Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.

Identifieur interne : 001A51 ( PubMed/Checkpoint ); précédent : 001A50; suivant : 001A52

Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.

Auteurs : Qilin Wang [Australie] ; Bing-Jie Ni [Australie] ; Romain Lemaire [France] ; Xiaodi Hao [République populaire de Chine] ; Zhiguo Yuan [Australie]

Source :

RBID : pubmed:27125491

Abstract

In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L.

DOI: 10.1038/srep25336
PubMed: 27125491


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27125491

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.</title>
<author>
<name sortKey="Wang, Qilin" sort="Wang, Qilin" uniqKey="Wang Q" first="Qilin" last="Wang">Qilin Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072</wicri:regionArea>
<wicri:noRegion>QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ni, Bing Jie" sort="Ni, Bing Jie" uniqKey="Ni B" first="Bing-Jie" last="Ni">Bing-Jie Ni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072</wicri:regionArea>
<wicri:noRegion>QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lemaire, Romain" sort="Lemaire, Romain" uniqKey="Lemaire R" first="Romain" last="Lemaire">Romain Lemaire</name>
<affiliation wicri:level="1">
<nlm:affiliation>Veolia Technical and Performance Department, St-Maurice, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Veolia Technical and Performance Department, St-Maurice</wicri:regionArea>
<wicri:noRegion>St-Maurice</wicri:noRegion>
<wicri:noRegion>St-Maurice</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hao, Xiaodi" sort="Hao, Xiaodi" uniqKey="Hao X" first="Xiaodi" last="Hao">Xiaodi Hao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Urban Stormwater System and Water Environment/R&D Centre for Sustainable Wastewater Treatment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Urban Stormwater System and Water Environment/R&D Centre for Sustainable Wastewater Treatment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Zhiguo" sort="Yuan, Zhiguo" uniqKey="Yuan Z" first="Zhiguo" last="Yuan">Zhiguo Yuan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072</wicri:regionArea>
<wicri:noRegion>QLD 4072</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27125491</idno>
<idno type="pmid">27125491</idno>
<idno type="doi">10.1038/srep25336</idno>
<idno type="wicri:Area/PubMed/Corpus">001F68</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F68</idno>
<idno type="wicri:Area/PubMed/Curation">001F43</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F43</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001F43</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001F43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.</title>
<author>
<name sortKey="Wang, Qilin" sort="Wang, Qilin" uniqKey="Wang Q" first="Qilin" last="Wang">Qilin Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072</wicri:regionArea>
<wicri:noRegion>QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ni, Bing Jie" sort="Ni, Bing Jie" uniqKey="Ni B" first="Bing-Jie" last="Ni">Bing-Jie Ni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072</wicri:regionArea>
<wicri:noRegion>QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lemaire, Romain" sort="Lemaire, Romain" uniqKey="Lemaire R" first="Romain" last="Lemaire">Romain Lemaire</name>
<affiliation wicri:level="1">
<nlm:affiliation>Veolia Technical and Performance Department, St-Maurice, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Veolia Technical and Performance Department, St-Maurice</wicri:regionArea>
<wicri:noRegion>St-Maurice</wicri:noRegion>
<wicri:noRegion>St-Maurice</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hao, Xiaodi" sort="Hao, Xiaodi" uniqKey="Hao X" first="Xiaodi" last="Hao">Xiaodi Hao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Urban Stormwater System and Water Environment/R&D Centre for Sustainable Wastewater Treatment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Urban Stormwater System and Water Environment/R&D Centre for Sustainable Wastewater Treatment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Zhiguo" sort="Yuan, Zhiguo" uniqKey="Yuan Z" first="Zhiguo" last="Yuan">Zhiguo Yuan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072</wicri:regionArea>
<wicri:noRegion>QLD 4072</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">27125491</PMID>
<DateCreated>
<Year>2016</Year>
<Month>04</Month>
<Day>29</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>08</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2016</Year>
<Month>04</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.</ArticleTitle>
<Pagination>
<MedlinePgn>25336</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep25336</ELocationID>
<Abstract>
<AbstractText>In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Qilin</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ni</LastName>
<ForeName>Bing-Jie</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lemaire</LastName>
<ForeName>Romain</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Veolia Technical and Performance Department, St-Maurice, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hao</LastName>
<ForeName>Xiaodi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Urban Stormwater System and Water Environment/R&D Centre for Sustainable Wastewater Treatment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, P.R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Zhiguo</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2014 Feb 1;49:23-33</RefSource>
<PMID Version="1">24316179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioresour Technol. 2013 Jul;139:195-202</RefSource>
<PMID Version="1">23665516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2012 Jun 15;46(10):3409-19</RefSource>
<PMID Version="1">22520859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioresour Technol. 2013 Jan;127:400-6</RefSource>
<PMID Version="1">23165104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2008 Feb;42(3):812-26</RefSource>
<PMID Version="1">17920100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Environ Res. 2008 Nov;80(11):2145-56</RefSource>
<PMID Version="1">19024730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Biotechnol. 2012 Jun;23(3):474-82</RefSource>
<PMID Version="1">22244791</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Sci Technol. 2010 Jun 15;44(12):4505-11</RefSource>
<PMID Version="1">20465250</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2005 Dec;39(20):5080-98</RefSource>
<PMID Version="1">16313939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Oct 2;326(5949):123-5</RefSource>
<PMID Version="1">19713491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2012 Mar 15;46(4):1027-37</RefSource>
<PMID Version="1">22227243</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Sci Technol. 2008 Nov 15;42(22):8260-5</RefSource>
<PMID Version="1">19068803</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2014 Oct 1;62:202-10</RefSource>
<PMID Version="1">24956602</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Bioeng. 2003 Oct 20;84(2):195-204</RefSource>
<PMID Version="1">12966576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Sci Technol. 2011;63(12):2838-45</RefSource>
<PMID Version="1">22049708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2013 Jun 15;47(10):3273-81</RefSource>
<PMID Version="1">23622815</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Sci Technol. 2013 Oct 1;47(19):11083-91</RefSource>
<PMID Version="1">24001217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Sci Technol. 2001;43(11):127-34</RefSource>
<PMID Version="1">11443954</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Sci Technol. 2011 Apr 1;45(7):2734-40</RefSource>
<PMID Version="1">21388173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Sci Technol. 2013 Jul 2;47(13):7186-94</RefSource>
<PMID Version="1">23745590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2015 Mar 15;71:21-31</RefSource>
<PMID Version="1">25577690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2009 Sep;43(17):4093-103</RefSource>
<PMID Version="1">19666183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Sci Technol. 2014 Apr 1;48(7):3916-24</RefSource>
<PMID Version="1">24571180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Sci Technol. 2001;44(1):153-60</RefSource>
<PMID Version="1">11496667</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2013 Jun 1;47(9):3131-40</RefSource>
<PMID Version="1">23561498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2012 May 5;367(1593):1265-77</RefSource>
<PMID Version="1">22451112</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Bioeng. 2006 Aug 20;94(6):1176-88</RefSource>
<PMID Version="1">16673416</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4850461</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27125491</ArticleId>
<ArticleId IdType="pii">srep25336</ArticleId>
<ArticleId IdType="doi">10.1038/srep25336</ArticleId>
<ArticleId IdType="pmc">PMC4850461</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Wang, Qilin" sort="Wang, Qilin" uniqKey="Wang Q" first="Qilin" last="Wang">Qilin Wang</name>
</noRegion>
<name sortKey="Ni, Bing Jie" sort="Ni, Bing Jie" uniqKey="Ni B" first="Bing-Jie" last="Ni">Bing-Jie Ni</name>
<name sortKey="Yuan, Zhiguo" sort="Yuan, Zhiguo" uniqKey="Yuan Z" first="Zhiguo" last="Yuan">Zhiguo Yuan</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Lemaire, Romain" sort="Lemaire, Romain" uniqKey="Lemaire R" first="Romain" last="Lemaire">Romain Lemaire</name>
</noRegion>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hao, Xiaodi" sort="Hao, Xiaodi" uniqKey="Hao X" first="Xiaodi" last="Hao">Xiaodi Hao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001A51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:27125491
   |texte=   Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:27125491" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024