Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion.

Identifieur interne : 001C66 ( PubMed/Checkpoint ); précédent : 001C65; suivant : 001C67

Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion.

Auteurs : Camille Bonneaud [Royaume-Uni] ; Robbie S. Wilson [Australie] ; Frank Seebacher [Australie]

Source :

RBID : pubmed:27851769

Descripteurs français

English descriptors

Abstract

Energy-based trade-offs occur when investment in one fitness-related trait diverts energy away from other traits. The extent to which such trade-offs are shaped by limits on the rate of conversion of energy ingested in food (e.g. carbohydrates) into chemical energy (ATP) by oxidative metabolism rather than by the amount of food ingested in the first place is, however, unclear. Here we tested whether the ATP required for mounting an immune response will lead to a trade-off with ATP available for physical activity in mosquitofish (Gambusia holbrooki). To this end, we challenged fish either with lipopolysaccharide (LPS) from E. coli or with Sheep Red Blood Cells (SRBC), and measured oxygen consumption at rest and during swimming at maximum speed 24h, 48h and 7 days post-challenge in order to estimate metabolic rates. Relative to saline-injected controls, only LPS-injected fish showed a significantly greater resting metabolic rate two days post-challenge and significantly higher maximal metabolic rates two and seven days post-challenge. This resulted in a significantly greater metabolic scope two days post-challenge, with LPS-fish transiently overcompensating by increasing maximal ATP production more than would be required for swimming in the absence of an immune challenge. LPS-challenged fish therefore increased their production of ATP to compensate physiologically for the energetic requirements of immune functioning. This response would avoid ATP shortages and allow fish to engage in an aerobically-challenging activity (swimming) even when simultaneously mounting an immune response. Nevertheless, relative to controls, both LPS- and SRBC-fish displayed reduced body mass gain one week post-injection, and LPS-fish actually lost mass. The concomitant increase in metabolic scope and reduced body mass gain of LPS-challenged fish indicates that immune-associated trade-offs are not likely to be shaped by limited oxidative metabolic capacities, but may instead result from limitations in the acquisition, assimilation or efficient use of resources.

DOI: 10.1371/journal.pone.0166028
PubMed: 27851769


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27851769

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion.</title>
<author>
<name sortKey="Bonneaud, Camille" sort="Bonneaud, Camille" uniqKey="Bonneaud C" first="Camille" last="Bonneaud">Camille Bonneaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Ecology & Conservation, University of Exeter Penryn Campus, Penryn TR10 9FE, Cornwall, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Ecology & Conservation, University of Exeter Penryn Campus, Penryn TR10 9FE, Cornwall</wicri:regionArea>
<wicri:noRegion>Cornwall</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Robbie S" sort="Wilson, Robbie S" uniqKey="Wilson R" first="Robbie S" last="Wilson">Robbie S. Wilson</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Queensland, Brisbane St Lucia QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Queensland, Brisbane St Lucia QLD 4072</wicri:regionArea>
<wicri:noRegion>Brisbane St Lucia QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seebacher, Frank" sort="Seebacher, Frank" uniqKey="Seebacher F" first="Frank" last="Seebacher">Frank Seebacher</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Sydney, Sydney NSW 2006</wicri:regionArea>
<orgName type="university">Université de Sydney</orgName>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27851769</idno>
<idno type="pmid">27851769</idno>
<idno type="doi">10.1371/journal.pone.0166028</idno>
<idno type="wicri:Area/PubMed/Corpus">001572</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001572</idno>
<idno type="wicri:Area/PubMed/Curation">001550</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001550</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001550</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001550</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion.</title>
<author>
<name sortKey="Bonneaud, Camille" sort="Bonneaud, Camille" uniqKey="Bonneaud C" first="Camille" last="Bonneaud">Camille Bonneaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Ecology & Conservation, University of Exeter Penryn Campus, Penryn TR10 9FE, Cornwall, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Ecology & Conservation, University of Exeter Penryn Campus, Penryn TR10 9FE, Cornwall</wicri:regionArea>
<wicri:noRegion>Cornwall</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Robbie S" sort="Wilson, Robbie S" uniqKey="Wilson R" first="Robbie S" last="Wilson">Robbie S. Wilson</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Queensland, Brisbane St Lucia QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Queensland, Brisbane St Lucia QLD 4072</wicri:regionArea>
<wicri:noRegion>Brisbane St Lucia QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seebacher, Frank" sort="Seebacher, Frank" uniqKey="Seebacher F" first="Frank" last="Seebacher">Frank Seebacher</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Sydney, Sydney NSW 2006</wicri:regionArea>
<orgName type="university">Université de Sydney</orgName>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Body Weight</term>
<term>Cyprinodontiformes (immunology)</term>
<term>Cyprinodontiformes (metabolism)</term>
<term>Erythrocytes (metabolism)</term>
<term>Female</term>
<term>Lipopolysaccharides</term>
<term>Locomotion (physiology)</term>
<term>Oxygen Consumption</term>
<term>Sheep</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Consommation d'oxygène</term>
<term>Cyprinodontiformes (immunologie)</term>
<term>Cyprinodontiformes (métabolisme)</term>
<term>Femelle</term>
<term>Lipopolysaccharides</term>
<term>Locomotion (physiologie)</term>
<term>Ovis</term>
<term>Poids du corps</term>
<term>Régulation positive</term>
<term>Érythrocytes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Cyprinodontiformes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Cyprinodontiformes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cyprinodontiformes</term>
<term>Erythrocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cyprinodontiformes</term>
<term>Érythrocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Locomotion</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Locomotion</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Weight</term>
<term>Female</term>
<term>Oxygen Consumption</term>
<term>Sheep</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Consommation d'oxygène</term>
<term>Femelle</term>
<term>Lipopolysaccharides</term>
<term>Ovis</term>
<term>Poids du corps</term>
<term>Régulation positive</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Energy-based trade-offs occur when investment in one fitness-related trait diverts energy away from other traits. The extent to which such trade-offs are shaped by limits on the rate of conversion of energy ingested in food (e.g. carbohydrates) into chemical energy (ATP) by oxidative metabolism rather than by the amount of food ingested in the first place is, however, unclear. Here we tested whether the ATP required for mounting an immune response will lead to a trade-off with ATP available for physical activity in mosquitofish (Gambusia holbrooki). To this end, we challenged fish either with lipopolysaccharide (LPS) from E. coli or with Sheep Red Blood Cells (SRBC), and measured oxygen consumption at rest and during swimming at maximum speed 24h, 48h and 7 days post-challenge in order to estimate metabolic rates. Relative to saline-injected controls, only LPS-injected fish showed a significantly greater resting metabolic rate two days post-challenge and significantly higher maximal metabolic rates two and seven days post-challenge. This resulted in a significantly greater metabolic scope two days post-challenge, with LPS-fish transiently overcompensating by increasing maximal ATP production more than would be required for swimming in the absence of an immune challenge. LPS-challenged fish therefore increased their production of ATP to compensate physiologically for the energetic requirements of immune functioning. This response would avoid ATP shortages and allow fish to engage in an aerobically-challenging activity (swimming) even when simultaneously mounting an immune response. Nevertheless, relative to controls, both LPS- and SRBC-fish displayed reduced body mass gain one week post-injection, and LPS-fish actually lost mass. The concomitant increase in metabolic scope and reduced body mass gain of LPS-challenged fish indicates that immune-associated trade-offs are not likely to be shaped by limited oxidative metabolic capacities, but may instead result from limitations in the acquisition, assimilation or efficient use of resources.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27851769</PMID>
<DateCreated>
<Year>2016</Year>
<Month>11</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>06</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion.</ArticleTitle>
<Pagination>
<MedlinePgn>e0166028</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0166028</ELocationID>
<Abstract>
<AbstractText>Energy-based trade-offs occur when investment in one fitness-related trait diverts energy away from other traits. The extent to which such trade-offs are shaped by limits on the rate of conversion of energy ingested in food (e.g. carbohydrates) into chemical energy (ATP) by oxidative metabolism rather than by the amount of food ingested in the first place is, however, unclear. Here we tested whether the ATP required for mounting an immune response will lead to a trade-off with ATP available for physical activity in mosquitofish (Gambusia holbrooki). To this end, we challenged fish either with lipopolysaccharide (LPS) from E. coli or with Sheep Red Blood Cells (SRBC), and measured oxygen consumption at rest and during swimming at maximum speed 24h, 48h and 7 days post-challenge in order to estimate metabolic rates. Relative to saline-injected controls, only LPS-injected fish showed a significantly greater resting metabolic rate two days post-challenge and significantly higher maximal metabolic rates two and seven days post-challenge. This resulted in a significantly greater metabolic scope two days post-challenge, with LPS-fish transiently overcompensating by increasing maximal ATP production more than would be required for swimming in the absence of an immune challenge. LPS-challenged fish therefore increased their production of ATP to compensate physiologically for the energetic requirements of immune functioning. This response would avoid ATP shortages and allow fish to engage in an aerobically-challenging activity (swimming) even when simultaneously mounting an immune response. Nevertheless, relative to controls, both LPS- and SRBC-fish displayed reduced body mass gain one week post-injection, and LPS-fish actually lost mass. The concomitant increase in metabolic scope and reduced body mass gain of LPS-challenged fish indicates that immune-associated trade-offs are not likely to be shaped by limited oxidative metabolic capacities, but may instead result from limitations in the acquisition, assimilation or efficient use of resources.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bonneaud</LastName>
<ForeName>Camille</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Centre for Ecology & Conservation, University of Exeter Penryn Campus, Penryn TR10 9FE, Cornwall, United Kingdom.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200 Moulis, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wilson</LastName>
<ForeName>Robbie S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Queensland, Brisbane St Lucia QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seebacher</LastName>
<ForeName>Frank</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2003 Jan 22;270(1511):153-8</RefSource>
<PMID Version="1">12590753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2001 Jun 7;268(1472):1175-81</RefSource>
<PMID Version="1">11375106</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2006 Aug;209(Pt 16):3062-70</RefSource>
<PMID Version="1">16888055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2008 Mar 26;9:141</RefSource>
<PMID Version="1">18366750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Clin Nutr. 1979 Mar;32(3):593-6</RefSource>
<PMID Version="1">283688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Shock. 1997 Jan;7(1):1-16</RefSource>
<PMID Version="1">8989831</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Behav Immun. 2006 May;20(3):300-8</RefSource>
<PMID Version="1">16256305</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Fish Shellfish Immunol. 2008 Sep;25(3):191-201</RefSource>
<PMID Version="1">18603445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antioxid Redox Signal. 2015 Apr 20;22(12):965-76</RefSource>
<PMID Version="1">25556935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Biol Med Ger. 1981;40(3):317-30</RefSource>
<PMID Version="1">7029986</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Physiol. 2000;62:207-35</RefSource>
<PMID Version="1">10845090</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Biochem Cell Biol. 2010 May;42(5):701-11</RefSource>
<PMID Version="1">20079455</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biology (Basel). 2015 Feb 04;4(1):67-87</RefSource>
<PMID Version="1">25658438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Reprod Biol Endocrinol. 2006 Aug 31;4:46</RefSource>
<PMID Version="1">16945135</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Immunol. 2004 Nov;41(12):1199-210</RefSource>
<PMID Version="1">15482855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Fish Biol. 2011 Apr;78(4):1054-72</RefSource>
<PMID Version="1">21463307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2004 Dec;58(12):2823-30</RefSource>
<PMID Version="1">15696759</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Sci. 2008 Apr;86(14 Suppl):E84-93</RefSource>
<PMID Version="1">18192560</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Fish Shellfish Immunol. 2010 Feb;28(2):387-93</RefSource>
<PMID Version="1">20004721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Fish Shellfish Immunol. 2009 Feb;26(2):326-31</RefSource>
<PMID Version="1">19110060</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2013 Mar 1;216(Pt 5):771-6</RefSource>
<PMID Version="1">23408800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 1999 Dec;202(Pt 23):3397-403</RefSource>
<PMID Version="1">10562522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2010 Mar 1;213(5):715-24</RefSource>
<PMID Version="1">20154186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1993 Nov;265(5 Pt 2):R1179-83</RefSource>
<PMID Version="1">8238621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Fish Shellfish Immunol. 2008 Apr;24(4):394-9</RefSource>
<PMID Version="1">18289877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Ecol. 2009 Mar;78(2):437-46</RefSource>
<PMID Version="1">19021780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Immunol. 2005 Jun;42(10):1215-23</RefSource>
<PMID Version="1">15829310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2012 Oct;21(19):4787-96</RefSource>
<PMID Version="1">22924889</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 1996 Aug;11(8):317-21</RefSource>
<PMID Version="1">21237861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Bull. 1948 Feb;94(1):66-77</RefSource>
<PMID Version="1">18901099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Soc Trans. 2005 Nov;33(Pt 5):897-904</RefSource>
<PMID Version="1">16246006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2011 Nov;7(11):e1002355</RefSource>
<PMID Version="1">22072984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Pharmacol Sci. 1992 Jan;13(1):24-8</RefSource>
<PMID Version="1">1542935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Behav Immun. 2008 May;22(4):614-25</RefSource>
<PMID Version="1">18255257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2010 Jan;11(1):17-30</RefSource>
<PMID Version="1">19953080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2004 Feb 20;998(2):139-47</RefSource>
<PMID Version="1">14751584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2010 Apr;213(Pt 8):1386-94</RefSource>
<PMID Version="1">20348351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Steroids. 1985 Aug-Sep;46(2-3):717-26</RefSource>
<PMID Version="1">3837411</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mar Biotechnol (NY). 2012 Oct;14(5):605-19</RefSource>
<PMID Version="1">22825392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2003 Mar;161(3):367-79</RefSource>
<PMID Version="1">12703483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Microbiol. 1966 Oct;12(5):1070-1</RefSource>
<PMID Version="1">5339644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2007 Nov 29;362(1487):2031-41</RefSource>
<PMID Version="1">17472923</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 1987 May;62(5):2103-6</RefSource>
<PMID Version="1">3110127</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appetite. 1997 Dec;29(3):369-83</RefSource>
<PMID Version="1">9468766</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Soc Exp Biol Med. 1984 Jul;176(3):285-91</RefSource>
<PMID Version="1">6374670</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001835" MajorTopicYN="N">Body Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003532" MajorTopicYN="N">Cyprinodontiformes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004912" MajorTopicYN="N">Erythrocytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008124" MajorTopicYN="N">Locomotion</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010101" MajorTopicYN="N">Oxygen Consumption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012756" MajorTopicYN="N">Sheep</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="Y">Up-Regulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27851769</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0166028</ArticleId>
<ArticleId IdType="pii">PONE-D-16-04036</ArticleId>
<ArticleId IdType="pmc">PMC5113038</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
</region>
<settlement>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Bonneaud, Camille" sort="Bonneaud, Camille" uniqKey="Bonneaud C" first="Camille" last="Bonneaud">Camille Bonneaud</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Wilson, Robbie S" sort="Wilson, Robbie S" uniqKey="Wilson R" first="Robbie S" last="Wilson">Robbie S. Wilson</name>
</noRegion>
<name sortKey="Seebacher, Frank" sort="Seebacher, Frank" uniqKey="Seebacher F" first="Frank" last="Seebacher">Frank Seebacher</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001C66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:27851769
   |texte=   Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:27851769" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024