Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Emergence of Form from Function - Mechanical Engineering Approaches to Probe the Role of Stem Cell Mechanoadaptation in Sealing Cell Fate.

Identifieur interne : 001F52 ( PubMed/Checkpoint ); précédent : 001F51; suivant : 001F53

Emergence of Form from Function - Mechanical Engineering Approaches to Probe the Role of Stem Cell Mechanoadaptation in Sealing Cell Fate.

Auteurs : Melissa L. Knothe Tate [Australie] ; Peter W. Gunning [Australie] ; Vittorio Sansalone [France]

Source :

RBID : pubmed:27739911

Abstract

Stem cell "mechanomics" refers to the effect of mechanical cues on stem cell and matrix biology, where cell shape and fate are intrinsic manifestations of form and function. Before specialization, the stem cell itself serves as a sensor and actuator; its structure emerges from its local mechanical milieu as the cell adapts over time. Coupling of novel spatiotemporal imaging and computational methods allows for linking of the energy of adaptation to the structure, biology and mechanical function of the cell. Cutting edge imaging methods enable probing of mechanisms by which stem cells' emergent anisotropic architecture and fate commitment occurs. A novel cell-scale model provides a mechanistic framework to describe stem cell growth and remodeling through mechanical feedback; making use of a generalized virtual power principle, the model accounts for the rate of doing work or the rate of using energy to effect the work. This coupled approach provides a basis to elucidate mechanisms underlying the stem cell's innate capacity to adapt to mechanical stimuli as well as the role of mechanoadaptation in lineage commitment. An understanding of stem cell mechanoadaptation is key to deciphering lineage commitment, during prenatal development, postnatal wound healing, and engineering of tissues.

DOI: 10.1080/19490992.2016.1229729
PubMed: 27739911


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27739911

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Emergence of Form from Function - Mechanical Engineering Approaches to Probe the Role of Stem Cell Mechanoadaptation in Sealing Cell Fate.</title>
<author>
<name sortKey="Knothe Tate, Melissa L" sort="Knothe Tate, Melissa L" uniqKey="Knothe Tate M" first="Melissa L" last="Knothe Tate">Melissa L. Knothe Tate</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Graduate School of Biomedical Engineering , University of New South Wales , Sydney , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>a Graduate School of Biomedical Engineering , University of New South Wales , Sydney </wicri:regionArea>
<wicri:noRegion>Sydney </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gunning, Peter W" sort="Gunning, Peter W" uniqKey="Gunning P" first="Peter W" last="Gunning">Peter W. Gunning</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Medical Sciences, University of New South Wales , Sydney , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Medical Sciences, University of New South Wales , Sydney </wicri:regionArea>
<wicri:noRegion>Sydney </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sansalone, Vittorio" sort="Sansalone, Vittorio" uniqKey="Sansalone V" first="Vittorio" last="Sansalone">Vittorio Sansalone</name>
<affiliation wicri:level="1">
<nlm:affiliation>c Université Paris-Est Créteil (UPEC), Laboratoire Modélisation et Simulation Multi Echelle , MSME UMR 8208 CNRS, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>c Université Paris-Est Créteil (UPEC), Laboratoire Modélisation et Simulation Multi Echelle , MSME UMR 8208 CNRS</wicri:regionArea>
<wicri:noRegion>MSME UMR 8208 CNRS</wicri:noRegion>
<wicri:noRegion>MSME UMR 8208 CNRS</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27739911</idno>
<idno type="pmid">27739911</idno>
<idno type="doi">10.1080/19490992.2016.1229729</idno>
<idno type="wicri:Area/PubMed/Corpus">001796</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001796</idno>
<idno type="wicri:Area/PubMed/Curation">001773</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001773</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001773</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001773</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Emergence of Form from Function - Mechanical Engineering Approaches to Probe the Role of Stem Cell Mechanoadaptation in Sealing Cell Fate.</title>
<author>
<name sortKey="Knothe Tate, Melissa L" sort="Knothe Tate, Melissa L" uniqKey="Knothe Tate M" first="Melissa L" last="Knothe Tate">Melissa L. Knothe Tate</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Graduate School of Biomedical Engineering , University of New South Wales , Sydney , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>a Graduate School of Biomedical Engineering , University of New South Wales , Sydney </wicri:regionArea>
<wicri:noRegion>Sydney </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gunning, Peter W" sort="Gunning, Peter W" uniqKey="Gunning P" first="Peter W" last="Gunning">Peter W. Gunning</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Medical Sciences, University of New South Wales , Sydney , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Medical Sciences, University of New South Wales , Sydney </wicri:regionArea>
<wicri:noRegion>Sydney </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sansalone, Vittorio" sort="Sansalone, Vittorio" uniqKey="Sansalone V" first="Vittorio" last="Sansalone">Vittorio Sansalone</name>
<affiliation wicri:level="1">
<nlm:affiliation>c Université Paris-Est Créteil (UPEC), Laboratoire Modélisation et Simulation Multi Echelle , MSME UMR 8208 CNRS, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>c Université Paris-Est Créteil (UPEC), Laboratoire Modélisation et Simulation Multi Echelle , MSME UMR 8208 CNRS</wicri:regionArea>
<wicri:noRegion>MSME UMR 8208 CNRS</wicri:noRegion>
<wicri:noRegion>MSME UMR 8208 CNRS</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Bioarchitecture</title>
<idno type="eISSN">1949-100X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stem cell "mechanomics" refers to the effect of mechanical cues on stem cell and matrix biology, where cell shape and fate are intrinsic manifestations of form and function. Before specialization, the stem cell itself serves as a sensor and actuator; its structure emerges from its local mechanical milieu as the cell adapts over time. Coupling of novel spatiotemporal imaging and computational methods allows for linking of the energy of adaptation to the structure, biology and mechanical function of the cell. Cutting edge imaging methods enable probing of mechanisms by which stem cells' emergent anisotropic architecture and fate commitment occurs. A novel cell-scale model provides a mechanistic framework to describe stem cell growth and remodeling through mechanical feedback; making use of a generalized virtual power principle, the model accounts for the rate of doing work or the rate of using energy to effect the work. This coupled approach provides a basis to elucidate mechanisms underlying the stem cell's innate capacity to adapt to mechanical stimuli as well as the role of mechanoadaptation in lineage commitment. An understanding of stem cell mechanoadaptation is key to deciphering lineage commitment, during prenatal development, postnatal wound healing, and engineering of tissues.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">27739911</PMID>
<DateCreated>
<Year>2016</Year>
<Month>10</Month>
<Day>14</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>10</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1949-100X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2016</Year>
<Month>Oct</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Bioarchitecture</Title>
<ISOAbbreviation>Bioarchitecture</ISOAbbreviation>
</Journal>
<ArticleTitle>Emergence of Form from Function - Mechanical Engineering Approaches to Probe the Role of Stem Cell Mechanoadaptation in Sealing Cell Fate.</ArticleTitle>
<Pagination>
<MedlinePgn>0</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Stem cell "mechanomics" refers to the effect of mechanical cues on stem cell and matrix biology, where cell shape and fate are intrinsic manifestations of form and function. Before specialization, the stem cell itself serves as a sensor and actuator; its structure emerges from its local mechanical milieu as the cell adapts over time. Coupling of novel spatiotemporal imaging and computational methods allows for linking of the energy of adaptation to the structure, biology and mechanical function of the cell. Cutting edge imaging methods enable probing of mechanisms by which stem cells' emergent anisotropic architecture and fate commitment occurs. A novel cell-scale model provides a mechanistic framework to describe stem cell growth and remodeling through mechanical feedback; making use of a generalized virtual power principle, the model accounts for the rate of doing work or the rate of using energy to effect the work. This coupled approach provides a basis to elucidate mechanisms underlying the stem cell's innate capacity to adapt to mechanical stimuli as well as the role of mechanoadaptation in lineage commitment. An understanding of stem cell mechanoadaptation is key to deciphering lineage commitment, during prenatal development, postnatal wound healing, and engineering of tissues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Knothe Tate</LastName>
<ForeName>Melissa L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>a Graduate School of Biomedical Engineering , University of New South Wales , Sydney , Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gunning</LastName>
<ForeName>Peter W</ForeName>
<Initials>PW</Initials>
<AffiliationInfo>
<Affiliation>b School of Medical Sciences, University of New South Wales , Sydney , Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sansalone</LastName>
<ForeName>Vittorio</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>c Université Paris-Est Créteil (UPEC), Laboratoire Modélisation et Simulation Multi Echelle , MSME UMR 8208 CNRS, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Bioarchitecture</MedlineTA>
<NlmUniqueID>101518332</NlmUniqueID>
<ISSNLinking>1949-0992</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng. 2007 Oct;13(10):2525-38</RefSource>
<PMID Version="1">17822359</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2015 Jun 1;128(11):2009-19</RefSource>
<PMID Version="1">25788699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2015 Jul 1;26(13):2475-90</RefSource>
<PMID Version="1">25971798</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2012 Oct 11;45(15):2483-92</RefSource>
<PMID Version="1">22925995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2012 Sep 13;120(11):2174-81</RefSource>
<PMID Version="1">22786878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cytoskeleton (Hoboken). 2015 Jun;72(6):257-67</RefSource>
<PMID Version="1">26147585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mech Dev. 2000 Jul;95(1-2):3-21</RefSource>
<PMID Version="1">10906446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2015 May 15;10 (5):e0126214</RefSource>
<PMID Version="1">25978408</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2013 Oct;15(10):1253-9</RefSource>
<PMID Version="1">23995731</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Calcium. 2000 Jul;28(1):33-46</RefSource>
<PMID Version="1">10942702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2013 Mar;34(8):1878-87</RefSource>
<PMID Version="1">23237517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Oct 18;490(7420):355-60</RefSource>
<PMID Version="1">23023126</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(9):e43601</RefSource>
<PMID Version="1">22970134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Mater. 2012 May 27;11(7):642-9</RefSource>
<PMID Version="1">22635042</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2004 Sep 3;118(5):635-48</RefSource>
<PMID Version="1">15339667</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bone Joint Surg Am. 2007 Feb;89(2):307-16</RefSource>
<PMID Version="1">17272445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2004 Apr;6(4):483-95</RefSource>
<PMID Version="1">15068789</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2006 Mar 31;311(5769):1880-5</RefSource>
<PMID Version="1">16574858</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stem Cells Transl Med. 2012 Jun;1(6):480-91</RefSource>
<PMID Version="1">23197852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2011 Feb 18;144(4):577-89</RefSource>
<PMID Version="1">21335239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Carcinog. 2006 Nov;45(11):851-60</RefSource>
<PMID Version="1">16788982</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010 Sep 17;5(9):null</RefSource>
<PMID Version="1">20862249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2008 Jan;9(1):11-21</RefSource>
<PMID Version="1">18097443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Birth Defects Res C Embryo Today. 2004 Jun;72(2):162-72</RefSource>
<PMID Version="1">15269890</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biomech. 2011 Dec;8(4):297-318</RefSource>
<PMID Version="1">22338708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stem Cell. 2010 Jul 2;7(1):5-6</RefSource>
<PMID Version="1">20621040</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2011 Jan 11;44(2):304-12</RefSource>
<PMID Version="1">21146825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part A. 2008 Sep;14(9):1561-72</RefSource>
<PMID Version="1">18774910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 2014 Feb 1;321(1):17-24</RefSource>
<PMID Version="1">24140263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2013 Jul;34(23):5766-75</RefSource>
<PMID Version="1">23660249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Orthop Res. 2012 Dec;30(12):1869-78</RefSource>
<PMID Version="1">22778049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part B Rev. 2012 Apr;18(2):129-38</RefSource>
<PMID Version="1">22032258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2015 Mar 23;32(6):678-92</RefSource>
<PMID Version="1">25752962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2001 Jan 1;61(1):392-9</RefSource>
<PMID Version="1">11196193</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 1998 Aug 11;98(6):567-79</RefSource>
<PMID Version="1">9714115</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2008 Jan;88(1):1-35</RefSource>
<PMID Version="1">18195081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190-5</RefSource>
<PMID Version="1">21646527</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Cell. 2003 Apr;35(2):83-93</RefSource>
<PMID Version="1">12747930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mech Behav Biomed Mater. 2011 Aug;4(6):829-40</RefSource>
<PMID Version="1">21616464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Soft Matter. 2009;5:1918-1924</RefSource>
<PMID Version="1">19672325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2013 Jan 8;104(1):237-46</RefSource>
<PMID Version="1">23332076</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cell Biol. 2014 Aug;24(8):479-87</RefSource>
<PMID Version="1">24768033</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stem Cell. 2010 Jul 2;7(1):51-63</RefSource>
<PMID Version="1">20621050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Mol Med. 2001 Jun;7(6):259-64</RefSource>
<PMID Version="1">11378515</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stem Cell. 2010 Jul 2;7(1):64-77</RefSource>
<PMID Version="1">20621051</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis Exp. 2013 Apr 06;(74):null</RefSource>
<PMID Version="1">23608752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cells Tissues Organs. 2001;169(1):12-20</RefSource>
<PMID Version="1">11340257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Placenta. 2010 Sep;31(9):747-55</RefSource>
<PMID Version="1">20659767</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Biochem Cell Biol. 2008;40(12):2720-38</RefSource>
<PMID Version="1">18620888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2000 Feb 25;287(5457):1427-30</RefSource>
<PMID Version="1">10688781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Mater. 2010 Jan;9(1):82-8</RefSource>
<PMID Version="1">19838182</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Healthc Mater. 2016 Aug;5(15):1840-3</RefSource>
<PMID Version="1">27281701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Aug 25;126(4):677-89</RefSource>
<PMID Version="1">16923388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2015 Aug 15;128(16):2965-74</RefSource>
<PMID Version="1">26240174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part A. 2008 Sep;14(9):1573-80</RefSource>
<PMID Version="1">18774911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cell Biol. 2007 Jan;17(1):19-25</RefSource>
<PMID Version="1">17129728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2001 Nov 1;414(6859):98-104</RefSource>
<PMID Version="1">11689954</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stem Cells Transl Med. 2014 Mar;3(3):308-17</RefSource>
<PMID Version="1">24477075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2013;1035:179-90</RefSource>
<PMID Version="1">23959991</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2008;41(8):1736-46</RefSource>
<PMID Version="1">18482728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biomech. 2011 Dec;8(4):275-96</RefSource>
<PMID Version="1">22338707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stem Cells Transl Med. 2016 Jul 28;:null</RefSource>
<PMID Version="1">27471309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Res Int. 2013;2013:598461</RefSource>
<PMID Version="1">23509748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2009 Jan;96(2):717-28</RefSource>
<PMID Version="1">19167316</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cell mechanics</Keyword>
<Keyword MajorTopicYN="N">fate</Keyword>
<Keyword MajorTopicYN="N">lineage commitment</Keyword>
<Keyword MajorTopicYN="N">mechanoadaptation</Keyword>
<Keyword MajorTopicYN="N">mechanomics</Keyword>
<Keyword MajorTopicYN="N">stem cell</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27739911</ArticleId>
<ArticleId IdType="doi">10.1080/19490992.2016.1229729</ArticleId>
<ArticleId IdType="pmc">PMC5077068</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Knothe Tate, Melissa L" sort="Knothe Tate, Melissa L" uniqKey="Knothe Tate M" first="Melissa L" last="Knothe Tate">Melissa L. Knothe Tate</name>
</noRegion>
<name sortKey="Gunning, Peter W" sort="Gunning, Peter W" uniqKey="Gunning P" first="Peter W" last="Gunning">Peter W. Gunning</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Sansalone, Vittorio" sort="Sansalone, Vittorio" uniqKey="Sansalone V" first="Vittorio" last="Sansalone">Vittorio Sansalone</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001F52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:27739911
   |texte=   Emergence of Form from Function - Mechanical Engineering Approaches to Probe the Role of Stem Cell Mechanoadaptation in Sealing Cell Fate.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:27739911" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024