Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.

Identifieur interne : 001921 ( PubMed/Checkpoint ); précédent : 001920; suivant : 001922

Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.

Auteurs : Gregory Zelic [Australie] ; Denis Mottet [France] ; Julien Lagarde [France]

Source :

RBID : pubmed:26525707

Descripteurs français

English descriptors

Abstract

The brain has the remarkable ability to bind together inputs from different sensory origin into a coherent percept. Behavioral benefits can result from such ability, e.g., a person typically responds faster and more accurately to cross-modal stimuli than to unimodal stimuli. To date, it is, however, largely unknown whether such multisensory benefits, shown for discrete reactive behaviors, generalize to the continuous coordination of movements. The present study addressed multisensory integration from the perspective of bimanual coordination dynamics, where the perceptual activity no longer triggers a single response but continuously guides the motor action. The task consisted in coordinating anti-symmetrically the continuous flexion-extension of the index fingers, while synchronizing with an external pacer. Three different configurations of metronome were tested, for which we examined whether a cross-modal pacing (audio-tactile beats) improved the stability of the coordination in comparison with unimodal pacing condition (auditory or tactile beats). We found a more stable bimanual coordination for cross-modal pacing, but only when the metronome configuration directly matched the anti-symmetric coordination pattern. We conclude that multisensory integration can benefit the continuous coordination of movements; however, this is constrained by whether the perceptual and motor activities match in space and time.

DOI: 10.1007/s00221-015-4476-5
PubMed: 26525707


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26525707

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.</title>
<author>
<name sortKey="Zelic, Gregory" sort="Zelic, Gregory" uniqKey="Zelic G" first="Gregory" last="Zelic">Gregory Zelic</name>
<affiliation wicri:level="1">
<nlm:affiliation>The MARCS Institute, Western Sydney University, Sydney, NSW, Australia. G.Zelic@westernsydney.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The MARCS Institute, Western Sydney University, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mottet, Denis" sort="Mottet, Denis" uniqKey="Mottet D" first="Denis" last="Mottet">Denis Mottet</name>
<affiliation wicri:level="3">
<nlm:affiliation>EuroMov, University of Montpellier, Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>EuroMov, University of Montpellier, Montpellier</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lagarde, Julien" sort="Lagarde, Julien" uniqKey="Lagarde J" first="Julien" last="Lagarde">Julien Lagarde</name>
<affiliation wicri:level="3">
<nlm:affiliation>EuroMov, University of Montpellier, Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>EuroMov, University of Montpellier, Montpellier</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26525707</idno>
<idno type="pmid">26525707</idno>
<idno type="doi">10.1007/s00221-015-4476-5</idno>
<idno type="wicri:Area/PubMed/Corpus">002269</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002269</idno>
<idno type="wicri:Area/PubMed/Curation">002243</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002243</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002243</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002243</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.</title>
<author>
<name sortKey="Zelic, Gregory" sort="Zelic, Gregory" uniqKey="Zelic G" first="Gregory" last="Zelic">Gregory Zelic</name>
<affiliation wicri:level="1">
<nlm:affiliation>The MARCS Institute, Western Sydney University, Sydney, NSW, Australia. G.Zelic@westernsydney.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The MARCS Institute, Western Sydney University, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mottet, Denis" sort="Mottet, Denis" uniqKey="Mottet D" first="Denis" last="Mottet">Denis Mottet</name>
<affiliation wicri:level="3">
<nlm:affiliation>EuroMov, University of Montpellier, Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>EuroMov, University of Montpellier, Montpellier</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lagarde, Julien" sort="Lagarde, Julien" uniqKey="Lagarde J" first="Julien" last="Lagarde">Julien Lagarde</name>
<affiliation wicri:level="3">
<nlm:affiliation>EuroMov, University of Montpellier, Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>EuroMov, University of Montpellier, Montpellier</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Experimental brain research</title>
<idno type="eISSN">1432-1106</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation (methods)</term>
<term>Adult</term>
<term>Auditory Perception (physiology)</term>
<term>Fingers (physiology)</term>
<term>Humans</term>
<term>Male</term>
<term>Motor Activity (physiology)</term>
<term>Movement (physiology)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Reaction Time (physiology)</term>
<term>Touch (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activité motrice (physiologie)</term>
<term>Adulte</term>
<term>Doigts (physiologie)</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Mouvement (physiologie)</term>
<term>Mâle</term>
<term>Perception auditive (physiologie)</term>
<term>Performance psychomotrice (physiologie)</term>
<term>Stimulation acoustique ()</term>
<term>Temps de réaction (physiologie)</term>
<term>Toucher (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Acoustic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Activité motrice</term>
<term>Doigts</term>
<term>Mouvement</term>
<term>Perception auditive</term>
<term>Performance psychomotrice</term>
<term>Temps de réaction</term>
<term>Toucher</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Auditory Perception</term>
<term>Fingers</term>
<term>Motor Activity</term>
<term>Movement</term>
<term>Psychomotor Performance</term>
<term>Reaction Time</term>
<term>Touch</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Humans</term>
<term>Male</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Mâle</term>
<term>Stimulation acoustique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The brain has the remarkable ability to bind together inputs from different sensory origin into a coherent percept. Behavioral benefits can result from such ability, e.g., a person typically responds faster and more accurately to cross-modal stimuli than to unimodal stimuli. To date, it is, however, largely unknown whether such multisensory benefits, shown for discrete reactive behaviors, generalize to the continuous coordination of movements. The present study addressed multisensory integration from the perspective of bimanual coordination dynamics, where the perceptual activity no longer triggers a single response but continuously guides the motor action. The task consisted in coordinating anti-symmetrically the continuous flexion-extension of the index fingers, while synchronizing with an external pacer. Three different configurations of metronome were tested, for which we examined whether a cross-modal pacing (audio-tactile beats) improved the stability of the coordination in comparison with unimodal pacing condition (auditory or tactile beats). We found a more stable bimanual coordination for cross-modal pacing, but only when the metronome configuration directly matched the anti-symmetric coordination pattern. We conclude that multisensory integration can benefit the continuous coordination of movements; however, this is constrained by whether the perceptual and motor activities match in space and time.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26525707</PMID>
<DateCreated>
<Year>2016</Year>
<Month>01</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1106</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>234</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Experimental brain research</Title>
<ISOAbbreviation>Exp Brain Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.</ArticleTitle>
<Pagination>
<MedlinePgn>463-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00221-015-4476-5</ELocationID>
<Abstract>
<AbstractText>The brain has the remarkable ability to bind together inputs from different sensory origin into a coherent percept. Behavioral benefits can result from such ability, e.g., a person typically responds faster and more accurately to cross-modal stimuli than to unimodal stimuli. To date, it is, however, largely unknown whether such multisensory benefits, shown for discrete reactive behaviors, generalize to the continuous coordination of movements. The present study addressed multisensory integration from the perspective of bimanual coordination dynamics, where the perceptual activity no longer triggers a single response but continuously guides the motor action. The task consisted in coordinating anti-symmetrically the continuous flexion-extension of the index fingers, while synchronizing with an external pacer. Three different configurations of metronome were tested, for which we examined whether a cross-modal pacing (audio-tactile beats) improved the stability of the coordination in comparison with unimodal pacing condition (auditory or tactile beats). We found a more stable bimanual coordination for cross-modal pacing, but only when the metronome configuration directly matched the anti-symmetric coordination pattern. We conclude that multisensory integration can benefit the continuous coordination of movements; however, this is constrained by whether the perceptual and motor activities match in space and time.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zelic</LastName>
<ForeName>Gregory</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>The MARCS Institute, Western Sydney University, Sydney, NSW, Australia. G.Zelic@westernsydney.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>EuroMov, University of Montpellier, Montpellier, France. G.Zelic@westernsydney.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mottet</LastName>
<ForeName>Denis</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>EuroMov, University of Montpellier, Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lagarde</LastName>
<ForeName>Julien</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>EuroMov, University of Montpellier, Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Exp Brain Res</MedlineTA>
<NlmUniqueID>0043312</NlmUniqueID>
<ISSNLinking>0014-4819</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1989;75(2):306-16</RefSource>
<PMID Version="1">2721610</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2009 Dec 22;276(1677):4309-14</RefSource>
<PMID Version="1">19740881</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mov Sci. 2015 Aug;42:232-45</RefSource>
<PMID Version="1">26072361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Mar 9;31(10):3853-61</RefSource>
<PMID Version="1">21389240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Integr Neurosci. 2009 Mar 11;3:2</RefSource>
<PMID Version="1">19404410</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Psychol. 1990 Aug;45(8):938-53</RefSource>
<PMID Version="1">2221565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(2):e32308</RefSource>
<PMID Version="1">22384211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Jul 13;25(28):6499-508</RefSource>
<PMID Version="1">16014711</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2008 Apr;9(4):255-66</RefSource>
<PMID Version="1">18354398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jan 26;31(4):1397-409</RefSource>
<PMID Version="1">21273424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1996 Aug;76(2):1246-66</RefSource>
<PMID Version="1">8871234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 1992 May;18(2):403-21</RefSource>
<PMID Version="1">1593227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2010 Nov;48(13):3696-705</RefSource>
<PMID Version="1">20833194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 Feb;91(2):1050-63</RefSource>
<PMID Version="1">14561687</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2002 May;3(5):348-59</RefSource>
<PMID Version="1">11988774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Sep;198(2-3):113-26</RefSource>
<PMID Version="1">19551377</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2007 Apr 9;45(8):1869-77</RefSource>
<PMID Version="1">17291546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2014 Mar 19;81(6):1240-1253</RefSource>
<PMID Version="1">24656248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1996 Jun;110(1):91-8</RefSource>
<PMID Version="1">8817260</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000161" MajorTopicYN="N">Acoustic Stimulation</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001307" MajorTopicYN="N">Auditory Perception</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005385" MajorTopicYN="N">Fingers</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009043" MajorTopicYN="N">Motor Activity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009068" MajorTopicYN="N">Movement</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="N">Psychomotor Performance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011930" MajorTopicYN="N">Reaction Time</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014110" MajorTopicYN="N">Touch</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Auditory–tactile interactions</Keyword>
<Keyword MajorTopicYN="N">Coordinated behaviors</Keyword>
<Keyword MajorTopicYN="N">Coordination dynamics</Keyword>
<Keyword MajorTopicYN="N">Sensory-motor processing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26525707</ArticleId>
<ArticleId IdType="doi">10.1007/s00221-015-4476-5</ArticleId>
<ArticleId IdType="pii">10.1007/s00221-015-4476-5</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Languedoc-Roussillon</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Montpellier</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Zelic, Gregory" sort="Zelic, Gregory" uniqKey="Zelic G" first="Gregory" last="Zelic">Gregory Zelic</name>
</noRegion>
</country>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Mottet, Denis" sort="Mottet, Denis" uniqKey="Mottet D" first="Denis" last="Mottet">Denis Mottet</name>
</region>
<name sortKey="Lagarde, Julien" sort="Lagarde, Julien" uniqKey="Lagarde J" first="Julien" last="Lagarde">Julien Lagarde</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001921 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001921 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:26525707
   |texte=   Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:26525707" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024