Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Revealing catastrophic failure of leaf networks under stress.

Identifieur interne : 001742 ( PubMed/Checkpoint ); précédent : 001741; suivant : 001743

Revealing catastrophic failure of leaf networks under stress.

Auteurs : Timothy J. Brodribb [Australie] ; Diane Bienaimé [France] ; Philippe Marmottant [France]

Source :

RBID : pubmed:27071104

Descripteurs français

English descriptors

Abstract

The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought.

DOI: 10.1073/pnas.1522569113
PubMed: 27071104


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27071104

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Revealing catastrophic failure of leaf networks under stress.</title>
<author>
<name sortKey="Brodribb, Timothy J" sort="Brodribb, Timothy J" uniqKey="Brodribb T" first="Timothy J" last="Brodribb">Timothy J. Brodribb</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; timothyb@utas.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001</wicri:regionArea>
<wicri:noRegion>Tasmania 7001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bienaime, Diane" sort="Bienaime, Diane" uniqKey="Bienaime D" first="Diane" last="Bienaimé">Diane Bienaimé</name>
<affiliation wicri:level="4">
<nlm:affiliation>CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401</wicri:regionArea>
<wicri:noRegion>38401</wicri:noRegion>
<orgName type="university">Université Grenoble-Alpes</orgName>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marmottant, Philippe" sort="Marmottant, Philippe" uniqKey="Marmottant P" first="Philippe" last="Marmottant">Philippe Marmottant</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401</wicri:regionArea>
<wicri:noRegion>38401</wicri:noRegion>
<wicri:noRegion>38401</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27071104</idno>
<idno type="pmid">27071104</idno>
<idno type="doi">10.1073/pnas.1522569113</idno>
<idno type="wicri:Area/PubMed/Corpus">002034</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002034</idno>
<idno type="wicri:Area/PubMed/Curation">002009</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002009</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002009</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002009</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Revealing catastrophic failure of leaf networks under stress.</title>
<author>
<name sortKey="Brodribb, Timothy J" sort="Brodribb, Timothy J" uniqKey="Brodribb T" first="Timothy J" last="Brodribb">Timothy J. Brodribb</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; timothyb@utas.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001</wicri:regionArea>
<wicri:noRegion>Tasmania 7001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bienaime, Diane" sort="Bienaime, Diane" uniqKey="Bienaime D" first="Diane" last="Bienaimé">Diane Bienaimé</name>
<affiliation wicri:level="4">
<nlm:affiliation>CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401</wicri:regionArea>
<wicri:noRegion>38401</wicri:noRegion>
<orgName type="university">Université Grenoble-Alpes</orgName>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marmottant, Philippe" sort="Marmottant, Philippe" uniqKey="Marmottant P" first="Philippe" last="Marmottant">Philippe Marmottant</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401</wicri:regionArea>
<wicri:noRegion>38401</wicri:noRegion>
<wicri:noRegion>38401</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air</term>
<term>Angiosperms (physiology)</term>
<term>Droughts</term>
<term>Ferns (physiology)</term>
<term>Microfluidics</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Transpiration</term>
<term>Plant Vascular Bundle (physiology)</term>
<term>Species Specificity</term>
<term>Stress, Physiological (physiology)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Air</term>
<term>Angiospermes (physiologie)</term>
<term>Eau (métabolisme)</term>
<term>Faisceau vasculaire des plantes (physiologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Fougères (physiologie)</term>
<term>Microfluidique</term>
<term>Spécificité d'espèce</term>
<term>Stress physiologique (physiologie)</term>
<term>Sécheresses</term>
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Angiospermes</term>
<term>Faisceau vasculaire des plantes</term>
<term>Feuilles de plante</term>
<term>Fougères</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Angiosperms</term>
<term>Ferns</term>
<term>Plant Leaves</term>
<term>Plant Vascular Bundle</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Air</term>
<term>Droughts</term>
<term>Microfluidics</term>
<term>Plant Transpiration</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Air</term>
<term>Microfluidique</term>
<term>Spécificité d'espèce</term>
<term>Sécheresses</term>
<term>Transpiration des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27071104</PMID>
<DateCreated>
<Year>2016</Year>
<Month>04</Month>
<Day>27</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>113</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Revealing catastrophic failure of leaf networks under stress.</ArticleTitle>
<Pagination>
<MedlinePgn>4865-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1522569113</ELocationID>
<Abstract>
<AbstractText>The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brodribb</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; timothyb@utas.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bienaimé</LastName>
<ForeName>Diane</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marmottant</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; CNRS/Université Grenoble-Alpes, Laboratoire Interdisciplinaire de Physique UMR 5588, Grenoble, F-38401, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D059040">Video-Audio Media</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):025103</RefSource>
<PMID Version="1">14995510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2006 Jun;26(6):689-701</RefSource>
<PMID Version="1">16510385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Lett. 2008 Jun 23;4(3):302-6</RefSource>
<PMID Version="1">18407890</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2016 Sep;39(9):1886-94</RefSource>
<PMID Version="1">26648337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2006;57:361-81</RefSource>
<PMID Version="1">16669766</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2009 May 22;276(1663):1771-6</RefSource>
<PMID Version="1">19324775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2013 Nov;36(11):1938-49</RefSource>
<PMID Version="1">23701011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2007 Aug;144(4):1890-8</RefSource>
<PMID Version="1">17556506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1992 Sep;100(1):205-9</RefSource>
<PMID Version="1">16652947</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2013 Apr;161(4):1820-9</RefSource>
<PMID Version="1">23463781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2014 Apr 28;165(2):895-904</RefSource>
<PMID Version="1">24777347</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Interface. 2014 Oct 6;11(99). pii: 20140480. doi: 10.1098/rsif.2014.0480</RefSource>
<PMID Version="1">25056212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2000 Nov 20;85(21):4626-8</RefSource>
<PMID Version="1">11082612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2015 Jul;207(1):14-27</RefSource>
<PMID Version="1">25773898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1988 Nov;88(3):574-80</RefSource>
<PMID Version="1">16666351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10403-8</RefSource>
<PMID Version="1">22689947</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2016 Mar;209(4):1403-9</RefSource>
<PMID Version="1">26742653</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2014 Sep 26;113(13):134501</RefSource>
<PMID Version="1">25302891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2010 Feb;13(2):175-83</RefSource>
<PMID Version="1">19968696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Bot. 2013 Feb;100(2):314-21</RefSource>
<PMID Version="1">23345417</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2011 May;190(3):709-23</RefSource>
<PMID Version="1">21054413</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2010 Jan 29;104(4):048704</RefSource>
<PMID Version="1">20366746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2010 Aug;153(4):1919-31</RefSource>
<PMID Version="1">20551212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Bot. 2009 Feb;96(2):409-19</RefSource>
<PMID Version="1">21628196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2015 Feb;205(3):1095-105</RefSource>
<PMID Version="1">25385085</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000388" MajorTopicYN="N">Air</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Angiosperms</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029624" MajorTopicYN="N">Ferns</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044085" MajorTopicYN="N">Microfluidics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058526" MajorTopicYN="N">Plant Vascular Bundle</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4855591 [Available on 10/26/16]</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">embolism</Keyword>
<Keyword MajorTopicYN="N">leaf</Keyword>
<Keyword MajorTopicYN="N">vein</Keyword>
<Keyword MajorTopicYN="N">xylem</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27071104</ArticleId>
<ArticleId IdType="pii">1522569113</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1522569113</ArticleId>
<ArticleId IdType="pmc">PMC4855591</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
</settlement>
<orgName>
<li>Université Grenoble-Alpes</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Brodribb, Timothy J" sort="Brodribb, Timothy J" uniqKey="Brodribb T" first="Timothy J" last="Brodribb">Timothy J. Brodribb</name>
</noRegion>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Bienaime, Diane" sort="Bienaime, Diane" uniqKey="Bienaime D" first="Diane" last="Bienaimé">Diane Bienaimé</name>
</region>
<name sortKey="Marmottant, Philippe" sort="Marmottant, Philippe" uniqKey="Marmottant P" first="Philippe" last="Marmottant">Philippe Marmottant</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001742 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001742 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:27071104
   |texte=   Revealing catastrophic failure of leaf networks under stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:27071104" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024