Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells.

Identifieur interne : 000200 ( PubMed/Corpus ); précédent : 000199; suivant : 000201

Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells.

Auteurs : Guillermo Pozo ; Yang Lu ; Sebastien Pongy ; Jürg Keller ; Pablo Ledezma ; Stefano Freguia

Source :

RBID : pubmed:28719849

English descriptors

Abstract

Selective microbial retention is of paramount importance for the long-term performance of cathodic sulfate reduction in microbial electrolysis cells (MECs) due to the slow growth rate of autotrophic sulfate-reducing bacteria. In this work, we investigate the biofilm retention and current-to-sulfide conversion efficiency using carbon granules (CG) or multi-wall carbon nanotubes deposited on reticulated vitreous carbon (MWCNT-RVC) as electrode materials. For ~2months, the MECs were operated at sulfate loading rates of 21 to 309gSO4 -S/m(2)/d. Although MWCNT-RVC achieved a current density of 57±11A/m(2), greater than the 32±9A/m(2) observed using CG, both materials exhibited similar sulfate reduction rates (SRR), with MWCNT-RVC reaching 104±16gSO4 -S/m(2)/d while 110±13gSO4 -S/m(2)/d were achieved with CG. Pyrosequencing analysis of the 16S rRNA at the end of experimentation revealed a core community dominated by Desulfovibrio (28%), Methanobacterium (19%) and Desulfomicrobium (14%), on the MWCNT-RVC electrodes. While a similar Desulfovibrio relative abundance of 29% was found in CG-biofilms, Desulfomicrobium was found to be significantly less abundant (4%) and Methanobacterium practically absent (0.2%) on CG electrodes. Surprisingly, our results show that CG can achieve higher current-to-sulfide efficiencies at lower power consumption than the nano-modified three-dimensional MWCNT-RVC.

DOI: 10.1016/j.bioelechem.2017.07.001
PubMed: 28719849

Links to Exploration step

pubmed:28719849

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells.</title>
<author>
<name sortKey="Pozo, Guillermo" sort="Pozo, Guillermo" uniqKey="Pozo G" first="Guillermo" last="Pozo">Guillermo Pozo</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia. Electronic address: g.pozozamora@awmc.uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Yang" sort="Lu, Yang" uniqKey="Lu Y" first="Yang" last="Lu">Yang Lu</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pongy, Sebastien" sort="Pongy, Sebastien" uniqKey="Pongy S" first="Sebastien" last="Pongy">Sebastien Pongy</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia; Département Génie Energétique et Environnement, INSA Lyon, 69621 Villeurbanne Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Keller, Jurg" sort="Keller, Jurg" uniqKey="Keller J" first="Jürg" last="Keller">Jürg Keller</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ledezma, Pablo" sort="Ledezma, Pablo" uniqKey="Ledezma P" first="Pablo" last="Ledezma">Pablo Ledezma</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Freguia, Stefano" sort="Freguia, Stefano" uniqKey="Freguia S" first="Stefano" last="Freguia">Stefano Freguia</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28719849</idno>
<idno type="pmid">28719849</idno>
<idno type="doi">10.1016/j.bioelechem.2017.07.001</idno>
<idno type="wicri:Area/PubMed/Corpus">000200</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000200</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells.</title>
<author>
<name sortKey="Pozo, Guillermo" sort="Pozo, Guillermo" uniqKey="Pozo G" first="Guillermo" last="Pozo">Guillermo Pozo</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia. Electronic address: g.pozozamora@awmc.uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Yang" sort="Lu, Yang" uniqKey="Lu Y" first="Yang" last="Lu">Yang Lu</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pongy, Sebastien" sort="Pongy, Sebastien" uniqKey="Pongy S" first="Sebastien" last="Pongy">Sebastien Pongy</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia; Département Génie Energétique et Environnement, INSA Lyon, 69621 Villeurbanne Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Keller, Jurg" sort="Keller, Jurg" uniqKey="Keller J" first="Jürg" last="Keller">Jürg Keller</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ledezma, Pablo" sort="Ledezma, Pablo" uniqKey="Ledezma P" first="Pablo" last="Ledezma">Pablo Ledezma</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Freguia, Stefano" sort="Freguia, Stefano" uniqKey="Freguia S" first="Stefano" last="Freguia">Stefano Freguia</name>
<affiliation>
<nlm:affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Bioelectrochemistry (Amsterdam, Netherlands)</title>
<idno type="eISSN">1878-562X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (metabolism)</term>
<term>Biofilms</term>
<term>Electric Conductivity</term>
<term>Electrodes</term>
<term>Electrolysis (instrumentation)</term>
<term>Hydrogen-Ion Concentration</term>
<term>Nanotubes, Carbon (chemistry)</term>
<term>Sulfates (chemistry)</term>
<term>Sulfates (metabolism)</term>
<term>Sulfides (chemistry)</term>
<term>Sulfides (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nanotubes, Carbon</term>
<term>Sulfates</term>
<term>Sulfides</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Electrolysis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
<term>Sulfates</term>
<term>Sulfides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biofilms</term>
<term>Electric Conductivity</term>
<term>Electrodes</term>
<term>Hydrogen-Ion Concentration</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Selective microbial retention is of paramount importance for the long-term performance of cathodic sulfate reduction in microbial electrolysis cells (MECs) due to the slow growth rate of autotrophic sulfate-reducing bacteria. In this work, we investigate the biofilm retention and current-to-sulfide conversion efficiency using carbon granules (CG) or multi-wall carbon nanotubes deposited on reticulated vitreous carbon (MWCNT-RVC) as electrode materials. For ~2months, the MECs were operated at sulfate loading rates of 21 to 309gSO4 -S/m(2)/d. Although MWCNT-RVC achieved a current density of 57±11A/m(2), greater than the 32±9A/m(2) observed using CG, both materials exhibited similar sulfate reduction rates (SRR), with MWCNT-RVC reaching 104±16gSO4 -S/m(2)/d while 110±13gSO4 -S/m(2)/d were achieved with CG. Pyrosequencing analysis of the 16S rRNA at the end of experimentation revealed a core community dominated by Desulfovibrio (28%), Methanobacterium (19%) and Desulfomicrobium (14%), on the MWCNT-RVC electrodes. While a similar Desulfovibrio relative abundance of 29% was found in CG-biofilms, Desulfomicrobium was found to be significantly less abundant (4%) and Methanobacterium practically absent (0.2%) on CG electrodes. Surprisingly, our results show that CG can achieve higher current-to-sulfide efficiencies at lower power consumption than the nano-modified three-dimensional MWCNT-RVC.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28719849</PMID>
<DateCreated>
<Year>2017</Year>
<Month>07</Month>
<Day>18</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1878-562X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>118</Volume>
<PubDate>
<Year>2017</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Bioelectrochemistry (Amsterdam, Netherlands)</Title>
<ISOAbbreviation>Bioelectrochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells.</ArticleTitle>
<Pagination>
<MedlinePgn>62-69</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1567-5394(17)30259-1</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bioelechem.2017.07.001</ELocationID>
<Abstract>
<AbstractText>Selective microbial retention is of paramount importance for the long-term performance of cathodic sulfate reduction in microbial electrolysis cells (MECs) due to the slow growth rate of autotrophic sulfate-reducing bacteria. In this work, we investigate the biofilm retention and current-to-sulfide conversion efficiency using carbon granules (CG) or multi-wall carbon nanotubes deposited on reticulated vitreous carbon (MWCNT-RVC) as electrode materials. For ~2months, the MECs were operated at sulfate loading rates of 21 to 309gSO4 -S/m(2)/d. Although MWCNT-RVC achieved a current density of 57±11A/m(2), greater than the 32±9A/m(2) observed using CG, both materials exhibited similar sulfate reduction rates (SRR), with MWCNT-RVC reaching 104±16gSO4 -S/m(2)/d while 110±13gSO4 -S/m(2)/d were achieved with CG. Pyrosequencing analysis of the 16S rRNA at the end of experimentation revealed a core community dominated by Desulfovibrio (28%), Methanobacterium (19%) and Desulfomicrobium (14%), on the MWCNT-RVC electrodes. While a similar Desulfovibrio relative abundance of 29% was found in CG-biofilms, Desulfomicrobium was found to be significantly less abundant (4%) and Methanobacterium practically absent (0.2%) on CG electrodes. Surprisingly, our results show that CG can achieve higher current-to-sulfide efficiencies at lower power consumption than the nano-modified three-dimensional MWCNT-RVC.</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pozo</LastName>
<ForeName>Guillermo</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia. Electronic address: g.pozozamora@awmc.uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pongy</LastName>
<ForeName>Sebastien</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia; Département Génie Energétique et Environnement, INSA Lyon, 69621 Villeurbanne Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keller</LastName>
<ForeName>Jürg</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ledezma</LastName>
<ForeName>Pablo</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Freguia</LastName>
<ForeName>Stefano</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Bioelectrochemistry</MedlineTA>
<NlmUniqueID>100953583</NlmUniqueID>
<ISSNLinking>1567-5394</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037742">Nanotubes, Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013431">Sulfates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013440">Sulfides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018441" MajorTopicYN="Y">Biofilms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004553" MajorTopicYN="Y">Electric Conductivity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004566" MajorTopicYN="N">Electrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004572" MajorTopicYN="N">Electrolysis</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="Y">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037742" MajorTopicYN="N">Nanotubes, Carbon</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013431" MajorTopicYN="N">Sulfates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013440" MajorTopicYN="N">Sulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28719849</ArticleId>
<ArticleId IdType="pii">S1567-5394(17)30259-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.bioelechem.2017.07.001</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000200 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000200 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28719849
   |texte=   Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28719849" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024