Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient.

Identifieur interne : 001892 ( PubMed/Checkpoint ); précédent : 001891; suivant : 001893

Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient.

Auteurs : Rosana L Pez [Espagne] ; Francisco J. Cano [Espagne] ; Brendan Choat [Australie] ; Hervé Cochard [France] ; Luis Gil [Espagne]

Source :

RBID : pubmed:27375637

Abstract

Water availability has been considered one of the crucial drivers of species distribution. However, the increasing of temperatures and more frequent water shortages could overcome the ability of long-lived species to cope with rapidly changing conditions. Growth and survival of natural populations adapted to a given site, transferred and tested in other environments as part of provenance trials, can be interpreted as a simulation of ambient changes at the original location. We compare the intraspecific variation and the relative contribution of plasticity to adaptation of key functional traits related to drought resistance: vulnerability to cavitation, efficiency of the xylem to conduct water and biomass allocation. We use six populations of Canary Island pine growing in three provenance trials (wet, dry, and xeric). We found that the variability for hydraulic traits was largely due to phenotypic plasticity, whereas, genetic variation was limited and almost restricted to hydraulic safety traits and survival. Trees responded to an increase in climate dryness by lowering growth, and increasing leaf-specific hydraulic conductivity by means of increasing the Huber value. Vulnerability to cavitation only showed a plastic response in the driest provenance trial located in the ecological limit of the species. This trait was more tightly correlated with annual precipitation, drought length, and temperature oscillation at the origin of the populations than hydraulic efficiency or the Huber value. Vulnerability to cavitation was directly related to survival in the dry and the xeric provenance trials, illustrating its importance in determining drought resistance. In a new climatic scenario where more frequent and intense droughts are predicted, the magnitude of extreme events together with the fact that plasticity of cavitation resistance is only shown in the very dry limit of the species could hamper the capacity to adapt and buffer against environmental changes of some populations growing in dry locations.

DOI: 10.3389/fpls.2016.00769
PubMed: 27375637


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27375637

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient.</title>
<author>
<name sortKey="L Pez, Rosana" sort="L Pez, Rosana" uniqKey="L Pez R" first="Rosana" last="L Pez">Rosana L Pez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid</wicri:regionArea>
<wicri:noRegion>Technical University of Madrid Madrid</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cano, Francisco J" sort="Cano, Francisco J" uniqKey="Cano F" first="Francisco J" last="Cano">Francisco J. Cano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid</wicri:regionArea>
<wicri:noRegion>Technical University of Madrid Madrid</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choat, Brendan" sort="Choat, Brendan" uniqKey="Choat B" first="Brendan" last="Choat">Brendan Choat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney Richmond, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, University of Western Sydney Richmond, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cochard, Herve" sort="Cochard, Herve" uniqKey="Cochard H" first="Hervé" last="Cochard">Hervé Cochard</name>
<affiliation wicri:level="1">
<nlm:affiliation>PIAF, INRA, Université Clermont Auvergne Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>PIAF, INRA, Université Clermont Auvergne Clermont-Ferrand</wicri:regionArea>
<wicri:noRegion>Université Clermont Auvergne Clermont-Ferrand</wicri:noRegion>
<wicri:noRegion>Université Clermont Auvergne Clermont-Ferrand</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gil, Luis" sort="Gil, Luis" uniqKey="Gil L" first="Luis" last="Gil">Luis Gil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid</wicri:regionArea>
<wicri:noRegion>Technical University of Madrid Madrid</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27375637</idno>
<idno type="pmid">27375637</idno>
<idno type="doi">10.3389/fpls.2016.00769</idno>
<idno type="wicri:Area/PubMed/Corpus">001C88</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C88</idno>
<idno type="wicri:Area/PubMed/Curation">001C64</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001C64</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C64</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001C64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient.</title>
<author>
<name sortKey="L Pez, Rosana" sort="L Pez, Rosana" uniqKey="L Pez R" first="Rosana" last="L Pez">Rosana L Pez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid</wicri:regionArea>
<wicri:noRegion>Technical University of Madrid Madrid</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cano, Francisco J" sort="Cano, Francisco J" uniqKey="Cano F" first="Francisco J" last="Cano">Francisco J. Cano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid</wicri:regionArea>
<wicri:noRegion>Technical University of Madrid Madrid</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choat, Brendan" sort="Choat, Brendan" uniqKey="Choat B" first="Brendan" last="Choat">Brendan Choat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, University of Western Sydney Richmond, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, University of Western Sydney Richmond, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cochard, Herve" sort="Cochard, Herve" uniqKey="Cochard H" first="Hervé" last="Cochard">Hervé Cochard</name>
<affiliation wicri:level="1">
<nlm:affiliation>PIAF, INRA, Université Clermont Auvergne Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>PIAF, INRA, Université Clermont Auvergne Clermont-Ferrand</wicri:regionArea>
<wicri:noRegion>Université Clermont Auvergne Clermont-Ferrand</wicri:noRegion>
<wicri:noRegion>Université Clermont Auvergne Clermont-Ferrand</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gil, Luis" sort="Gil, Luis" uniqKey="Gil L" first="Luis" last="Gil">Luis Gil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid</wicri:regionArea>
<wicri:noRegion>Technical University of Madrid Madrid</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Water availability has been considered one of the crucial drivers of species distribution. However, the increasing of temperatures and more frequent water shortages could overcome the ability of long-lived species to cope with rapidly changing conditions. Growth and survival of natural populations adapted to a given site, transferred and tested in other environments as part of provenance trials, can be interpreted as a simulation of ambient changes at the original location. We compare the intraspecific variation and the relative contribution of plasticity to adaptation of key functional traits related to drought resistance: vulnerability to cavitation, efficiency of the xylem to conduct water and biomass allocation. We use six populations of Canary Island pine growing in three provenance trials (wet, dry, and xeric). We found that the variability for hydraulic traits was largely due to phenotypic plasticity, whereas, genetic variation was limited and almost restricted to hydraulic safety traits and survival. Trees responded to an increase in climate dryness by lowering growth, and increasing leaf-specific hydraulic conductivity by means of increasing the Huber value. Vulnerability to cavitation only showed a plastic response in the driest provenance trial located in the ecological limit of the species. This trait was more tightly correlated with annual precipitation, drought length, and temperature oscillation at the origin of the populations than hydraulic efficiency or the Huber value. Vulnerability to cavitation was directly related to survival in the dry and the xeric provenance trials, illustrating its importance in determining drought resistance. In a new climatic scenario where more frequent and intense droughts are predicted, the magnitude of extreme events together with the fact that plasticity of cavitation resistance is only shown in the very dry limit of the species could hamper the capacity to adapt and buffer against environmental changes of some populations growing in dry locations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27375637</PMID>
<DateCreated>
<Year>2016</Year>
<Month>07</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient.</ArticleTitle>
<Pagination>
<MedlinePgn>769</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2016.00769</ELocationID>
<Abstract>
<AbstractText>Water availability has been considered one of the crucial drivers of species distribution. However, the increasing of temperatures and more frequent water shortages could overcome the ability of long-lived species to cope with rapidly changing conditions. Growth and survival of natural populations adapted to a given site, transferred and tested in other environments as part of provenance trials, can be interpreted as a simulation of ambient changes at the original location. We compare the intraspecific variation and the relative contribution of plasticity to adaptation of key functional traits related to drought resistance: vulnerability to cavitation, efficiency of the xylem to conduct water and biomass allocation. We use six populations of Canary Island pine growing in three provenance trials (wet, dry, and xeric). We found that the variability for hydraulic traits was largely due to phenotypic plasticity, whereas, genetic variation was limited and almost restricted to hydraulic safety traits and survival. Trees responded to an increase in climate dryness by lowering growth, and increasing leaf-specific hydraulic conductivity by means of increasing the Huber value. Vulnerability to cavitation only showed a plastic response in the driest provenance trial located in the ecological limit of the species. This trait was more tightly correlated with annual precipitation, drought length, and temperature oscillation at the origin of the populations than hydraulic efficiency or the Huber value. Vulnerability to cavitation was directly related to survival in the dry and the xeric provenance trials, illustrating its importance in determining drought resistance. In a new climatic scenario where more frequent and intense droughts are predicted, the magnitude of extreme events together with the fact that plasticity of cavitation resistance is only shown in the very dry limit of the species could hamper the capacity to adapt and buffer against environmental changes of some populations growing in dry locations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>López</LastName>
<ForeName>Rosana</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cano</LastName>
<ForeName>Francisco J</ForeName>
<Initials>FJ</Initials>
<AffiliationInfo>
<Affiliation>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choat</LastName>
<ForeName>Brendan</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, University of Western Sydney Richmond, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cochard</LastName>
<ForeName>Hervé</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>PIAF, INRA, Université Clermont Auvergne Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gil</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of Madrid Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2007;175(4):686-98</RefSource>
<PMID Version="1">17688584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2009 Sep;18(18):3803-15</RefSource>
<PMID Version="1">19732337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2007 Dec;27(12):1761-7</RefSource>
<PMID Version="1">17938107</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Nov 29;491(7426):752-5</RefSource>
<PMID Version="1">23172141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2002 Nov;53(378):2239-47</RefSource>
<PMID Version="1">12379791</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Bot. 2006 Jun;93(6):840-8</RefSource>
<PMID Version="1">21642146</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2002 Jun;11(6):951-66</RefSource>
<PMID Version="1">12030975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2010 Dec;15(12):684-92</RefSource>
<PMID Version="1">20970368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2009 Oct;184(2):353-64</RefSource>
<PMID Version="1">19674333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1999 Jun;19(7):453-459</RefSource>
<PMID Version="1">12651551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2006 Apr;29(4):535-45</RefSource>
<PMID Version="1">17080605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2010 Apr;186(2):274-81</RefSource>
<PMID Version="1">20409184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2016 Feb;36(2):179-92</RefSource>
<PMID Version="1">26614785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2015 Feb;205(3):1008-14</RefSource>
<PMID Version="1">25729797</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2011 Nov;31(11):1175-82</RefSource>
<PMID Version="1">21989814</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2014 Feb;201(3):874-86</RefSource>
<PMID Version="1">24180459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2015 Jan;35(1):34-46</RefSource>
<PMID Version="1">25536961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2001 Dec;127(4):1513-23</RefSource>
<PMID Version="1">11743096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Heredity (Edinb). 2014 Sep;113(3):240-9</RefSource>
<PMID Version="1">24619181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9647-52</RefSource>
<PMID Version="1">22628565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2009 Jan;149(1):575-84</RefSource>
<PMID Version="1">19011001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Bot. 2000 Sep;87(9):1287-99</RefSource>
<PMID Version="1">10991900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2002 Feb;25(2):251-263</RefSource>
<PMID Version="1">11841668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2015 Dec;38(12):2652-61</RefSource>
<PMID Version="1">26032606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2008;177(2):558-68</RefSource>
<PMID Version="1">18028295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2013 Jul;33(7):672-83</RefSource>
<PMID Version="1">23658197</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2013 Mar;33(3):261-74</RefSource>
<PMID Version="1">23467748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2010 Dec;33(12):2101-11</RefSource>
<PMID Version="1">20636490</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Feb 24;470(7335):479-85</RefSource>
<PMID Version="1">21350480</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2005 Sep;25(9):1109-17</RefSource>
<PMID Version="1">15996954</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Oct;200(2):322-9</RefSource>
<PMID Version="1">23593942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(9):e44955</RefSource>
<PMID Version="1">23028702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2014 Aug;65(15):4419-31</RefSource>
<PMID Version="1">24916072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2013 Jun;111(6):1167-79</RefSource>
<PMID Version="1">23644361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2008;1133:187-203</RefSource>
<PMID Version="1">18559822</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1997 Apr;17(4):241-50</RefSource>
<PMID Version="1">14759863</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2000 Jul;20(13):859-67</RefSource>
<PMID Version="1">11303576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glob Chang Biol. 2013 Apr;19(4):1188-96</RefSource>
<PMID Version="1">23504895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2008 Nov;21(6):1460-9</RefSource>
<PMID Version="1">18681916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2010 Aug;153(4):1919-31</RefSource>
<PMID Version="1">20551212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1998 Aug-Sep;18(8_9):589-593</RefSource>
<PMID Version="1">12651346</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4891331</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Pinus canariensis</Keyword>
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">genetic differentiation</Keyword>
<Keyword MajorTopicYN="N">hydraulic conductivity</Keyword>
<Keyword MajorTopicYN="N">phenotypic plasticity</Keyword>
<Keyword MajorTopicYN="N">provenance trials</Keyword>
<Keyword MajorTopicYN="N">vulnerability to cavitation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27375637</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.00769</ArticleId>
<ArticleId IdType="pmc">PMC4891331</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Espagne</li>
<li>France</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="L Pez, Rosana" sort="L Pez, Rosana" uniqKey="L Pez R" first="Rosana" last="L Pez">Rosana L Pez</name>
</noRegion>
<name sortKey="Cano, Francisco J" sort="Cano, Francisco J" uniqKey="Cano F" first="Francisco J" last="Cano">Francisco J. Cano</name>
<name sortKey="Gil, Luis" sort="Gil, Luis" uniqKey="Gil L" first="Luis" last="Gil">Luis Gil</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Choat, Brendan" sort="Choat, Brendan" uniqKey="Choat B" first="Brendan" last="Choat">Brendan Choat</name>
</noRegion>
</country>
<country name="France">
<noRegion>
<name sortKey="Cochard, Herve" sort="Cochard, Herve" uniqKey="Cochard H" first="Hervé" last="Cochard">Hervé Cochard</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001892 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001892 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:27375637
   |texte=   Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:27375637" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024