Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Non-Neurotoxic Nanodiamond Probes for Intraneuronal Temperature Mapping.

Identifieur interne : 000032 ( PubMed/Corpus ); précédent : 000031; suivant : 000033

Non-Neurotoxic Nanodiamond Probes for Intraneuronal Temperature Mapping.

Auteurs : David A. Simpson ; Emma Morrisroe ; Julia M. Mccoey ; Alain H. Lombard ; Dulini C. Mendis ; François Treussart ; Liam T. Hall ; Steven Petrou ; Lloyd C L. Hollenberg

Source :

RBID : pubmed:29111670

Abstract

Optical biomarkers have been used extensively for intracellular imaging with high spatial and temporal resolution. Extending the modality of these probes is a key driver in cell biology. In recent years, the nitrogen-vacancy (NV) center in nanodiamond has emerged as a promising candidate for bioimaging and biosensing with low cytotoxicity and stable photoluminescence. Here we study the electrophysiological effects of this quantum probe in primary cortical neurons. Multielectrode array recordings across five replicate studies showed no statistically significant difference in 25 network parameters when nanodiamonds are added at varying concentrations over various time periods, 12-36 h. The physiological validation motivates the second part of the study, which demonstrates how the quantum properties of these biomarkers can be used to report intracellular information beyond their location and movement. Using the optically detected magnetic resonance from the nitrogen-vacancy defects within the nanodiamonds we demonstrate enhanced signal-to-noise imaging and temperature mapping from thousands of nanodiamond probes simultaneously. This work establishes nanodiamonds as viable multifunctional intraneuronal sensors with nanoscale resolution, which may ultimately be used to detect magnetic and electrical activity at the membrane level in excitable cellular systems.

DOI: 10.1021/acsnano.7b04850
PubMed: 29111670

Links to Exploration step

pubmed:29111670

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Non-Neurotoxic Nanodiamond Probes for Intraneuronal Temperature Mapping.</title>
<author>
<name sortKey="Simpson, David A" sort="Simpson, David A" uniqKey="Simpson D" first="David A" last="Simpson">David A. Simpson</name>
<affiliation>
<nlm:affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morrisroe, Emma" sort="Morrisroe, Emma" uniqKey="Morrisroe E" first="Emma" last="Morrisroe">Emma Morrisroe</name>
<affiliation>
<nlm:affiliation>Florey Neuroscience Institute, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mccoey, Julia M" sort="Mccoey, Julia M" uniqKey="Mccoey J" first="Julia M" last="Mccoey">Julia M. Mccoey</name>
<affiliation>
<nlm:affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lombard, Alain H" sort="Lombard, Alain H" uniqKey="Lombard A" first="Alain H" last="Lombard">Alain H. Lombard</name>
<affiliation>
<nlm:affiliation>Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay , 91405 Orsay, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mendis, Dulini C" sort="Mendis, Dulini C" uniqKey="Mendis D" first="Dulini C" last="Mendis">Dulini C. Mendis</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, University of Melbourne , Parkville, VIC 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Treussart, Francois" sort="Treussart, Francois" uniqKey="Treussart F" first="François" last="Treussart">François Treussart</name>
<affiliation>
<nlm:affiliation>Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay , 91405 Orsay, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hall, Liam T" sort="Hall, Liam T" uniqKey="Hall L" first="Liam T" last="Hall">Liam T. Hall</name>
<affiliation>
<nlm:affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petrou, Steven" sort="Petrou, Steven" uniqKey="Petrou S" first="Steven" last="Petrou">Steven Petrou</name>
<affiliation>
<nlm:affiliation>Centre for Neural Engineering, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hollenberg, Lloyd C L" sort="Hollenberg, Lloyd C L" uniqKey="Hollenberg L" first="Lloyd C L" last="Hollenberg">Lloyd C L. Hollenberg</name>
<affiliation>
<nlm:affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29111670</idno>
<idno type="pmid">29111670</idno>
<idno type="doi">10.1021/acsnano.7b04850</idno>
<idno type="wicri:Area/PubMed/Corpus">000032</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000032</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Non-Neurotoxic Nanodiamond Probes for Intraneuronal Temperature Mapping.</title>
<author>
<name sortKey="Simpson, David A" sort="Simpson, David A" uniqKey="Simpson D" first="David A" last="Simpson">David A. Simpson</name>
<affiliation>
<nlm:affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morrisroe, Emma" sort="Morrisroe, Emma" uniqKey="Morrisroe E" first="Emma" last="Morrisroe">Emma Morrisroe</name>
<affiliation>
<nlm:affiliation>Florey Neuroscience Institute, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mccoey, Julia M" sort="Mccoey, Julia M" uniqKey="Mccoey J" first="Julia M" last="Mccoey">Julia M. Mccoey</name>
<affiliation>
<nlm:affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lombard, Alain H" sort="Lombard, Alain H" uniqKey="Lombard A" first="Alain H" last="Lombard">Alain H. Lombard</name>
<affiliation>
<nlm:affiliation>Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay , 91405 Orsay, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mendis, Dulini C" sort="Mendis, Dulini C" uniqKey="Mendis D" first="Dulini C" last="Mendis">Dulini C. Mendis</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, University of Melbourne , Parkville, VIC 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Treussart, Francois" sort="Treussart, Francois" uniqKey="Treussart F" first="François" last="Treussart">François Treussart</name>
<affiliation>
<nlm:affiliation>Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay , 91405 Orsay, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hall, Liam T" sort="Hall, Liam T" uniqKey="Hall L" first="Liam T" last="Hall">Liam T. Hall</name>
<affiliation>
<nlm:affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petrou, Steven" sort="Petrou, Steven" uniqKey="Petrou S" first="Steven" last="Petrou">Steven Petrou</name>
<affiliation>
<nlm:affiliation>Centre for Neural Engineering, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hollenberg, Lloyd C L" sort="Hollenberg, Lloyd C L" uniqKey="Hollenberg L" first="Lloyd C L" last="Hollenberg">Lloyd C L. Hollenberg</name>
<affiliation>
<nlm:affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS nano</title>
<idno type="eISSN">1936-086X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Optical biomarkers have been used extensively for intracellular imaging with high spatial and temporal resolution. Extending the modality of these probes is a key driver in cell biology. In recent years, the nitrogen-vacancy (NV) center in nanodiamond has emerged as a promising candidate for bioimaging and biosensing with low cytotoxicity and stable photoluminescence. Here we study the electrophysiological effects of this quantum probe in primary cortical neurons. Multielectrode array recordings across five replicate studies showed no statistically significant difference in 25 network parameters when nanodiamonds are added at varying concentrations over various time periods, 12-36 h. The physiological validation motivates the second part of the study, which demonstrates how the quantum properties of these biomarkers can be used to report intracellular information beyond their location and movement. Using the optically detected magnetic resonance from the nitrogen-vacancy defects within the nanodiamonds we demonstrate enhanced signal-to-noise imaging and temperature mapping from thousands of nanodiamond probes simultaneously. This work establishes nanodiamonds as viable multifunctional intraneuronal sensors with nanoscale resolution, which may ultimately be used to detect magnetic and electrical activity at the membrane level in excitable cellular systems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">29111670</PMID>
<DateCreated>
<Year>2017</Year>
<Month>11</Month>
<Day>07</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1936-086X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2017</Year>
<Month>Nov</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>ACS nano</Title>
<ISOAbbreviation>ACS Nano</ISOAbbreviation>
</Journal>
<ArticleTitle>Non-Neurotoxic Nanodiamond Probes for Intraneuronal Temperature Mapping.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsnano.7b04850</ELocationID>
<Abstract>
<AbstractText>Optical biomarkers have been used extensively for intracellular imaging with high spatial and temporal resolution. Extending the modality of these probes is a key driver in cell biology. In recent years, the nitrogen-vacancy (NV) center in nanodiamond has emerged as a promising candidate for bioimaging and biosensing with low cytotoxicity and stable photoluminescence. Here we study the electrophysiological effects of this quantum probe in primary cortical neurons. Multielectrode array recordings across five replicate studies showed no statistically significant difference in 25 network parameters when nanodiamonds are added at varying concentrations over various time periods, 12-36 h. The physiological validation motivates the second part of the study, which demonstrates how the quantum properties of these biomarkers can be used to report intracellular information beyond their location and movement. Using the optically detected magnetic resonance from the nitrogen-vacancy defects within the nanodiamonds we demonstrate enhanced signal-to-noise imaging and temperature mapping from thousands of nanodiamond probes simultaneously. This work establishes nanodiamonds as viable multifunctional intraneuronal sensors with nanoscale resolution, which may ultimately be used to detect magnetic and electrical activity at the membrane level in excitable cellular systems.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Simpson</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9056-2469</Identifier>
<AffiliationInfo>
<Affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Neural Engineering, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morrisroe</LastName>
<ForeName>Emma</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Florey Neuroscience Institute, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McCoey</LastName>
<ForeName>Julia M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lombard</LastName>
<ForeName>Alain H</ForeName>
<Initials>AH</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay , 91405 Orsay, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mendis</LastName>
<ForeName>Dulini C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, University of Melbourne , Parkville, VIC 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Treussart</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay , 91405 Orsay, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>Liam T</ForeName>
<Initials>LT</Initials>
<AffiliationInfo>
<Affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petrou</LastName>
<ForeName>Steven</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neural Engineering, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Florey Neuroscience Institute, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Integrated Brain Function, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Medicine, Royal Melbourne Hospital, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hollenberg</LastName>
<ForeName>Lloyd C L</ForeName>
<Initials>LCL</Initials>
<AffiliationInfo>
<Affiliation>School of Physics, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Neural Engineering, University of Melbourne , Parkville, 3010, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Quantum Computation and Communication Technology, University of Melbourne , Parkville, 3052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Nano</MedlineTA>
<NlmUniqueID>101313589</NlmUniqueID>
<ISSNLinking>1936-0851</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">multielectrode arrays</Keyword>
<Keyword MajorTopicYN="N">nanodiamonds</Keyword>
<Keyword MajorTopicYN="N">nitrogen-vacancy color center</Keyword>
<Keyword MajorTopicYN="N">primary neuron culture</Keyword>
<Keyword MajorTopicYN="N">quantum sensing</Keyword>
<Keyword MajorTopicYN="N">temperature sensing</Keyword>
<Keyword MajorTopicYN="N">wide-field optical microscopy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29111670</ArticleId>
<ArticleId IdType="doi">10.1021/acsnano.7b04850</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000032 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000032 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29111670
   |texte=   Non-Neurotoxic Nanodiamond Probes for Intraneuronal Temperature Mapping.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29111670" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024