Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression.

Identifieur interne : 003422 ( PubMed/Checkpoint ); précédent : 003421; suivant : 003423

Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression.

Auteurs : Jean-Baptiste Fiot [France] ; Hugo Raguet [France] ; Laurent Risser [France] ; Laurent D. Cohen [France] ; Jurgen Fripp [Australie] ; François-Xavier Vialard [France]

Source :

RBID : pubmed:24936423

Descripteurs français

English descriptors

Abstract

In the context of Alzheimer's disease, two challenging issues are (1) the characterization of local hippocampal shape changes specific to disease progression and (2) the identification of mild-cognitive impairment patients likely to convert. In the literature, (1) is usually solved first to detect areas potentially related to the disease. These areas are then considered as an input to solve (2). As an alternative to this sequential strategy, we investigate the use of a classification model using logistic regression to address both issues (1) and (2) simultaneously. The classification of the patients therefore does not require any a priori definition of the most representative hippocampal areas potentially related to the disease, as they are automatically detected. We first quantify deformations of patients' hippocampi between two time points using the large deformations by diffeomorphisms framework and transport these deformations to a common template. Since the deformations are expected to be spatially structured, we perform classification combining logistic loss and spatial regularization techniques, which have not been explored so far in this context, as far as we know. The main contribution of this paper is the comparison of regularization techniques enforcing the coefficient maps to be spatially smooth (Sobolev), piecewise constant (total variation) or sparse (fused LASSO) with standard regularization techniques which do not take into account the spatial structure (LASSO, ridge and ElasticNet). On a dataset of 103 patients out of ADNI, the techniques using spatial regularizations lead to the best classification rates. They also find coherent areas related to the disease progression.

DOI: 10.1016/j.nicl.2014.02.002
PubMed: 24936423


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24936423

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression.</title>
<author>
<name sortKey="Fiot, Jean Baptiste" sort="Fiot, Jean Baptiste" uniqKey="Fiot J" first="Jean-Baptiste" last="Fiot">Jean-Baptiste Fiot</name>
<affiliation wicri:level="1">
<nlm:affiliation>IBM Research, Smarter Cities Technology Centre, Damastown, Dublin 15, Ireland ; CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IBM Research, Smarter Cities Technology Centre, Damastown, Dublin 15, Ireland ; CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★</wicri:regionArea>
<wicri:noRegion>PSL★</wicri:noRegion>
<wicri:noRegion>PSL★</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raguet, Hugo" sort="Raguet, Hugo" uniqKey="Raguet H" first="Hugo" last="Raguet">Hugo Raguet</name>
<affiliation wicri:level="1">
<nlm:affiliation>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★</wicri:regionArea>
<wicri:noRegion>PSL★</wicri:noRegion>
<wicri:noRegion>PSL★</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Risser, Laurent" sort="Risser, Laurent" uniqKey="Risser L" first="Laurent" last="Risser">Laurent Risser</name>
<affiliation wicri:level="1">
<nlm:affiliation>CNRS, Institut de Mathématiques de Toulouse, UMR 5219, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, Institut de Mathématiques de Toulouse, UMR 5219</wicri:regionArea>
<wicri:noRegion>UMR 5219</wicri:noRegion>
<wicri:noRegion>UMR 5219</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Laurent D" sort="Cohen, Laurent D" uniqKey="Cohen L" first="Laurent D" last="Cohen">Laurent D. Cohen</name>
<affiliation wicri:level="1">
<nlm:affiliation>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★</wicri:regionArea>
<wicri:noRegion>PSL★</wicri:noRegion>
<wicri:noRegion>PSL★</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fripp, Jurgen" sort="Fripp, Jurgen" uniqKey="Fripp J" first="Jurgen" last="Fripp">Jurgen Fripp</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vialard, Francois Xavier" sort="Vialard, Francois Xavier" uniqKey="Vialard F" first="François-Xavier" last="Vialard">François-Xavier Vialard</name>
<affiliation wicri:level="1">
<nlm:affiliation>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★</wicri:regionArea>
<wicri:noRegion>PSL★</wicri:noRegion>
<wicri:noRegion>PSL★</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24936423</idno>
<idno type="pmid">24936423</idno>
<idno type="doi">10.1016/j.nicl.2014.02.002</idno>
<idno type="wicri:Area/PubMed/Corpus">003840</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003840</idno>
<idno type="wicri:Area/PubMed/Curation">003726</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003726</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003726</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003726</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression.</title>
<author>
<name sortKey="Fiot, Jean Baptiste" sort="Fiot, Jean Baptiste" uniqKey="Fiot J" first="Jean-Baptiste" last="Fiot">Jean-Baptiste Fiot</name>
<affiliation wicri:level="1">
<nlm:affiliation>IBM Research, Smarter Cities Technology Centre, Damastown, Dublin 15, Ireland ; CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IBM Research, Smarter Cities Technology Centre, Damastown, Dublin 15, Ireland ; CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★</wicri:regionArea>
<wicri:noRegion>PSL★</wicri:noRegion>
<wicri:noRegion>PSL★</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raguet, Hugo" sort="Raguet, Hugo" uniqKey="Raguet H" first="Hugo" last="Raguet">Hugo Raguet</name>
<affiliation wicri:level="1">
<nlm:affiliation>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★</wicri:regionArea>
<wicri:noRegion>PSL★</wicri:noRegion>
<wicri:noRegion>PSL★</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Risser, Laurent" sort="Risser, Laurent" uniqKey="Risser L" first="Laurent" last="Risser">Laurent Risser</name>
<affiliation wicri:level="1">
<nlm:affiliation>CNRS, Institut de Mathématiques de Toulouse, UMR 5219, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, Institut de Mathématiques de Toulouse, UMR 5219</wicri:regionArea>
<wicri:noRegion>UMR 5219</wicri:noRegion>
<wicri:noRegion>UMR 5219</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Laurent D" sort="Cohen, Laurent D" uniqKey="Cohen L" first="Laurent D" last="Cohen">Laurent D. Cohen</name>
<affiliation wicri:level="1">
<nlm:affiliation>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★</wicri:regionArea>
<wicri:noRegion>PSL★</wicri:noRegion>
<wicri:noRegion>PSL★</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fripp, Jurgen" sort="Fripp, Jurgen" uniqKey="Fripp J" first="Jurgen" last="Fripp">Jurgen Fripp</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vialard, Francois Xavier" sort="Vialard, Francois Xavier" uniqKey="Vialard F" first="François-Xavier" last="Vialard">François-Xavier Vialard</name>
<affiliation wicri:level="1">
<nlm:affiliation>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★</wicri:regionArea>
<wicri:noRegion>PSL★</wicri:noRegion>
<wicri:noRegion>PSL★</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">NeuroImage. Clinical</title>
<idno type="ISSN">2213-1582</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alzheimer Disease (pathology)</term>
<term>Alzheimer Disease (physiopathology)</term>
<term>Cognitive Dysfunction (pathology)</term>
<term>Cognitive Dysfunction (physiopathology)</term>
<term>Databases, Factual (statistics & numerical data)</term>
<term>Disease Progression</term>
<term>Hippocampus (pathology)</term>
<term>Hippocampus (physiopathology)</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Logistic Models</term>
<term>Magnetic Resonance Imaging</term>
<term>Models, Neurological</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bases de données factuelles ()</term>
<term>Dysfonctionnement cognitif (anatomopathologie)</term>
<term>Dysfonctionnement cognitif (physiopathologie)</term>
<term>Hippocampe (anatomopathologie)</term>
<term>Hippocampe (physiopathologie)</term>
<term>Humains</term>
<term>Imagerie par résonance magnétique</term>
<term>Maladie d'Alzheimer (anatomopathologie)</term>
<term>Maladie d'Alzheimer (physiopathologie)</term>
<term>Modèles logistiques</term>
<term>Modèles neurologiques</term>
<term>Traitement d'image par ordinateur</term>
<term>Évolution de la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Dysfonctionnement cognitif</term>
<term>Hippocampe</term>
<term>Maladie d'Alzheimer</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Alzheimer Disease</term>
<term>Cognitive Dysfunction</term>
<term>Hippocampus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Dysfonctionnement cognitif</term>
<term>Hippocampe</term>
<term>Maladie d'Alzheimer</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Alzheimer Disease</term>
<term>Cognitive Dysfunction</term>
<term>Hippocampus</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Databases, Factual</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Disease Progression</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Logistic Models</term>
<term>Magnetic Resonance Imaging</term>
<term>Models, Neurological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bases de données factuelles</term>
<term>Humains</term>
<term>Imagerie par résonance magnétique</term>
<term>Modèles logistiques</term>
<term>Modèles neurologiques</term>
<term>Traitement d'image par ordinateur</term>
<term>Évolution de la maladie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the context of Alzheimer's disease, two challenging issues are (1) the characterization of local hippocampal shape changes specific to disease progression and (2) the identification of mild-cognitive impairment patients likely to convert. In the literature, (1) is usually solved first to detect areas potentially related to the disease. These areas are then considered as an input to solve (2). As an alternative to this sequential strategy, we investigate the use of a classification model using logistic regression to address both issues (1) and (2) simultaneously. The classification of the patients therefore does not require any a priori definition of the most representative hippocampal areas potentially related to the disease, as they are automatically detected. We first quantify deformations of patients' hippocampi between two time points using the large deformations by diffeomorphisms framework and transport these deformations to a common template. Since the deformations are expected to be spatially structured, we perform classification combining logistic loss and spatial regularization techniques, which have not been explored so far in this context, as far as we know. The main contribution of this paper is the comparison of regularization techniques enforcing the coefficient maps to be spatially smooth (Sobolev), piecewise constant (total variation) or sparse (fused LASSO) with standard regularization techniques which do not take into account the spatial structure (LASSO, ridge and ElasticNet). On a dataset of 103 patients out of ADNI, the techniques using spatial regularizations lead to the best classification rates. They also find coherent areas related to the disease progression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24936423</PMID>
<DateCreated>
<Year>2014</Year>
<Month>06</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2213-1582</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>NeuroImage. Clinical</Title>
<ISOAbbreviation>Neuroimage Clin</ISOAbbreviation>
</Journal>
<ArticleTitle>Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression.</ArticleTitle>
<Pagination>
<MedlinePgn>718-29</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.nicl.2014.02.002</ELocationID>
<Abstract>
<AbstractText>In the context of Alzheimer's disease, two challenging issues are (1) the characterization of local hippocampal shape changes specific to disease progression and (2) the identification of mild-cognitive impairment patients likely to convert. In the literature, (1) is usually solved first to detect areas potentially related to the disease. These areas are then considered as an input to solve (2). As an alternative to this sequential strategy, we investigate the use of a classification model using logistic regression to address both issues (1) and (2) simultaneously. The classification of the patients therefore does not require any a priori definition of the most representative hippocampal areas potentially related to the disease, as they are automatically detected. We first quantify deformations of patients' hippocampi between two time points using the large deformations by diffeomorphisms framework and transport these deformations to a common template. Since the deformations are expected to be spatially structured, we perform classification combining logistic loss and spatial regularization techniques, which have not been explored so far in this context, as far as we know. The main contribution of this paper is the comparison of regularization techniques enforcing the coefficient maps to be spatially smooth (Sobolev), piecewise constant (total variation) or sparse (fused LASSO) with standard regularization techniques which do not take into account the spatial structure (LASSO, ridge and ElasticNet). On a dataset of 103 patients out of ADNI, the techniques using spatial regularizations lead to the best classification rates. They also find coherent areas related to the disease progression.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fiot</LastName>
<ForeName>Jean-Baptiste</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>IBM Research, Smarter Cities Technology Centre, Damastown, Dublin 15, Ireland ; CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raguet</LastName>
<ForeName>Hugo</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Risser</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>CNRS, Institut de Mathématiques de Toulouse, UMR 5219, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Laurent D</ForeName>
<Initials>LD</Initials>
<AffiliationInfo>
<Affiliation>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fripp</LastName>
<ForeName>Jurgen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vialard</LastName>
<ForeName>François-Xavier</ForeName>
<Initials>FX</Initials>
<AffiliationInfo>
<Affiliation>CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<CollectiveName>Alzheimer's Disease Neuroimaging Initiative</CollectiveName>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 AG024904</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Neuroimage Clin</MedlineTA>
<NlmUniqueID>101597070</NlmUniqueID>
<ISSNLinking>2213-1582</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 May 15;51(1):488-99</RefSource>
<PMID Version="1">20083211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Comput Comput Assist Interv. 2011;14(Pt 2):655-62</RefSource>
<PMID Version="1">21995085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Apr 1;55(3):954-67</RefSource>
<PMID Version="1">21216294</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Comput Comput Assist Interv. 2010;13(Pt 3):529-37</RefSource>
<PMID Version="1">20879441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 May 15;56(2):766-81</RefSource>
<PMID Version="1">20542124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004;23 Suppl 1:S139-50</RefSource>
<PMID Version="1">15501083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):682-96</RefSource>
<PMID Version="1">22732664</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2009 Oct 1;47(4):1476-86</RefSource>
<PMID Version="1">19463957</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 2007 Apr;26(4):462-70</RefSource>
<PMID Version="1">17427733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Mar;131(Pt 3):681-9</RefSource>
<PMID Version="1">18202106</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 2004 Aug;23(8):995-1005</RefSource>
<PMID Version="1">15338733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 2011 Oct;30(10):1746-59</RefSource>
<PMID Version="1">21521665</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 Jun;41(2):277-85</RefSource>
<PMID Version="1">18400519</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 May 15;72:304-21</RefSource>
<PMID Version="1">23298747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 2011 Jul;30(7):1328-40</RefSource>
<PMID Version="1">21317080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Methods Programs Biomed. 2010 Jun;98(3):278-84</RefSource>
<PMID Version="1">19818524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2009 Jun;19(6):572-8</RefSource>
<PMID Version="1">19437498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2009 Aug;132(Pt 8):2036-47</RefSource>
<PMID Version="1">19439419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007 Feb 1;34(3):996-1019</RefSource>
<PMID Version="1">17178234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 Feb 1;59(3):2155-66</RefSource>
<PMID Version="1">22037419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 Feb 1;39(3):1186-97</RefSource>
<PMID Version="1">18054253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004 Jan;21(1):46-57</RefSource>
<PMID Version="1">14741641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004;23 Suppl 1:S151-60</RefSource>
<PMID Version="1">15501084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroradiology. 2009 Feb;51(2):73-83</RefSource>
<PMID Version="1">18846369</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Image Process. 2009 Nov;18(11):2419-34</RefSource>
<PMID Version="1">19635705</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Math Imaging Vis. 2006 Jan 31;24(2):209-228</RefSource>
<PMID Version="1">20613972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii</RefSource>
<PMID Version="1">16443497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 Feb 15;39(4):1731-43</RefSource>
<PMID Version="1">18053747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2009 Aug;132(Pt 8):2048-57</RefSource>
<PMID Version="1">19460794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Jul 1;51(3):1057-70</RefSource>
<PMID Version="1">20226255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 2007 Jan;26(1):93-105</RefSource>
<PMID Version="1">17243588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 Mar 1;40(1):68-76</RefSource>
<PMID Version="1">18249009</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2009 Jun;19(6):579-87</RefSource>
<PMID Version="1">19437497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004;23 Suppl 1:S161-9</RefSource>
<PMID Version="1">15501085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Dec;131(Pt 12):3266-76</RefSource>
<PMID Version="1">18988639</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inf Process Med Imaging. 2011;22:612-23</RefSource>
<PMID Version="1">21761690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 Aug 1;42(1):252-61</RefSource>
<PMID Version="1">18514544</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Apr 1;50(2):434-45</RefSource>
<PMID Version="1">20005963</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000544" MajorTopicYN="N">Alzheimer Disease</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060825" MajorTopicYN="N">Cognitive Dysfunction</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016208" MajorTopicYN="N">Databases, Factual</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018450" MajorTopicYN="N">Disease Progression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006624" MajorTopicYN="N">Hippocampus</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016015" MajorTopicYN="N">Logistic Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008959" MajorTopicYN="Y">Models, Neurological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4053641</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Alzheimer's disease</Keyword>
<Keyword MajorTopicYN="N">Brain imaging</Keyword>
<Keyword MajorTopicYN="N">Coefficient map</Keyword>
<Keyword MajorTopicYN="N">Deformation model</Keyword>
<Keyword MajorTopicYN="N">Disease progression</Keyword>
<Keyword MajorTopicYN="N">Karcher mean</Keyword>
<Keyword MajorTopicYN="N">LDDMM</Keyword>
<Keyword MajorTopicYN="N">Logistic regression</Keyword>
<Keyword MajorTopicYN="N">Spatial regularization</Keyword>
<Keyword MajorTopicYN="N">Transport</Keyword>
</KeywordList>
<GeneralNote Owner="NLM">Original DateCompleted: 20140617</GeneralNote>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24936423</ArticleId>
<ArticleId IdType="doi">10.1016/j.nicl.2014.02.002</ArticleId>
<ArticleId IdType="pii">S2213-1582(14)00020-5</ArticleId>
<ArticleId IdType="pmc">PMC4053641</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Fiot, Jean Baptiste" sort="Fiot, Jean Baptiste" uniqKey="Fiot J" first="Jean-Baptiste" last="Fiot">Jean-Baptiste Fiot</name>
</noRegion>
<name sortKey="Cohen, Laurent D" sort="Cohen, Laurent D" uniqKey="Cohen L" first="Laurent D" last="Cohen">Laurent D. Cohen</name>
<name sortKey="Raguet, Hugo" sort="Raguet, Hugo" uniqKey="Raguet H" first="Hugo" last="Raguet">Hugo Raguet</name>
<name sortKey="Risser, Laurent" sort="Risser, Laurent" uniqKey="Risser L" first="Laurent" last="Risser">Laurent Risser</name>
<name sortKey="Vialard, Francois Xavier" sort="Vialard, Francois Xavier" uniqKey="Vialard F" first="François-Xavier" last="Vialard">François-Xavier Vialard</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Fripp, Jurgen" sort="Fripp, Jurgen" uniqKey="Fripp J" first="Jurgen" last="Fripp">Jurgen Fripp</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003422 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 003422 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24936423
   |texte=   Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24936423" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024