Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Uncovering Wolbachia diversity upon artificial host transfer.

Identifieur interne : 003885 ( PubMed/Checkpoint ); précédent : 003884; suivant : 003886

Uncovering Wolbachia diversity upon artificial host transfer.

Auteurs : Daniela I. Schneider [Autriche] ; Markus Riegler [Australie] ; Wolfgang Arthofer [Autriche] ; Hervé Merçot [France] ; Christian Stauffer [Autriche] ; Wolfgang J. Miller [Autriche]

Source :

RBID : pubmed:24376534

Descripteurs français

English descriptors

Abstract

The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.

DOI: 10.1371/journal.pone.0082402
PubMed: 24376534


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24376534

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Uncovering Wolbachia diversity upon artificial host transfer.</title>
<author>
<name sortKey="Schneider, Daniela I" sort="Schneider, Daniela I" uniqKey="Schneider D" first="Daniela I" last="Schneider">Daniela I. Schneider</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Riegler, Markus" sort="Riegler, Markus" uniqKey="Riegler M" first="Markus" last="Riegler">Markus Riegler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith</wicri:regionArea>
<wicri:noRegion>Penrith</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arthofer, Wolfgang" sort="Arthofer, Wolfgang" uniqKey="Arthofer W" first="Wolfgang" last="Arthofer">Wolfgang Arthofer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mercot, Herve" sort="Mercot, Herve" uniqKey="Mercot H" first="Hervé" last="Merçot">Hervé Merçot</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 7138, CNRS-Université Pierre & Marie Curie, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 7138, CNRS-Université Pierre & Marie Curie, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stauffer, Christian" sort="Stauffer, Christian" uniqKey="Stauffer C" first="Christian" last="Stauffer">Christian Stauffer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest & Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest & Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Miller, Wolfgang J" sort="Miller, Wolfgang J" uniqKey="Miller W" first="Wolfgang J" last="Miller">Wolfgang J. Miller</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24376534</idno>
<idno type="pmid">24376534</idno>
<idno type="doi">10.1371/journal.pone.0082402</idno>
<idno type="wicri:Area/PubMed/Corpus">003A83</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003A83</idno>
<idno type="wicri:Area/PubMed/Curation">003953</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003953</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003953</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003953</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Uncovering Wolbachia diversity upon artificial host transfer.</title>
<author>
<name sortKey="Schneider, Daniela I" sort="Schneider, Daniela I" uniqKey="Schneider D" first="Daniela I" last="Schneider">Daniela I. Schneider</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Riegler, Markus" sort="Riegler, Markus" uniqKey="Riegler M" first="Markus" last="Riegler">Markus Riegler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith</wicri:regionArea>
<wicri:noRegion>Penrith</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arthofer, Wolfgang" sort="Arthofer, Wolfgang" uniqKey="Arthofer W" first="Wolfgang" last="Arthofer">Wolfgang Arthofer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mercot, Herve" sort="Mercot, Herve" uniqKey="Mercot H" first="Hervé" last="Merçot">Hervé Merçot</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 7138, CNRS-Université Pierre & Marie Curie, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 7138, CNRS-Université Pierre & Marie Curie, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stauffer, Christian" sort="Stauffer, Christian" uniqKey="Stauffer C" first="Christian" last="Stauffer">Christian Stauffer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest & Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest & Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Miller, Wolfgang J" sort="Miller, Wolfgang J" uniqKey="Miller W" first="Wolfgang J" last="Miller">Wolfgang J. Miller</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (genetics)</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Ceratitis capitata (microbiology)</term>
<term>Codon, Terminator (genetics)</term>
<term>Conserved Sequence</term>
<term>Drosophila (microbiology)</term>
<term>Female</term>
<term>Gene Frequency (genetics)</term>
<term>Gene Transfer Techniques</term>
<term>Genes, Bacterial</term>
<term>Genetic Variation</term>
<term>Host Specificity</term>
<term>Molecular Sequence Data</term>
<term>Nucleotides (genetics)</term>
<term>Ovary (microbiology)</term>
<term>Polymorphism, Single Nucleotide (genetics)</term>
<term>Synteny (genetics)</term>
<term>Wolbachia (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (génétique)</term>
<term>Animaux</term>
<term>Ceratitis capitata (microbiologie)</term>
<term>Codon stop (génétique)</term>
<term>Données de séquences moléculaires</term>
<term>Drosophila (microbiologie)</term>
<term>Femelle</term>
<term>Fréquence d'allèle (génétique)</term>
<term>Gènes bactériens</term>
<term>Nucléotides (génétique)</term>
<term>Ovaire (microbiologie)</term>
<term>Polymorphisme de nucléotide simple (génétique)</term>
<term>Spécificité d'hôte</term>
<term>Synténie (génétique)</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
<term>Techniques de transfert de gènes</term>
<term>Variation génétique</term>
<term>Wolbachia (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amino Acids</term>
<term>Codon, Terminator</term>
<term>Nucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Frequency</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Synteny</term>
<term>Wolbachia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acides aminés</term>
<term>Codon stop</term>
<term>Fréquence d'allèle</term>
<term>Nucléotides</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Synténie</term>
<term>Wolbachia</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Ceratitis capitata</term>
<term>Drosophila</term>
<term>Ovaire</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Ceratitis capitata</term>
<term>Drosophila</term>
<term>Ovary</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>Female</term>
<term>Gene Transfer Techniques</term>
<term>Genes, Bacterial</term>
<term>Genetic Variation</term>
<term>Host Specificity</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Femelle</term>
<term>Gènes bactériens</term>
<term>Spécificité d'hôte</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
<term>Techniques de transfert de gènes</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24376534</PMID>
<DateCreated>
<Year>2013</Year>
<Month>12</Month>
<Day>30</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Uncovering Wolbachia diversity upon artificial host transfer.</ArticleTitle>
<Pagination>
<MedlinePgn>e82402</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0082402</ELocationID>
<Abstract>
<AbstractText>The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Daniela I</ForeName>
<Initials>DI</Initials>
<AffiliationInfo>
<Affiliation>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riegler</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arthofer</LastName>
<ForeName>Wolfgang</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Merçot</LastName>
<ForeName>Hervé</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>UMR 7138, CNRS-Université Pierre & Marie Curie, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stauffer</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest & Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Wolfgang J</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018388">Codon, Terminator</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Heredity (Edinb). 1999 Jun;82 ( Pt 6):620-7</RefSource>
<PMID Version="1">10383683</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2012 Apr;194(7):1840</RefSource>
<PMID Version="1">22408242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(7):e22198</RefSource>
<PMID Version="1">21789233</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jul 4;418(6893):76-9</RefSource>
<PMID Version="1">12097909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1990 Nov 8;348(6297):178-80</RefSource>
<PMID Version="1">2234083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2005 Aug;187(15):5136-45</RefSource>
<PMID Version="1">16030207</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2010;6(12):e1001214</RefSource>
<PMID Version="1">21151959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2013;14:20</RefSource>
<PMID Version="1">23324387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Aug 25;476(7361):454-7</RefSource>
<PMID Version="1">21866160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(12):e28695</RefSource>
<PMID Version="1">22174869</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2006 Nov;72(11):7098-110</RefSource>
<PMID Version="1">16936055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D32-6</RefSource>
<PMID Version="1">16381877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2009 Sep;18(18):3816-30</RefSource>
<PMID Version="1">19732336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2004 Jan;70(1):273-9</RefSource>
<PMID Version="1">14711652</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14280-5</RefSource>
<PMID Version="1">12386340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2008 Sep;25(9):1889-96</RefSource>
<PMID Version="1">18562339</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Microbiol. 1999;53:71-102</RefSource>
<PMID Version="1">10547686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2006 Jan;72(1):826-35</RefSource>
<PMID Version="1">16391124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Heredity (Edinb). 2007 Sep;99(3):278-87</RefSource>
<PMID Version="1">17519968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Invertebr Pathol. 2013 Mar;112 Suppl:S104-15</RefSource>
<PMID Version="1">22516306</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1968 Apr 12;160(3824):149-59</RefSource>
<PMID Version="1">4868223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Sep 21;317(5845):1753-6</RefSource>
<PMID Version="1">17761848</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ISME J. 2010 Jan;4(1):28-37</RefSource>
<PMID Version="1">19617877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasit Vectors. 2009 Aug 14;2(1):38</RefSource>
<PMID Version="1">19682363</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1995 Nov;141(3):1015-23</RefSource>
<PMID Version="1">8582608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Oct 2;326(5949):134-6</RefSource>
<PMID Version="1">19797660</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2006 Sep 7;273(1598):2097-106</RefSource>
<PMID Version="1">16901827</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Evol. 1989 Apr;28(4):271-8</RefSource>
<PMID Version="1">2499683</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2009 Apr;5(4):e1000368</RefSource>
<PMID Version="1">19343208</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2918-23</RefSource>
<PMID Version="1">11880639</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Microbiol. 2012;12 Suppl 1:S3</RefSource>
<PMID Version="1">22376025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(1):e16392</RefSource>
<PMID Version="1">21305010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140-5</RefSource>
<PMID Version="1">9501229</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2008 Nov;74(22):6963-9</RefSource>
<PMID Version="1">18836024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2009;8 Suppl 2:S6</RefSource>
<PMID Version="1">19917076</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Oct 31;322(5902):702</RefSource>
<PMID Version="1">18974344</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 1966 Sep;12(1):119-29</RefSource>
<PMID Version="1">6015423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2006 Jun;4(6):e185</RefSource>
<PMID Version="1">16719561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Mol Biol Rev. 1998 Sep;62(3):725-74</RefSource>
<PMID Version="1">9729608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2013;13:31</RefSource>
<PMID Version="1">23384159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2008 Sep;25(9):1877-87</RefSource>
<PMID Version="1">18550617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Exp Med Biol. 2008;627:104-13</RefSource>
<PMID Version="1">18510018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2004;260:41-57</RefSource>
<PMID Version="1">15020801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Microbiol. 2009 Aug;11(8):1923-33</RefSource>
<PMID Version="1">19383035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1990 Dec;126(4):933-48</RefSource>
<PMID Version="1">2076821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1998 Sep;150(1):227-37</RefSource>
<PMID Version="1">9725842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15042-5</RefSource>
<PMID Version="1">15469918</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2011 Jul;77(14):4788-94</RefSource>
<PMID Version="1">21622788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2009 Dec 24;139(7):1268-78</RefSource>
<PMID Version="1">20064373</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1971 Oct 14;61(1):157-73</RefSource>
<PMID Version="1">5146189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2009 Dec;75(24):7783-8</RefSource>
<PMID Version="1">19820149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1968 Mar 16;217(5133):1019-24</RefSource>
<PMID Version="1">5643523</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2008 Oct;6(10):741-51</RefSource>
<PMID Version="1">18794912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol Evol. 2011;3:1175-86</RefSource>
<PMID Version="1">21940637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 2001 May;38(3):382-7</RefSource>
<PMID Version="1">11372962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10792-6</RefSource>
<PMID Version="1">9380712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2011 Jun;12(6):508-18</RefSource>
<PMID Version="1">21546911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2003 Dec;12(12):3459-65</RefSource>
<PMID Version="1">14629360</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2009 Oct;5(10):e1000630</RefSource>
<PMID Version="1">19851452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2008 Apr;178(4):2145-60</RefSource>
<PMID Version="1">18430940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2012;8(12):e1003129</RefSource>
<PMID Version="1">23284297</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2010;10:48</RefSource>
<PMID Version="1">20163713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plasmid. 1999 Jul;42(1):13-9</RefSource>
<PMID Version="1">10413661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2008 Dec 23;6(12):e2</RefSource>
<PMID Version="1">19222304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 Nov 5;462(7269):90-3</RefSource>
<PMID Version="1">19890329</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5725-30</RefSource>
<PMID Version="1">19307581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2005 Aug 9;15(15):1428-33</RefSource>
<PMID Version="1">16085497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2002 Nov;11(11):2425-34</RefSource>
<PMID Version="1">12406252</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1989 Dec;86(23):9253-7</RefSource>
<PMID Version="1">2594764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Microbiol. 2002 Oct;45(4):255-60</RefSource>
<PMID Version="1">12192522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1971 Aug 27;232(5313):657-8</RefSource>
<PMID Version="1">4937405</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2013 Apr;9(4):e1003381</RefSource>
<PMID Version="1">23593012</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2006 Jan;60(1):87-96</RefSource>
<PMID Version="1">16568634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2004 Mar;2(3):E69</RefSource>
<PMID Version="1">15024419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Rev. 1992 Mar;56(1):229-64</RefSource>
<PMID Version="1">1579111</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2007 Sep;61(9):2244-52</RefSource>
<PMID Version="1">17767593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Aug 25;476(7361):450-3</RefSource>
<PMID Version="1">21866159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2013 May 10;340(6133):748-51</RefSource>
<PMID Version="1">23661760</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2007 May;5(5):e114</RefSource>
<PMID Version="1">17439303</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2010 Apr;6(4):e1000833</RefSource>
<PMID Version="1">20368968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Phylogenet Evol. 2003 Jan;26(1):102-9</RefSource>
<PMID Version="1">12470942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Jan 2;323(5910):141-4</RefSource>
<PMID Version="1">19119237</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033622" MajorTopicYN="N">Ceratitis capitata</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018388" MajorTopicYN="N">Codon, Terminator</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004330" MajorTopicYN="N">Drosophila</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005787" MajorTopicYN="N">Gene Frequency</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018014" MajorTopicYN="Y">Gene Transfer Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="Y">Host Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010053" MajorTopicYN="N">Ovary</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020577" MajorTopicYN="N">Wolbachia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3869692</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24376534</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0082402</ArticleId>
<ArticleId IdType="pii">PONE-D-13-25167</ArticleId>
<ArticleId IdType="pmc">PMC3869692</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Autriche</li>
<li>France</li>
</country>
<region>
<li>Vienne (Autriche)</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Schneider, Daniela I" sort="Schneider, Daniela I" uniqKey="Schneider D" first="Daniela I" last="Schneider">Daniela I. Schneider</name>
</region>
<name sortKey="Arthofer, Wolfgang" sort="Arthofer, Wolfgang" uniqKey="Arthofer W" first="Wolfgang" last="Arthofer">Wolfgang Arthofer</name>
<name sortKey="Miller, Wolfgang J" sort="Miller, Wolfgang J" uniqKey="Miller W" first="Wolfgang J" last="Miller">Wolfgang J. Miller</name>
<name sortKey="Stauffer, Christian" sort="Stauffer, Christian" uniqKey="Stauffer C" first="Christian" last="Stauffer">Christian Stauffer</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Riegler, Markus" sort="Riegler, Markus" uniqKey="Riegler M" first="Markus" last="Riegler">Markus Riegler</name>
</noRegion>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Mercot, Herve" sort="Mercot, Herve" uniqKey="Mercot H" first="Hervé" last="Merçot">Hervé Merçot</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003885 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 003885 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24376534
   |texte=   Uncovering Wolbachia diversity upon artificial host transfer.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24376534" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024