Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterisation of Peptide Microarrays for Studying Antibody-Antigen Binding Using Surface Plasmon Resonance Imagery

Identifieur interne : 002A40 ( Pmc/Curation ); précédent : 002A39; suivant : 002A41

Characterisation of Peptide Microarrays for Studying Antibody-Antigen Binding Using Surface Plasmon Resonance Imagery

Auteurs : Claude Nogues [France] ; Hervé Leh [France] ; Christopher G. Langendorf [Australie] ; Ruby H. P. Law [Australie] ; Ashley M. Buckle [Australie] ; Malcolm Buckle [France]

Source :

RBID : PMC:2921342

Abstract

Background

Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules.

Methodology/Principal Findings

We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65) and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative ΔG, ΔS and ΔH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding.

Conclusions

The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody-antigen interaction where good structural, mechanistic and immunological data are available. Using SPRi we were able to characterise the kinetics of the interaction in greater detail than ELISA/RIA methods. Furthermore, our data indicate that SPRi is well suited to a multiplexed immunoassay using GAD65 proteins, and may be applicable to other biomarkers.


Url:
DOI: 10.1371/journal.pone.0012152
PubMed: 20730101
PubMed Central: 2921342

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2921342

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterisation of Peptide Microarrays for Studying Antibody-Antigen Binding Using Surface Plasmon Resonance Imagery</title>
<author>
<name sortKey="Nogues, Claude" sort="Nogues, Claude" uniqKey="Nogues C" first="Claude" last="Nogues">Claude Nogues</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan, France</addr-line>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Leh, Herve" sort="Leh, Herve" uniqKey="Leh H" first="Hervé" last="Leh">Hervé Leh</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan, France</addr-line>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Langendorf, Christopher G" sort="Langendorf, Christopher G" uniqKey="Langendorf C" first="Christopher G." last="Langendorf">Christopher G. Langendorf</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Law, Ruby H P" sort="Law, Ruby H P" uniqKey="Law R" first="Ruby H. P." last="Law">Ruby H. P. Law</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Buckle, Ashley M" sort="Buckle, Ashley M" uniqKey="Buckle A" first="Ashley M." last="Buckle">Ashley M. Buckle</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Buckle, Malcolm" sort="Buckle, Malcolm" uniqKey="Buckle M" first="Malcolm" last="Buckle">Malcolm Buckle</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan, France</addr-line>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20730101</idno>
<idno type="pmc">2921342</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921342</idno>
<idno type="RBID">PMC:2921342</idno>
<idno type="doi">10.1371/journal.pone.0012152</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">002B90</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002B90</idno>
<idno type="wicri:Area/Pmc/Curation">002A40</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">002A40</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Characterisation of Peptide Microarrays for Studying Antibody-Antigen Binding Using Surface Plasmon Resonance Imagery</title>
<author>
<name sortKey="Nogues, Claude" sort="Nogues, Claude" uniqKey="Nogues C" first="Claude" last="Nogues">Claude Nogues</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan, France</addr-line>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Leh, Herve" sort="Leh, Herve" uniqKey="Leh H" first="Hervé" last="Leh">Hervé Leh</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan, France</addr-line>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Langendorf, Christopher G" sort="Langendorf, Christopher G" uniqKey="Langendorf C" first="Christopher G." last="Langendorf">Christopher G. Langendorf</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Law, Ruby H P" sort="Law, Ruby H P" uniqKey="Law R" first="Ruby H. P." last="Law">Ruby H. P. Law</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Buckle, Ashley M" sort="Buckle, Ashley M" uniqKey="Buckle A" first="Ashley M." last="Buckle">Ashley M. Buckle</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Buckle, Malcolm" sort="Buckle, Malcolm" uniqKey="Buckle M" first="Malcolm" last="Buckle">Malcolm Buckle</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan, France</addr-line>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules.</p>
</sec>
<sec>
<title>Methodology/Principal Findings</title>
<p>We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65) and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative ΔG, ΔS and ΔH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody-antigen interaction where good structural, mechanistic and immunological data are available. Using SPRi we were able to characterise the kinetics of the interaction in greater detail than ELISA/RIA methods. Furthermore, our data indicate that SPRi is well suited to a multiplexed immunoassay using GAD65 proteins, and may be applicable to other biomarkers.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Buckle, M" uniqKey="Buckle M">M Buckle</name>
</author>
<author>
<name sortKey="Williams, Rm" uniqKey="Williams R">RM Williams</name>
</author>
<author>
<name sortKey="Negroni, M" uniqKey="Negroni M">M Negroni</name>
</author>
<author>
<name sortKey="Buc, H" uniqKey="Buc H">H Buc</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouffartigues, E" uniqKey="Bouffartigues E">E Bouffartigues</name>
</author>
<author>
<name sortKey="Leh, H" uniqKey="Leh H">H Leh</name>
</author>
<author>
<name sortKey="Anger Leroy, M" uniqKey="Anger Leroy M">M Anger-Leroy</name>
</author>
<author>
<name sortKey="Rimsky, S" uniqKey="Rimsky S">S Rimsky</name>
</author>
<author>
<name sortKey="Buckle, M" uniqKey="Buckle M">M Buckle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cherif, B" uniqKey="Cherif B">B Cherif</name>
</author>
<author>
<name sortKey="Roget, A" uniqKey="Roget A">A Roget</name>
</author>
<author>
<name sortKey="Villiers, Cl" uniqKey="Villiers C">CL Villiers</name>
</author>
<author>
<name sortKey="Calemczuk, R" uniqKey="Calemczuk R">R Calemczuk</name>
</author>
<author>
<name sortKey="Leroy, V" uniqKey="Leroy V">V Leroy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baekkeskov, S" uniqKey="Baekkeskov S">S Baekkeskov</name>
</author>
<author>
<name sortKey="Aanstoot, Hj" uniqKey="Aanstoot H">HJ Aanstoot</name>
</author>
<author>
<name sortKey="Christgau, S" uniqKey="Christgau S">S Christgau</name>
</author>
<author>
<name sortKey="Reetz, A" uniqKey="Reetz A">A Reetz</name>
</author>
<author>
<name sortKey="Solimena, M" uniqKey="Solimena M">M Solimena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuomilehto, J" uniqKey="Tuomilehto J">J Tuomilehto</name>
</author>
<author>
<name sortKey="Zimmet, P" uniqKey="Zimmet P">P Zimmet</name>
</author>
<author>
<name sortKey="Mackay, Ir" uniqKey="Mackay I">IR Mackay</name>
</author>
<author>
<name sortKey="Koskela, P" uniqKey="Koskela P">P Koskela</name>
</author>
<author>
<name sortKey="Vidgren, G" uniqKey="Vidgren G">G Vidgren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fenalti, G" uniqKey="Fenalti G">G Fenalti</name>
</author>
<author>
<name sortKey="Law, Rh" uniqKey="Law R">RH Law</name>
</author>
<author>
<name sortKey="Buckle, Am" uniqKey="Buckle A">AM Buckle</name>
</author>
<author>
<name sortKey="Langendorf, C" uniqKey="Langendorf C">C Langendorf</name>
</author>
<author>
<name sortKey="Tuck, K" uniqKey="Tuck K">K Tuck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fenalti, G" uniqKey="Fenalti G">G Fenalti</name>
</author>
<author>
<name sortKey="Hampe, Cs" uniqKey="Hampe C">CS Hampe</name>
</author>
<author>
<name sortKey="Arafat, Y" uniqKey="Arafat Y">Y Arafat</name>
</author>
<author>
<name sortKey="Law, Rh" uniqKey="Law R">RH Law</name>
</author>
<author>
<name sortKey="Banga, Jp" uniqKey="Banga J">JP Banga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fenalti, G" uniqKey="Fenalti G">G Fenalti</name>
</author>
<author>
<name sortKey="Hampe, Cs" uniqKey="Hampe C">CS Hampe</name>
</author>
<author>
<name sortKey="O Connor, K" uniqKey="O Connor K">K O'Connor</name>
</author>
<author>
<name sortKey="Banga, Jp" uniqKey="Banga J">JP Banga</name>
</author>
<author>
<name sortKey="Mackay, Ir" uniqKey="Mackay I">IR Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwartz, Hl" uniqKey="Schwartz H">HL Schwartz</name>
</author>
<author>
<name sortKey="Chandonia, Jm" uniqKey="Chandonia J">JM Chandonia</name>
</author>
<author>
<name sortKey="Kash, Sf" uniqKey="Kash S">SF Kash</name>
</author>
<author>
<name sortKey="Kanaani, J" uniqKey="Kanaani J">J Kanaani</name>
</author>
<author>
<name sortKey="Tunnell, E" uniqKey="Tunnell E">E Tunnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fenalti, G" uniqKey="Fenalti G">G Fenalti</name>
</author>
<author>
<name sortKey="Buckle, Am" uniqKey="Buckle A">AM Buckle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arafat, Y" uniqKey="Arafat Y">Y Arafat</name>
</author>
<author>
<name sortKey="Fenalti, G" uniqKey="Fenalti G">G Fenalti</name>
</author>
<author>
<name sortKey="Whisstock, Jc" uniqKey="Whisstock J">JC Whisstock</name>
</author>
<author>
<name sortKey="Mackay, Ir" uniqKey="Mackay I">IR Mackay</name>
</author>
<author>
<name sortKey="Garcia De La Banda, M" uniqKey="Garcia De La Banda M">M Garcia de la Banda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prime, Kl" uniqKey="Prime K">KL Prime</name>
</author>
<author>
<name sortKey="Whitesides, Gm" uniqKey="Whitesides G">GM Whitesides</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frederix, F" uniqKey="Frederix F">F Frederix</name>
</author>
<author>
<name sortKey="Bonroy, K" uniqKey="Bonroy K">K Bonroy</name>
</author>
<author>
<name sortKey="Reekmans, G" uniqKey="Reekmans G">G Reekmans</name>
</author>
<author>
<name sortKey="Laureyn, W" uniqKey="Laureyn W">W Laureyn</name>
</author>
<author>
<name sortKey="Campitelli, A" uniqKey="Campitelli A">A Campitelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teoh, Kl" uniqKey="Teoh K">KL Teoh</name>
</author>
<author>
<name sortKey="Fida, S" uniqKey="Fida S">S Fida</name>
</author>
<author>
<name sortKey="Rowley, Mj" uniqKey="Rowley M">MJ Rowley</name>
</author>
<author>
<name sortKey="Mackay, Ir" uniqKey="Mackay I">IR Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Powell, M" uniqKey="Powell M">M Powell</name>
</author>
<author>
<name sortKey="Prentice, L" uniqKey="Prentice L">L Prentice</name>
</author>
<author>
<name sortKey="Asawa, T" uniqKey="Asawa T">T Asawa</name>
</author>
<author>
<name sortKey="Kato, R" uniqKey="Kato R">R Kato</name>
</author>
<author>
<name sortKey="Sawicka, J" uniqKey="Sawicka J">J Sawicka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Primo, Me" uniqKey="Primo M">ME Primo</name>
</author>
<author>
<name sortKey="Anton, Ea" uniqKey="Anton E">EA Anton</name>
</author>
<author>
<name sortKey="Villanueva, Al" uniqKey="Villanueva A">AL Villanueva</name>
</author>
<author>
<name sortKey="Poskus, E" uniqKey="Poskus E">E Poskus</name>
</author>
<author>
<name sortKey="Ermacora, Mr" uniqKey="Ermacora M">MR Ermacora</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gottlieb, Di" uniqKey="Gottlieb D">DI Gottlieb</name>
</author>
<author>
<name sortKey="Chang, Yc" uniqKey="Chang Y">YC Chang</name>
</author>
<author>
<name sortKey="Schwob, Je" uniqKey="Schwob J">JE Schwob</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Jw" uniqKey="Lee J">JW Lee</name>
</author>
<author>
<name sortKey="Sim, Sj" uniqKey="Sim S">SJ Sim</name>
</author>
<author>
<name sortKey="Cho, Sm" uniqKey="Cho S">SM Cho</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20730101</article-id>
<article-id pub-id-type="pmc">2921342</article-id>
<article-id pub-id-type="publisher-id">10-PONE-RA-19614R1</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0012152</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline">
<subject>Biophysics</subject>
<subject>Biochemistry/Experimental Biophysical Methods</subject>
<subject>Biophysics/Biomacromolecule-Ligand Interactions</subject>
<subject>Biophysics/Experimental Biophysical Methods</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Characterisation of Peptide Microarrays for Studying Antibody-Antigen Binding Using Surface Plasmon Resonance Imagery</article-title>
<alt-title alt-title-type="running-head">SPRi of GAD65-Antibody Binding</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Nogues</surname>
<given-names>Claude</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Leh</surname>
<given-names>Hervé</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Langendorf</surname>
<given-names>Christopher G.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Law</surname>
<given-names>Ruby H. P.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Buckle</surname>
<given-names>Ashley M.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Buckle</surname>
<given-names>Malcolm</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Dynamics of Macromolecular Complexes, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 du CNRS, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan, France</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Butko</surname>
<given-names>Peter</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">University of Maryland-Baltimore, School of Pharmacy, United States of America</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>ashley.buckle@monash.edu</email>
(AMB);
<email>buckle@lbpa.ens-cachan.fr</email>
(MB)</corresp>
<fn fn-type="con">
<p>Conceived and designed the experiments: AMB MB. Performed the experiments: CN HL MB. Analyzed the data: CN HL AMB MB. Contributed reagents/materials/analysis tools: CN HL CGL RHPL AMB MB. Wrote the paper: AMB MB.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>13</day>
<month>8</month>
<year>2010</year>
</pub-date>
<volume>5</volume>
<issue>8</issue>
<elocation-id>e12152</elocation-id>
<history>
<date date-type="received">
<day>31</day>
<month>5</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>7</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>Nogues et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</copyright-statement>
</permissions>
<abstract>
<sec>
<title>Background</title>
<p>Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules.</p>
</sec>
<sec>
<title>Methodology/Principal Findings</title>
<p>We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65) and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative ΔG, ΔS and ΔH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody-antigen interaction where good structural, mechanistic and immunological data are available. Using SPRi we were able to characterise the kinetics of the interaction in greater detail than ELISA/RIA methods. Furthermore, our data indicate that SPRi is well suited to a multiplexed immunoassay using GAD65 proteins, and may be applicable to other biomarkers.</p>
</sec>
</abstract>
<counts>
<page-count count="6"></page-count>
</counts>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A40 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 002A40 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:2921342
   |texte=   Characterisation of Peptide Microarrays for Studying Antibody-Antigen Binding Using Surface Plasmon Resonance Imagery
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:20730101" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024