Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination.

Identifieur interne : 002D80 ( PubMed/Checkpoint ); précédent : 002D79; suivant : 002D81

Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination.

Auteurs : Alexander Idnurm [Australie] ; Michael E. Hood [États-Unis] ; Hanna Johannesson [Suède] ; Tatiana Giraud [France]

Source :

RBID : pubmed:26688691

Abstract

It is striking that, while central to sexual reproduction, the genomic regions determining sex or mating-types are often characterized by suppressed recombination that leads to a decrease in the efficiency of selection, shelters genetic load, and inevitably contributes to their genic degeneration. Research on model and lesser-explored fungi has revealed similarities in recombination suppression of the genomic regions involved in mating compatibility across eukaryotes, but fungi also provide opposite examples of enhanced recombination in the genomic regions that determine their mating types. These contrasted patterns of genetic recombination (sensu lato, including gene conversion and ectopic recombination) in regions of the genome involved in mating compatibility point to important yet complex processes occurring in their evolution. A number of pieces in this puzzle remain to be solved, in particular on the unclear selective forces that may cause the patterns of recombination, prompting theoretical developments and experimental studies. This review thus points to fungi as a fascinating group for studying the various evolutionary forces at play in the genomic regions involved in mating compatibility.

DOI: 10.1016/j.fbr.2015.06.001
PubMed: 26688691


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26688691

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination.</title>
<author>
<name sortKey="Idnurm, Alexander" sort="Idnurm, Alexander" uniqKey="Idnurm A" first="Alexander" last="Idnurm">Alexander Idnurm</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of BioSciences, University of Melbourne, VIC 3010, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of BioSciences, University of Melbourne, VIC 3010</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hood, Michael E" sort="Hood, Michael E" uniqKey="Hood M" first="Michael E" last="Hood">Michael E. Hood</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biology, Amherst College, Amherst</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Johannesson, Hanna" sort="Johannesson, Hanna" uniqKey="Johannesson H" first="Hanna" last="Johannesson">Hanna Johannesson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Giraud, Tatiana" sort="Giraud, Tatiana" uniqKey="Giraud T" first="Tatiana" last="Giraud">Tatiana Giraud</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex</wicri:regionArea>
<wicri:noRegion>91405 Orsay cedex</wicri:noRegion>
<orgName type="university">Université Paris-Sud</orgName>
<placeName>
<settlement type="city">Orsay</settlement>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26688691</idno>
<idno type="pmid">26688691</idno>
<idno type="doi">10.1016/j.fbr.2015.06.001</idno>
<idno type="wicri:Area/PubMed/Corpus">002638</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002638</idno>
<idno type="wicri:Area/PubMed/Curation">002569</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002569</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002569</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002569</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination.</title>
<author>
<name sortKey="Idnurm, Alexander" sort="Idnurm, Alexander" uniqKey="Idnurm A" first="Alexander" last="Idnurm">Alexander Idnurm</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of BioSciences, University of Melbourne, VIC 3010, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of BioSciences, University of Melbourne, VIC 3010</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hood, Michael E" sort="Hood, Michael E" uniqKey="Hood M" first="Michael E" last="Hood">Michael E. Hood</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biology, Amherst College, Amherst</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Johannesson, Hanna" sort="Johannesson, Hanna" uniqKey="Johannesson H" first="Hanna" last="Johannesson">Hanna Johannesson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Giraud, Tatiana" sort="Giraud, Tatiana" uniqKey="Giraud T" first="Tatiana" last="Giraud">Tatiana Giraud</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex</wicri:regionArea>
<wicri:noRegion>91405 Orsay cedex</wicri:noRegion>
<orgName type="university">Université Paris-Sud</orgName>
<placeName>
<settlement type="city">Orsay</settlement>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Fungal biology reviews</title>
<idno type="ISSN">1749-4613</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is striking that, while central to sexual reproduction, the genomic regions determining sex or mating-types are often characterized by suppressed recombination that leads to a decrease in the efficiency of selection, shelters genetic load, and inevitably contributes to their genic degeneration. Research on model and lesser-explored fungi has revealed similarities in recombination suppression of the genomic regions involved in mating compatibility across eukaryotes, but fungi also provide opposite examples of enhanced recombination in the genomic regions that determine their mating types. These contrasted patterns of genetic recombination (sensu lato, including gene conversion and ectopic recombination) in regions of the genome involved in mating compatibility point to important yet complex processes occurring in their evolution. A number of pieces in this puzzle remain to be solved, in particular on the unclear selective forces that may cause the patterns of recombination, prompting theoretical developments and experimental studies. This review thus points to fungi as a fascinating group for studying the various evolutionary forces at play in the genomic regions involved in mating compatibility.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">26688691</PMID>
<DateCreated>
<Year>2015</Year>
<Month>12</Month>
<Day>21</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1749-4613</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>29</Volume>
<Issue>3-4</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Fungal biology reviews</Title>
<ISOAbbreviation>Fungal Biol Rev</ISOAbbreviation>
</Journal>
<ArticleTitle>Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination.</ArticleTitle>
<Pagination>
<MedlinePgn>220-229</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>It is striking that, while central to sexual reproduction, the genomic regions determining sex or mating-types are often characterized by suppressed recombination that leads to a decrease in the efficiency of selection, shelters genetic load, and inevitably contributes to their genic degeneration. Research on model and lesser-explored fungi has revealed similarities in recombination suppression of the genomic regions involved in mating compatibility across eukaryotes, but fungi also provide opposite examples of enhanced recombination in the genomic regions that determine their mating types. These contrasted patterns of genetic recombination (sensu lato, including gene conversion and ectopic recombination) in regions of the genome involved in mating compatibility point to important yet complex processes occurring in their evolution. A number of pieces in this puzzle remain to be solved, in particular on the unclear selective forces that may cause the patterns of recombination, prompting theoretical developments and experimental studies. This review thus points to fungi as a fascinating group for studying the various evolutionary forces at play in the genomic regions involved in mating compatibility.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Idnurm</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of BioSciences, University of Melbourne, VIC 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hood</LastName>
<ForeName>Michael E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johannesson</LastName>
<ForeName>Hanna</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giraud</LastName>
<ForeName>Tatiana</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>309403</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>R21 AI094364</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Fungal Biol Rev</MedlineTA>
<NlmUniqueID>101320029</NlmUniqueID>
<ISSNLinking>1749-4613</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2004 Apr;58(4):702-9</RefSource>
<PMID Version="1">15154546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2013 Jun;194(2):327-34</RefSource>
<PMID Version="1">23733849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2010 Jun;9(6):847-59</RefSource>
<PMID Version="1">20190072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2001 Jul;17(7):393-400</RefSource>
<PMID Version="1">11418220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 1992 Feb;60(2):602-5</RefSource>
<PMID Version="1">1730495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Mol Biol Rev. 1998 Mar;62(1):55-70</RefSource>
<PMID Version="1">9529887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2014 Nov 20;10(11):e1004796</RefSource>
<PMID Version="1">25412462</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol Evol. 2010 Jul 12;2:347-57</RefSource>
<PMID Version="1">20624739</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2002 Feb;160(2):457-61</RefSource>
<PMID Version="1">11861552</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Apr 11;300(5617):321-4</RefSource>
<PMID Version="1">12690198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Bot. 2011 Mar;98(3):426-38</RefSource>
<PMID Version="1">21613136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Dec 10;330(6010):1533-6</RefSource>
<PMID Version="1">21148389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2005 Nov;171(3):975-83</RefSource>
<PMID Version="1">15965241</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2011 Apr;10(4):594-603</RefSource>
<PMID Version="1">21335530</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2013 Jun 19;280(1764):20130862</RefSource>
<PMID Version="1">23782882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2012;8(7):e1002820</RefSource>
<PMID Version="1">22844246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2013 Feb;14(2):113-24</RefSource>
<PMID Version="1">23329112</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 1990 Feb;12(2):53-9</RefSource>
<PMID Version="1">2140508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2002 Jun;1(3):366-77</RefSource>
<PMID Version="1">12455985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Fungal Genet Biol. 2014 Jan;62:43-54</RefSource>
<PMID Version="1">24216224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2013 Jan;193(1):309-15</RefSource>
<PMID Version="1">23150606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(2):e56895</RefSource>
<PMID Version="1">23457637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2012 May 1;21(9):2029-38</RefSource>
<PMID Version="1">22291443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2014 Jan;183(1):140-6</RefSource>
<PMID Version="1">24334743</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7085-9</RefSource>
<PMID Version="1">7913746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 1992 May;7(5):144-5</RefSource>
<PMID Version="1">21235987</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2010 Jan 1;24(1):33-44</RefSource>
<PMID Version="1">20008928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 May 13;485(7400):642-5</RefSource>
<PMID Version="1">22660327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 2008 Jul;76(7):2923-38</RefSource>
<PMID Version="1">18426889</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sex Dev. 2009;3(2-3):60-7</RefSource>
<PMID Version="1">19684451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2002 May;18(5):259-64</RefSource>
<PMID Version="1">12047951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2014 Dec 11;10(12):e1004849</RefSource>
<PMID Version="1">25503976</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2007 Aug 21;17(16):1384-9</RefSource>
<PMID Version="1">17669651</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Genet. 1994;15(1):104-18</RefSource>
<PMID Version="1">8187347</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2015 Mar;199(3):809-16</RefSource>
<PMID Version="1">25567990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2000 Jun;155(2):909-19</RefSource>
<PMID Version="1">10835409</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>G3 (Bethesda). 2013 Mar;3(3):465-80</RefSource>
<PMID Version="1">23450093</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 Apr 16;8(4):e62121</RefSource>
<PMID Version="1">23614024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2012 Oct;29(10):3215-26</RefSource>
<PMID Version="1">22593224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15491-6</RefSource>
<PMID Version="1">25313032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2004 Apr;166(4):1751-9</RefSource>
<PMID Version="1">15126395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Apr 25;320(5875):548-50</RefSource>
<PMID Version="1">18356489</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2012 May;191(1):33-64</RefSource>
<PMID Version="1">22555442</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2003 Dec;57(12):2721-41</RefSource>
<PMID Version="1">14761052</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mutat Res. 1964 May;106:2-9</RefSource>
<PMID Version="1">14195748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2009 Feb;24(2):94-102</RefSource>
<PMID Version="1">19100654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2011 Sep;108(4):677-85</RefSource>
<PMID Version="1">21798860</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2014 Jun;27(6):1125-35</RefSource>
<PMID Version="1">24848562</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Apr 21;434(7036):1017-21</RefSource>
<PMID Version="1">15846346</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2005 May;22(5):1223-30</RefSource>
<PMID Version="1">15703241</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2002 Oct;1(5):704-18</RefSource>
<PMID Version="1">12455690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2015 Apr;32(4):928-43</RefSource>
<PMID Version="1">25534033</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Fungal Biol Rev. 2011 Oct 1;25(3):121-127</RefSource>
<PMID Version="1">23136582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2014 May;197(1):421-32</RefSource>
<PMID Version="1">24558260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2015 Aug;200(4):1275-84</RefSource>
<PMID Version="1">26044594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2012 Nov;66(11):3519-33</RefSource>
<PMID Version="1">23106715</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Heredity (Edinb). 2000 Sep;85 Pt 3:231-41</RefSource>
<PMID Version="1">11012726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2006 Nov 17;2(11):e187</RefSource>
<PMID Version="1">17112316</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2014 Jul 01;12(7):e1001899</RefSource>
<PMID Version="1">24983465</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1632-7</RefSource>
<PMID Version="1">14745027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Genet. 2008 Apr;53(4):249-58</RefSource>
<PMID Version="1">18265986</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Res. 1982 Dec;40(3):325-32</RefSource>
<PMID Version="1">7160619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2004 Jan;51(2):299-306</RefSource>
<PMID Version="1">14756773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2008 Apr 11;8:109</RefSource>
<PMID Version="1">18405383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2010 Jul 31;10:234</RefSource>
<PMID Version="1">20673371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2006 Nov 3;2(11):e184</RefSource>
<PMID Version="1">17083277</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2010 Mar;27(3):714-25</RefSource>
<PMID Version="1">19812029</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Microbiol. 2004 Dec;7(6):666-72</RefSource>
<PMID Version="1">15556041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2012 Jul;8(7):e1002810</RefSource>
<PMID Version="1">22792079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2012 Jun;25(6):1020-38</RefSource>
<PMID Version="1">22515640</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Genet. 1982;61(2):85-90</RefSource>
<PMID Version="1">7129448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Gen Genet. 1994 Aug 15;244(4):401-9</RefSource>
<PMID Version="1">8078466</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2010 Aug;32(8):718-26</RefSource>
<PMID Version="1">20658710</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2009 Jan;181(1):209-23</RefSource>
<PMID Version="1">19001292</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2013 Oct;9(10):e1003762</RefSource>
<PMID Version="1">24204285</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2004 Dec;2(12):e384</RefSource>
<PMID Version="1">15538538</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Mar 10;124(5):901-14</RefSource>
<PMID Version="1">16530039</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4851-8</RefSource>
<PMID Version="1">25349420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2011 Sep;189(1):55-69</RefSource>
<PMID Version="1">21750257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2008 Mar 14;4(3):e1000030</RefSource>
<PMID Version="1">18369449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Rev Camb Philos Soc. 2011 May;86(2):421-42</RefSource>
<PMID Version="1">21489122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2013 Oct;30(10):2286-301</RefSource>
<PMID Version="1">23864721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2011 Jun;7(6):e1002086</RefSource>
<PMID Version="1">21698218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2013 Feb;67(2):501-16</RefSource>
<PMID Version="1">23356621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2011 Sep;27(9):358-67</RefSource>
<PMID Version="1">21962971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Soc Trans. 2005 Dec;33(Pt 6):1451-5</RefSource>
<PMID Version="1">16246144</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2005 Dec;59(12):2525-32</RefSource>
<PMID Version="1">16526501</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Heredity (Edinb). 2013 Dec;111(6):445-55</RefSource>
<PMID Version="1">23838688</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cryptococcus neoformans</Keyword>
<Keyword MajorTopicYN="N">MAT</Keyword>
<Keyword MajorTopicYN="N">Microbotryum violaceum</Keyword>
<Keyword MajorTopicYN="N">Muller’s ratchet</Keyword>
<Keyword MajorTopicYN="N">Neurospora tetrasperma</Keyword>
<Keyword MajorTopicYN="N">Podospora anserina</Keyword>
<Keyword MajorTopicYN="N">bipolar</Keyword>
<Keyword MajorTopicYN="N">heterothallism</Keyword>
<Keyword MajorTopicYN="N">homothallism</Keyword>
<Keyword MajorTopicYN="N">tetrapolar</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26688691</ArticleId>
<ArticleId IdType="doi">10.1016/j.fbr.2015.06.001</ArticleId>
<ArticleId IdType="pmc">PMC4680991</ArticleId>
<ArticleId IdType="mid">NIHMS705151</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Suède</li>
<li>États-Unis</li>
</country>
<region>
<li>East Middle Sweden</li>
<li>Massachusetts</li>
<li>Svealand</li>
<li>Victoria (État)</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Melbourne</li>
<li>Orsay</li>
<li>Uppsala</li>
</settlement>
<orgName>
<li>Université Paris-Sud</li>
<li>Université d'Uppsala</li>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Idnurm, Alexander" sort="Idnurm, Alexander" uniqKey="Idnurm A" first="Alexander" last="Idnurm">Alexander Idnurm</name>
</region>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Hood, Michael E" sort="Hood, Michael E" uniqKey="Hood M" first="Michael E" last="Hood">Michael E. Hood</name>
</region>
</country>
<country name="Suède">
<region name="Svealand">
<name sortKey="Johannesson, Hanna" sort="Johannesson, Hanna" uniqKey="Johannesson H" first="Hanna" last="Johannesson">Hanna Johannesson</name>
</region>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Giraud, Tatiana" sort="Giraud, Tatiana" uniqKey="Giraud T" first="Tatiana" last="Giraud">Tatiana Giraud</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002D80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:26688691
   |texte=   Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:26688691" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024