Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On-chip generation of heralded photon-number states

Identifieur interne : 000849 ( Pmc/Curation ); précédent : 000848; suivant : 000850

On-chip generation of heralded photon-number states

Auteurs : Panagiotis Vergyris [France] ; Thomas Meany [Australie] ; Tommaso Lunghi [France] ; Gregory Sauder [France] ; James Downes [Australie] ; M. J. Steel [Australie] ; Michael J. Withford [Australie] ; Olivier Alibart [France] ; Sébastien Tanzilli [France]

Source :

RBID : PMC:5075903

Abstract

Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.


Url:
DOI: 10.1038/srep35975
PubMed: 27775062
PubMed Central: 5075903

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:5075903

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">On-chip generation of heralded photon-number states</title>
<author>
<name sortKey="Vergyris, Panagiotis" sort="Vergyris, Panagiotis" uniqKey="Vergyris P" first="Panagiotis" last="Vergyris">Panagiotis Vergyris</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Meany, Thomas" sort="Meany, Thomas" uniqKey="Meany T" first="Thomas" last="Meany">Thomas Meany</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University</institution>
, North Ryde, 2109 NSW,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lunghi, Tommaso" sort="Lunghi, Tommaso" uniqKey="Lunghi T" first="Tommaso" last="Lunghi">Tommaso Lunghi</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sauder, Gregory" sort="Sauder, Gregory" uniqKey="Sauder G" first="Gregory" last="Sauder">Gregory Sauder</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Downes, James" sort="Downes, James" uniqKey="Downes J" first="James" last="Downes">James Downes</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University</institution>
, North Ryde, 2109 NSW,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Steel, M J" sort="Steel, M J" uniqKey="Steel M" first="M. J." last="Steel">M. J. Steel</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University</institution>
, North Ryde, 2109 NSW,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Withford, Michael J" sort="Withford, Michael J" uniqKey="Withford M" first="Michael J." last="Withford">Michael J. Withford</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University</institution>
, North Ryde, 2109 NSW,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Alibart, Olivier" sort="Alibart, Olivier" uniqKey="Alibart O" first="Olivier" last="Alibart">Olivier Alibart</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tanzilli, Sebastien" sort="Tanzilli, Sebastien" uniqKey="Tanzilli S" first="Sébastien" last="Tanzilli">Sébastien Tanzilli</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27775062</idno>
<idno type="pmc">5075903</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075903</idno>
<idno type="RBID">PMC:5075903</idno>
<idno type="doi">10.1038/srep35975</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000850</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000850</idno>
<idno type="wicri:Area/Pmc/Curation">000849</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000849</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">On-chip generation of heralded photon-number states</title>
<author>
<name sortKey="Vergyris, Panagiotis" sort="Vergyris, Panagiotis" uniqKey="Vergyris P" first="Panagiotis" last="Vergyris">Panagiotis Vergyris</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Meany, Thomas" sort="Meany, Thomas" uniqKey="Meany T" first="Thomas" last="Meany">Thomas Meany</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University</institution>
, North Ryde, 2109 NSW,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lunghi, Tommaso" sort="Lunghi, Tommaso" uniqKey="Lunghi T" first="Tommaso" last="Lunghi">Tommaso Lunghi</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sauder, Gregory" sort="Sauder, Gregory" uniqKey="Sauder G" first="Gregory" last="Sauder">Gregory Sauder</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Downes, James" sort="Downes, James" uniqKey="Downes J" first="James" last="Downes">James Downes</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University</institution>
, North Ryde, 2109 NSW,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Steel, M J" sort="Steel, M J" uniqKey="Steel M" first="M. J." last="Steel">M. J. Steel</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University</institution>
, North Ryde, 2109 NSW,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Withford, Michael J" sort="Withford, Michael J" uniqKey="Withford M" first="Michael J." last="Withford">Michael J. Withford</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University</institution>
, North Ryde, 2109 NSW,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Alibart, Olivier" sort="Alibart, Olivier" uniqKey="Alibart O" first="Olivier" last="Alibart">Olivier Alibart</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tanzilli, Sebastien" sort="Tanzilli, Sebastien" uniqKey="Tanzilli S" first="Sébastien" last="Tanzilli">Sébastien Tanzilli</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques,
<italic>i.e.</italic>
, non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Peruzzo, A" uniqKey="Peruzzo A">A. Peruzzo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaiser, F" uniqKey="Kaiser F">F. Kaiser</name>
</author>
<author>
<name sortKey="Coudreau, T" uniqKey="Coudreau T">T. Coudreau</name>
</author>
<author>
<name sortKey="Milman, P" uniqKey="Milman P">P. Milman</name>
</author>
<author>
<name sortKey="Ostrowsky, D B" uniqKey="Ostrowsky D">D. B. Ostrowsky</name>
</author>
<author>
<name sortKey="Tanzilli, S" uniqKey="Tanzilli S">S. Tanzilli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hensen, B" uniqKey="Hensen B">B. Hensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gisin, N" uniqKey="Gisin N">N. Gisin</name>
</author>
<author>
<name sortKey="Ribordy, G" uniqKey="Ribordy G">G. Ribordy</name>
</author>
<author>
<name sortKey="Tittel, W" uniqKey="Tittel W">W. Tittel</name>
</author>
<author>
<name sortKey="Zbinden, H" uniqKey="Zbinden H">H. Zbinden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Korzh, B" uniqKey="Korzh B">B. Korzh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Rien, J L" uniqKey="O Rien J">J. L. O’Brien</name>
</author>
<author>
<name sortKey="Furusawa, A" uniqKey="Furusawa A">A. Furusawa</name>
</author>
<author>
<name sortKey="Vuckovic, J" uniqKey="Vuckovic J">J. Vuckovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanzilli, S" uniqKey="Tanzilli S">S. Tanzilli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krapick, S" uniqKey="Krapick S">S. Krapick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silverstone, J" uniqKey="Silverstone J">J. Silverstone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H. Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giovannetti, V" uniqKey="Giovannetti V">V. Giovannetti</name>
</author>
<author>
<name sortKey="Lloyd, S" uniqKey="Lloyd S">S. Lloyd</name>
</author>
<author>
<name sortKey="Maccone, L" uniqKey="Maccone L">L. Maccone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lanyon, B P" uniqKey="Lanyon B">B. P. Lanyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, A" uniqKey="Martin A">A. Martin</name>
</author>
<author>
<name sortKey="Alibart, O" uniqKey="Alibart O">O. Alibart</name>
</author>
<author>
<name sortKey="De Micheli, M P" uniqKey="De Micheli M">M. P. De Micheli</name>
</author>
<author>
<name sortKey="Ostrowsky, D B" uniqKey="Ostrowsky D">D. B. Ostrowsky</name>
</author>
<author>
<name sortKey="Tanzilli, S" uniqKey="Tanzilli S">S. Tanzilli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Metcalf, B J" uniqKey="Metcalf B">B. J. Metcalf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tillman, M" uniqKey="Tillman M">M. Tillman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crespi, A" uniqKey="Crespi A">A. Crespi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knill, E" uniqKey="Knill E">E. Knill</name>
</author>
<author>
<name sortKey="Laflamme, R" uniqKey="Laflamme R">R. Laflamme</name>
</author>
<author>
<name sortKey="Milburn, G J" uniqKey="Milburn G">G. J. Milburn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, R N" uniqKey="Patel R">R. N. Patel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Somaschi, N" uniqKey="Somaschi N">N. Somaschi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, X" uniqKey="Ding X">X. Ding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, X C" uniqKey="Yao X">X. C. Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collins, M J" uniqKey="Collins M">M. J. Collins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meany, T" uniqKey="Meany T">T. Meany</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murray, E" uniqKey="Murray E">E. Murray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Najafi, F" uniqKey="Najafi F">F. Najafi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanzilli, S" uniqKey="Tanzilli S">S. Tanzilli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meany, T" uniqKey="Meany T">T. Meany</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Z Chaboyer, Z" uniqKey="Z Chaboyer Z">Z. Z. Chaboyer</name>
</author>
<author>
<name sortKey="Meany, T" uniqKey="Meany T">T. Meany</name>
</author>
<author>
<name sortKey="Helt, L G" uniqKey="Helt L">L. G. Helt</name>
</author>
<author>
<name sortKey="Withford, M J" uniqKey="Withford M">M. J. Withford</name>
</author>
<author>
<name sortKey="Steel, M J" uniqKey="Steel M">M. J. Steel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, C K" uniqKey="Hong C">C. K. Hong</name>
</author>
<author>
<name sortKey="Ou, Z Y" uniqKey="Ou Z">Z. Y. Ou</name>
</author>
<author>
<name sortKey="Mandel, L" uniqKey="Mandel L">L. Mandel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matthews, J C F" uniqKey="Matthews J">J. C. F. Matthews</name>
</author>
<author>
<name sortKey="Politi, A" uniqKey="Politi A">A. Politi</name>
</author>
<author>
<name sortKey="Bonneau, D" uniqKey="Bonneau D">D. Bonneau</name>
</author>
<author>
<name sortKey="O Rien, J L" uniqKey="O Rien J">J. L. O’Brien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kruse, R" uniqKey="Kruse R">R. Kruse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Setzpfandt, F" uniqKey="Setzpfandt F">F. Setzpfandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arriola, A" uniqKey="Arriola A">A. Arriola</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27775062</article-id>
<article-id pub-id-type="pmc">5075903</article-id>
<article-id pub-id-type="pii">srep35975</article-id>
<article-id pub-id-type="doi">10.1038/srep35975</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>On-chip generation of heralded photon-number states</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Vergyris</surname>
<given-names>Panagiotis</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Meany</surname>
<given-names>Thomas</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lunghi</surname>
<given-names>Tommaso</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sauder</surname>
<given-names>Gregory</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Downes</surname>
<given-names>James</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Steel</surname>
<given-names>M. J.</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Withford</surname>
<given-names>Michael J.</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Alibart</surname>
<given-names>Olivier</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tanzilli</surname>
<given-names>Sébastien</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Université Côte d’Azur, CNRS, Laboratoire de Physique de la Matière Condensée</institution>
,
<country>France</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University</institution>
, North Ryde, 2109 NSW,
<country>Australia</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>sebastien.tanzilli@unice.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>24</day>
<month>10</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>6</volume>
<elocation-id>35975</elocation-id>
<history>
<date date-type="received">
<day>04</day>
<month>07</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>07</day>
<month>10</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016, The Author(s)</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>The Author(s)</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques,
<italic>i.e.</italic>
, non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.</p>
</abstract>
</article-meta>
</front>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Integrated tunable N00N state generator.</title>
<p>A ps-laser at 712 nm is coupled to an integrated directional coupler (block I on the left) to simultaneously pump two PPLN/ws (block II in the center). Each produces pairs of photons at 1310/1560 nm by SPDC. Each pair is then coupled to the state-engineering chip (block III on the right) and are deterministically separated by means of integrated WDMs. The two 1310 nm photons herald the complementary 1560 nm photons routed towards a Mach-Zehnder interferometer (MZI), which can be phase-controlled using a thermo-optic, voltage-driven, transducer placed over one of its two arms. Detection scheme: the photons are collected using single mode optical fibers. A filtering stage selects a single temporal mode per pulse. Finally, quantum correlations are measured by recording 4-fold coincidences using two detectors at the two output modes of the MZI, triggered by the detection of two heralding photons in the external modes. Filtering stage: fiber Bragg gratings (FBG) filters, wavelength-division multiplexers (WDM), Detection system: avalanche photodiodes (APD), time-to-digital converter (TDC), DC: 50/50 coupler, V: voltage controller,
<italic>δt</italic>
: laser pulse duration,
<italic>F</italic>
: laser repetition frequency.</p>
</caption>
<graphic xlink:href="srep35975-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Phase settings dependent coincidence histograms.</title>
<p>The TDC permits the measurement of quantum correlations with a start and a stop given from the heralded detectors, and Δ
<italic>T</italic>
is referred to as time interval between associated “start” and “stop” events. (
<bold>a1</bold>
) When the two photons enter the MZI simultaneously, they interfere according to
<xref ref-type="disp-formula" rid="eq1">Eq. 1</xref>
. We therefore observe two-photon interference, associated with fringes with a period of
<italic>π</italic>
for Δ
<italic>T</italic>
 = 0. (
<bold>a2</bold>
) Single-photon interference can also be observed for events when only one photon-pair has been generated in one of the two PPLN/ws with time interval Δ
<italic>T</italic>
 = 
<italic></italic>
 ≠ 0, (
<italic>n</italic>
 = 0, ±1, ±2…). Since the heralded detectors are only triggered according to the detection scheme described in the main text (see also
<xref ref-type="fig" rid="f1">Fig. 1</xref>
), we observe single-photon interference patterns with a period of 2
<italic>π</italic>
. (
<bold>b</bold>
) Coincidence histogram recorded for 3 different phase settings. The coincidence peak at Δ
<italic>T</italic>
 = 0 comes from simultaneous detection events and is associated with two-photon interference. Note that the coincidence peaks that rise at Δ
<italic>T</italic>
 = 
<italic></italic>
are associated with single photon interference. As can be seen, and as predicted by
<xref ref-type="disp-formula" rid="eq9">Eq. 2</xref>
, no coincidence peak emerges for Δ
<italic>ϕ</italic>
 = 3
<italic>π</italic>
/2 (coalescence effect) while it rises up for other phase settings.</p>
</caption>
<graphic xlink:href="srep35975-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Experimental results.</title>
<p>Interference patterns recorded at the output of the device as a function of the phase setting in the MZI. Here blue and red data are given for two-photon and single photon interference, respectively. The uncertainty associated with each point has been calculated using standard squared root deviation associated with the Poissonian distribution of the photocounts. The curves are fits of
<xref ref-type="disp-formula" rid="eq9">Eqs 5</xref>
and
<xref ref-type="disp-formula" rid="eq8">6</xref>
to the experimental data where the only free parameters are the visibility and the amplitude.</p>
</caption>
<graphic xlink:href="srep35975-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Calibration of the phase of the MZI as a function of the applied voltage.</title>
<p>The phase control is achieved using an external voltage generation that creates a temperature gradient between the two arms of the MZI. The temperature gradient increases as a function of the applied voltage in a non-linear way due to the thermal diffusion into the chip (The red line is a guide to the eye).</p>
</caption>
<graphic xlink:href="srep35975-f4"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000849 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000849 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:5075903
   |texte=   On-chip generation of heralded photon-number states
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:27775062" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024