Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma.

Identifieur interne : 002848 ( PubMed/Checkpoint ); précédent : 002847; suivant : 002849

Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma.

Auteurs : Sebastian Pfautsch [Australie] ; Justine Renard ; Mark G. Tjoelker ; Anya Salih

Source :

RBID : pubmed:25588734

Descripteurs français

English descriptors

Abstract

The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees.

DOI: 10.1104/pp.114.254581
PubMed: 25588734


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25588734

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma.</title>
<author>
<name sortKey="Pfautsch, Sebastian" sort="Pfautsch, Sebastian" uniqKey="Pfautsch S" first="Sebastian" last="Pfautsch">Sebastian Pfautsch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬ s.pfautsch@uws.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Renard, Justine" sort="Renard, Justine" uniqKey="Renard J" first="Justine" last="Renard">Justine Renard</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬</nlm:affiliation>
<wicri:noCountry code="subField">Australia (A.S.)‬‬‬‬‬‬</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tjoelker, Mark G" sort="Tjoelker, Mark G" uniqKey="Tjoelker M" first="Mark G" last="Tjoelker">Mark G. Tjoelker</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬</nlm:affiliation>
<wicri:noCountry code="subField">Australia (A.S.)‬‬‬‬‬‬</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Salih, Anya" sort="Salih, Anya" uniqKey="Salih A" first="Anya" last="Salih">Anya Salih</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬</nlm:affiliation>
<wicri:noCountry code="subField">Australia (A.S.)‬‬‬‬‬‬</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25588734</idno>
<idno type="pmid">25588734</idno>
<idno type="doi">10.1104/pp.114.254581</idno>
<idno type="wicri:Area/PubMed/Corpus">002F41</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002F41</idno>
<idno type="wicri:Area/PubMed/Curation">002E63</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002E63</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002E63</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002E63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma.</title>
<author>
<name sortKey="Pfautsch, Sebastian" sort="Pfautsch, Sebastian" uniqKey="Pfautsch S" first="Sebastian" last="Pfautsch">Sebastian Pfautsch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬ s.pfautsch@uws.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Renard, Justine" sort="Renard, Justine" uniqKey="Renard J" first="Justine" last="Renard">Justine Renard</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬</nlm:affiliation>
<wicri:noCountry code="subField">Australia (A.S.)‬‬‬‬‬‬</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tjoelker, Mark G" sort="Tjoelker, Mark G" uniqKey="Tjoelker M" first="Mark G" last="Tjoelker">Mark G. Tjoelker</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬</nlm:affiliation>
<wicri:noCountry code="subField">Australia (A.S.)‬‬‬‬‬‬</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Salih, Anya" sort="Salih, Anya" uniqKey="Salih A" first="Anya" last="Salih">Anya Salih</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬</nlm:affiliation>
<wicri:noCountry code="subField">Australia (A.S.)‬‬‬‬‬‬</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport</term>
<term>Eucalyptus (anatomy & histology)</term>
<term>Eucalyptus (ultrastructure)</term>
<term>Fluorescent Dyes (metabolism)</term>
<term>Phloem (metabolism)</term>
<term>Plant Stems (metabolism)</term>
<term>Time Factors</term>
<term>Trees (metabolism)</term>
<term>Water (metabolism)</term>
<term>Wood (anatomy & histology)</term>
<term>Wood (ultrastructure)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (métabolisme)</term>
<term>Bois (anatomie et histologie)</term>
<term>Bois (ultrastructure)</term>
<term>Colorants fluorescents (métabolisme)</term>
<term>Eau (métabolisme)</term>
<term>Eucalyptus (anatomie et histologie)</term>
<term>Eucalyptus (ultrastructure)</term>
<term>Facteurs temps</term>
<term>Phloème (métabolisme)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Transport biologique</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fluorescent Dyes</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Bois</term>
<term>Eucalyptus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Eucalyptus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phloem</term>
<term>Plant Stems</term>
<term>Trees</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Colorants fluorescents</term>
<term>Eau</term>
<term>Phloème</term>
<term>Tiges de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Eucalyptus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Bois</term>
<term>Eucalyptus</term>
<term>Facteurs temps</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25588734</PMID>
<DateCreated>
<Year>2015</Year>
<Month>02</Month>
<Day>28</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>167</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma.</ArticleTitle>
<Pagination>
<MedlinePgn>963-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.114.254581</ELocationID>
<Abstract>
<AbstractText>The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees.</AbstractText>
<CopyrightInformation>© 2015 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pfautsch</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4390-4195</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬ s.pfautsch@uws.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Renard</LastName>
<ForeName>Justine</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tjoelker</LastName>
<ForeName>Mark G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salih</LastName>
<ForeName>Anya</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia (S.P., M.G.T.);École Normale Supérieure, 75005 Paris, France (J.R.); andConfocal Bio-Imaging Facility, Hawkesbury Campus, Deputy Vice-Chancellor (Research and Development) Division, University of Western Sydney, ‪‪Penrith South, ‪New South Wales 1797, Australia (A.S.)‬‬‬‬‬‬</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005456">Fluorescent Dyes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Jun;198(4):1143-54</RefSource>
<PMID Version="1">23517018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2010 May;61(8):2083-99</RefSource>
<PMID Version="1">20176887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2011 Apr;34(4):643-54</RefSource>
<PMID Version="1">21309793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2008 Aug;28(8):1145-55</RefSource>
<PMID Version="1">18519246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 1990 Oct;182(3):420-6</RefSource>
<PMID Version="1">24197194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2007 Mar 1;79(5):2137-49</RefSource>
<PMID Version="1">17269654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2014 Jan;37(1):153-61</RefSource>
<PMID Version="1">23730972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 1986 Sep;168(3):377-80</RefSource>
<PMID Version="1">24232147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2011 Oct;31(10):1041-51</RefSource>
<PMID Version="1">21908853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2007 Feb;27(2):181-98</RefSource>
<PMID Version="1">17241961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 2009 Jul 21;259(2):325-37</RefSource>
<PMID Version="1">19361530</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Bot. 2012 Nov;99(11):1745-55</RefSource>
<PMID Version="1">23125435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oecologia. 2013 Jun;172(2):317-26</RefSource>
<PMID Version="1">23070142</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2009;183(4):1097-113</RefSource>
<PMID Version="1">19538547</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2003 Mar;23(4):237-45</RefSource>
<PMID Version="1">12566259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2013 Nov;64(16):4839-50</RefSource>
<PMID Version="1">24106290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2011 Apr;34(4):690-703</RefSource>
<PMID Version="1">21241327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2005 Mar;25(3):269-75</RefSource>
<PMID Version="1">15631975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2010 Nov;154(3):1088-95</RefSource>
<PMID Version="1">20841451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Sci. 2011 Apr;180(4):604-11</RefSource>
<PMID Version="1">21421408</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2002 Mar;7(3):126-32</RefSource>
<PMID Version="1">11906836</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005052" MajorTopicYN="N">Eucalyptus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005456" MajorTopicYN="N">Fluorescent Dyes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4348778</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25588734</ArticleId>
<ArticleId IdType="pii">pp.114.254581</ArticleId>
<ArticleId IdType="doi">10.1104/pp.114.254581</ArticleId>
<ArticleId IdType="pmc">PMC4348778</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Renard, Justine" sort="Renard, Justine" uniqKey="Renard J" first="Justine" last="Renard">Justine Renard</name>
<name sortKey="Salih, Anya" sort="Salih, Anya" uniqKey="Salih A" first="Anya" last="Salih">Anya Salih</name>
<name sortKey="Tjoelker, Mark G" sort="Tjoelker, Mark G" uniqKey="Tjoelker M" first="Mark G" last="Tjoelker">Mark G. Tjoelker</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Pfautsch, Sebastian" sort="Pfautsch, Sebastian" uniqKey="Pfautsch S" first="Sebastian" last="Pfautsch">Sebastian Pfautsch</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002848 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002848 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25588734
   |texte=   Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25588734" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024