Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using a very low-density SNP panel for genomic selection in a breeding program for sheep.

Identifieur interne : 000073 ( PubMed/Checkpoint ); précédent : 000072; suivant : 000074

Using a very low-density SNP panel for genomic selection in a breeding program for sheep.

Auteurs : Jérôme Raoul [France] ; Andrew A. Swan [Australie] ; Jean-Michel Elsen [France]

Source :

RBID : pubmed:29065868

Abstract

Building an efficient reference population for genomic selection is an issue when the recorded population is small and phenotypes are poorly informed, which is often the case in sheep breeding programs. Using stochastic simulation, we evaluated a genomic design based on a reference population with medium-density genotypes [around 45 K single nucleotide polymorphisms (SNPs)] of dams that were imputed from very low-density genotypes (≤ 1000 SNPs).

DOI: 10.1186/s12711-017-0351-0
PubMed: 29065868


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29065868

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using a very low-density SNP panel for genomic selection in a breeding program for sheep.</title>
<author>
<name sortKey="Raoul, Jerome" sort="Raoul, Jerome" uniqKey="Raoul J" first="Jérôme" last="Raoul">Jérôme Raoul</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de l'Elevage, Castanet-Tolosan, France. Jerome.raoul@inra.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de l'Elevage, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Swan, Andrew A" sort="Swan, Andrew A" uniqKey="Swan A" first="Andrew A" last="Swan">Andrew A. Swan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Animal Genetics and Breeding Unit, University of New England, Armidale, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Animal Genetics and Breeding Unit, University of New England, Armidale</wicri:regionArea>
<wicri:noRegion>Armidale</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elsen, Jean Michel" sort="Elsen, Jean Michel" uniqKey="Elsen J" first="Jean-Michel" last="Elsen">Jean-Michel Elsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>GenPhySE, INRA, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>GenPhySE, INRA, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29065868</idno>
<idno type="pmid">29065868</idno>
<idno type="doi">10.1186/s12711-017-0351-0</idno>
<idno type="wicri:Area/PubMed/Corpus">000357</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000357</idno>
<idno type="wicri:Area/PubMed/Curation">000355</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000355</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000355</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000355</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Using a very low-density SNP panel for genomic selection in a breeding program for sheep.</title>
<author>
<name sortKey="Raoul, Jerome" sort="Raoul, Jerome" uniqKey="Raoul J" first="Jérôme" last="Raoul">Jérôme Raoul</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de l'Elevage, Castanet-Tolosan, France. Jerome.raoul@inra.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de l'Elevage, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Swan, Andrew A" sort="Swan, Andrew A" uniqKey="Swan A" first="Andrew A" last="Swan">Andrew A. Swan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Animal Genetics and Breeding Unit, University of New England, Armidale, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Animal Genetics and Breeding Unit, University of New England, Armidale</wicri:regionArea>
<wicri:noRegion>Armidale</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elsen, Jean Michel" sort="Elsen, Jean Michel" uniqKey="Elsen J" first="Jean-Michel" last="Elsen">Jean-Michel Elsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>GenPhySE, INRA, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>GenPhySE, INRA, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics, selection, evolution : GSE</title>
<idno type="eISSN">1297-9686</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Building an efficient reference population for genomic selection is an issue when the recorded population is small and phenotypes are poorly informed, which is often the case in sheep breeding programs. Using stochastic simulation, we evaluated a genomic design based on a reference population with medium-density genotypes [around 45 K single nucleotide polymorphisms (SNPs)] of dams that were imputed from very low-density genotypes (≤ 1000 SNPs).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">29065868</PMID>
<DateCreated>
<Year>2017</Year>
<Month>10</Month>
<Day>25</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1297-9686</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>49</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Oct</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Genetics, selection, evolution : GSE</Title>
<ISOAbbreviation>Genet. Sel. Evol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Using a very low-density SNP panel for genomic selection in a breeding program for sheep.</ArticleTitle>
<Pagination>
<MedlinePgn>76</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12711-017-0351-0</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Building an efficient reference population for genomic selection is an issue when the recorded population is small and phenotypes are poorly informed, which is often the case in sheep breeding programs. Using stochastic simulation, we evaluated a genomic design based on a reference population with medium-density genotypes [around 45 K single nucleotide polymorphisms (SNPs)] of dams that were imputed from very low-density genotypes (≤ 1000 SNPs).</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">A population under selection for a maternal trait was simulated using real genotypes. Genetic gains realized from classical selection and genomic selection designs were compared. Genomic selection scenarios that differed in reference population structure (whether or not dams were included in the reference) and genotype quality (medium-density or imputed to medium-density from very low-density) were evaluated.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The genomic design increased genetic gain by 26% when the reference population was based on sire medium-density genotypes and by 54% when the reference population included both sire and dam medium-density genotypes. When medium-density genotypes of male candidates and dams were replaced by imputed genotypes from very low-density SNP genotypes (1000 SNPs), the increase in gain was 22% for the sire reference population and 42% for the sire and dam reference population. The rate of increase in inbreeding was lower (from - 20 to - 34%) for the genomic design than for the classical design regardless of the genomic scenario.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">We show that very low-density genotypes of male candidates and dams combined with an imputation process result in a substantial increase in genetic gain for small sheep breeding programs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Raoul</LastName>
<ForeName>Jérôme</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3140-4433</Identifier>
<AffiliationInfo>
<Affiliation>Institut de l'Elevage, Castanet-Tolosan, France. Jerome.raoul@inra.fr.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>GenPhySE, INRA, Castanet-Tolosan, France. Jerome.raoul@inra.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Swan</LastName>
<ForeName>Andrew A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Animal Genetics and Breeding Unit, University of New England, Armidale, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Elsen</LastName>
<ForeName>Jean-Michel</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>GenPhySE, INRA, Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Genet Sel Evol</MedlineTA>
<NlmUniqueID>9114088</NlmUniqueID>
<ISSNLinking>0999-193X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2015 Jun 30;47:54</RefSource>
<PMID Version="1">26122927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Animal. 2012 Jun;6(6):880-6</RefSource>
<PMID Version="1">22558957</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2008 Nov;91(11):4414-23</RefSource>
<PMID Version="1">18946147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2013 Sep 03;45:33</RefSource>
<PMID Version="1">24004563</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sci Rep. 2017 Feb 09;7:42091</RefSource>
<PMID Version="1">28181587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2016 Sep 28;48(1):73</RefSource>
<PMID Version="1">27677439</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1979 May;92(1):317-22</RefSource>
<PMID Version="1">17248921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2013 Oct;96(10):6703-15</RefSource>
<PMID Version="1">23891299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2014 Sep 30;46:58</RefSource>
<PMID Version="1">25927315</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biometrics. 1975 Jun;31(2):423-47</RefSource>
<PMID Version="1">1174616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anim Genet. 2015 Oct;46(5):544-56</RefSource>
<PMID Version="1">26360638</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Breed Genet. 2017 Feb;134(1):1-2</RefSource>
<PMID Version="1">28070967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2017 Jan 17;49(1):10</RefSource>
<PMID Version="1">28095776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Animal. 2016 Jul;10 (7):1077-85</RefSource>
<PMID Version="1">27076192</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2009 Feb;92(2):433-43</RefSource>
<PMID Version="1">19164653</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2014 Jun 17;15:478</RefSource>
<PMID Version="1">24935670</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anim Genet. 2014 Oct;45(5):754-7</RefSource>
<PMID Version="1">25040320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2014 Sep;97(9):5822-32</RefSource>
<PMID Version="1">24996280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2016 Mar;99(3):1999-2004</RefSource>
<PMID Version="1">26723131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genet. 2017 May 26;18(1):50</RefSource>
<PMID Version="1">28549462</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2013 Jul 29;45:28</RefSource>
<PMID Version="1">23895218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Sci. 2013 Aug;91(8):3583-92</RefSource>
<PMID Version="1">23736050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2015 Dec 22;47:97</RefSource>
<PMID Version="1">26694131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2012 Jul 31;44:25</RefSource>
<PMID Version="1">22849718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2011 Aug;94(8):4109-18</RefSource>
<PMID Version="1">21787946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Sci. 2013 Aug;91(8):3644-57</RefSource>
<PMID Version="1">23736059</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2001 May-Jun;33(3):209-29</RefSource>
<PMID Version="1">11403745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2010 Feb;93(2):743-52</RefSource>
<PMID Version="1">20105546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Apr 16;9(4):e94851</RefSource>
<PMID Version="1">24740156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Apr 16;9(4):e93392</RefSource>
<PMID Version="1">24740141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2013 Jul;194(3):597-607</RefSource>
<PMID Version="1">23640517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2010 Nov;93(11):5487-94</RefSource>
<PMID Version="1">20965364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>G3 (Bethesda). 2014 Apr 16;4(4):623-31</RefSource>
<PMID Version="1">24531728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Animal. 2016 Jun;10 (6):1033-41</RefSource>
<PMID Version="1">26446712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2008 Apr;91(4):1669-72</RefSource>
<PMID Version="1">18349260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anim Genet. 2012 Feb;43(1):72-80</RefSource>
<PMID Version="1">22221027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Animal. 2016 Jun;10 (6):1061-6</RefSource>
<PMID Version="1">27075712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2012 Dec 27;44:40</RefSource>
<PMID Version="1">23270502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2016 Oct 11;48(1):77</RefSource>
<PMID Version="1">27729012</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2009 May;182(1):343-53</RefSource>
<PMID Version="1">19299339</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2008;3(10):e3395</RefSource>
<PMID Version="1">18852893</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Animal. 2016 Nov;10 (11):1778-1785</RefSource>
<PMID Version="1">27160794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2012 Feb 09;44:4</RefSource>
<PMID Version="1">22321529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2015 Dec;98(12):9051-9</RefSource>
<PMID Version="1">26433419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2014 Dec;97(12):7905-15</RefSource>
<PMID Version="1">25453600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Poult Sci. 2013 Jul;92(7):1712-23</RefSource>
<PMID Version="1">23776257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anim Genet. 2015 Feb;46(1):1-7</RefSource>
<PMID Version="1">25431355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Animal. 2016 Jun;10 (6):1067-75</RefSource>
<PMID Version="1">26330119</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2015 Sep 14;47:70</RefSource>
<PMID Version="1">26370143</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29065868</ArticleId>
<ArticleId IdType="doi">10.1186/s12711-017-0351-0</ArticleId>
<ArticleId IdType="pii">10.1186/s12711-017-0351-0</ArticleId>
<ArticleId IdType="pmc">PMC5655911</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Raoul, Jerome" sort="Raoul, Jerome" uniqKey="Raoul J" first="Jérôme" last="Raoul">Jérôme Raoul</name>
</noRegion>
<name sortKey="Elsen, Jean Michel" sort="Elsen, Jean Michel" uniqKey="Elsen J" first="Jean-Michel" last="Elsen">Jean-Michel Elsen</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Swan, Andrew A" sort="Swan, Andrew A" uniqKey="Swan A" first="Andrew A" last="Swan">Andrew A. Swan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000073 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000073 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:29065868
   |texte=   Using a very low-density SNP panel for genomic selection in a breeding program for sheep.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:29065868" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024