Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems.

Identifieur interne : 000495 ( PubMed/Corpus ); précédent : 000494; suivant : 000496

The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems.

Auteurs : Ana Hranilovic ; Marina Bely ; Isabelle Masneuf-Pomarede ; Vladimir Jiranek ; Warren Albertin

Source :

RBID : pubmed:28910346

English descriptors

Abstract

The yeast Lachancea thermotolerans (formerly Kluyveromyces thermotolerans) is a species with remarkable, yet underexplored, biotechnological potential. This ubiquist occupies a range of natural and anthropic habitats covering a wide geographic span. To gain an insight into L. thermotolerans population diversity and structure, 172 isolates sourced from diverse habitats worldwide were analysed using a set of 14 microsatellite markers. The resultant clustering revealed that the evolution of L. thermotolerans has been driven by the geography and ecological niche of the isolation sources. Isolates originating from anthropic environments, in particular grapes and wine, were genetically close, thus suggesting domestication events within the species. The observed clustering was further validated by several means including, population structure analysis, F-statistics, Mantel's test and the analysis of molecular variance (AMOVA). Phenotypic performance of isolates was tested using several growth substrates and physicochemical conditions, providing added support for the clustering. Altogether, this study sheds light on the genotypic and phenotypic diversity of L. thermotolerans, contributing to a better understanding of the population structure, ecology and evolution of this non-Saccharomyces yeast.

DOI: 10.1371/journal.pone.0184652
PubMed: 28910346

Links to Exploration step

pubmed:28910346

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems.</title>
<author>
<name sortKey="Hranilovic, Ana" sort="Hranilovic, Ana" uniqKey="Hranilovic A" first="Ana" last="Hranilovic">Ana Hranilovic</name>
<affiliation>
<nlm:affiliation>The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, South Australia, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bely, Marina" sort="Bely, Marina" uniqKey="Bely M" first="Marina" last="Bely">Marina Bely</name>
<affiliation>
<nlm:affiliation>Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Masneuf Pomarede, Isabelle" sort="Masneuf Pomarede, Isabelle" uniqKey="Masneuf Pomarede I" first="Isabelle" last="Masneuf-Pomarede">Isabelle Masneuf-Pomarede</name>
<affiliation>
<nlm:affiliation>Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiranek, Vladimir" sort="Jiranek, Vladimir" uniqKey="Jiranek V" first="Vladimir" last="Jiranek">Vladimir Jiranek</name>
<affiliation>
<nlm:affiliation>The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, South Australia, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Albertin, Warren" sort="Albertin, Warren" uniqKey="Albertin W" first="Warren" last="Albertin">Warren Albertin</name>
<affiliation>
<nlm:affiliation>Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28910346</idno>
<idno type="pmid">28910346</idno>
<idno type="doi">10.1371/journal.pone.0184652</idno>
<idno type="wicri:Area/PubMed/Corpus">000495</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000495</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems.</title>
<author>
<name sortKey="Hranilovic, Ana" sort="Hranilovic, Ana" uniqKey="Hranilovic A" first="Ana" last="Hranilovic">Ana Hranilovic</name>
<affiliation>
<nlm:affiliation>The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, South Australia, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bely, Marina" sort="Bely, Marina" uniqKey="Bely M" first="Marina" last="Bely">Marina Bely</name>
<affiliation>
<nlm:affiliation>Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Masneuf Pomarede, Isabelle" sort="Masneuf Pomarede, Isabelle" uniqKey="Masneuf Pomarede I" first="Isabelle" last="Masneuf-Pomarede">Isabelle Masneuf-Pomarede</name>
<affiliation>
<nlm:affiliation>Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiranek, Vladimir" sort="Jiranek, Vladimir" uniqKey="Jiranek V" first="Vladimir" last="Jiranek">Vladimir Jiranek</name>
<affiliation>
<nlm:affiliation>The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, South Australia, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Albertin, Warren" sort="Albertin, Warren" uniqKey="Albertin W" first="Warren" last="Albertin">Warren Albertin</name>
<affiliation>
<nlm:affiliation>Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cluster Analysis</term>
<term>DNA, Fungal (genetics)</term>
<term>Domestication</term>
<term>Ecosystem</term>
<term>Evolution, Molecular</term>
<term>Kluyveromyces (genetics)</term>
<term>Kluyveromyces (growth & development)</term>
<term>Microsatellite Repeats</term>
<term>Phenotype</term>
<term>Phylogeography</term>
<term>Vitis (genetics)</term>
<term>Vitis (microbiology)</term>
<term>Wine (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Kluyveromyces</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Kluyveromyces</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Vitis</term>
<term>Wine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Domestication</term>
<term>Ecosystem</term>
<term>Evolution, Molecular</term>
<term>Microsatellite Repeats</term>
<term>Phenotype</term>
<term>Phylogeography</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The yeast Lachancea thermotolerans (formerly Kluyveromyces thermotolerans) is a species with remarkable, yet underexplored, biotechnological potential. This ubiquist occupies a range of natural and anthropic habitats covering a wide geographic span. To gain an insight into L. thermotolerans population diversity and structure, 172 isolates sourced from diverse habitats worldwide were analysed using a set of 14 microsatellite markers. The resultant clustering revealed that the evolution of L. thermotolerans has been driven by the geography and ecological niche of the isolation sources. Isolates originating from anthropic environments, in particular grapes and wine, were genetically close, thus suggesting domestication events within the species. The observed clustering was further validated by several means including, population structure analysis, F-statistics, Mantel's test and the analysis of molecular variance (AMOVA). Phenotypic performance of isolates was tested using several growth substrates and physicochemical conditions, providing added support for the clustering. Altogether, this study sheds light on the genotypic and phenotypic diversity of L. thermotolerans, contributing to a better understanding of the population structure, ecology and evolution of this non-Saccharomyces yeast.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28910346</PMID>
<DateCreated>
<Year>2017</Year>
<Month>09</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>10</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems.</ArticleTitle>
<Pagination>
<MedlinePgn>e0184652</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0184652</ELocationID>
<Abstract>
<AbstractText>The yeast Lachancea thermotolerans (formerly Kluyveromyces thermotolerans) is a species with remarkable, yet underexplored, biotechnological potential. This ubiquist occupies a range of natural and anthropic habitats covering a wide geographic span. To gain an insight into L. thermotolerans population diversity and structure, 172 isolates sourced from diverse habitats worldwide were analysed using a set of 14 microsatellite markers. The resultant clustering revealed that the evolution of L. thermotolerans has been driven by the geography and ecological niche of the isolation sources. Isolates originating from anthropic environments, in particular grapes and wine, were genetically close, thus suggesting domestication events within the species. The observed clustering was further validated by several means including, population structure analysis, F-statistics, Mantel's test and the analysis of molecular variance (AMOVA). Phenotypic performance of isolates was tested using several growth substrates and physicochemical conditions, providing added support for the clustering. Altogether, this study sheds light on the genotypic and phenotypic diversity of L. thermotolerans, contributing to a better understanding of the population structure, ecology and evolution of this non-Saccharomyces yeast.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hranilovic</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4602-959X</Identifier>
<AffiliationInfo>
<Affiliation>The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, South Australia, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Wine and Food Science, The University of Adelaide, Urbrrae, South Australia, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bely</LastName>
<ForeName>Marina</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, Villenave d'Ornon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Masneuf-Pomarede</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, Villenave d'Ornon, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Bordeaux Sciences Agro, Gradignan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiranek</LastName>
<ForeName>Vladimir</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, South Australia, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Wine and Food Science, The University of Adelaide, Urbrrae, South Australia, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Albertin</LastName>
<ForeName>Warren</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, Villenave d'Ornon, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>ENSCBP, Bordeaux INP, Pessac, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Genet Eng Rev. 2010;27:229-56</RefSource>
<PMID Version="1">21415900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2014 Apr;196(4):973-83</RefSource>
<PMID Version="1">24496008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>C R Biol. 2011 Mar;334(3):229-36</RefSource>
<PMID Version="1">21377618</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Microbiol. 2016 Jan 20;6:1569</RefSource>
<PMID Version="1">26834719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 1967 Feb;27(2):209-20</RefSource>
<PMID Version="1">6018555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 1987 Jul;4(4):406-25</RefSource>
<PMID Version="1">3447015</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2008 Jan 1;24(1):129-31</RefSource>
<PMID Version="1">18006550</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Food Microbiol. 2013 Apr;33(2):271-81</RefSource>
<PMID Version="1">23200661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2009 Oct;19(10):1696-709</RefSource>
<PMID Version="1">19525356</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2000 Dec 22;487(1):113-21</RefSource>
<PMID Version="1">11152894</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2010 Feb 1;26(3):419-20</RefSource>
<PMID Version="1">20080509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29</RefSource>
<PMID Version="1">26153368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Yeast Res. 2015 Aug;15(5):fov045</RefSource>
<PMID Version="1">26071435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Microbiol Rep. 2012 Feb;4(1):105-12</RefSource>
<PMID Version="1">23757236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 Mar 19;458(7236):337-41</RefSource>
<PMID Version="1">19212322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry (Mosc). 2007 Dec;72(12):1356-62</RefSource>
<PMID Version="1">18205619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Yeast Res. 2003 Dec;4(3):233-45</RefSource>
<PMID Version="1">14654427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2006 Apr;72(4):2390-3</RefSource>
<PMID Version="1">16597935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Yeast Res. 2016 Mar;16(2):fow002</RefSource>
<PMID Version="1">26772797</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2015 Nov;24(21):5412-27</RefSource>
<PMID Version="1">26248006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Yeast Res. 2008 Nov;8(7):979-95</RefSource>
<PMID Version="1">18793201</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Microbiol. 2010 Jan;12(1):63-73</RefSource>
<PMID Version="1">19691498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Microbiol. 2016 Feb 29;7:212</RefSource>
<PMID Version="1">26973603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnology (N Y). 1994 Feb;12(2):173-7</RefSource>
<PMID Version="1">7764431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Food Technol Biotechnol. 2016 Jun;54(2):135-144</RefSource>
<PMID Version="1">27904403</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Evol. 2016 Jan 27;6(4):1236-50</RefSource>
<PMID Version="1">26941949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2015 May;25(5):762-74</RefSource>
<PMID Version="1">25840857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2000 Feb;18(2):233-4</RefSource>
<PMID Version="1">10657137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Basic Microbiol. 1989;29(10):707-16</RefSource>
<PMID Version="1">2698956</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2011;2:321</RefSource>
<PMID Version="1">21610724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2004 Jul;13(7):2101-6</RefSource>
<PMID Version="1">15189230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Microbiol. 2016 Jan 11;6:1563</RefSource>
<PMID Version="1">26793188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ISME J. 2015 Feb;9(2):361-70</RefSource>
<PMID Version="1">25062126</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Apr 09;9(4):e94246</RefSource>
<PMID Version="1">24718638</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Yeast Res. 2014 Mar;14(2):215-37</RefSource>
<PMID Version="1">24164726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 Sep 25;8(9):e75332</RefSource>
<PMID Version="1">24086510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol Evol. 2014 Sep 11;6(10):2586-94</RefSource>
<PMID Version="1">25212859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>G3 (Bethesda). 2016 Apr 07;6(4):957-71</RefSource>
<PMID Version="1">26869621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2007 May;16(10):2091-102</RefSource>
<PMID Version="1">17498234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PeerJ. 2014 Mar 04;2:e281</RefSource>
<PMID Version="1">24688859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2004 Jun;5(6):435-45</RefSource>
<PMID Version="1">15153996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2006 Sep;22(9):511-9</RefSource>
<PMID Version="1">16872714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2014 Oct;198(2):435-7</RefSource>
<PMID Version="1">25316779</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13398-403</RefSource>
<PMID Version="1">22847440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Jan 22;20(2):289-90</RefSource>
<PMID Version="1">14734327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Res. 2016 Dec;193:1-10</RefSource>
<PMID Version="1">27825476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Funct Genomics. 2001;2(4):236-42</RefSource>
<PMID Version="1">18628917</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol Resour. 2016 Nov 21;:null</RefSource>
<PMID Version="1">27868358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Food Microbiol. 2014 Sep;42:188-95</RefSource>
<PMID Version="1">24929736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2013 Jun;22(11):2917-30</RefSource>
<PMID Version="1">23286354</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071278" MajorTopicYN="N">Domestication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007716" MajorTopicYN="N">Kluyveromyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058974" MajorTopicYN="N">Phylogeography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014920" MajorTopicYN="N">Wine</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28910346</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0184652</ArticleId>
<ArticleId IdType="pii">PONE-D-17-24053</ArticleId>
<ArticleId IdType="pmc">PMC5599012</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000495 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000495 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28910346
   |texte=   The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28910346" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024