Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale

Identifieur interne : 000877 ( Pmc/Curation ); précédent : 000876; suivant : 000878

Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale

Auteurs : Michael E. Rutherford [Royaume-Uni] ; David J. Chapman [Royaume-Uni] ; James G. Derrick [Royaume-Uni] ; Jack R. W. Patten [Royaume-Uni] ; Philip A. Bland [Australie] ; Alexander Rack [France] ; Gareth S. Collins [Royaume-Uni] ; Daniel E. Eakins [Royaume-Uni]

Source :

RBID : PMC:5448141

Abstract

Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies.


Url:
DOI: 10.1038/srep45206
PubMed: 28555619
PubMed Central: 5448141

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:5448141

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale</title>
<author>
<name sortKey="Rutherford, Michael E" sort="Rutherford, Michael E" uniqKey="Rutherford M" first="Michael E." last="Rutherford">Michael E. Rutherford</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Institute of Shock Physics, Blackett Laboratory, Imperial College London</institution>
, London SW7 2BW,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chapman, David J" sort="Chapman, David J" uniqKey="Chapman D" first="David J." last="Chapman">David J. Chapman</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Institute of Shock Physics, Blackett Laboratory, Imperial College London</institution>
, London SW7 2BW,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Derrick, James G" sort="Derrick, James G" uniqKey="Derrick J" first="James G." last="Derrick">James G. Derrick</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Department of Earth Science and Engineering, Imperial College London</institution>
, London SW7 2BP,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Patten, Jack R W" sort="Patten, Jack R W" uniqKey="Patten J" first="Jack R. W." last="Patten">Jack R. W. Patten</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Institute of Shock Physics, Blackett Laboratory, Imperial College London</institution>
, London SW7 2BW,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bland, Philip A" sort="Bland, Philip A" uniqKey="Bland P" first="Philip A." last="Bland">Philip A. Bland</name>
<affiliation wicri:level="1">
<nlm:aff id="a3">
<institution>Department of Applied Geology, Curtin University of Technology</institution>
, Perth, WA 6845,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rack, Alexander" sort="Rack, Alexander" uniqKey="Rack A" first="Alexander" last="Rack">Alexander Rack</name>
<affiliation wicri:level="1">
<nlm:aff id="a4">
<institution>European Synchrotron Radiation Facility, Structure of Materials</institution>
, Grenoble,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Collins, Gareth S" sort="Collins, Gareth S" uniqKey="Collins G" first="Gareth S." last="Collins">Gareth S. Collins</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Department of Earth Science and Engineering, Imperial College London</institution>
, London SW7 2BP,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Eakins, Daniel E" sort="Eakins, Daniel E" uniqKey="Eakins D" first="Daniel E." last="Eakins">Daniel E. Eakins</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Institute of Shock Physics, Blackett Laboratory, Imperial College London</institution>
, London SW7 2BW,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28555619</idno>
<idno type="pmc">5448141</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448141</idno>
<idno type="RBID">PMC:5448141</idno>
<idno type="doi">10.1038/srep45206</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000878</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000878</idno>
<idno type="wicri:Area/Pmc/Curation">000877</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000877</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale</title>
<author>
<name sortKey="Rutherford, Michael E" sort="Rutherford, Michael E" uniqKey="Rutherford M" first="Michael E." last="Rutherford">Michael E. Rutherford</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Institute of Shock Physics, Blackett Laboratory, Imperial College London</institution>
, London SW7 2BW,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chapman, David J" sort="Chapman, David J" uniqKey="Chapman D" first="David J." last="Chapman">David J. Chapman</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Institute of Shock Physics, Blackett Laboratory, Imperial College London</institution>
, London SW7 2BW,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Derrick, James G" sort="Derrick, James G" uniqKey="Derrick J" first="James G." last="Derrick">James G. Derrick</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Department of Earth Science and Engineering, Imperial College London</institution>
, London SW7 2BP,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Patten, Jack R W" sort="Patten, Jack R W" uniqKey="Patten J" first="Jack R. W." last="Patten">Jack R. W. Patten</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Institute of Shock Physics, Blackett Laboratory, Imperial College London</institution>
, London SW7 2BW,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bland, Philip A" sort="Bland, Philip A" uniqKey="Bland P" first="Philip A." last="Bland">Philip A. Bland</name>
<affiliation wicri:level="1">
<nlm:aff id="a3">
<institution>Department of Applied Geology, Curtin University of Technology</institution>
, Perth, WA 6845,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rack, Alexander" sort="Rack, Alexander" uniqKey="Rack A" first="Alexander" last="Rack">Alexander Rack</name>
<affiliation wicri:level="1">
<nlm:aff id="a4">
<institution>European Synchrotron Radiation Facility, Structure of Materials</institution>
, Grenoble,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Collins, Gareth S" sort="Collins, Gareth S" uniqKey="Collins G" first="Gareth S." last="Collins">Gareth S. Collins</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Department of Earth Science and Engineering, Imperial College London</institution>
, London SW7 2BP,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Eakins, Daniel E" sort="Eakins, Daniel E" uniqKey="Eakins D" first="Daniel E." last="Eakins">Daniel E. Eakins</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Institute of Shock Physics, Blackett Laboratory, Imperial College London</institution>
, London SW7 2BW,
<country>UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Beitz, E" uniqKey="Beitz E">E. Beitz</name>
</author>
<author>
<name sortKey="Guttler, C" uniqKey="Guttler C">C. Güttler</name>
</author>
<author>
<name sortKey="Nakamura, A M" uniqKey="Nakamura A">A. M. Nakamura</name>
</author>
<author>
<name sortKey="Tsuchiyama, A" uniqKey="Tsuchiyama A">A. Tsuchiyama</name>
</author>
<author>
<name sortKey="Blum, J" uniqKey="Blum J">J. Blum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bland, P A" uniqKey="Bland P">P. A. Bland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davison, T M" uniqKey="Davison T">T. M. Davison</name>
</author>
<author>
<name sortKey="Collins, G S" uniqKey="Collins G">G. S. Collins</name>
</author>
<author>
<name sortKey="Bland, P A" uniqKey="Bland P">P. A. Bland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Syal, M B" uniqKey="Syal M">M. B. Syal</name>
</author>
<author>
<name sortKey="Owen, J M" uniqKey="Owen J">J. M. Owen</name>
</author>
<author>
<name sortKey="Miller, P L" uniqKey="Miller P">P. L. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eakins, D E" uniqKey="Eakins D">D. E. Eakins</name>
</author>
<author>
<name sortKey="Thadhani, N N" uniqKey="Thadhani N">N. N. Thadhani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawreliak, J A" uniqKey="Hawreliak J">J. A. Hawreliak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barker, L M" uniqKey="Barker L">L. M. Barker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vogler, T J" uniqKey="Vogler T">T. J. Vogler</name>
</author>
<author>
<name sortKey="Lee, M Y" uniqKey="Lee M">M. Y. Lee</name>
</author>
<author>
<name sortKey="Grady, D E" uniqKey="Grady D">D. E. Grady</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vogler, T J" uniqKey="Vogler T">T. J. Vogler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schropp, A" uniqKey="Schropp A">A. Schropp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willey, T M" uniqKey="Willey T">T. M. Willey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jensen, B J" uniqKey="Jensen B">B. J. Jensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bland, P A" uniqKey="Bland P">P. A. Bland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collins, G S" uniqKey="Collins G">G. S. Collins</name>
</author>
<author>
<name sortKey="Melosh, H J" uniqKey="Melosh H">H. J. Melosh</name>
</author>
<author>
<name sortKey="Ivanov, B A" uniqKey="Ivanov B">B. A. Ivanov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wunnemann, K" uniqKey="Wunnemann K">K. Wünnemann</name>
</author>
<author>
<name sortKey="Collins, G S" uniqKey="Collins G">G. S. Collins</name>
</author>
<author>
<name sortKey="Melosh, H J" uniqKey="Melosh H">H. J. Melosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forman, L V" uniqKey="Forman L">L. V. Forman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scorzelli, R B" uniqKey="Scorzelli R">R. B. Scorzelli</name>
</author>
<author>
<name sortKey="Azevedo, I S" uniqKey="Azevedo I">I. S. Azevedo</name>
</author>
<author>
<name sortKey="Danon, J" uniqKey="Danon J">J. Danon</name>
</author>
<author>
<name sortKey="Meyers, M A" uniqKey="Meyers M">M. A. Meyers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weitkamp, T" uniqKey="Weitkamp T">T. Weitkamp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eakins, D E" uniqKey="Eakins D">D. E. Eakins</name>
</author>
<author>
<name sortKey="Chapman, D J" uniqKey="Chapman D">D. J. Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stoffler, D" uniqKey="Stoffler D">D. Stoffler</name>
</author>
<author>
<name sortKey="Keil, K" uniqKey="Keil K">K. Keil</name>
</author>
<author>
<name sortKey="Scott, E" uniqKey="Scott E">E. Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scott, E" uniqKey="Scott E">E. Scott</name>
</author>
<author>
<name sortKey="Keil, K" uniqKey="Keil K">K. Keil</name>
</author>
<author>
<name sortKey="Stoffler, D" uniqKey="Stoffler D">D. Stoffler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snigirev, A" uniqKey="Snigirev A">A. Snigirev</name>
</author>
<author>
<name sortKey="Snigireva, I" uniqKey="Snigireva I">I. Snigireva</name>
</author>
<author>
<name sortKey="Kohn, V" uniqKey="Kohn V">V. Kohn</name>
</author>
<author>
<name sortKey="Kuznetsov, S" uniqKey="Kuznetsov S">S. Kuznetsov</name>
</author>
<author>
<name sortKey="Schelokov, I" uniqKey="Schelokov I">I. Schelokov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wulff, M" uniqKey="Wulff M">M. Wulff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, S N" uniqKey="Luo S">S. N. Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gruner, S M" uniqKey="Gruner S">S. M. Gruner</name>
</author>
<author>
<name sortKey="Tate, M W" uniqKey="Tate M">M. W. Tate</name>
</author>
<author>
<name sortKey="Eikenberry, E F" uniqKey="Eikenberry E">E. F. Eikenberry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Canny, J" uniqKey="Canny J">J. Canny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marsh, S P" uniqKey="Marsh S">S. P. Marsh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scott, D W" uniqKey="Scott D">D. W. Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collins, G S" uniqKey="Collins G">G. S. Collins</name>
</author>
<author>
<name sortKey="Melosh, H J" uniqKey="Melosh H">H. J. Melosh</name>
</author>
<author>
<name sortKey="Wunnemann, K" uniqKey="Wunnemann K">K. Wünnemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Batsanov, S S" uniqKey="Batsanov S">S. S. Batsanov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trott, W M" uniqKey="Trott W">W. M. Trott</name>
</author>
<author>
<name sortKey="Baer, M R" uniqKey="Baer M">M. R. Baer</name>
</author>
<author>
<name sortKey="Casta Eda, J N" uniqKey="Casta Eda J">J. N. Castañeda</name>
</author>
<author>
<name sortKey="Chhabildas, L C" uniqKey="Chhabildas L">L. C. Chhabildas</name>
</author>
<author>
<name sortKey="Asay, J R" uniqKey="Asay J">J. R. Asay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fredenburg, D A" uniqKey="Fredenburg D">D. A. Fredenburg</name>
</author>
<author>
<name sortKey="Koller, D D" uniqKey="Koller D">D. D. Koller</name>
</author>
<author>
<name sortKey="Coe, J D" uniqKey="Coe J">J. D. Coe</name>
</author>
<author>
<name sortKey="Kiyanda, C B" uniqKey="Kiyanda C">C. B. Kiyanda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majmudar, T S" uniqKey="Majmudar T">T. S. Majmudar</name>
</author>
<author>
<name sortKey="Behringer, R P" uniqKey="Behringer R">R. P. Behringer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gathers, G R" uniqKey="Gathers G">G. R. Gathers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holt, W H" uniqKey="Holt W">W. H. Holt</name>
</author>
<author>
<name sortKey="Mock, W" uniqKey="Mock W">W. Mock</name>
</author>
<author>
<name sortKey="Anderson, M U" uniqKey="Anderson M">M. U. Anderson</name>
</author>
<author>
<name sortKey="Holman, G T" uniqKey="Holman G">G. T. Holman</name>
</author>
<author>
<name sortKey="Graham, R A" uniqKey="Graham R">R. A. Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eakins, D E" uniqKey="Eakins D">D. E. Eakins</name>
</author>
<author>
<name sortKey="Thadhani, N N" uniqKey="Thadhani N">N. N. Thadhani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benson, D J" uniqKey="Benson D">D. J. Benson</name>
</author>
<author>
<name sortKey="Nesterenko, V F" uniqKey="Nesterenko V">V. F. Nesterenko</name>
</author>
<author>
<name sortKey="Jonsdottir, F" uniqKey="Jonsdottir F">F. Jonsdottir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borg, J P" uniqKey="Borg J">J. P. Borg</name>
</author>
<author>
<name sortKey="Vogler, T J" uniqKey="Vogler T">T. J. Vogler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rutherford, M E" uniqKey="Rutherford M">M. E. Rutherford</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28555619</article-id>
<article-id pub-id-type="pmc">5448141</article-id>
<article-id pub-id-type="pii">srep45206</article-id>
<article-id pub-id-type="doi">10.1038/srep45206</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Rutherford</surname>
<given-names>Michael E.</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chapman</surname>
<given-names>David J.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Derrick</surname>
<given-names>James G.</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Patten</surname>
<given-names>Jack R. W.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bland</surname>
<given-names>Philip A.</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rack</surname>
<given-names>Alexander</given-names>
</name>
<xref ref-type="aff" rid="a4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Collins</surname>
<given-names>Gareth S.</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Eakins</surname>
<given-names>Daniel E.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Institute of Shock Physics, Blackett Laboratory, Imperial College London</institution>
, London SW7 2BW,
<country>UK</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Department of Earth Science and Engineering, Imperial College London</institution>
, London SW7 2BP,
<country>UK</country>
</aff>
<aff id="a3">
<label>3</label>
<institution>Department of Applied Geology, Curtin University of Technology</institution>
, Perth, WA 6845,
<country>Australia</country>
</aff>
<aff id="a4">
<label>4</label>
<institution>European Synchrotron Radiation Facility, Structure of Materials</institution>
, Grenoble,
<country>France</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>m.rutherford13@imperial.ac.uk</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>30</day>
<month>05</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>7</volume>
<elocation-id>45206</elocation-id>
<history>
<date date-type="received">
<day>28</day>
<month>11</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>02</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2017, The Author(s)</copyright-statement>
<copyright-year>2017</copyright-year>
<copyright-holder>The Author(s)</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies.</p>
</abstract>
</article-meta>
</front>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Illustration of the dynamic X-ray radiography experiments.</title>
<p>Samples were shock compressed by flyer plate impact at ~600 ms
<sup>−1</sup>
. Material deformation was examined
<italic>in-situ</italic>
using single bunch, hard X-ray phase-contrast radiography transverse to the impact direction. Two radiographs were recorded per shot. The X-ray radiography was synchronised to the impact process via pre-impact light gates and a train of triggers in-phase with the X-ray bunches delivered by Beamline ID19. (
<bold>a</bold>
) Spectral flux per bunch through an on-axis 1 mm
<sup>2</sup>
area delivered by Beamline ID19 in the four bunch mode (40 mA storage ring current), including 2.8 mm diamond and 1.4 mm aluminium filtering. The total flux was 1.2 × 10
<sup>9</sup>
photons s
<sup>−1</sup>
mm
<sup>−2</sup>
on-axis. (
<bold>b</bold>
) Illustration of the target geometry. A bimodal powder mixture was contained in a cylindrical aluminium cell, sealed on the impact surface by a polycarbonate driver plate and the rear surface by a polycarbonate backer. (
<bold>c</bold>
) Results of a decay scan measurement of the emission from LYSO:Ce as a function of time, showing that the bunch structure is well-resolved with a negligible background between bunches
<xref ref-type="bibr" rid="b39">39</xref>
.</p>
</caption>
<graphic xlink:href="srep45206-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<p>Scanning electron micrographs of (
<bold>a</bold>
) sipernat 320-DS powder, (
<bold>b</bold>
) soda-lime microspheres (196 μm mean diameter and (
<bold>c</bold>
) soda-lime microspheres (425 μm mean diameter). Data were recorded with a JSM5610LV scanning electron microscope at 20 kV.</p>
</caption>
<graphic xlink:href="srep45206-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Representative single-bunch radiographs recorded on both mixture types.</title>
<p>(Left): To-scale illustration of the impact experiments with impact occurring from left to right. The approximate radiography field of view is shown as a red dotted line. (Top row): Radiographs recorded on a small chondrule mixture experiment. (
<bold>a</bold>
) Pre-shot radiograph with the driver/powder interface shown in red. (
<bold>b</bold>
) and (
<bold>c</bold>
) Radiographs recorded 2.40 μs and 4.52 μs after the shock wave arrived at the driver/powder interface, respectively. The shocked driver/powder interface is shown in red and the shock front is shown in white. (Bottom row): Radiographs recorded on a large chondrule mixture experiment. (
<bold>d</bold>
) Pre-shot radiograph. (
<bold>e</bold>
) and (
<bold>f</bold>
) Radiographs recorded 2.32 μs and 4.44 μs after the shock wave arrived at the driver/powder interface, respectively. Interfaces are marked similarly to the small chondrule radiographs. In both cases a blank polycarboante sabot impacted the polycarbonate driver plate at 633 ± 23 ms
<sup>−1</sup>
.</p>
</caption>
<graphic xlink:href="srep45206-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Measured on-axis (
<italic>U</italic>
<sub>
<italic>wf</italic>
</sub>
,
<italic>U</italic>
<sub>
<italic>dp</italic>
</sub>
) pairs, determined as the mean shock/particle velocities observed in a centred 10-chondrule-diameter region of the radiographs.</title>
<p>Error bars represent +/− 2 standard deviations from the mean in the on-axis region. Small and large chondrule mixture data are shown by red and blue markers, respectively. A calculated band of Hugoniot states representing bimodal mixtures with initial matrix densities spanning 24% to 29% solid density is shown in teal. (Inset): A zoomed in region between
<italic>U</italic>
<sub>
<italic>dp</italic>
</sub>
 = 200–600 ms
<sup>−1</sup>
.</p>
</caption>
<graphic xlink:href="srep45206-f4"></graphic>
</fig>
<fig id="f5">
<label>Figure 5</label>
<caption>
<p>(
<bold>a</bold>
) Spatially-resolved wavefronts as a function of time for small and large chondrule mixtures impacted with a polycarbonate flyer. Colormaps and colorbars indicate wavefront velocity magnitude: small chondrules (blue/green/yellow), large chondrules (black/red/yellow). In both cases, the on-axis shock velocities as a function of time are plotted on the rear axes. Wave front curvature is seen to decrease as a function of time. The on-axis values show a gradually decreasing wave speed over the duration of the experiment. These spatially-resolved lineouts emphasise the diversity in shock states that exist within a powder bed. (
<bold>b</bold>
) On-axis shock velocities as a function of time for chondrule samples impacted with a polycarbonate flyer (upper figure) and copper flyer (lower figure). Arrows connect pairs of data points (one datum for each radiograph) measured on the same shot and thus, the same initial sample configuration. Therefore, the PC-PC figure contains data from four shots and the Cu-PC figure contains data from three shots. A larger initial shock velocity that decreased more quickly over time was observed in the large chondrule mixtures. It should be re-emphasised that while the error bars appear relatively large they represent 4
<italic>σ</italic>
of the normally-distributed shock states in the powder mixtures.</p>
</caption>
<graphic xlink:href="srep45206-f5"></graphic>
</fig>
<fig id="f6">
<label>Figure 6</label>
<caption>
<title>Wavefront thickness as a function of time for both sample mixtures and loading conditions.</title>
<p>Blue triangles: Large chondrule mixtures impacted with a polycarbonate flyer, Purple diamonds: Large chondrule mixtures impacted with a copper flyer, Red circles: Small chondrule mixtures impacted with a polycarbonate flyer, Teal squares: Small chondrule mixtures impacted with a copper flyer. Linear fits to each data set are also shown. All data sets showed a similar rate of wavefront thickness increase over time. In most cases the markers occlude the timing error bars.</p>
</caption>
<graphic xlink:href="srep45206-f6"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>Table 1</label>
<caption>
<title>Rate of wavefront thickness increase.</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
</colgroup>
<thead valign="bottom">
<tr>
<th align="left" valign="top" charoff="50">Chondrule Size</th>
<th align="center" valign="top" charoff="50">Mean Chondrule Size (μm)</th>
<th align="center" valign="top" charoff="50">Loading condition</th>
<th align="center" valign="top" charoff="50">Rate of wavefront thickness increase (μm μs
<sup>−1</sup>
)</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" charoff="50">Small</td>
<td align="center" valign="top" charoff="50">196</td>
<td align="center" valign="top" charoff="50">PC-PC</td>
<td align="center" valign="top" charoff="50">88 ± 11</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Small</td>
<td align="center" valign="top" charoff="50">196</td>
<td align="center" valign="top" charoff="50">Cu-PC</td>
<td align="center" valign="top" charoff="50">92 ± 0</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Large</td>
<td align="center" valign="top" charoff="50">425</td>
<td align="center" valign="top" charoff="50">PC-PC</td>
<td align="center" valign="top" charoff="50">94 ± 11</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Large</td>
<td align="center" valign="top" charoff="50">425</td>
<td align="center" valign="top" charoff="50">Cu-PC</td>
<td align="center" valign="top" charoff="50">90 ± 70</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000877 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000877 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:5448141
   |texte=   Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:28555619" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024