Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical Measurement of Stem Xylem Vulnerability.

Identifieur interne : 000676 ( PubMed/Checkpoint ); précédent : 000675; suivant : 000677

Optical Measurement of Stem Xylem Vulnerability.

Auteurs : Timothy J. Brodribb [Australie] ; Marc Carriqui [Espagne] ; Sylvain Delzon [France] ; Christopher Lucani [Australie]

Source :

RBID : pubmed:28684434

Abstract

The vulnerability of plant water transport tissues to a loss of function by cavitation during water stress is a key indicator of the survival capabilities of plant species during drought. Quantifying this important metric has been greatly advanced by noninvasive techniques that allow embolisms to be viewed directly in the vascular system. Here, we present a new method for evaluating the spatial and temporal propagation of embolizing bubbles in the stem xylem during imposed water stress. We demonstrate how the optical method, used previously in leaves, can be adapted to measure the xylem vulnerability of stems. Validation of the technique is carried out by measuring the xylem vulnerability of 13 conifers and two short-vesseled angiosperms and comparing the results with measurements made using the cavitron centrifuge method. Very close agreement between the two methods confirms the reliability of the new optical technique and opens the way to simple, efficient, and reliable assessment of stem vulnerability using standard flatbed scanners, cameras, or microscopes.

DOI: 10.1104/pp.17.00552
PubMed: 28684434


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28684434

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optical Measurement of Stem Xylem Vulnerability.</title>
<author>
<name sortKey="Brodribb, Timothy J" sort="Brodribb, Timothy J" uniqKey="Brodribb T" first="Timothy J" last="Brodribb">Timothy J. Brodribb</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biology, University of Tasmania, Hobart 7001, Australia timothyb@utas.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>School of Biology, University of Tasmania, Hobart 7001</wicri:regionArea>
<wicri:noRegion>Hobart 7001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carriqui, Marc" sort="Carriqui, Marc" uniqKey="Carriqui M" first="Marc" last="Carriqui">Marc Carriqui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Universitat de les Illes Balears, Palma, Illes Balears, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Universitat de les Illes Balears, Palma, Illes Balears</wicri:regionArea>
<wicri:noRegion>Illes Balears</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>BIOGECO, INRA, University of Bordeaux, 33610 Pessac, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, University of Bordeaux, 33610 Pessac</wicri:regionArea>
<wicri:noRegion>33610 Pessac</wicri:noRegion>
<wicri:noRegion>33610 Pessac</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lucani, Christopher" sort="Lucani, Christopher" uniqKey="Lucani C" first="Christopher" last="Lucani">Christopher Lucani</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biology, University of Tasmania, Hobart 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biology, University of Tasmania, Hobart 7001</wicri:regionArea>
<wicri:noRegion>Hobart 7001</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28684434</idno>
<idno type="pmid">28684434</idno>
<idno type="doi">10.1104/pp.17.00552</idno>
<idno type="wicri:Area/PubMed/Corpus">000729</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000729</idno>
<idno type="wicri:Area/PubMed/Curation">000726</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000726</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000726</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000726</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Optical Measurement of Stem Xylem Vulnerability.</title>
<author>
<name sortKey="Brodribb, Timothy J" sort="Brodribb, Timothy J" uniqKey="Brodribb T" first="Timothy J" last="Brodribb">Timothy J. Brodribb</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biology, University of Tasmania, Hobart 7001, Australia timothyb@utas.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>School of Biology, University of Tasmania, Hobart 7001</wicri:regionArea>
<wicri:noRegion>Hobart 7001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carriqui, Marc" sort="Carriqui, Marc" uniqKey="Carriqui M" first="Marc" last="Carriqui">Marc Carriqui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Universitat de les Illes Balears, Palma, Illes Balears, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biology, Universitat de les Illes Balears, Palma, Illes Balears</wicri:regionArea>
<wicri:noRegion>Illes Balears</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>BIOGECO, INRA, University of Bordeaux, 33610 Pessac, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, University of Bordeaux, 33610 Pessac</wicri:regionArea>
<wicri:noRegion>33610 Pessac</wicri:noRegion>
<wicri:noRegion>33610 Pessac</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lucani, Christopher" sort="Lucani, Christopher" uniqKey="Lucani C" first="Christopher" last="Lucani">Christopher Lucani</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biology, University of Tasmania, Hobart 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biology, University of Tasmania, Hobart 7001</wicri:regionArea>
<wicri:noRegion>Hobart 7001</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The vulnerability of plant water transport tissues to a loss of function by cavitation during water stress is a key indicator of the survival capabilities of plant species during drought. Quantifying this important metric has been greatly advanced by noninvasive techniques that allow embolisms to be viewed directly in the vascular system. Here, we present a new method for evaluating the spatial and temporal propagation of embolizing bubbles in the stem xylem during imposed water stress. We demonstrate how the optical method, used previously in leaves, can be adapted to measure the xylem vulnerability of stems. Validation of the technique is carried out by measuring the xylem vulnerability of 13 conifers and two short-vesseled angiosperms and comparing the results with measurements made using the cavitron centrifuge method. Very close agreement between the two methods confirms the reliability of the new optical technique and opens the way to simple, efficient, and reliable assessment of stem vulnerability using standard flatbed scanners, cameras, or microscopes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">28684434</PMID>
<DateCreated>
<Year>2017</Year>
<Month>07</Month>
<Day>07</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>08</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>174</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Optical Measurement of Stem Xylem Vulnerability.</ArticleTitle>
<Pagination>
<MedlinePgn>2054-2061</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.17.00552</ELocationID>
<Abstract>
<AbstractText>The vulnerability of plant water transport tissues to a loss of function by cavitation during water stress is a key indicator of the survival capabilities of plant species during drought. Quantifying this important metric has been greatly advanced by noninvasive techniques that allow embolisms to be viewed directly in the vascular system. Here, we present a new method for evaluating the spatial and temporal propagation of embolizing bubbles in the stem xylem during imposed water stress. We demonstrate how the optical method, used previously in leaves, can be adapted to measure the xylem vulnerability of stems. Validation of the technique is carried out by measuring the xylem vulnerability of 13 conifers and two short-vesseled angiosperms and comparing the results with measurements made using the cavitron centrifuge method. Very close agreement between the two methods confirms the reliability of the new optical technique and opens the way to simple, efficient, and reliable assessment of stem vulnerability using standard flatbed scanners, cameras, or microscopes.</AbstractText>
<CopyrightInformation>© 2017 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brodribb</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4964-6107</Identifier>
<AffiliationInfo>
<Affiliation>School of Biology, University of Tasmania, Hobart 7001, Australia timothyb@utas.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carriqui</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0153-2602</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Universitat de les Illes Balears, Palma, Illes Balears, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Delzon</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3442-1711</Identifier>
<AffiliationInfo>
<Affiliation>BIOGECO, INRA, University of Bordeaux, 33610 Pessac, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lucani</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8983-3575</Identifier>
<AffiliationInfo>
<Affiliation>School of Biology, University of Tasmania, Hobart 7001, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2015 Jan;205(1):116-27</RefSource>
<PMID Version="1">25229841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2013 Nov;64(15):4779-91</RefSource>
<PMID Version="1">23888067</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2010 Oct;188(2):533-42</RefSource>
<PMID Version="1">20673281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2014 Apr;164(4):1649-60</RefSource>
<PMID Version="1">24501002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2017 Jul;215(1):97-112</RefSource>
<PMID Version="1">28378882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2017 May 17;284(1854):</RefSource>
<PMID Version="1">28469026</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2016 Nov;172(3):1669-1678</RefSource>
<PMID Version="1">27621427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2016 Apr;39(4):860-70</RefSource>
<PMID Version="1">26574193</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2017 Apr;214(2):561-569</RefSource>
<PMID Version="1">28124474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2017 Jun;174(2):764-775</RefSource>
<PMID Version="1">28351909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(8):e23476</RefSource>
<PMID Version="1">21858137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2016 Jan;170(1):273-82</RefSource>
<PMID Version="1">26527655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Plant. 2014 Nov;152(3):465-74</RefSource>
<PMID Version="1">24611594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Plant. 2011 Jul;142(3):205-10</RefSource>
<PMID Version="1">21401617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oecologia. 2012 Jan;168(1):1-10</RefSource>
<PMID Version="1">21744163</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2013 Apr;161(4):1820-9</RefSource>
<PMID Version="1">23463781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2016 Apr 26;113(17 ):4865-9</RefSource>
<PMID Version="1">27071104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oecologia. 2013 Nov;173(3):711-20</RefSource>
<PMID Version="1">23649755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2009 Jan;149(1):575-84</RefSource>
<PMID Version="1">19011001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14489-93</RefSource>
<PMID Version="1">25246559</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2017 Feb;213(3):1076-1092</RefSource>
<PMID Version="1">27861926</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2016 Dec;39(12 ):2774-2785</RefSource>
<PMID Version="1">27739597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2013 Jul;33(7):672-83</RefSource>
<PMID Version="1">23658197</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2016 Nov;172(3):1657-1668</RefSource>
<PMID Version="1">27613852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2011 Jan;34(1):137-48</RefSource>
<PMID Version="1">20946587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Interface. 2014 Oct 6;11(99):null</RefSource>
<PMID Version="1">25056212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2010 Dec;33(12):2101-11</RefSource>
<PMID Version="1">20636490</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2017 Apr;214(2):890-898</RefSource>
<PMID Version="1">28195328</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2003 Aug;132(4):2166-73</RefSource>
<PMID Version="1">12913171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2016 Mar;209(4):1403-9</RefSource>
<PMID Version="1">26742653</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Bot. 2006 Oct;93(10):1490-500</RefSource>
<PMID Version="1">21642096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2016 Oct;212(1):80-95</RefSource>
<PMID Version="1">27189787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1998 Aug-Sep;18(8_9):589-593</RefSource>
<PMID Version="1">12651346</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2015 Feb;205(3):1095-105</RefSource>
<PMID Version="1">25385085</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>06</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28684434</ArticleId>
<ArticleId IdType="pii">pp.17.00552</ArticleId>
<ArticleId IdType="doi">10.1104/pp.17.00552</ArticleId>
<ArticleId IdType="pmc">PMC5543975</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Espagne</li>
<li>France</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Brodribb, Timothy J" sort="Brodribb, Timothy J" uniqKey="Brodribb T" first="Timothy J" last="Brodribb">Timothy J. Brodribb</name>
</noRegion>
<name sortKey="Lucani, Christopher" sort="Lucani, Christopher" uniqKey="Lucani C" first="Christopher" last="Lucani">Christopher Lucani</name>
</country>
<country name="Espagne">
<noRegion>
<name sortKey="Carriqui, Marc" sort="Carriqui, Marc" uniqKey="Carriqui M" first="Marc" last="Carriqui">Marc Carriqui</name>
</noRegion>
</country>
<country name="France">
<noRegion>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000676 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000676 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:28684434
   |texte=   Optical Measurement of Stem Xylem Vulnerability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:28684434" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024