Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material.

Identifieur interne : 000365 ( PubMed/Corpus ); précédent : 000364; suivant : 000366

Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material.

Auteurs : Benjamin R. Mullaney ; Laurence Goux-Capes ; David J. Price ; Guillaume Chastanet ; Jean-François Létard ; Cameron J. Kepert

Source :

RBID : pubmed:29051479

Abstract

External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.

DOI: 10.1038/s41467-017-00776-1
PubMed: 29051479

Links to Exploration step

pubmed:29051479

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material.</title>
<author>
<name sortKey="Mullaney, Benjamin R" sort="Mullaney, Benjamin R" uniqKey="Mullaney B" first="Benjamin R" last="Mullaney">Benjamin R. Mullaney</name>
<affiliation>
<nlm:affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goux Capes, Laurence" sort="Goux Capes, Laurence" uniqKey="Goux Capes L" first="Laurence" last="Goux-Capes">Laurence Goux-Capes</name>
<affiliation>
<nlm:affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Price, David J" sort="Price, David J" uniqKey="Price D" first="David J" last="Price">David J. Price</name>
<affiliation>
<nlm:affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chastanet, Guillaume" sort="Chastanet, Guillaume" uniqKey="Chastanet G" first="Guillaume" last="Chastanet">Guillaume Chastanet</name>
<affiliation>
<nlm:affiliation>ICMCB, UPR CNRS 9048, Université Bordeaux I, 87 Av. du Doc. A., Schweitzer, F-33608, Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Letard, Jean Francois" sort="Letard, Jean Francois" uniqKey="Letard J" first="Jean-François" last="Létard">Jean-François Létard</name>
<affiliation>
<nlm:affiliation>ICMCB, UPR CNRS 9048, Université Bordeaux I, 87 Av. du Doc. A., Schweitzer, F-33608, Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kepert, Cameron J" sort="Kepert, Cameron J" uniqKey="Kepert C" first="Cameron J" last="Kepert">Cameron J. Kepert</name>
<affiliation>
<nlm:affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia. cameron.kepert@sydney.edu.au.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29051479</idno>
<idno type="pmid">29051479</idno>
<idno type="doi">10.1038/s41467-017-00776-1</idno>
<idno type="wicri:Area/PubMed/Corpus">000365</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000365</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material.</title>
<author>
<name sortKey="Mullaney, Benjamin R" sort="Mullaney, Benjamin R" uniqKey="Mullaney B" first="Benjamin R" last="Mullaney">Benjamin R. Mullaney</name>
<affiliation>
<nlm:affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goux Capes, Laurence" sort="Goux Capes, Laurence" uniqKey="Goux Capes L" first="Laurence" last="Goux-Capes">Laurence Goux-Capes</name>
<affiliation>
<nlm:affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Price, David J" sort="Price, David J" uniqKey="Price D" first="David J" last="Price">David J. Price</name>
<affiliation>
<nlm:affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chastanet, Guillaume" sort="Chastanet, Guillaume" uniqKey="Chastanet G" first="Guillaume" last="Chastanet">Guillaume Chastanet</name>
<affiliation>
<nlm:affiliation>ICMCB, UPR CNRS 9048, Université Bordeaux I, 87 Av. du Doc. A., Schweitzer, F-33608, Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Letard, Jean Francois" sort="Letard, Jean Francois" uniqKey="Letard J" first="Jean-François" last="Létard">Jean-François Létard</name>
<affiliation>
<nlm:affiliation>ICMCB, UPR CNRS 9048, Université Bordeaux I, 87 Av. du Doc. A., Schweitzer, F-33608, Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kepert, Cameron J" sort="Kepert, Cameron J" uniqKey="Kepert C" first="Cameron J" last="Kepert">Cameron J. Kepert</name>
<affiliation>
<nlm:affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia. cameron.kepert@sydney.edu.au.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">29051479</PMID>
<DateCreated>
<Year>2017</Year>
<Month>10</Month>
<Day>20</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>10</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Oct</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material.</ArticleTitle>
<Pagination>
<MedlinePgn>1053</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41467-017-00776-1</ELocationID>
<Abstract>
<AbstractText>External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mullaney</LastName>
<ForeName>Benjamin R</ForeName>
<Initials>BR</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goux-Capes</LastName>
<ForeName>Laurence</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Price</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chastanet</LastName>
<ForeName>Guillaume</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>ICMCB, UPR CNRS 9048, Université Bordeaux I, 87 Av. du Doc. A., Schweitzer, F-33608, Pessac, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Létard</LastName>
<ForeName>Jean-François</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>ICMCB, UPR CNRS 9048, Université Bordeaux I, 87 Av. du Doc. A., Schweitzer, F-33608, Pessac, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kepert</LastName>
<ForeName>Cameron J</ForeName>
<Initials>CJ</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6105-9706</Identifier>
<AffiliationInfo>
<Affiliation>School of Chemistry, The University of Sydney, Building F11, Sydney, NSW, 2006, Australia. cameron.kepert@sydney.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2002 Nov 29;298(5599):1762-5</RefSource>
<PMID Version="1">12459583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Soc Rev. 2015 Jun 7;44(11):3522-67</RefSource>
<PMID Version="1">25864730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1995 Apr 14;268(5208):265-7</RefSource>
<PMID Version="1">17814788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12504-8</RefSource>
<PMID Version="1">23081866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2016 Nov 21;55(48):15105-15109</RefSource>
<PMID Version="1">27766726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Mater. 2010 Jan;9(1):36-9</RefSource>
<PMID Version="1">19935666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Feb 8;319(5864):794-7</RefSource>
<PMID Version="1">18258911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2015 May 26;54(22):6447-51</RefSource>
<PMID Version="1">25873105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2011 Jun 14;2:347</RefSource>
<PMID Version="1">21673668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2008 Sep 3;130(35):11813-8</RefSource>
<PMID Version="1">18693731</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2003 Oct 16;425(6959):702-5</RefSource>
<PMID Version="1">14562099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2015 Nov 04;6:8810</RefSource>
<PMID Version="1">26531811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2013;4:2607</RefSource>
<PMID Version="1">24153221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2009 Aug 12;131(31):10998-1009</RefSource>
<PMID Version="1">19621892</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chemistry. 2012 Jan 9;18(2):507-16</RefSource>
<PMID Version="1">22147670</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2014 Sep 04;5:4811</RefSource>
<PMID Version="1">25185949</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29051479</ArticleId>
<ArticleId IdType="doi">10.1038/s41467-017-00776-1</ArticleId>
<ArticleId IdType="pii">10.1038/s41467-017-00776-1</ArticleId>
<ArticleId IdType="pmc">PMC5648752</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000365 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000365 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29051479
   |texte=   Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29051479" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024