Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative determination of the surfactant-induced split ratio of influenza virus by fluorescence spectroscopy

Identifieur interne : 000444 ( Pmc/Curation ); précédent : 000443; suivant : 000445

Quantitative determination of the surfactant-induced split ratio of influenza virus by fluorescence spectroscopy

Auteurs : Kenny Kwon Ho Lee [Australie] ; Yusuf Ziya Sahin [Australie] ; Ronald Neeleman [France] ; Bernhardt L. Trout [États-Unis] ; Veysel Kayser [Australie]

Source :

RBID : PMC:4964811

Abstract

ABSTRACT

The majority of marketed seasonal influenza vaccines are prepared using viruses that are chemically inactivated and treated with a surfactant. Treating with surfactants has important consequences: it produces ‘split viruses’ by solubilizing viral membranes, stabilizes free membrane proteins and ensures a low level of reactogenicity while retaining high vaccine potency. The formulation stability and potency of split influenza vaccines are largely determined by the specifics of this ‘splitting’ process; namely, the consequent conformational changes of proteins and interactions of solubilized particles, which may form aggregates. Robust methods to quantitatively determine the split ratio need to be developed before optimal splitting conditions can be investigated to streamline production of superior influenza vaccines. Here, we present a quantitative method, based on both steady-state and time-resolved fluorescence spectroscopy, to calculate the split ratio of the virus after surfactant treatment. We use the lipophilic dye Nile Red (NR) as a probe to elucidate molecular interactions and track changes in molecular environments. Inactivated whole influenza viruses obtained from a sucrose gradient were incubated with NR and subsequently treated with increasing concentrations of the surfactant Triton X-100 (TX-100) to induce virus splitting. NR's emission spectra showed that the addition of TX-100 caused ˜27 nm red-shifts in the emission peak, indicative of increasingly hydrophilic environments surrounding NR. The emission spectra of NR at different surfactant concentrations were analyzed with multi-peak fitting to ascertain the number of different micro-environments surrounding NR and track its population change in these different environments. Results from both the emission spectra and fluorescence lifetime spectroscopy revealed that NR showed presence in 3 distinct molecular environments. The split ratio of the virus was then calculated from the percentages of NR in these environments using both fluorescence emission and lifetime data. This study can pave the way for the development of robust methods to rapidly quantify splitting extent during vaccine manufacturing.


Url:
DOI: 10.1080/21645515.2016.1141846
PubMed: 26901837
PubMed Central: 4964811

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4964811

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative determination of the surfactant-induced split ratio of influenza virus by fluorescence spectroscopy</title>
<author>
<name sortKey="Lee, Kenny Kwon Ho" sort="Lee, Kenny Kwon Ho" uniqKey="Lee K" first="Kenny Kwon Ho" last="Lee">Kenny Kwon Ho Lee</name>
<affiliation wicri:level="1">
<nlm:aff id="af0001">
<institution>Faculty of Pharmacy, The University of Sydney</institution>
, Sydney,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sahin, Yusuf Ziya" sort="Sahin, Yusuf Ziya" uniqKey="Sahin Y" first="Yusuf Ziya" last="Sahin">Yusuf Ziya Sahin</name>
<affiliation wicri:level="1">
<nlm:aff id="af0001">
<institution>Faculty of Pharmacy, The University of Sydney</institution>
, Sydney,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Neeleman, Ronald" sort="Neeleman, Ronald" uniqKey="Neeleman R" first="Ronald" last="Neeleman">Ronald Neeleman</name>
<affiliation wicri:level="1">
<nlm:aff id="af0002">
<institution>Global Technologies Innovation, Sanofi–Pasteur</institution>
, Marcy l'Etoile,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Trout, Bernhardt L" sort="Trout, Bernhardt L" uniqKey="Trout B" first="Bernhardt L." last="Trout">Bernhardt L. Trout</name>
<affiliation wicri:level="1">
<nlm:aff id="af0003">
<institution>Department of Chemical Engineering, MIT</institution>
, Cambridge, MA,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kayser, Veysel" sort="Kayser, Veysel" uniqKey="Kayser V" first="Veysel" last="Kayser">Veysel Kayser</name>
<affiliation wicri:level="1">
<nlm:aff id="af0001">
<institution>Faculty of Pharmacy, The University of Sydney</institution>
, Sydney,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26901837</idno>
<idno type="pmc">4964811</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964811</idno>
<idno type="RBID">PMC:4964811</idno>
<idno type="doi">10.1080/21645515.2016.1141846</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000444</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000444</idno>
<idno type="wicri:Area/Pmc/Curation">000444</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000444</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Quantitative determination of the surfactant-induced split ratio of influenza virus by fluorescence spectroscopy</title>
<author>
<name sortKey="Lee, Kenny Kwon Ho" sort="Lee, Kenny Kwon Ho" uniqKey="Lee K" first="Kenny Kwon Ho" last="Lee">Kenny Kwon Ho Lee</name>
<affiliation wicri:level="1">
<nlm:aff id="af0001">
<institution>Faculty of Pharmacy, The University of Sydney</institution>
, Sydney,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sahin, Yusuf Ziya" sort="Sahin, Yusuf Ziya" uniqKey="Sahin Y" first="Yusuf Ziya" last="Sahin">Yusuf Ziya Sahin</name>
<affiliation wicri:level="1">
<nlm:aff id="af0001">
<institution>Faculty of Pharmacy, The University of Sydney</institution>
, Sydney,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Neeleman, Ronald" sort="Neeleman, Ronald" uniqKey="Neeleman R" first="Ronald" last="Neeleman">Ronald Neeleman</name>
<affiliation wicri:level="1">
<nlm:aff id="af0002">
<institution>Global Technologies Innovation, Sanofi–Pasteur</institution>
, Marcy l'Etoile,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Trout, Bernhardt L" sort="Trout, Bernhardt L" uniqKey="Trout B" first="Bernhardt L." last="Trout">Bernhardt L. Trout</name>
<affiliation wicri:level="1">
<nlm:aff id="af0003">
<institution>Department of Chemical Engineering, MIT</institution>
, Cambridge, MA,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kayser, Veysel" sort="Kayser, Veysel" uniqKey="Kayser V" first="Veysel" last="Kayser">Veysel Kayser</name>
<affiliation wicri:level="1">
<nlm:aff id="af0001">
<institution>Faculty of Pharmacy, The University of Sydney</institution>
, Sydney,
<country>Australia</country>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Human Vaccines & Immunotherapeutics</title>
<idno type="ISSN">2164-5515</idno>
<idno type="eISSN">2164-554X</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>ABSTRACT</title>
<p>The majority of marketed seasonal influenza vaccines are prepared using viruses that are chemically inactivated and treated with a surfactant. Treating with surfactants has important consequences: it produces ‘split viruses’ by solubilizing viral membranes, stabilizes free membrane proteins and ensures a low level of reactogenicity while retaining high vaccine potency. The formulation stability and potency of split influenza vaccines are largely determined by the specifics of this ‘splitting’ process; namely, the consequent conformational changes of proteins and interactions of solubilized particles, which may form aggregates. Robust methods to quantitatively determine the split ratio need to be developed before optimal splitting conditions can be investigated to streamline production of superior influenza vaccines. Here, we present a quantitative method, based on both steady-state and time-resolved fluorescence spectroscopy, to calculate the split ratio of the virus after surfactant treatment. We use the lipophilic dye Nile Red (NR) as a probe to elucidate molecular interactions and track changes in molecular environments. Inactivated whole influenza viruses obtained from a sucrose gradient were incubated with NR and subsequently treated with increasing concentrations of the surfactant Triton X-100 (TX-100) to induce virus splitting. NR's emission spectra showed that the addition of TX-100 caused ˜27 nm red-shifts in the emission peak, indicative of increasingly hydrophilic environments surrounding NR. The emission spectra of NR at different surfactant concentrations were analyzed with multi-peak fitting to ascertain the number of different micro-environments surrounding NR and track its population change in these different environments. Results from both the emission spectra and fluorescence lifetime spectroscopy revealed that NR showed presence in 3 distinct molecular environments. The split ratio of the virus was then calculated from the percentages of NR in these environments using both fluorescence emission and lifetime data. This study can pave the way for the development of robust methods to rapidly quantify splitting extent during vaccine manufacturing.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Hum Vaccin Immunother</journal-id>
<journal-id journal-id-type="iso-abbrev">Hum Vaccin Immunother</journal-id>
<journal-id journal-id-type="publisher-id">KHVI</journal-id>
<journal-id journal-id-type="publisher-id">khvi20</journal-id>
<journal-title-group>
<journal-title>Human Vaccines & Immunotherapeutics</journal-title>
</journal-title-group>
<issn pub-type="ppub">2164-5515</issn>
<issn pub-type="epub">2164-554X</issn>
<publisher>
<publisher-name>Taylor & Francis</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26901837</article-id>
<article-id pub-id-type="pmc">4964811</article-id>
<article-id pub-id-type="publisher-id">1141846</article-id>
<article-id pub-id-type="doi">10.1080/21645515.2016.1141846</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Papers</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Quantitative determination of the surfactant-induced split ratio of influenza virus by fluorescence spectroscopy</article-title>
<alt-title alt-title-type="running-authors">k. k. h. lee et al.</alt-title>
<alt-title alt-title-type="running-title">Human Vaccines & Immunotherapeutics</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Kenny Kwon Ho</given-names>
</name>
<xref ref-type="aff" rid="af0001">
<sup>a</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sahin</surname>
<given-names>Yusuf Ziya</given-names>
</name>
<xref ref-type="aff" rid="af0001">
<sup>a</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Neeleman</surname>
<given-names>Ronald</given-names>
</name>
<xref ref-type="aff" rid="af0002">
<sup>b</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Trout</surname>
<given-names>Bernhardt L.</given-names>
</name>
<xref ref-type="aff" rid="af0003">
<sup>c</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kayser</surname>
<given-names>Veysel</given-names>
</name>
<xref ref-type="aff" rid="af0001">
<sup>a</sup>
</xref>
<xref ref-type="corresp" rid="an0001"></xref>
</contrib>
<aff id="af0001">
<label>a</label>
<institution>Faculty of Pharmacy, The University of Sydney</institution>
, Sydney,
<country>Australia</country>
</aff>
<aff id="af0002">
<label>b</label>
<institution>Global Technologies Innovation, Sanofi–Pasteur</institution>
, Marcy l'Etoile,
<country>France</country>
</aff>
<aff id="af0003">
<label>c</label>
<institution>Department of Chemical Engineering, MIT</institution>
, Cambridge, MA,
<country>USA</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="an0001">
<bold>CONTACT</bold>
Veysel Kayser
<email xlink:href="veysel.kayser@sydney.edu.au">veysel.kayser@sydney.edu.au</email>
<institution>Faculty of Pharmacy, The University of Sydney, Pharmacy and Bank Building (A15)</institution>
,
<addr-line>Science Rd</addr-line>
, Camperdown, NSW 2006,
<country>Australia</country>
.</corresp>
<fn id="afn0001">
<p>Color versions of one or more figures in this article can be found online at www.tandfonline.com/khvi.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>7</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>22</day>
<month>2</month>
<year>2016</year>
</pub-date>
<volume>12</volume>
<issue>7</issue>
<fpage seq="13">1757</fpage>
<lpage>1765</lpage>
<history>
<date date-type="received">
<day>2</day>
<month>11</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>24</day>
<month>12</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>11</day>
<month>1</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© 2016 Taylor & Francis</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Taylor & Francis</copyright-holder>
</permissions>
<self-uri content-type="pdf" xlink:href="khvi-12-07-1141846.pdf"></self-uri>
<abstract>
<title>ABSTRACT</title>
<p>The majority of marketed seasonal influenza vaccines are prepared using viruses that are chemically inactivated and treated with a surfactant. Treating with surfactants has important consequences: it produces ‘split viruses’ by solubilizing viral membranes, stabilizes free membrane proteins and ensures a low level of reactogenicity while retaining high vaccine potency. The formulation stability and potency of split influenza vaccines are largely determined by the specifics of this ‘splitting’ process; namely, the consequent conformational changes of proteins and interactions of solubilized particles, which may form aggregates. Robust methods to quantitatively determine the split ratio need to be developed before optimal splitting conditions can be investigated to streamline production of superior influenza vaccines. Here, we present a quantitative method, based on both steady-state and time-resolved fluorescence spectroscopy, to calculate the split ratio of the virus after surfactant treatment. We use the lipophilic dye Nile Red (NR) as a probe to elucidate molecular interactions and track changes in molecular environments. Inactivated whole influenza viruses obtained from a sucrose gradient were incubated with NR and subsequently treated with increasing concentrations of the surfactant Triton X-100 (TX-100) to induce virus splitting. NR's emission spectra showed that the addition of TX-100 caused ˜27 nm red-shifts in the emission peak, indicative of increasingly hydrophilic environments surrounding NR. The emission spectra of NR at different surfactant concentrations were analyzed with multi-peak fitting to ascertain the number of different micro-environments surrounding NR and track its population change in these different environments. Results from both the emission spectra and fluorescence lifetime spectroscopy revealed that NR showed presence in 3 distinct molecular environments. The split ratio of the virus was then calculated from the percentages of NR in these environments using both fluorescence emission and lifetime data. This study can pave the way for the development of robust methods to rapidly quantify splitting extent during vaccine manufacturing.</p>
</abstract>
<kwd-group kwd-group-type="author">
<title>KEYWORDS</title>
<kwd>fluorescence emission</kwd>
<kwd>fluorescence lifetime</kwd>
<kwd>influenza split virus vaccine</kwd>
<kwd>influenza virus</kwd>
<kwd>membrane-surfactant interactions</kwd>
<kwd>Nile Red</kwd>
<kwd>partitioning of dye in membranes</kwd>
<kwd>protein aggregation</kwd>
<kwd>split ratio quantification</kwd>
<kwd>surfactant</kwd>
<kwd>Triton X-100</kwd>
<kwd>vaccine formulation</kwd>
<kwd>vaccine manufacturing</kwd>
<kwd>virus splitting</kwd>
<kwd>virus-surfactant interactions</kwd>
</kwd-group>
<counts>
<fig-count count="5"></fig-count>
<table-count count="0"></table-count>
<ref-count count="23"></ref-count>
<page-count count="9"></page-count>
</counts>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000444 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000444 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4964811
   |texte=   Quantitative determination of the surfactant-induced split ratio of influenza virus by fluorescence spectroscopy
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:26901837" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024