature adaptation at primary, secondary and tertiary structure levels. We showed that unlike mRNA, tRNA and rRNA were optimized for their structures at compositional levels with significant tertiary structural features even for their corresponding randomly permutated sequences. tRNA and rRNA are more exposed to solvent but remain structured for hyperthermophiles with nearly OGT-independent fluctuation of solvent accessible surface area within a single RNA chain. mRNA in hyperthermophiles is essentially the same as random sequences without tertiary structures although many mRNA in mesophiles and psychrophiles have well-defined tertiary structures based on their low overall solvent exposure with clear separation of deeply buried from partly exposed bases as in tRNA and rRNA. These results provide new insight into temperature adaptation of different RNAs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28910383</PMID>
<DateCreated>
<Year>2017</Year>
<Month>09</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural signatures of thermal adaptation of bacterial ribosomal RNA, transfer RNA, and messenger RNA.</ArticleTitle>
<Pagination>
<MedlinePgn>e0184722</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0184722</ELocationID>
<Abstract>
<AbstractText>Temperature adaptation of bacterial RNAs is a subject of both fundamental and practical interest because it will allow a better understanding of molecular mechanism of RNA folding with potential industrial application of functional thermophilic or psychrophilic RNAs. Here, we performed a comprehensive study of rRNA, tRNA, and mRNA of more than 200 bacterial species with optimal growth temperatures (OGT) ranging from 4°C to 95°C. We investigated temperature adaptation at primary, secondary and tertiary structure levels. We showed that unlike mRNA, tRNA and rRNA were optimized for their structures at compositional levels with significant tertiary structural features even for their corresponding randomly permutated sequences. tRNA and rRNA are more exposed to solvent but remain structured for hyperthermophiles with nearly OGT-independent fluctuation of solvent accessible surface area within a single RNA chain. mRNA in hyperthermophiles is essentially the same as random sequences without tertiary structures although many mRNA in mesophiles and psychrophiles have well-defined tertiary structures based on their low overall solvent exposure with clear separation of deeply buried from partly exposed bases as in tRNA and rRNA. These results provide new insight into temperature adaptation of different RNAs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jegousse</LastName>
<ForeName>Clara</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>UFR Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière, Nantes, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yuedong</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhan</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jihua</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Yaoqi</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9958-5699</Identifier>
<AffiliationInfo>
<Affiliation>Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012329">RNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012997">Solvents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-25-9</RegistryNumber>
<NameOfSubstance UI="D012343">RNA, Transfer</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Adv. 2015 Dec;33(8):1912-22</RefSource>
<PMID Version="1">26585268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2015 Apr 20;43(7):3872</RefSource>
<PMID Version="1">25824943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2008 Apr 11;9:192</RefSource>
<PMID Version="1">18405375</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 1998 Jun;28(6):1043-9</RefSource>
<PMID Version="1">9680196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2014 Jan 30;505(7485):701-5</RefSource>
<PMID Version="1">24336214</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2002 Jun 25;41(25):8152-61</RefSource>
<PMID Version="1">12069608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Evol. 1997 Jun;44(6):632-6</RefSource>
<PMID Version="1">9169555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2012 Jun 8;149(6):1393-406</RefSource>
<PMID Version="1">22658674</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 May 28;99(11):7542-7</RefSource>
<PMID Version="1">12032319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2006 Dec 30;385:128-36</RefSource>
<PMID Version="1">16989961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2000 Feb;57(2):250-64</RefSource>
<PMID Version="1">10766021</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biochem. 2003 Apr;133(4):507-13</RefSource>
<PMID Version="1">12761299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1999 Dec 15;27(24):4816-22</RefSource>
<PMID Version="1">10572183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1999 Jul 9;290(2):595-604</RefSource>
<PMID Version="1">10390356</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Algorithms Mol Biol. 2011 Nov 24;6:26</RefSource>
<PMID Version="1">22115189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2002 Oct 1;30(19):4272-7</RefSource>
<PMID Version="1">12364606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys Rep. 2015;1:2-13</RefSource>
<PMID Version="1">26942214</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2006 Jul 1;22(13):1658-9</RefSource>
<PMID Version="1">16731699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2016 Jul 27;44(13):6434-41</RefSource>
<PMID Version="1">27174928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>RNA. 2017 Jan;23 (1):14-22</RefSource>
<PMID Version="1">27807179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>RNA. 2015 Jun;21(6):1066-84</RefSource>
<PMID Version="1">25883046</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Direct. 2012 Aug 23;7:27</RefSource>
<PMID Version="1">22913395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2000 May 15;8(5):493-504</RefSource>
<PMID Version="1">10801491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2016 Jan 4;44(D1):D581-5</RefSource>
<PMID Version="1">26424852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1992 Oct 20;227(4):1255-7</RefSource>
<PMID Version="1">1433298</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys Chem. 1999 Nov 15;82(1):51-67</RefSource>
<PMID Version="1">10584295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Lett. 2010 Apr;305(2):100-8</RefSource>
<PMID Version="1">20659165</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2001 Aug;58(9):1216-33</RefSource>
<PMID Version="1">11577980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Extremophiles. 2003 Dec;7(6):443-50</RefSource>
<PMID Version="1">14666404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2000 Mar 17;470(1):65-9</RefSource>
<PMID Version="1">10722847</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2003 Oct 23;317(1-2):39-47</RefSource>
<PMID Version="1">14604790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1997 Aug 19;36(33):9983-94</RefSource>
<PMID Version="1">9254593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2014 Apr;42(8):5403-6</RefSource>
<PMID Version="1">24682823</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2016 Jan 4;44(D1):D7-19</RefSource>
<PMID Version="1">26615191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biopolymers. 1990 May-Jun;29(6-7):1105-19</RefSource>
<PMID Version="1">1695107</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2014 Apr;82(4):640-7</RefSource>
<PMID Version="1">24123256</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Evol. 2006 Jul;63(1):120-6</RefSource>
<PMID Version="1">16786438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Eng. 2000 Mar;13(3):179-91</RefSource>
<PMID Version="1">10775659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1981 Jan 10;9(1):133-48</RefSource>
<PMID Version="1">6163133</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Condens Matter. 2010 Aug 18;22(32):323101</RefSource>
<PMID Version="1">21386475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2004;5(10):117</RefSource>
<PMID Version="1">15461805</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2012;905:99-122</RefSource>
<PMID Version="1">22736001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2006 Apr 14;342(3):681-4</RefSource>
<PMID Version="1">16499870</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Pept Lett. 2006;13(7):645-51</RefSource>
<PMID Version="1">17018005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Biotechnol. 2003 Aug;14(4):360-5</RefSource>
<PMID Version="1">12943843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Soc Trans. 2004 Apr;32(Pt 2):168-71</RefSource>
<PMID Version="1">15046564</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2951-6</RefSource>
<PMID Version="1">14973185</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1997 Jun 20;269(4):631-43</RefSource>
<PMID Version="1">9217266</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2001 Mar 7;268(1466):493-7</RefSource>
<PMID Version="1">11296861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Chem Biol. 2010 Aug 20;5(8):753-65</RefSource>
<PMID Version="1">20536261</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Mol Biol Rev. 2004 Sep;68(3):518-37, table of contents</RefSource>
<PMID Version="1">15353568</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 Aug 05;8(8):e69898</RefSource>
<PMID Version="1">23940533</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Eng. 1996 Mar;9(3):265-71</RefSource>
<PMID Version="1">8736493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microb Cell Fact. 2007 Mar 15;6:9</RefSource>
<PMID Version="1">17359551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2015 Feb;30:125-33</RefSource>
<PMID Version="1">25744941</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biosci. 2006 Mar;31(1):157-65</RefSource>
<PMID Version="1">16595884</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059370" MajorTopicYN="N">RNA Folding</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012329" MajorTopicYN="N">RNA, Bacterial</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012343" MajorTopicYN="N">RNA, Transfer</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012997" MajorTopicYN="N">Solvents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28910383</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0184722</ArticleId>
<ArticleId IdType="pii">PONE-D-17-23880</ArticleId>
<ArticleId IdType="pmc">PMC5598986</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000599 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000599 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28910383
   |texte=   Structural signatures of thermal adaptation of bacterial ribosomal RNA, transfer RNA, and messenger RNA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28910383" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024