Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

NAD Acts as an Integral Regulator of Multiple Defense Layers.

Identifieur interne : 001A18 ( PubMed/Checkpoint ); précédent : 001A17; suivant : 001A19

NAD Acts as an Integral Regulator of Multiple Defense Layers.

Auteurs : Pierre Pétriacq [Royaume-Uni] ; Jurriaan Ton ; Oriane Patrit ; Guillaume Tcherkez ; Bertrand Gakière

Source :

RBID : pubmed:27621425

Descripteurs français

English descriptors

Abstract

Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens.

DOI: 10.1104/pp.16.00780
PubMed: 27621425


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27621425

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">NAD Acts as an Integral Regulator of Multiple Defense Layers.</title>
<author>
<name sortKey="Petriacq, Pierre" sort="Petriacq, Pierre" uniqKey="Petriacq P" first="Pierre" last="Pétriacq">Pierre Pétriacq</name>
<affiliation wicri:level="1">
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.); p.petriacq@sheffield.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Ton, Jurriaan" sort="Ton, Jurriaan" uniqKey="Ton J" first="Jurriaan" last="Ton">Jurriaan Ton</name>
<affiliation>
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</nlm:affiliation>
<wicri:noCountry code="subField">J.T.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Patrit, Oriane" sort="Patrit, Oriane" uniqKey="Patrit O" first="Oriane" last="Patrit">Oriane Patrit</name>
<affiliation>
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</nlm:affiliation>
<wicri:noCountry code="subField">J.T.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tcherkez, Guillaume" sort="Tcherkez, Guillaume" uniqKey="Tcherkez G" first="Guillaume" last="Tcherkez">Guillaume Tcherkez</name>
<affiliation>
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</nlm:affiliation>
<wicri:noCountry code="subField">J.T.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gakiere, Bertrand" sort="Gakiere, Bertrand" uniqKey="Gakiere B" first="Bertrand" last="Gakière">Bertrand Gakière</name>
<affiliation>
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</nlm:affiliation>
<wicri:noCountry code="subField">J.T.).</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27621425</idno>
<idno type="pmid">27621425</idno>
<idno type="doi">10.1104/pp.16.00780</idno>
<idno type="wicri:Area/PubMed/Corpus">001612</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001612</idno>
<idno type="wicri:Area/PubMed/Curation">001590</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001590</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001590</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001590</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">NAD Acts as an Integral Regulator of Multiple Defense Layers.</title>
<author>
<name sortKey="Petriacq, Pierre" sort="Petriacq, Pierre" uniqKey="Petriacq P" first="Pierre" last="Pétriacq">Pierre Pétriacq</name>
<affiliation wicri:level="1">
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.); p.petriacq@sheffield.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Ton, Jurriaan" sort="Ton, Jurriaan" uniqKey="Ton J" first="Jurriaan" last="Ton">Jurriaan Ton</name>
<affiliation>
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</nlm:affiliation>
<wicri:noCountry code="subField">J.T.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Patrit, Oriane" sort="Patrit, Oriane" uniqKey="Patrit O" first="Oriane" last="Patrit">Oriane Patrit</name>
<affiliation>
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</nlm:affiliation>
<wicri:noCountry code="subField">J.T.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tcherkez, Guillaume" sort="Tcherkez, Guillaume" uniqKey="Tcherkez G" first="Guillaume" last="Tcherkez">Guillaume Tcherkez</name>
<affiliation>
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</nlm:affiliation>
<wicri:noCountry code="subField">J.T.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gakiere, Bertrand" sort="Gakiere, Bertrand" uniqKey="Gakiere B" first="Bertrand" last="Gakière">Bertrand Gakière</name>
<affiliation>
<nlm:affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</nlm:affiliation>
<wicri:noCountry code="subField">J.T.).</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (immunology)</term>
<term>Arabidopsis (microbiology)</term>
<term>Arabidopsis (radiation effects)</term>
<term>Cell Death (radiation effects)</term>
<term>Discriminant Analysis</term>
<term>Disease Resistance (immunology)</term>
<term>Intracellular Space (metabolism)</term>
<term>Least-Squares Analysis</term>
<term>Light</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondria (radiation effects)</term>
<term>Models, Biological</term>
<term>NAD (metabolism)</term>
<term>NADPH Oxidase (metabolism)</term>
<term>Nucleotides (metabolism)</term>
<term>Oxidative Stress (radiation effects)</term>
<term>Pathogen-Associated Molecular Pattern Molecules (metabolism)</term>
<term>Phenotype</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Immunity (radiation effects)</term>
<term>Plant Leaves (cytology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Pyridines (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Respiratory Burst (radiation effects)</term>
<term>Salicylic Acid (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide salicylique (métabolisme)</term>
<term>Analyse discriminante</term>
<term>Arabidopsis (effets des radiations)</term>
<term>Arabidopsis (immunologie)</term>
<term>Arabidopsis (microbiologie)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Feuilles de plante (cytologie)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Immunité des plantes (effets des radiations)</term>
<term>Lumière</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Mitochondries (effets des radiations)</term>
<term>Mitochondries (métabolisme)</term>
<term>Modèles biologiques</term>
<term>Molécules contenant des motifs associés aux pathogènes (métabolisme)</term>
<term>Mort cellulaire (effets des radiations)</term>
<term>Méthode des moindres carrés</term>
<term>NAD (métabolisme)</term>
<term>NADPH oxidase (métabolisme)</term>
<term>Nucléotides (métabolisme)</term>
<term>Phénotype</term>
<term>Pyridines (métabolisme)</term>
<term>Résistance à la maladie (immunologie)</term>
<term>Stimulation du métabolisme oxydatif (effets des radiations)</term>
<term>Stress oxydatif (effets des radiations)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>NAD</term>
<term>NADPH Oxidase</term>
<term>Nucleotides</term>
<term>Pathogen-Associated Molecular Pattern Molecules</term>
<term>Plant Growth Regulators</term>
<term>Pyridines</term>
<term>Reactive Oxygen Species</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
<term>Immunité des plantes</term>
<term>Mitochondries</term>
<term>Mort cellulaire</term>
<term>Stimulation du métabolisme oxydatif</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Maladies des plantes</term>
<term>Résistance à la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Arabidopsis</term>
<term>Disease Resistance</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Intracellular Space</term>
<term>Mitochondria</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide salicylique</term>
<term>Espace intracellulaire</term>
<term>Espèces réactives de l'oxygène</term>
<term>Facteur de croissance végétal</term>
<term>Feuilles de plante</term>
<term>Mitochondries</term>
<term>Molécules contenant des motifs associés aux pathogènes</term>
<term>NAD</term>
<term>NADPH oxidase</term>
<term>Nucléotides</term>
<term>Pyridines</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Arabidopsis</term>
<term>Cell Death</term>
<term>Mitochondria</term>
<term>Oxidative Stress</term>
<term>Plant Immunity</term>
<term>Plant Leaves</term>
<term>Respiratory Burst</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Discriminant Analysis</term>
<term>Least-Squares Analysis</term>
<term>Light</term>
<term>Models, Biological</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse discriminante</term>
<term>Lumière</term>
<term>Modèles biologiques</term>
<term>Méthode des moindres carrés</term>
<term>Phénotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27621425</PMID>
<DateCreated>
<Year>2016</Year>
<Month>09</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>172</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2016</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>NAD Acts as an Integral Regulator of Multiple Defense Layers.</ArticleTitle>
<Pagination>
<MedlinePgn>1465-1479</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens.</AbstractText>
<CopyrightInformation>© 2016 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pétriacq</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8151-7420</Identifier>
<AffiliationInfo>
<Affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.); p.petriacq@sheffield.ac.uk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>AgroParisTech, 75121 Paris cedex 05, France (O.P.); p.petriacq@sheffield.ac.uk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and p.petriacq@sheffield.ac.uk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.) p.petriacq@sheffield.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ton</LastName>
<ForeName>Jurriaan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-8512-2802</Identifier>
<AffiliationInfo>
<Affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>AgroParisTech, 75121 Paris cedex 05, France (O.P.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patrit</LastName>
<ForeName>Oriane</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>AgroParisTech, 75121 Paris cedex 05, France (O.P.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tcherkez</LastName>
<ForeName>Guillaume</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>AgroParisTech, 75121 Paris cedex 05, France (O.P.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gakière</LastName>
<ForeName>Bertrand</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>AgroParisTech, 75121 Paris cedex 05, France (O.P.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.).</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000069452">Pathogen-Associated Molecular Pattern Molecules</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011725">Pyridines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.1</RegistryNumber>
<NameOfSubstance UI="D019255">NADPH Oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>NH9L3PP67S</RegistryNumber>
<NameOfSubstance UI="C023666">pyridine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2011 Feb;24(2):183-93</RefSource>
<PMID Version="1">20955078</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2010 Jan;152(1):267-80</RefSource>
<PMID Version="1">19889874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2009 Jan;57(2):302-12</RefSource>
<PMID Version="1">18798871</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Plant Sci. 2013 Jul 15;4:252</RefSource>
<PMID Version="1">23874348</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2007 Feb;19(2):640-55</RefSource>
<PMID Version="1">17277035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2009 Dec;184(4):885-97</RefSource>
<PMID Version="1">19761445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2001 Jun;126(2):849-60</RefSource>
<PMID Version="1">11402212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2013 Jun;36(6):1192-203</RefSource>
<PMID Version="1">23237451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Rep. 2012 Jun 28;1(6):639-47</RefSource>
<PMID Version="1">22813739</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int Rev Cytol. 2003;228:141-93</RefSource>
<PMID Version="1">14667044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2012 Jan;17(1):9-15</RefSource>
<PMID Version="1">22037416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2012 Feb;63(3):1297-313</RefSource>
<PMID Version="1">22131159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Signal Behav. 2013 Jan;8(1):e22477</RefSource>
<PMID Version="1">23104110</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2010 Sep;232(4):787-806</RefSource>
<PMID Version="1">20635098</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2011 Jun;16(6):300-9</RefSource>
<PMID Version="1">21482172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antioxid Redox Signal. 2014 Sep 20;21(9):1373-88</RefSource>
<PMID Version="1">24206122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Metabolomics. 2013;1(1):92-107</RefSource>
<PMID Version="1">26078916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2008 May;21(5):646-57</RefSource>
<PMID Version="1">18393624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2010 Jun 1;62(5):840-51</RefSource>
<PMID Version="1">20230487</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant. 2009 Mar;2(2):344-56</RefSource>
<PMID Version="1">19825619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2015 Apr;112:72-9</RefSource>
<PMID Version="1">24713571</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2006;57(8):1603-20</RefSource>
<PMID Version="1">16714307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol Biochem. 2013 Nov;72:1-20</RefSource>
<PMID Version="1">23774057</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011 Apr 21;6(4):e18991</RefSource>
<PMID Version="1">21533045</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2005 Sep;139(1):64-78</RefSource>
<PMID Version="1">16126851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arabidopsis Book. 2002;1:e0039</RefSource>
<PMID Version="1">22303207</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2011 Jul;16(7):372-80</RefSource>
<PMID Version="1">21482174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 May 8;324(5928):746-8</RefSource>
<PMID Version="1">19423814</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):517-22</RefSource>
<PMID Version="1">11756663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2016 May;67(10):3015-26</RefSource>
<PMID Version="1">27053720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2010 Mar;71(4):338-50</RefSource>
<PMID Version="1">20079507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Rev. 2015 Mar;39(2):171-83</RefSource>
<PMID Version="1">25725011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2012 Aug;159(4):1845-56</RefSource>
<PMID Version="1">22730426</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2013 Mar;64(5):1237-48</RefSource>
<PMID Version="1">23095994</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2012 Sep;236(3):765-79</RefSource>
<PMID Version="1">22767200</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2016 Apr;170(4):2325-39</RefSource>
<PMID Version="1">26842622</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Signal Behav. 2010 Jul;5(7):839-41</RefSource>
<PMID Version="1">20448465</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1999 Jun;120(2):529-38</RefSource>
<PMID Version="1">10364404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2012 Jan;24(1):336-52</RefSource>
<PMID Version="1">22286136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2010 Aug 12;10:173</RefSource>
<PMID Version="1">20704736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Phytopathol. 2005;43:205-27</RefSource>
<PMID Version="1">16078883</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2006 Apr;18(4):1038-51</RefSource>
<PMID Version="1">16531493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2015 Apr;112:54-62</RefSource>
<PMID Version="1">25264341</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2006 Jul;141(3):851-7</RefSource>
<PMID Version="1">16698895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2010;639:292-8</RefSource>
<PMID Version="1">20387054</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2008;59(2):135-46</RefSource>
<PMID Version="1">18332224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2001 Nov 29;414(6863):562-5</RefSource>
<PMID Version="1">11734859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2014 Oct;114(6):1349-58</RefSource>
<PMID Version="1">24984713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2007 Sep;145(1):204-15</RefSource>
<PMID Version="1">17660350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Autophagy. 2010 Jan;6(1):192-3</RefSource>
<PMID Version="1">20023431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2015 Nov;208(3):776-89</RefSource>
<PMID Version="1">26082998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15107-11</RefSource>
<PMID Version="1">9844023</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Plant. 2009 Dec;137(4):342-53</RefSource>
<PMID Version="1">19781002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biosci Biotechnol Biochem. 2006 Jul;70(7):1599-605</RefSource>
<PMID Version="1">16861793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 1998 Dec 18;253(2):295-9</RefSource>
<PMID Version="1">9878531</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Aug 15;321(5891):952-6</RefSource>
<PMID Version="1">18635760</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2012 Mar;235(3):603-14</RefSource>
<PMID Version="1">22002624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Signal Behav. 2008 Feb;3(2):119-20</RefSource>
<PMID Version="1">19704728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Biol (Stuttg). 2013 Jul;15(4):723-36</RefSource>
<PMID Version="1">23506300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2007 Dec 28;282(52):37556-66</RefSource>
<PMID Version="1">17951254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2013 Jan;64(2):665-74</RefSource>
<PMID Version="1">23264520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Pathol. 2012 May;13(4):414-30</RefSource>
<PMID Version="1">22471698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2013 Nov;26(11):1334-44</RefSource>
<PMID Version="1">24088017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2007 Jul;20(7):794-805</RefSource>
<PMID Version="1">17601167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol Biochem. 2011 Oct;49(10):1117-25</RefSource>
<PMID Version="1">21723140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2012 Sep;25(9):1209-18</RefSource>
<PMID Version="1">22670756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mass Spectrom. 2010 Jul;45(7):703-14</RefSource>
<PMID Version="1">20623627</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Res. 2011 Sep;124(5):619-29</RefSource>
<PMID Version="1">21240536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2008 Aug;21(8):1076-86</RefSource>
<PMID Version="1">18616404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2014 Apr 24;54(2):263-72</RefSource>
<PMID Version="1">24766890</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Plant Sci. 2015 May 28;6:387</RefSource>
<PMID Version="1">26074946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Cell Dev Biol. 2012;28:489-521</RefSource>
<PMID Version="1">22559264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2015 Jul 23;523(7561):472-6</RefSource>
<PMID Version="1">26098366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2003 Jun 27;113(7):935-44</RefSource>
<PMID Version="1">12837250</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2008 Dec;148(4):1782-96</RefSource>
<PMID Version="1">18842826</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Signal Behav. 2012 Jul;7(7):752-5</RefSource>
<PMID Version="1">22751316</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Plant Sci. 2014 Oct 31;5:578</RefSource>
<PMID Version="1">25400647</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Plant. 2010 Apr;138(4):414-29</RefSource>
<PMID Version="1">20002601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol Biochem. 2010 Dec;48(12):909-30</RefSource>
<PMID Version="1">20870416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sci Signal. 2009 Aug 18;2(84):ra45</RefSource>
<PMID Version="1">19690331</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19613-8</RefSource>
<PMID Version="1">18042724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2006;57:303-33</RefSource>
<PMID Version="1">16669764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2015 May 07;11(5):e1005200</RefSource>
<PMID Version="1">25950582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Sci. 2013 Jul;208:42-9</RefSource>
<PMID Version="1">23683928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2015 Aug;26:64-71</RefSource>
<PMID Version="1">26116978</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2003 May;15(5):1212-26</RefSource>
<PMID Version="1">12724545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2012 May;70(4):650-65</RefSource>
<PMID Version="1">22268572</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016002" MajorTopicYN="N">Discriminant Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016018" MajorTopicYN="N">Least-Squares Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019255" MajorTopicYN="N">NADPH Oxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069452" MajorTopicYN="N">Pathogen-Associated Molecular Pattern Molecules</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="Y">Plant Immunity</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011725" MajorTopicYN="N">Pyridines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016897" MajorTopicYN="N">Respiratory Burst</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27621425</ArticleId>
<ArticleId IdType="pii">pp.16.00780</ArticleId>
<ArticleId IdType="doi">10.1104/pp.16.00780</ArticleId>
<ArticleId IdType="pmc">PMC5100754</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gakiere, Bertrand" sort="Gakiere, Bertrand" uniqKey="Gakiere B" first="Bertrand" last="Gakière">Bertrand Gakière</name>
<name sortKey="Patrit, Oriane" sort="Patrit, Oriane" uniqKey="Patrit O" first="Oriane" last="Patrit">Oriane Patrit</name>
<name sortKey="Tcherkez, Guillaume" sort="Tcherkez, Guillaume" uniqKey="Tcherkez G" first="Guillaume" last="Tcherkez">Guillaume Tcherkez</name>
<name sortKey="Ton, Jurriaan" sort="Ton, Jurriaan" uniqKey="Ton J" first="Jurriaan" last="Ton">Jurriaan Ton</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Petriacq, Pierre" sort="Petriacq, Pierre" uniqKey="Petriacq P" first="Pierre" last="Pétriacq">Pierre Pétriacq</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A18 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001A18 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:27621425
   |texte=   NAD Acts as an Integral Regulator of Multiple Defense Layers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:27621425" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024