Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview

Identifieur interne : 002F28 ( Pmc/Corpus ); précédent : 002F27; suivant : 002F29

Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview

Auteurs : Claire Immediato Daïen ; Gabriela Veronica Pinget ; Jian Kai Tan ; Laurence Macia

Source :

RBID : PMC:5427073

Abstract

Dietary fibers are non-digestible polysaccharides functionally known as microbiota-accessible carbohydrates (MACs), present in inadequate amounts in the Western diet. MACs are a main source of energy for gut bacteria so the abundance and variety of MACs can modulate gut microbial composition and function. This, in turn, impacts host immunity and health. In preclinical studies, MAC-deprived diet and disruption of gut homeostasis aggravate the development of inflammatory diseases, such as allergies, infections, and autoimmune diseases. The present review provides a synopsis on the impact of a low-MAC diet on gut homeostasis or, more specifically, on gut microbiota, gut epithelium, and immune cells.


Url:
DOI: 10.3389/fimmu.2017.00548
PubMed: 28553291
PubMed Central: 5427073

Links to Exploration step

PMC:5427073

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview</title>
<author>
<name sortKey="Daien, Claire Immediato" sort="Daien, Claire Immediato" uniqKey="Daien C" first="Claire Immediato" last="Daïen">Claire Immediato Daïen</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>School of Medical Sciences, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Institut de génétique moléculaire de Montpellier, UMR5535, Montpellier University</institution>
,
<addr-line>Montpellier</addr-line>
,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinget, Gabriela Veronica" sort="Pinget, Gabriela Veronica" uniqKey="Pinget G" first="Gabriela Veronica" last="Pinget">Gabriela Veronica Pinget</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>School of Medical Sciences, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tan, Jian Kai" sort="Tan, Jian Kai" uniqKey="Tan J" first="Jian Kai" last="Tan">Jian Kai Tan</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University</institution>
,
<addr-line>Clayton, VIC</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Macia, Laurence" sort="Macia, Laurence" uniqKey="Macia L" first="Laurence" last="Macia">Laurence Macia</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>School of Medical Sciences, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University</institution>
,
<addr-line>Clayton, VIC</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28553291</idno>
<idno type="pmc">5427073</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427073</idno>
<idno type="RBID">PMC:5427073</idno>
<idno type="doi">10.3389/fimmu.2017.00548</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">002F28</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002F28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview</title>
<author>
<name sortKey="Daien, Claire Immediato" sort="Daien, Claire Immediato" uniqKey="Daien C" first="Claire Immediato" last="Daïen">Claire Immediato Daïen</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>School of Medical Sciences, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Institut de génétique moléculaire de Montpellier, UMR5535, Montpellier University</institution>
,
<addr-line>Montpellier</addr-line>
,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinget, Gabriela Veronica" sort="Pinget, Gabriela Veronica" uniqKey="Pinget G" first="Gabriela Veronica" last="Pinget">Gabriela Veronica Pinget</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>School of Medical Sciences, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tan, Jian Kai" sort="Tan, Jian Kai" uniqKey="Tan J" first="Jian Kai" last="Tan">Jian Kai Tan</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University</institution>
,
<addr-line>Clayton, VIC</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Macia, Laurence" sort="Macia, Laurence" uniqKey="Macia L" first="Laurence" last="Macia">Laurence Macia</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>School of Medical Sciences, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University</institution>
,
<addr-line>Clayton, VIC</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Immunology</title>
<idno type="eISSN">1664-3224</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Dietary fibers are non-digestible polysaccharides functionally known as microbiota-accessible carbohydrates (MACs), present in inadequate amounts in the Western diet. MACs are a main source of energy for gut bacteria so the abundance and variety of MACs can modulate gut microbial composition and function. This, in turn, impacts host immunity and health. In preclinical studies, MAC-deprived diet and disruption of gut homeostasis aggravate the development of inflammatory diseases, such as allergies, infections, and autoimmune diseases. The present review provides a synopsis on the impact of a low-MAC diet on gut homeostasis or, more specifically, on gut microbiota, gut epithelium, and immune cells.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Aberg, N" uniqKey="Aberg N">N Aberg</name>
</author>
<author>
<name sortKey="Hesselmar, B" uniqKey="Hesselmar B">B Hesselmar</name>
</author>
<author>
<name sortKey="Aberg, B" uniqKey="Aberg B">B Aberg</name>
</author>
<author>
<name sortKey="Eriksson, B" uniqKey="Eriksson B">B Eriksson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poser, S" uniqKey="Poser S">S Poser</name>
</author>
<author>
<name sortKey="Stickel, B" uniqKey="Stickel B">B Stickel</name>
</author>
<author>
<name sortKey="Krtsch, U" uniqKey="Krtsch U">U Krtsch</name>
</author>
<author>
<name sortKey="Burckhardt, D" uniqKey="Burckhardt D">D Burckhardt</name>
</author>
<author>
<name sortKey="Nordman, B" uniqKey="Nordman B">B Nordman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farrokhyar, F" uniqKey="Farrokhyar F">F Farrokhyar</name>
</author>
<author>
<name sortKey="Swarbrick, Et" uniqKey="Swarbrick E">ET Swarbrick</name>
</author>
<author>
<name sortKey="Irvine, Ej" uniqKey="Irvine E">EJ Irvine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macia, L" uniqKey="Macia L">L Macia</name>
</author>
<author>
<name sortKey="Tan, J" uniqKey="Tan J">J Tan</name>
</author>
<author>
<name sortKey="Vieira, At" uniqKey="Vieira A">AT Vieira</name>
</author>
<author>
<name sortKey="Leach, K" uniqKey="Leach K">K Leach</name>
</author>
<author>
<name sortKey="Stanley, D" uniqKey="Stanley D">D Stanley</name>
</author>
<author>
<name sortKey="Luong, S" uniqKey="Luong S">S Luong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thorburn, An" uniqKey="Thorburn A">AN Thorburn</name>
</author>
<author>
<name sortKey="Mckenzie, Ci" uniqKey="Mckenzie C">CI McKenzie</name>
</author>
<author>
<name sortKey="Shen, S" uniqKey="Shen S">S Shen</name>
</author>
<author>
<name sortKey="Stanley, D" uniqKey="Stanley D">D Stanley</name>
</author>
<author>
<name sortKey="Macia, L" uniqKey="Macia L">L Macia</name>
</author>
<author>
<name sortKey="Mason, Lj" uniqKey="Mason L">LJ Mason</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Popkin, Bm" uniqKey="Popkin B">BM Popkin</name>
</author>
<author>
<name sortKey="Adair, Ls" uniqKey="Adair L">LS Adair</name>
</author>
<author>
<name sortKey="Ng, Sw" uniqKey="Ng S">SW Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cordain, L" uniqKey="Cordain L">L Cordain</name>
</author>
<author>
<name sortKey="Eaton, Sb" uniqKey="Eaton S">SB Eaton</name>
</author>
<author>
<name sortKey="Sebastian, A" uniqKey="Sebastian A">A Sebastian</name>
</author>
<author>
<name sortKey="Mann, N" uniqKey="Mann N">N Mann</name>
</author>
<author>
<name sortKey="Lindeberg, S" uniqKey="Lindeberg S">S Lindeberg</name>
</author>
<author>
<name sortKey="Watkins, Ba" uniqKey="Watkins B">BA Watkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macia, L" uniqKey="Macia L">L Macia</name>
</author>
<author>
<name sortKey="Thorburn, An" uniqKey="Thorburn A">AN Thorburn</name>
</author>
<author>
<name sortKey="Binge, Lc" uniqKey="Binge L">LC Binge</name>
</author>
<author>
<name sortKey="Marino, E" uniqKey="Marino E">E Marino</name>
</author>
<author>
<name sortKey="Rogers, Ke" uniqKey="Rogers K">KE Rogers</name>
</author>
<author>
<name sortKey="Maslowski, Km" uniqKey="Maslowski K">KM Maslowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, J" uniqKey="Tan J">J Tan</name>
</author>
<author>
<name sortKey="Mckenzie, C" uniqKey="Mckenzie C">C McKenzie</name>
</author>
<author>
<name sortKey="Potamitis, M" uniqKey="Potamitis M">M Potamitis</name>
</author>
<author>
<name sortKey="Thorburn, An" uniqKey="Thorburn A">AN Thorburn</name>
</author>
<author>
<name sortKey="Mackay, Cr" uniqKey="Mackay C">CR Mackay</name>
</author>
<author>
<name sortKey="Macia, L" uniqKey="Macia L">L Macia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Kaoutari, A" uniqKey="El Kaoutari A">A El Kaoutari</name>
</author>
<author>
<name sortKey="Armougom, F" uniqKey="Armougom F">F Armougom</name>
</author>
<author>
<name sortKey="Gordon, Ji" uniqKey="Gordon J">JI Gordon</name>
</author>
<author>
<name sortKey="Raoult, D" uniqKey="Raoult D">D Raoult</name>
</author>
<author>
<name sortKey="Henrissat, B" uniqKey="Henrissat B">B Henrissat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonnenburg, Ed" uniqKey="Sonnenburg E">ED Sonnenburg</name>
</author>
<author>
<name sortKey="Sonnenburg, Jl" uniqKey="Sonnenburg J">JL Sonnenburg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Y" uniqKey="Park Y">Y Park</name>
</author>
<author>
<name sortKey="Subar, Af" uniqKey="Subar A">AF Subar</name>
</author>
<author>
<name sortKey="Hollenbeck, A" uniqKey="Hollenbeck A">A Hollenbeck</name>
</author>
<author>
<name sortKey="Schatzkin, A" uniqKey="Schatzkin A">A Schatzkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Preston, D" uniqKey="Preston D">D Preston</name>
</author>
<author>
<name sortKey="Morales, M" uniqKey="Morales M">M Morales</name>
</author>
<author>
<name sortKey="Plunk, A" uniqKey="Plunk A">A Plunk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Filippo, C" uniqKey="De Filippo C">C De Filippo</name>
</author>
<author>
<name sortKey="Cavalieri, D" uniqKey="Cavalieri D">D Cavalieri</name>
</author>
<author>
<name sortKey="Di Paola, M" uniqKey="Di Paola M">M Di Paola</name>
</author>
<author>
<name sortKey="Ramazzotti, M" uniqKey="Ramazzotti M">M Ramazzotti</name>
</author>
<author>
<name sortKey="Poullet, Jb" uniqKey="Poullet J">JB Poullet</name>
</author>
<author>
<name sortKey="Massart, S" uniqKey="Massart S">S Massart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schnorr, Sl" uniqKey="Schnorr S">SL Schnorr</name>
</author>
<author>
<name sortKey="Candela, M" uniqKey="Candela M">M Candela</name>
</author>
<author>
<name sortKey="Rampelli, S" uniqKey="Rampelli S">S Rampelli</name>
</author>
<author>
<name sortKey="Centanni, M" uniqKey="Centanni M">M Centanni</name>
</author>
<author>
<name sortKey="Consolandi, C" uniqKey="Consolandi C">C Consolandi</name>
</author>
<author>
<name sortKey="Basaglia, G" uniqKey="Basaglia G">G Basaglia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yatsunenko, T" uniqKey="Yatsunenko T">T Yatsunenko</name>
</author>
<author>
<name sortKey="Rey, Fe" uniqKey="Rey F">FE Rey</name>
</author>
<author>
<name sortKey="Manary, Mj" uniqKey="Manary M">MJ Manary</name>
</author>
<author>
<name sortKey="Trehan, I" uniqKey="Trehan I">I Trehan</name>
</author>
<author>
<name sortKey="Dominguez Bello, Mg" uniqKey="Dominguez Bello M">MG Dominguez-Bello</name>
</author>
<author>
<name sortKey="Contreras, M" uniqKey="Contreras M">M Contreras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abrahamsson, Tr" uniqKey="Abrahamsson T">TR Abrahamsson</name>
</author>
<author>
<name sortKey="Jakobsson, He" uniqKey="Jakobsson H">HE Jakobsson</name>
</author>
<author>
<name sortKey="Andersson, Af" uniqKey="Andersson A">AF Andersson</name>
</author>
<author>
<name sortKey="Bjorksten, B" uniqKey="Bjorksten B">B Björkstén</name>
</author>
<author>
<name sortKey="Engstrand, L" uniqKey="Engstrand L">L Engstrand</name>
</author>
<author>
<name sortKey="Jenmalm, Mc" uniqKey="Jenmalm M">MC Jenmalm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsuoka, K" uniqKey="Matsuoka K">K Matsuoka</name>
</author>
<author>
<name sortKey="Kanai, T" uniqKey="Kanai T">T Kanai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turnbaugh, Pj" uniqKey="Turnbaugh P">PJ Turnbaugh</name>
</author>
<author>
<name sortKey="Hamady, M" uniqKey="Hamady M">M Hamady</name>
</author>
<author>
<name sortKey="Yatsunenko, T" uniqKey="Yatsunenko T">T Yatsunenko</name>
</author>
<author>
<name sortKey="Cantarel, Bl" uniqKey="Cantarel B">BL Cantarel</name>
</author>
<author>
<name sortKey="Duncan, A" uniqKey="Duncan A">A Duncan</name>
</author>
<author>
<name sortKey="Ley, Re" uniqKey="Ley R">RE Ley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D Zhang</name>
</author>
<author>
<name sortKey="Jia, H" uniqKey="Jia H">H Jia</name>
</author>
<author>
<name sortKey="Feng, Q" uniqKey="Feng Q">Q Feng</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Liang, D" uniqKey="Liang D">D Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckenzie, Ci" uniqKey="Mckenzie C">CI McKenzie</name>
</author>
<author>
<name sortKey="Mackay, Cr" uniqKey="Mackay C">CR Mackay</name>
</author>
<author>
<name sortKey="Macia, L" uniqKey="Macia L">L Macia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, J" uniqKey="Tan J">J Tan</name>
</author>
<author>
<name sortKey="Mckenzie, C" uniqKey="Mckenzie C">C McKenzie</name>
</author>
<author>
<name sortKey="Vuillermin, Pj" uniqKey="Vuillermin P">PJ Vuillermin</name>
</author>
<author>
<name sortKey="Goverse, G" uniqKey="Goverse G">G Goverse</name>
</author>
<author>
<name sortKey="Vinuesa, Cg" uniqKey="Vinuesa C">CG Vinuesa</name>
</author>
<author>
<name sortKey="Mebius, Re" uniqKey="Mebius R">RE Mebius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Pm" uniqKey="Smith P">PM Smith</name>
</author>
<author>
<name sortKey="Howitt, Mr" uniqKey="Howitt M">MR Howitt</name>
</author>
<author>
<name sortKey="Panikov, N" uniqKey="Panikov N">N Panikov</name>
</author>
<author>
<name sortKey="Michaud, M" uniqKey="Michaud M">M Michaud</name>
</author>
<author>
<name sortKey="Gallini, Ca" uniqKey="Gallini C">CA Gallini</name>
</author>
<author>
<name sortKey="Bohlooly Y, M" uniqKey="Bohlooly Y M">M Bohlooly-Y</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Chatelier, E" uniqKey="Le Chatelier E">E Le Chatelier</name>
</author>
<author>
<name sortKey="Nielsen, T" uniqKey="Nielsen T">T Nielsen</name>
</author>
<author>
<name sortKey="Qin, J" uniqKey="Qin J">J Qin</name>
</author>
<author>
<name sortKey="Prifti, E" uniqKey="Prifti E">E Prifti</name>
</author>
<author>
<name sortKey="Hildebrand, F" uniqKey="Hildebrand F">F Hildebrand</name>
</author>
<author>
<name sortKey="Falony, G" uniqKey="Falony G">G Falony</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thorburn, An" uniqKey="Thorburn A">AN Thorburn</name>
</author>
<author>
<name sortKey="Macia, L" uniqKey="Macia L">L Macia</name>
</author>
<author>
<name sortKey="Mackay, Cr" uniqKey="Mackay C">CR Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonnenburg, Ed" uniqKey="Sonnenburg E">ED Sonnenburg</name>
</author>
<author>
<name sortKey="Smits, Sa" uniqKey="Smits S">SA Smits</name>
</author>
<author>
<name sortKey="Tikhonov, M" uniqKey="Tikhonov M">M Tikhonov</name>
</author>
<author>
<name sortKey="Higginbottom, Sk" uniqKey="Higginbottom S">SK Higginbottom</name>
</author>
<author>
<name sortKey="Wingreen, Ns" uniqKey="Wingreen N">NS Wingreen</name>
</author>
<author>
<name sortKey="Sonnenburg, Jl" uniqKey="Sonnenburg J">JL Sonnenburg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bergstrom, Ksb" uniqKey="Bergstrom K">KSB Bergstrom</name>
</author>
<author>
<name sortKey="Guttman, Ja" uniqKey="Guttman J">JA Guttman</name>
</author>
<author>
<name sortKey="Rumi, M" uniqKey="Rumi M">M Rumi</name>
</author>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C Ma</name>
</author>
<author>
<name sortKey="Bouzari, S" uniqKey="Bouzari S">S Bouzari</name>
</author>
<author>
<name sortKey="Khan, Ma" uniqKey="Khan M">MA Khan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonnenburg, Jl" uniqKey="Sonnenburg J">JL Sonnenburg</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J Xu</name>
</author>
<author>
<name sortKey="Leip, Dd" uniqKey="Leip D">DD Leip</name>
</author>
<author>
<name sortKey="Chen, C H" uniqKey="Chen C">C-H Chen</name>
</author>
<author>
<name sortKey="Westover, Bp" uniqKey="Westover B">BP Westover</name>
</author>
<author>
<name sortKey="Weatherford, J" uniqKey="Weatherford J">J Weatherford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desai, Ms" uniqKey="Desai M">MS Desai</name>
</author>
<author>
<name sortKey="Seekatz, Am" uniqKey="Seekatz A">AM Seekatz</name>
</author>
<author>
<name sortKey="Koropatkin, Nm" uniqKey="Koropatkin N">NM Koropatkin</name>
</author>
<author>
<name sortKey="Kamada, N" uniqKey="Kamada N">N Kamada</name>
</author>
<author>
<name sortKey="Hickey, Ca" uniqKey="Hickey C">CA Hickey</name>
</author>
<author>
<name sortKey="Wolter, M" uniqKey="Wolter M">M Wolter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rakoff Nahoum, S" uniqKey="Rakoff Nahoum S">S Rakoff-Nahoum</name>
</author>
<author>
<name sortKey="Foster, Kr" uniqKey="Foster K">KR Foster</name>
</author>
<author>
<name sortKey="Comstock, Le" uniqKey="Comstock L">LE Comstock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, M" uniqKey="Kim M">M Kim</name>
</author>
<author>
<name sortKey="Qie, Y" uniqKey="Qie Y">Y Qie</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J Park</name>
</author>
<author>
<name sortKey="Kim, Ch" uniqKey="Kim C">CH Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trompette, A" uniqKey="Trompette A">A Trompette</name>
</author>
<author>
<name sortKey="Gollwitzer, Es" uniqKey="Gollwitzer E">ES Gollwitzer</name>
</author>
<author>
<name sortKey="Yadava, K" uniqKey="Yadava K">K Yadava</name>
</author>
<author>
<name sortKey="Sichelstiel, Ak" uniqKey="Sichelstiel A">AK Sichelstiel</name>
</author>
<author>
<name sortKey="Sprenger, N" uniqKey="Sprenger N">N Sprenger</name>
</author>
<author>
<name sortKey="Ngom Bru, C" uniqKey="Ngom Bru C">C Ngom-Bru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterson, Lw" uniqKey="Peterson L">LW Peterson</name>
</author>
<author>
<name sortKey="Artis, D" uniqKey="Artis D">D Artis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukuda, S" uniqKey="Fukuda S">S Fukuda</name>
</author>
<author>
<name sortKey="Toh, H" uniqKey="Toh H">H Toh</name>
</author>
<author>
<name sortKey="Hase, K" uniqKey="Hase K">K Hase</name>
</author>
<author>
<name sortKey="Oshima, K" uniqKey="Oshima K">K Oshima</name>
</author>
<author>
<name sortKey="Nakanishi, Y" uniqKey="Nakanishi Y">Y Nakanishi</name>
</author>
<author>
<name sortKey="Yoshimura, K" uniqKey="Yoshimura K">K Yoshimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wrzosek, L" uniqKey="Wrzosek L">L Wrzosek</name>
</author>
<author>
<name sortKey="Miquel, S" uniqKey="Miquel S">S Miquel</name>
</author>
<author>
<name sortKey="Noordine, M L" uniqKey="Noordine M">M-L Noordine</name>
</author>
<author>
<name sortKey="Bouet, S" uniqKey="Bouet S">S Bouet</name>
</author>
<author>
<name sortKey="Joncquel Chevalier Curt, M" uniqKey="Joncquel Chevalier Curt M">M Joncquel Chevalier-Curt</name>
</author>
<author>
<name sortKey="Robert, V" uniqKey="Robert V">V Robert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willemsen, Lem" uniqKey="Willemsen L">LEM Willemsen</name>
</author>
<author>
<name sortKey="Koetsier, Ma" uniqKey="Koetsier M">MA Koetsier</name>
</author>
<author>
<name sortKey="Van Deventer, Sj" uniqKey="Van Deventer S">SJ van Deventer</name>
</author>
<author>
<name sortKey="Van Tol, Ea" uniqKey="Van Tol E">EA van Tol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaudier, E" uniqKey="Gaudier E">E Gaudier</name>
</author>
<author>
<name sortKey="Jarry, A" uniqKey="Jarry A">A Jarry</name>
</author>
<author>
<name sortKey="Blottiere, Hm" uniqKey="Blottiere H">HM Blottière</name>
</author>
<author>
<name sortKey="De Coppet, P" uniqKey="De Coppet P">P de Coppet</name>
</author>
<author>
<name sortKey="Buisine, Mp" uniqKey="Buisine M">MP Buisine</name>
</author>
<author>
<name sortKey="Aubert, Jp" uniqKey="Aubert J">JP Aubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, Mh" uniqKey="Zaki M">MH Zaki</name>
</author>
<author>
<name sortKey="Boyd, Kl" uniqKey="Boyd K">KL Boyd</name>
</author>
<author>
<name sortKey="Vogel, P" uniqKey="Vogel P">P Vogel</name>
</author>
<author>
<name sortKey="Kastan, Mb" uniqKey="Kastan M">MB Kastan</name>
</author>
<author>
<name sortKey="Lamkanfi, M" uniqKey="Lamkanfi M">M Lamkanfi</name>
</author>
<author>
<name sortKey="Kanneganti, T D" uniqKey="Kanneganti T">T-D Kanneganti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lamkanfi, M" uniqKey="Lamkanfi M">M Lamkanfi</name>
</author>
<author>
<name sortKey="Dixit, Vm" uniqKey="Dixit V">VM Dixit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goverse, G" uniqKey="Goverse G">G Goverse</name>
</author>
<author>
<name sortKey="Molenaar, R" uniqKey="Molenaar R">R Molenaar</name>
</author>
<author>
<name sortKey="Macia, L" uniqKey="Macia L">L Macia</name>
</author>
<author>
<name sortKey="Tan, J" uniqKey="Tan J">J Tan</name>
</author>
<author>
<name sortKey="Erkelens, Mn" uniqKey="Erkelens M">MN Erkelens</name>
</author>
<author>
<name sortKey="Konijn, T" uniqKey="Konijn T">T Konijn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macpherson, Aj" uniqKey="Macpherson A">AJ Macpherson</name>
</author>
<author>
<name sortKey="Geuking, Mb" uniqKey="Geuking M">MB Geuking</name>
</author>
<author>
<name sortKey="Mccoy, Kd" uniqKey="Mccoy K">KD McCoy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, M" uniqKey="Mizuno M">M Mizuno</name>
</author>
<author>
<name sortKey="Noto, D" uniqKey="Noto D">D Noto</name>
</author>
<author>
<name sortKey="Kaga, N" uniqKey="Kaga N">N Kaga</name>
</author>
<author>
<name sortKey="Chiba, A" uniqKey="Chiba A">A Chiba</name>
</author>
<author>
<name sortKey="Miyake, S" uniqKey="Miyake S">S Miyake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arpaia, N" uniqKey="Arpaia N">N Arpaia</name>
</author>
<author>
<name sortKey="Campbell, C" uniqKey="Campbell C">C Campbell</name>
</author>
<author>
<name sortKey="Fan, X" uniqKey="Fan X">X Fan</name>
</author>
<author>
<name sortKey="Dikiy, S" uniqKey="Dikiy S">S Dikiy</name>
</author>
<author>
<name sortKey="Van Der Veeken, J" uniqKey="Van Der Veeken J">J van der Veeken</name>
</author>
<author>
<name sortKey="Deroos, P" uniqKey="Deroos P">P deRoos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furusawa, Y" uniqKey="Furusawa Y">Y Furusawa</name>
</author>
<author>
<name sortKey="Obata, Y" uniqKey="Obata Y">Y Obata</name>
</author>
<author>
<name sortKey="Fukuda, S" uniqKey="Fukuda S">S Fukuda</name>
</author>
<author>
<name sortKey="Endo, Ta" uniqKey="Endo T">TA Endo</name>
</author>
<author>
<name sortKey="Nakato, G" uniqKey="Nakato G">G Nakato</name>
</author>
<author>
<name sortKey="Takahashi, D" uniqKey="Takahashi D">D Takahashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, J" uniqKey="Park J">J Park</name>
</author>
<author>
<name sortKey="Kim, M" uniqKey="Kim M">M Kim</name>
</author>
<author>
<name sortKey="Kang, Sg" uniqKey="Kang S">SG Kang</name>
</author>
<author>
<name sortKey="Jannasch, Ah" uniqKey="Jannasch A">AH Jannasch</name>
</author>
<author>
<name sortKey="Cooper, B" uniqKey="Cooper B">B Cooper</name>
</author>
<author>
<name sortKey="Patterson, J" uniqKey="Patterson J">J Patterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiminez, Ja" uniqKey="Jiminez J">JA Jiminez</name>
</author>
<author>
<name sortKey="Uwiera, Tc" uniqKey="Uwiera T">TC Uwiera</name>
</author>
<author>
<name sortKey="Abbott, Dw" uniqKey="Abbott D">DW Abbott</name>
</author>
<author>
<name sortKey="Uwiera, Rre" uniqKey="Uwiera R">RRE Uwiera</name>
</author>
<author>
<name sortKey="Inglis, Gd" uniqKey="Inglis G">GD Inglis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maslowski, Km" uniqKey="Maslowski K">KM Maslowski</name>
</author>
<author>
<name sortKey="Vieira, At" uniqKey="Vieira A">AT Vieira</name>
</author>
<author>
<name sortKey="Ng, A" uniqKey="Ng A">A Ng</name>
</author>
<author>
<name sortKey="Kranich, J" uniqKey="Kranich J">J Kranich</name>
</author>
<author>
<name sortKey="Sierro, F" uniqKey="Sierro F">F Sierro</name>
</author>
<author>
<name sortKey="Yu, D" uniqKey="Yu D">D Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinolo, Ma" uniqKey="Vinolo M">MA Vinolo</name>
</author>
<author>
<name sortKey="Ferguson, Gj" uniqKey="Ferguson G">GJ Ferguson</name>
</author>
<author>
<name sortKey="Kulkarni, S" uniqKey="Kulkarni S">S Kulkarni</name>
</author>
<author>
<name sortKey="Damoulakis, G" uniqKey="Damoulakis G">G Damoulakis</name>
</author>
<author>
<name sortKey="Anderson, K" uniqKey="Anderson K">K Anderson</name>
</author>
<author>
<name sortKey="Bohlooly Y, M" uniqKey="Bohlooly Y M">M Bohlooly-Y</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sina, C" uniqKey="Sina C">C Sina</name>
</author>
<author>
<name sortKey="Gavrilova, O" uniqKey="Gavrilova O">O Gavrilova</name>
</author>
<author>
<name sortKey="Forster, M" uniqKey="Forster M">M Förster</name>
</author>
<author>
<name sortKey="Till, A" uniqKey="Till A">A Till</name>
</author>
<author>
<name sortKey="Derer, S" uniqKey="Derer S">S Derer</name>
</author>
<author>
<name sortKey="Hildebrand, F" uniqKey="Hildebrand F">F Hildebrand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamp, Me" uniqKey="Kamp M">ME Kamp</name>
</author>
<author>
<name sortKey="Shim, R" uniqKey="Shim R">R Shim</name>
</author>
<author>
<name sortKey="Nicholls, Aj" uniqKey="Nicholls A">AJ Nicholls</name>
</author>
<author>
<name sortKey="Oliveira, Ac" uniqKey="Oliveira A">AC Oliveira</name>
</author>
<author>
<name sortKey="Mason, Lj" uniqKey="Mason L">LJ Mason</name>
</author>
<author>
<name sortKey="Binge, L" uniqKey="Binge L">L Binge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vieira, At" uniqKey="Vieira A">AT Vieira</name>
</author>
<author>
<name sortKey="Galvao, I" uniqKey="Galvao I">I Galvão</name>
</author>
<author>
<name sortKey="Macia, Lm" uniqKey="Macia L">LM Macia</name>
</author>
<author>
<name sortKey="Sernaglia, Em" uniqKey="Sernaglia E">ÉM Sernaglia</name>
</author>
<author>
<name sortKey="Vinolo, Mar" uniqKey="Vinolo M">MAR Vinolo</name>
</author>
<author>
<name sortKey="Garcia, Cc" uniqKey="Garcia C">CC Garcia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Julia, V" uniqKey="Julia V">V Julia</name>
</author>
<author>
<name sortKey="Macia, L" uniqKey="Macia L">L Macia</name>
</author>
<author>
<name sortKey="Dombrowicz, D" uniqKey="Dombrowicz D">D Dombrowicz</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Immunol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Immunol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Immunol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Immunology</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-3224</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28553291</article-id>
<article-id pub-id-type="pmc">5427073</article-id>
<article-id pub-id-type="doi">10.3389/fimmu.2017.00548</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Immunology</subject>
<subj-group>
<subject>Mini Review</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Daïen</surname>
<given-names>Claire Immediato</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://frontiersin.org/people/u/405392"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pinget</surname>
<given-names>Gabriela Veronica</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tan</surname>
<given-names>Jian Kai</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://frontiersin.org/people/u/405414"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Macia</surname>
<given-names>Laurence</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
<uri xlink:type="simple" xlink:href="http://frontiersin.org/people/u/307749"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>School of Medical Sciences, The University of Sydney</institution>
,
<addr-line>Sydney, NSW</addr-line>
,
<country>Australia</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Institut de génétique moléculaire de Montpellier, UMR5535, Montpellier University</institution>
,
<addr-line>Montpellier</addr-line>
,
<country>France</country>
</aff>
<aff id="aff4">
<sup>4</sup>
<institution>Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University</institution>
,
<addr-line>Clayton, VIC</addr-line>
,
<country>Australia</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Caroline Elizabeth Childs, University of Southampton, UK</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Elizabeth P. Ryan, Colorado State University, USA; Mourad Aribi, University of Tlemcen, Algeria</p>
</fn>
<corresp content-type="corresp" id="cor1">*Correspondence: Laurence Macia,
<email>laurence.macia@sydney.edu.au</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>Specialty section: This article was submitted to Nutritional Immunology, a section of the journal Frontiers in Immunology</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>12</day>
<month>5</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>8</volume>
<elocation-id>548</elocation-id>
<history>
<date date-type="received">
<day>12</day>
<month>1</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>4</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2017 Daïen, Pinget, Tan and Macia.</copyright-statement>
<copyright-year>2017</copyright-year>
<copyright-holder>Daïen, Pinget, Tan and Macia</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Dietary fibers are non-digestible polysaccharides functionally known as microbiota-accessible carbohydrates (MACs), present in inadequate amounts in the Western diet. MACs are a main source of energy for gut bacteria so the abundance and variety of MACs can modulate gut microbial composition and function. This, in turn, impacts host immunity and health. In preclinical studies, MAC-deprived diet and disruption of gut homeostasis aggravate the development of inflammatory diseases, such as allergies, infections, and autoimmune diseases. The present review provides a synopsis on the impact of a low-MAC diet on gut homeostasis or, more specifically, on gut microbiota, gut epithelium, and immune cells.</p>
</abstract>
<kwd-group>
<kwd>dietary fiber</kwd>
<kwd>microbiota-accessible carbohydrates</kwd>
<kwd>immunity</kwd>
<kwd>gut homeostasis</kwd>
<kwd>gut barrier</kwd>
<kwd>gut microbiota</kwd>
<kwd>epithelium</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source id="cn01">National Health and Medical Research Council
<named-content content-type="fundref-id">10.13039/501100000925</named-content>
</funding-source>
<award-id rid="cn01">APP1068890</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="1"></fig-count>
<table-count count="1"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="52"></ref-count>
<page-count count="7"></page-count>
<word-count count="5479"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="introduction" id="S1">
<title>Introduction</title>
<p>In recent decades, the prevalence of non-communicable diseases, such as allergies, autoimmune, and inflammatory diseases has increased drastically in Western lifestyle countries. For instance, the incidence of asthma in Swedish schoolchildren doubled between 1979 and 1991 (
<xref rid="B1" ref-type="bibr">1</xref>
), the incidence of multiple sclerosis in Germany (Lower Saxony) doubled from 1969 to 1986 (
<xref rid="B2" ref-type="bibr">2</xref>
), and the incidence of Crohn’s disease in northern Europe more than tripled from the 1950s to the 1990s (
<xref rid="B3" ref-type="bibr">3</xref>
).</p>
<p>Although largely unexplained, these increases are likely to have a strong environmental component (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
). Dramatic lifestyle changes followed the industrial revolution, among which a nutritional transition from a traditional diet to the Western diet (
<xref rid="B6" ref-type="bibr">6</xref>
). This diet consists of heavily processed foods, rich in fat, sugar, protein, and a variety of additives, while remaining low in micronutrients and dietary fiber (
<xref rid="B7" ref-type="bibr">7</xref>
). While most nutrients are absorbed in the duodenum during the digestion process, dietary fiber remains intact until it reaches the colon, which is inhabited by trillions of bacteria known as the gut microbiota (
<xref rid="B8" ref-type="bibr">8</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
). Dietary fibers are complex carbohydrates of plant origin, broken down by specialized enzymes produced by gut bacteria but indigestible by the host (
<xref rid="B10" ref-type="bibr">10</xref>
). They have recently been redefined as microbiota-accessible carbohydrates (MACs) and represent the major energy source for colonic bacteria (
<xref rid="B11" ref-type="bibr">11</xref>
). The recommended daily intake of dietary fiber is at least 30 g, although, on average, those on the Western diet only consume 15 g (
<xref rid="B7" ref-type="bibr">7</xref>
). In a cohort of 219,123 men and 168,999 women, Park et al. studied the association between intake of dietary fiber, ranging from 11 to 29 g/day, and death from cardiovascular, infectious, and respiratory diseases, with a 9-year follow-up (
<xref rid="B12" ref-type="bibr">12</xref>
). This study shows that dietary fiber intake was significantly associated with a 22% decrease in mortality rate in both genders (multivariate relative risk comparing the highest with the lowest quintile). Areas described as “food deserts,” defined by the absence of healthy food availability in a one mile radius, are characterized by low-MAC consumption and an increased incidence of asthma in children (
<xref rid="B13" ref-type="bibr">13</xref>
).</p>
<p>People in traditional societies, where fiber intake can reach 50–120 g/day, are associated with a much more diverse gut microbiota when compared with people in Western countries (
<xref rid="B14" ref-type="bibr">14</xref>
<xref rid="B16" ref-type="bibr">16</xref>
). A diverse microbiome is associated with “good health,” while low diversity and dysbiosis have been correlated to diseases highly prevalent in Western society, such as obesity, type 2 diabetes, inflammatory bowel diseases, rheumatoid arthritis, and asthma (
<xref rid="B17" ref-type="bibr">17</xref>
<xref rid="B20" ref-type="bibr">20</xref>
).</p>
<p>Short-chain fatty acids (SCFAs), namely, acetate, butyrate, and propionate, are released by gut bacteria during fermentation of dietary fibers. These can bind to the G protein-coupled receptors such as GPR41, GPR43, and GPR109a that are expressed by both immune and non-immune cells (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B21" ref-type="bibr">21</xref>
,
<xref rid="B22" ref-type="bibr">22</xref>
). They are also known to inhibit histone deacetylases (HDACs) activity in immune cells, promoting anti-inflammatory cells (
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B23" ref-type="bibr">23</xref>
). The immune effects of SCFAs are further detailed in Section “
<xref ref-type="sec" rid="S4">Impact of Low Dietary MACs on Immune Cells and Disease Development</xref>
.” SCFAs play a key role in health and disease and are found at lower concentrations in populations consuming a Western diet when compared to those consuming a traditional diet (
<xref rid="B14" ref-type="bibr">14</xref>
). Therefore, low bacterial diversity, as well as low SCFAs, could partially explain the rise of non-communicable diseases in Western countries (
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B25" ref-type="bibr">25</xref>
).</p>
<p>Microbiota-accessible carbohydrates are the main source of carbon for colonic bacteria and favor an increase in beneficial bacteria. The composition and function of the gut microbiota is thus highly dependent on the availability of MACs. While the beneficial impact of supplementation with dietary MACs on gut microbiota, host metabolism, and immunity has been reported before, the present review will focus on the deleterious impact of low-MAC consumption on gut homeostasis, immunity, and disease development as illustrated in Figure
<xref ref-type="fig" rid="F1">1</xref>
.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Schematic representation of impact of low dietary microbiota-accessible carbohydrates (MACs) on microbiota and gut homeostasis</bold>
. Consumption of low dietary MACs leads to decreased gut bacterial diversity with outgrowth of mucus-degrading bacteria and decreased levels of MAC-degrading bacteria. The mucus layer will thus become thinner exacerbated by reduced production of Muc2 due to reduced short-chain fatty acids (SCFAs) production. This decrease in production of SCFAs also impairs GPR43 activation on epithelial cells leading to increased production of proTh2 cytokine TSLP and decreased activation of NLRP3, and thus, decreased production of epithelial healing cytokine IL-18. Low SCFAs also impair epithelial barrier function as shown by decreased transepithelial resistance (TER), leading to increased bacterial product translocation into the lamina propria, triggering inflammatory reactions. Finally, due to their key role in immune function, low SCFAs impair regulatory T cell (Treg), Th1 cell, and Th17 cell, while enhancing T helper 2 (Th2) development. Decreased direct activation of B-cells and indirect activation through decreased T follicular helper cells impair IgA and IgG production.</p>
</caption>
<graphic xlink:href="fimmu-08-00548-g001"></graphic>
</fig>
</sec>
<sec id="S2">
<title>Impact of Low MACs on GUT Microbiota</title>
<p>Diet composition, particularly the availability of MACs, has a major impact on gut microbiota.</p>
<sec id="S2-1">
<title>Low Dietary MACs Promote Mucus-Degrading Bacteria</title>
<p>Depending on their enzymatic machinery, gut bacteria can either extract carbon from dietary MACs or endogenous mucus as source of energy (
<xref rid="B26" ref-type="bibr">26</xref>
). The mucus layer is produced by specialized epithelial cells, the goblet cells and is characterized by a glycoprotein-rich layer that overlies the gut epithelium. This layer represents the first line of defense against commensal and pathogenic bacteria (
<xref rid="B27" ref-type="bibr">27</xref>
). Two subsets of gut bacteria can degrade the mucus, either bacteria extracting their energy exclusively from the mucus: the mucin-degrading specialists (i.e.,
<italic>Akkermansia muciniphila</italic>
) or from both the mucus and dietary MACs: the mucin-degrading generalists (i.e.,
<italic>Bacteroides caccae</italic>
) (
<xref rid="B28" ref-type="bibr">28</xref>
). Under low dietary MAC conditions, mucin-degrading generalists shift from utilization of dietary polysaccharides to mucus glycan (
<xref rid="B28" ref-type="bibr">28</xref>
). It was recently shown that MAC deficiency leads to a rapid increase in abundance of mucin-degrading bacteria (both mucin-degrading specialists and generalists) and a decrease in MAC-degrading species (
<xref rid="B29" ref-type="bibr">29</xref>
). Transcriptomic analysis revealed that MAC availability in the diet could modulate the expression of glycoside hydrolases and polysaccharide lyases, enzymes specialized in complex polysaccharide digestion (
<xref rid="B26" ref-type="bibr">26</xref>
). Under low dietary MAC conditions, these mucus-degrading enzymes are upregulated and
<italic>vice versa</italic>
.</p>
<p>Some bacteria have also evolved ways to extract and release polysaccharides from their own cell wall through the activation of outer surface glycoside hydrolases. These membrane polysaccharides can then become available for surrounding bacteria, in a mechanism called cross-feeding (
<xref rid="B30" ref-type="bibr">30</xref>
).
<italic>Bacteroides ovatus</italic>
, an important MAC-degrading bacterium, is a crucial source of nutrients for other bacteria,
<italic>via</italic>
cross-feeding (
<xref rid="B30" ref-type="bibr">30</xref>
). Hence, dietary MAC content will not only impact mucus or MAC-dependent bacteria but also the growth of such cross-fed bacteria.</p>
<p>The microbial changes observed in studies using MAC-restricted diets and described in this review (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B22" ref-type="bibr">22</xref>
,
<xref rid="B26" ref-type="bibr">26</xref>
,
<xref rid="B29" ref-type="bibr">29</xref>
,
<xref rid="B31" ref-type="bibr">31</xref>
,
<xref rid="B32" ref-type="bibr">32</xref>
) are summarized in Table
<xref ref-type="table" rid="T1">1</xref>
. The most consistent changes observed in a low-MAC diet compared to a high-MAC diet, are an increase in Proteobacteria and a decrease in Bacteroidetes, as well as a decline in bacterial diversity.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Microbiota changes in mice fed on low dietary microbiota-accessible carbohydrates (MACs)</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="2" colspan="1">Studies</th>
<th valign="top" align="left" rowspan="2" colspan="1">Mice studied</th>
<th valign="top" align="left" rowspan="2" colspan="1">Method used for gut analysis</th>
<th valign="top" align="left" rowspan="2" colspan="1">Low-MAC diet</th>
<th valign="top" align="left" rowspan="2" colspan="1">Comparator diet</th>
<th valign="top" align="left" colspan="2" rowspan="1">Changes observed in low-MAC diet group
<hr></hr>
</th>
</tr>
<tr>
<th valign="top" align="center" rowspan="1" colspan="1">Decrease</th>
<th valign="top" align="center" rowspan="1" colspan="1">Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Desai et al. (
<xref rid="B29" ref-type="bibr">29</xref>
)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Germ-free Swiss Webster mice colonized by synthetic human microbiota</td>
<td align="left" valign="top" rowspan="1" colspan="1">Illumina sequencing of 16S rRNA genes (V4 region)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0% fiber. Starch and maldodextrin replaced with glucose (Harlan TD.140343)</td>
<td align="left" valign="top" rowspan="1" colspan="1">High MACs: 4.2% crude fiber (14.6% ND fiber; 5.3% AD fiber) (LabDiet 5010)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Fiber-degrading species:
<italic>Bacteroides ovatus</italic>
;
<italic>Eubacterium rectale</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mucin specialists (
<italic>Akkermansia muciniphila</italic>
;
<italic>Barnesiella intestinihomnis</italic>
) and mucin generalists (
<italic>Bacteroides thetaiotaomicron</italic>
;
<italic>Bacteroides caccae</italic>
)</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Sonnenburg et al. (
<xref rid="B26" ref-type="bibr">26</xref>
)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Germ-free Swiss Webster mice colonized by human microbiota</td>
<td align="left" valign="top" rowspan="1" colspan="1">Illumina sequencing of 16S rRNA genes (V4 region)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Carbohydrates from sucrose (31%), corn starch (31%), and cellulose (5%) (Harlan TD.86489)</td>
<td align="left" valign="top" rowspan="1" colspan="1">High-MAC (LabDiet 5010)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Diversity (Shannon index), Bacteroidales sp.</td>
<td align="left" valign="top" rowspan="1" colspan="1">Clostridiales</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Macia et al. (
<xref rid="B4" ref-type="bibr">4</xref>
)</td>
<td align="left" valign="top" rowspan="1" colspan="1">C57BL/6 mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">Roche 454 sequencing of 16s rRNA gene (V2–V3 region)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Modification of AIN-93G. Fiber, starch, and dextrinized starch replaced by dextrose (SF09-028) devoid of fiber or starch</td>
<td align="left" valign="top" rowspan="1" colspan="1">High MACs: modification of AIN-93G enriched in guar gum (20%) and cellulose (20%) (SF11-029)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Prevotellaceae family</td>
<td align="left" valign="top" rowspan="1" colspan="1">Bacteroidaceae;
<italic>Oscillibacter</italic>
sp.</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Thorburn et al. (
<xref rid="B5" ref-type="bibr">5</xref>
)</td>
<td align="left" valign="top" rowspan="1" colspan="1">C57Bl6 and BALB/c mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">Roche/454 FLX sequencing of 16S rRNA genes (V1–V3 region)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Crude fiber 0%; AD fiber 0% (SF09-028)</td>
<td align="left" valign="top" rowspan="1" colspan="1">High MACs Gel crisp starch. Crude fiber 3.2%; AD Fiber 4.2% (SF11-025)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Diversity (Shannon index), observed species and equability (chao1); Bacteroidetes, Bacterioidaceae, and Bacteroidales</td>
<td align="left" valign="top" rowspan="1" colspan="1">Proteobacteria phylum, especially:
<italic>Pandoraea</italic>
, Burkholderiaceae</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Tan et al. (
<xref rid="B22" ref-type="bibr">22</xref>
)</td>
<td align="left" valign="top" rowspan="1" colspan="1">C57BL/6 mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">Illumina sequencing of 16S rRNA genes (V3–V4 region)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Modification of AIN-93G devoid of fiber or starch (SF09-028)</td>
<td align="left" valign="top" rowspan="1" colspan="1">High MACs (SF11-029)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Proteobacteria, Deltaproteobacteria, and Desulfovibrionales</td>
<td align="left" valign="top" rowspan="1" colspan="1">Firmicutes bacilli, Lactobacillales</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Kim et al. (
<xref rid="B31" ref-type="bibr">31</xref>
)</td>
<td align="left" valign="top" rowspan="1" colspan="1">C57BL/6 mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">qPCR analysis of 16S rRNA gene sequences</td>
<td align="left" valign="top" rowspan="1" colspan="1">0% fiber</td>
<td align="left" valign="top" rowspan="1" colspan="1">High MACs: 15% of pectin and inulin (1:1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Bacteroidetes phylum</td>
<td align="left" valign="top" rowspan="1" colspan="1">Proteobacteria phylum</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Trompette et al. (
<xref rid="B32" ref-type="bibr">32</xref>
)</td>
<td align="left" valign="top" rowspan="1" colspan="1">C57BL/6 female mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">Roche/454 FLX sequencing of 16S rRNA genes (V1–V3 region)</td>
<td align="left" valign="top" rowspan="1" colspan="1"><0.3% fiber (Provimi Kliba diet 2122)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Normal chow 4% fiber (Provimi Kliba diet 3202)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Diversity (Shannon index) and richness (operational taxonomic units)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Proteobacteria phylum</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>AD, acid detergent; ND, neutral detergent</italic>
.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="S2-2">
<title>Low Dietary MACs Lead to Decreased Bacterial Diversity with Irreversible Loss of Bacterial Strains</title>
<p>A recent breakthrough has been made in the impact of low dietary MACs on gut microbiota (
<xref rid="B26" ref-type="bibr">26</xref>
). Mice with a humanized microbiota, fed on a low-MAC diet for 7 weeks, had significantly decreased bacterial diversity, which was never fully restored despite switching their diet to a high-MAC diet for the following 15 weeks. This phenomenon is described as “scars” of the microbiota, characterized by the disappearance of specific operational taxonomic units, while other bacteria are more resilient and able grow back to their initial levels. Over three generations on low-MAC feeding, the gut microbiota was stably “dysbiotic,” with a decline in taxa, mostly of Bacteroidales, and a marked loss of the glycoside hydrolase repertoire, the enzymes necessary to process MACs. By the fourth generation on low-MAC feeding, a high-MAC diet was fully inefficient at restoring bacterial diversity, which could only be overcome by the administration of high-MAC microbiota in addition to the high-MAC diet. The Western diet is not only deprived of MACs but also has macronutrient imbalance and micronutrient deprivation, which suggests that in humans, stable dysbiosis over three to four generations could be the best-case scenario, although quicker irreversible dysbiosis may be closer to reality. While this study did investigate the impact of such a diet on disease development, we also demonstrate that reconstitution of germ-free mice with microbiota from mice fed on an MAC-deprived diet was associated with more severe colitis and food allergy (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B22" ref-type="bibr">22</xref>
). This suggests that dysbiotic microbiota due to low MACs can exacerbate non-communicable disease development.</p>
</sec>
</sec>
<sec id="S3">
<title>Impact of Low Dietary MACs on GUT Epithelium</title>
<p>The gut epithelium is a dynamic barrier ensuring the physical separation between the host and the gut microbiota while also enabling their communication (
<xref rid="B33" ref-type="bibr">33</xref>
). Epithelial integrity is a pillar of both gut and overall health. Indeed, increased gut permeability, linked to Western diet consumption and dysbiosis, facilitates translocation of bacterial products in the host (
<xref rid="B8" ref-type="bibr">8</xref>
). This might be a trigger for allergic, autoimmune, or endocrine diseases (
<xref rid="B25" ref-type="bibr">25</xref>
).</p>
<sec id="S3-1">
<title>Low Dietary MACs Contribute to Decreased Epithelial Integrity</title>
<p>Bacterially derived SCFAs ensure epithelial integrity by increasing transepithelial resistance (
<xref rid="B34" ref-type="bibr">34</xref>
), as well as promoting mucus secretion (
<xref rid="B35" ref-type="bibr">35</xref>
). SCFAs increase prostaglandin secretion by subepithelial myofibroblasts, which, in turn, promote epithelial mucin expression, a key component of the mucus layer (
<xref rid="B36" ref-type="bibr">36</xref>
). Butyrate, but neither acetate nor propionate, upregulated colonic mucin expression
<italic>in vitro</italic>
, by inhibiting HDAC activity (
<xref rid="B37" ref-type="bibr">37</xref>
). SCFAs have also been recently found to be critical for epithelium repair, through the direct activation of NLRP3 inflammasome in gut epithelial cells, leading to release of IL-18 (
<xref rid="B4" ref-type="bibr">4</xref>
). NLRP3 inflammasome activation is protective in a murine model of colitis induced by dextran sodium sulfate (DSS) (
<xref rid="B38" ref-type="bibr">38</xref>
). Mice fed on an MAC-deprived diet had significantly less IL-18, and worse DSS-induced colitis (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B39" ref-type="bibr">39</xref>
). Inflammasome activation is a two-step process involving both a priming and a trigger phase (
<xref rid="B39" ref-type="bibr">39</xref>
). While these phases are well characterized in macrophages, they remain elusive in epithelial cells. It was recently shown that fecal extracts, containing various microbial associated molecular patterns (MAMPs) could prime the NLRP3 inflammasome, and that acetate could trigger this pathway by inducing cell hyperpolarization secondary to increased intracellular Ca
<sup>2+</sup>
. Interestingly, fecal supernatants from low MAC-fed mice were less potent in priming NLRP3 inflammasome compare to those from high MACs probably due to the different MAMPs present (
<xref rid="B4" ref-type="bibr">4</xref>
). While most studies focus on SCFAs as critical in promoting beneficial effects of MACs in diseases, it is important to note that beneficial changes in the microbiota by itself is also critical, as treatment with SCFAs in drinking water only partially recapitulates the effects of MACs (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B22" ref-type="bibr">22</xref>
).</p>
<p>Microbiota-accessible carbohydrate-induced microbiota changes can also directly impact epithelial integrity. As described above, under low-MAC conditions, some bacteria use the mucus layer as a source of energy. This phenomenon thins the mucus layer and impairs the epithelial barrier. This low MAC-induced gut permeability was associated with increased susceptibility to the epithelium-targeting pathogen
<italic>Citrobacter rodentium</italic>
suggesting that dietary MACs are key in fighting gastrointestinal infections (
<xref rid="B29" ref-type="bibr">29</xref>
).</p>
</sec>
<sec id="S3-2">
<title>Low Dietary MACs Modify Epithelium Cytokine Expression</title>
<p>While MACs have the ability to affect the bacterial–epithelium interaction, they can also affect the epithelial–immune interaction (
<xref rid="B22" ref-type="bibr">22</xref>
,
<xref rid="B40" ref-type="bibr">40</xref>
). Mice fed on a low-MAC diet had increased expression of epithelial
<italic>tslp</italic>
, a cytokine known to direct the immune response toward T helper 2 (Th2), involved in allergy development. On the other hand, high MACs, through release of SCFAs and subsequent activation of GPR43 in the epithelium, had the opposite effect (
<xref rid="B22" ref-type="bibr">22</xref>
). Moreover, low IL-18 mediated by low-MACs, might affect immune cells such as natural killer cells, which remain unexplored.</p>
<p>Altogether, these results illustrate the detrimental impact of a low-MAC diet on the gut microbiota–epithelium–immune axis.</p>
</sec>
</sec>
<sec id="S4">
<title>Impact of Low Dietary MACs on Immune Cells and Disease Development</title>
<p>This section highlights several key studies examining the opposing effects of MAC deprivation vs. enrichment on the immune system. Diet composition, as well as changes in gut microbiota, can profoundly impact immune function, as a vast majority of immune cells are located in the gut
<italic>lamina propria</italic>
(
<xref rid="B41" ref-type="bibr">41</xref>
). Significant advances have been made in recent years to understand the impact of MACs on the immune system. However, much of the focus has been on high-MAC diets with little insight on the impact of MAC deprivation on the immune system. A comprehensive survey of MAC enrichment vs. deprivation is essential for deciphering how specific immune pathways are regulated under varied dietary habits, and whether MACs plays a preventative or corrective role in various diseases.</p>
<sec id="S4-1">
<title>Dendritic Cells</title>
<p>Short-chain fatty acids elicit numerous effects on the function and hematopoiesis of dendritic cells. Propionate was shown to alter DC precursors in the bone marrow, which attenuated their ability to promote Th2 effector cells in the lungs (
<xref rid="B32" ref-type="bibr">32</xref>
). Indeed, mice fed on a low-MAC diet developed exacerbated allergic airway inflammation.</p>
<p>Short-chain fatty acid, particularly acetate and butyrate, could also affect tolerogenic DC function (
<xref rid="B22" ref-type="bibr">22</xref>
). Under no-MAC feeding conditions, CD103
<sup>+</sup>
dendritic cells had a diminished ability to generate a tolerogenic regulatory T cell (Treg), compared to high-MAC feeding conditions. Mice fed on a no-MAC diet exhibited severe clinical anaphylaxis compared to mice fed on a high-MAC diet in a model of food allergy. Protection by high-MAC diet was mediated through the enhancement of retinal-dehydrogenase activity in CD103
<sup>+</sup>
dendritic cells, an enzyme required for the conversion of vitamin A into retinoic acid to promote Treg differentiation. As such, the protective effects of high-MACs on food allergy were abrogated in the absence of vitamin A in diet. Both the SCFA receptors such as GPR43 and GPR109A were indispensable for high-MAC-mediated protection against food allergy. Interestingly, mice fed on a control MAC diet (equivalent to recommended amount of 14 g/1,000 kcal/day) exhibited similar severity to food allergy to mice fed on a no-MAC diet. This suggests that, in this instance, high levels of MACs are necessary for optimal protection against development of food allergies rather than the recommended amount (
<xref rid="B22" ref-type="bibr">22</xref>
).</p>
<p>However, despite these beneficial effects of SCFAs in allergy, the role of SCFAs in tolerance is not clear; as a recent study has highlighted both beneficial and detrimental effects of SCFAs in experimental autoimmune diseases and antibody-induced arthritis, respectively (
<xref rid="B42" ref-type="bibr">42</xref>
). The mechanisms behind these differential effects in autoimmunity are yet to be determined.</p>
</sec>
<sec id="S4-2">
<title>T Cells</title>
<p>Short-chain fatty acids have a broad impact on T cell function by directly promoting the differentiation of naïve T cells into Treg (
<xref rid="B23" ref-type="bibr">23</xref>
,
<xref rid="B43" ref-type="bibr">43</xref>
,
<xref rid="B44" ref-type="bibr">44</xref>
), Th1, and Th17 (
<xref rid="B45" ref-type="bibr">45</xref>
) and indirectly inhibiting Th2 differentiation (
<xref rid="B22" ref-type="bibr">22</xref>
).</p>
<p>Acetate has been shown to promote Treg differentiation by inhibiting the histone deacetylase HDAC9 in T cells, stimulating transcription of Foxp3 (
<xref rid="B5" ref-type="bibr">5</xref>
). This was a key mechanism in the protection against allergic airway inflammation as mice fed on no-MAC diet developed exacerbated disease. Treatment with acetate was also protective independently of GPR43, suggesting that the beneficial effects of MACs were solely based on HDAC inhibition.</p>
<p>Both acetate and butyrate promote the induction of Th1 and Th17 T cells. These effects were also dependent on HDAC inhibition and activation of the pathway mTOR–ribosomal protein S6 kinase, but independent of GPR41 and GPR43 signaling (
<xref rid="B45" ref-type="bibr">45</xref>
). Induction of Th1, Th17, and IL-10-producing T-cells by acetate and butyrate might be key in the beneficial effects of high MACs in
<italic>C. rodentium</italic>
infections (
<xref rid="B46" ref-type="bibr">46</xref>
).</p>
</sec>
<sec id="S4-3">
<title>B Cells</title>
<p>Microbiota-accessible carbohydrates appear to be pivotal regulators of antibody response both locally in the gut and systemically as mice fed on an MAC-deficient diet have defective homeostatic and pathogen-specific antibody responses (
<xref rid="B31" ref-type="bibr">31</xref>
). In contrast, mice fed on a high-MAC diet had significantly enhanced IgA production compared to mice fed a no-MAC diet (
<xref rid="B22" ref-type="bibr">22</xref>
,
<xref rid="B31" ref-type="bibr">31</xref>
). High-MAC feeding increased T follicular helper response marked by increased germinal center activities in the Peyer’s patches, as well as IgA
<sup>+</sup>
B cells in the small intestine (
<xref rid="B22" ref-type="bibr">22</xref>
). These effects on B cells are both linked to MAC-induced changes in the gut microbiota composition (
<xref rid="B22" ref-type="bibr">22</xref>
) and to the production of SCFAs as they support B cell antibody production by promoting plasma cell differentiation (
<xref rid="B31" ref-type="bibr">31</xref>
). Kim et al. also demonstrated that MAC deficiency increased
<italic>C. rodentium</italic>
disease burden due to reduced antibody production and diminished clearance of
<italic>C. rodentium</italic>
. Deficiency in dietary MACs may therefore alter B cell response and predispose to bacterial infection burden.</p>
</sec>
<sec id="S4-4">
<title>Neutrophils</title>
<p>Dietary MACs were first linked to leukocyte migration by identification of SCFA receptor GPR43 as a neutrophil chemoattractant (
<xref rid="B47" ref-type="bibr">47</xref>
,
<xref rid="B48" ref-type="bibr">48</xref>
). SCFAs were shown to elicit GPR43-dependent activation of PKB, p38, and ERK in neutrophils leading to their migration through polycarbonate filters toward a source of acetate, propionate, or butyrate (
<xref rid="B48" ref-type="bibr">48</xref>
). On the other hand, absence of GPR43 exacerbated recruitment of neutrophils in DSS-induced acute colitis, chronic colitis, and in a model of systemic LPS challenge (
<xref rid="B47" ref-type="bibr">47</xref>
,
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B50" ref-type="bibr">50</xref>
), suggesting differential roles for GPR43 on neutrophil migration under inflammatory vs. non-inflammatory conditions.</p>
<p>It has also been shown that a low-MAC diet exacerbated gout in a mouse model and that acetate promoted resolution of neutrophilic inflammation in a GPR43-dependent manner. This resolution of inflammation was associated with increased caspase-mediated neutrophil apoptosis in MSU-challenged mice (
<xref rid="B51" ref-type="bibr">51</xref>
). Thus, deficiency in MACs might not only exacerbate inflammatory reaction but also impair inflammatory resolution.</p>
</sec>
</sec>
<sec id="S5">
<title>Conclusion</title>
<p>Food processing has significantly decreased the amount of MAC content in the Western diet, when compared to the contents of the ancestral hominin diet (
<xref rid="B7" ref-type="bibr">7</xref>
). As discussed above, low-MAC consumption not only has detrimental impacts on gut microbiota in particular but also on the host as a whole. It favors the development of diseases and increases mortality, as shown in preclinical and clinical studies (
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B52" ref-type="bibr">52</xref>
). Low consumption of MACs over generations leads to the complete disappearance of beneficial bacterial strains in a preclinical study (
<xref rid="B26" ref-type="bibr">26</xref>
). While such study has not been carried out in humans, it is known that, similar to mice, the consumption of a diet low in MACs decreases bacterial diversity. This seems to suggest that long-term-reduced MAC consumption over generations will likely also have detrimental effects in humans. The only treatment able to correct this “scarred microbiota” was combined dietary and probiotic interventions. This might explain the low efficacy of probiotic-exclusive treatments in humans, as probiotics may not grow in a dysbiotic environment. Thus, dietary interventions alongside administration of beneficial bacterial strains could be a cost effective treatment to manage most non-communicable Western lifestyle diseases. Extensive research still needs to be done to determine (1) what types of MACs are most efficient at diversifying the microbiota and promoting production of SCFAs and (2) how much MACs should be consumed to optimize maintenance of health, or to treat different types of inflammatory diseases.</p>
</sec>
<sec id="S6">
<title>Author Contributions</title>
<p>The review was cowritten by CD, GP, JT, and LM.</p>
</sec>
<sec id="S7">
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<ack>
<p>The authors thank Pedro Telleria Teixeira and Sumaiya Hoque for revising the manuscript.</p>
</ack>
<sec id="S8">
<title>Funding</title>
<p>Work related to this review is funded in part by a’Beckett Foundation (to LM), Henry Langley Fellowship (to CD), University of Sydney Kickstart Grant (to LM), NHMRC APP1068890 (to LM), and APA (to JT and GP).</p>
</sec>
<sec id="S9">
<title>Abbreviations</title>
<p>DSS, dextran sodium sulfate; MACs, microbiota-accessible carbohydrates; SCFAs, short-chain fatty acids.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<label>1</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aberg</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hesselmar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Aberg</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Eriksson</surname>
<given-names>B</given-names>
</name>
</person-group>
.
<article-title>Increase of asthma, allergic rhinitis and eczema in Swedish schoolchildren between 1979 and 1991</article-title>
.
<source>Clin Exp Allergy</source>
(
<year>1995</year>
)
<volume>25</volume>
:
<fpage>815</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2222.1995.tb00023.x</pub-id>
<pub-id pub-id-type="pmid">8564719</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<label>2</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poser</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stickel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Krtsch</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Burckhardt</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Nordman</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Increasing incidence of multiple sclerosis in South Lower Saxony, Germany</article-title>
.
<source>Neuroepidemiology</source>
(
<year>1989</year>
)
<volume>8</volume>
:
<fpage>207</fpage>
<lpage>13</lpage>
.
<pub-id pub-id-type="doi">10.1159/000110184</pub-id>
<pub-id pub-id-type="pmid">2755552</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<label>3</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farrokhyar</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Swarbrick</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Irvine</surname>
<given-names>EJ</given-names>
</name>
</person-group>
.
<article-title>A critical review of epidemiological studies in inflammatory bowel disease</article-title>
.
<source>Scand J Gastroenterol</source>
(
<year>2001</year>
)
<volume>36</volume>
:
<fpage>2</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="doi">10.1080/00365520150218002</pub-id>
<pub-id pub-id-type="pmid">11218235</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<label>4</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Leach</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Stanley</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Luong</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome</article-title>
.
<source>Nat Commun</source>
(
<year>2015</year>
)
<volume>6</volume>
:
<fpage>6734</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms7734</pub-id>
<pub-id pub-id-type="pmid">25828455</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<label>5</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thorburn</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>McKenzie</surname>
<given-names>CI</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stanley</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Macia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mason</surname>
<given-names>LJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites</article-title>
.
<source>Nat Commun</source>
(
<year>2015</year>
)
<volume>6</volume>
:
<fpage>7320</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms8320</pub-id>
<pub-id pub-id-type="pmid">26102221</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<label>6</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Popkin</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Adair</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>SW</given-names>
</name>
</person-group>
.
<article-title>Global nutrition transition and the pandemic of obesity in developing countries</article-title>
.
<source>Nutr Rev</source>
(
<year>2012</year>
)
<volume>70</volume>
:
<fpage>3</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1753-4887.2011.00456.x</pub-id>
<pub-id pub-id-type="pmid">22221213</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<label>7</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cordain</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Eaton</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Sebastian</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lindeberg</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Watkins</surname>
<given-names>BA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Origins and evolution of the Western diet: health implications for the 21st century</article-title>
.
<source>Am J Clin Nutr</source>
(
<year>2005</year>
)
<volume>81</volume>
:
<fpage>341</fpage>
<lpage>54</lpage>
.
<pub-id pub-id-type="pmid">15699220</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<label>8</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Thorburn</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Binge</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Marino</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Maslowski</surname>
<given-names>KM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases</article-title>
.
<source>Immunol Rev</source>
(
<year>2012</year>
)
<volume>245</volume>
:
<fpage>164</fpage>
<lpage>76</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1600-065X.2011.01080.x</pub-id>
<pub-id pub-id-type="pmid">22168419</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<label>9</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>McKenzie</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Potamitis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Thorburn</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Mackay</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Macia</surname>
<given-names>L</given-names>
</name>
</person-group>
.
<article-title>The role of short-chain fatty acids in health and disease</article-title>
.
<source>Adv Immunol</source>
(
<year>2014</year>
)
<volume>121</volume>
:
<fpage>91</fpage>
<lpage>119</lpage>
.
<pub-id pub-id-type="doi">10.1016/B978-0-12-800100-4.00003-9</pub-id>
<pub-id pub-id-type="pmid">24388214</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<label>10</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El Kaoutari</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Armougom</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Raoult</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Henrissat</surname>
<given-names>B</given-names>
</name>
</person-group>
.
<article-title>The abundance and variety of carbohydrate-active enzymes in the human gut microbiota</article-title>
.
<source>Nat Rev Microbiol</source>
(
<year>2013</year>
)
<volume>11</volume>
:
<fpage>497</fpage>
<lpage>504</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrmicro3050</pub-id>
<pub-id pub-id-type="pmid">23748339</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<label>11</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sonnenburg</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Sonnenburg</surname>
<given-names>JL</given-names>
</name>
</person-group>
.
<article-title>Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates</article-title>
.
<source>Cell Metab</source>
(
<year>2014</year>
)
<volume>20</volume>
:
<fpage>779</fpage>
<lpage>86</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cmet.2014.07.003</pub-id>
<pub-id pub-id-type="pmid">25156449</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<label>12</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Subar</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Hollenbeck</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schatzkin</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Dietary fiber intake and mortality in the NIH-AARP diet and health study</article-title>
.
<source>Arch Intern Med</source>
(
<year>2011</year>
)
<volume>171</volume>
:
<fpage>1061</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1001/archinternmed.2011.18</pub-id>
<pub-id pub-id-type="pmid">21321288</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<label>13</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Preston</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Morales</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Plunk</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The relationship between asthma and food deserts in the hampton roads area</article-title>
.
<source>Ann Allergy Asthma Immunol</source>
(
<year>2016</year>
)
<volume>117</volume>
(
<issue>5</issue>
):
<fpage>S8</fpage>
<pub-id pub-id-type="doi">10.1016/j.anai.2016.09.382</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<label>14</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Filippo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cavalieri</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Di Paola</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ramazzotti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Poullet</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Massart</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
(
<year>2010</year>
)
<volume>107</volume>
:
<fpage>14691</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1005963107</pub-id>
<pub-id pub-id-type="pmid">20679230</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<label>15</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schnorr</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Candela</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rampelli</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Centanni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Consolandi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Basaglia</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gut microbiome of the Hadza hunter-gatherers</article-title>
.
<source>Nat Commun</source>
(
<year>2014</year>
)
<volume>5</volume>
:
<fpage>3654</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms4654</pub-id>
<pub-id pub-id-type="pmid">24736369</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<label>16</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yatsunenko</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rey</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Manary</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Trehan</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dominguez-Bello</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Contreras</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human gut microbiome viewed across age and geography</article-title>
.
<source>Nature</source>
(
<year>2012</year>
)
<volume>486</volume>
:
<fpage>222</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature11053</pub-id>
<pub-id pub-id-type="pmid">22699611</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<label>17</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abrahamsson</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Jakobsson</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Björkstén</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Engstrand</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jenmalm</surname>
<given-names>MC</given-names>
</name>
</person-group>
.
<article-title>Low gut microbiota diversity in early infancy precedes asthma at school age</article-title>
.
<source>Clin Exp Allergy</source>
(
<year>2014</year>
)
<volume>44</volume>
:
<fpage>842</fpage>
<lpage>50</lpage>
.
<pub-id pub-id-type="doi">10.1111/cea.12253</pub-id>
<pub-id pub-id-type="pmid">24330256</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<label>18</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsuoka</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kanai</surname>
<given-names>T</given-names>
</name>
</person-group>
.
<article-title>The gut microbiota and inflammatory bowel disease</article-title>
.
<source>Semin Immunopathol</source>
(
<year>2015</year>
)
<volume>37</volume>
:
<fpage>47</fpage>
<lpage>55</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00281-014-0454-4</pub-id>
<pub-id pub-id-type="pmid">25420450</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<label>19</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turnbaugh</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Hamady</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yatsunenko</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Cantarel</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ley</surname>
<given-names>RE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A core gut microbiome in obese and lean twins</article-title>
.
<source>Nature</source>
(
<year>2009</year>
)
<volume>457</volume>
:
<fpage>480</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature07540</pub-id>
<pub-id pub-id-type="pmid">19043404</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<label>20</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment</article-title>
.
<source>Nat Med</source>
(
<year>2015</year>
)
<volume>21</volume>
:
<fpage>895</fpage>
<lpage>905</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.3914</pub-id>
<pub-id pub-id-type="pmid">26214836</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<label>21</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKenzie</surname>
<given-names>CI</given-names>
</name>
<name>
<surname>Mackay</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Macia</surname>
<given-names>L</given-names>
</name>
</person-group>
.
<article-title>GPR43 – a prototypic metabolite sensor linking metabolic and inflammatory diseases</article-title>
.
<source>Trends Endocrinol Metab</source>
(
<year>2015</year>
)
<volume>26</volume>
:
<fpage>511</fpage>
<lpage>2</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tem.2015.07.009</pub-id>
<pub-id pub-id-type="pmid">26412151</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<label>22</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>McKenzie</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vuillermin</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Goverse</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Vinuesa</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Mebius</surname>
<given-names>RE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways</article-title>
.
<source>Cell Rep</source>
(
<year>2016</year>
)
<volume>15</volume>
:
<fpage>2809</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.celrep.2016.05.047</pub-id>
<pub-id pub-id-type="pmid">27332875</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<label>23</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Howitt</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Panikov</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Michaud</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gallini</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Bohlooly-Y</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis</article-title>
.
<source>Science</source>
(
<year>2013</year>
)
<volume>341</volume>
:
<fpage>569</fpage>
<lpage>73</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1241165</pub-id>
<pub-id pub-id-type="pmid">23828891</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<label>24</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le Chatelier</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Prifti</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hildebrand</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Falony</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Richness of human gut microbiome correlates with metabolic markers</article-title>
.
<source>Nature</source>
(
<year>2013</year>
)
<volume>500</volume>
:
<fpage>541</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature12506</pub-id>
<pub-id pub-id-type="pmid">23985870</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<label>25</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thorburn</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Macia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mackay</surname>
<given-names>CR</given-names>
</name>
</person-group>
<article-title>Diet, metabolites, and “western-lifestyle” inflammatory diseases</article-title>
.
<source>Immunity</source>
(
<year>2014</year>
)
<volume>40</volume>
:
<fpage>833</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.immuni.2014.05.014</pub-id>
<pub-id pub-id-type="pmid">24950203</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<label>26</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sonnenburg</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Tikhonov</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Higginbottom</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Wingreen</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Sonnenburg</surname>
<given-names>JL</given-names>
</name>
</person-group>
.
<article-title>Diet-induced extinctions in the gut microbiota compound over generations</article-title>
.
<source>Nature</source>
(
<year>2016</year>
)
<volume>529</volume>
:
<fpage>212</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature16504</pub-id>
<pub-id pub-id-type="pmid">26762459</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<label>27</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bergstrom</surname>
<given-names>KSB</given-names>
</name>
<name>
<surname>Guttman</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Rumi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bouzari</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen</article-title>
.
<source>Infect Immun</source>
(
<year>2008</year>
)
<volume>76</volume>
:
<fpage>796</fpage>
<lpage>811</lpage>
.
<pub-id pub-id-type="doi">10.1128/IAI.00093-07</pub-id>
<pub-id pub-id-type="pmid">17984203</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<label>28</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sonnenburg</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Leip</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C-H</given-names>
</name>
<name>
<surname>Westover</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Weatherford</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glycan foraging in vivo by an intestine-adapted bacterial symbiont</article-title>
.
<source>Science</source>
(
<year>2005</year>
)
<volume>307</volume>
:
<fpage>1955</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1109051</pub-id>
<pub-id pub-id-type="pmid">15790854</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<label>29</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desai</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Seekatz</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Koropatkin</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Kamada</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hickey</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Wolter</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility</article-title>
.
<source>Cell</source>
(
<year>2016</year>
)
<volume>167</volume>
:
<fpage>1339</fpage>
<lpage>53 e21</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2016.10.043</pub-id>
<pub-id pub-id-type="pmid">27863247</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<label>30</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rakoff-Nahoum</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Foster</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Comstock</surname>
<given-names>LE</given-names>
</name>
</person-group>
.
<article-title>The evolution of cooperation within the gut microbiota</article-title>
.
<source>Nature</source>
(
<year>2016</year>
)
<volume>533</volume>
:
<fpage>255</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature17626</pub-id>
<pub-id pub-id-type="pmid">27111508</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<label>31</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Qie</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>CH</given-names>
</name>
</person-group>
.
<article-title>Gut microbial metabolites fuel host antibody responses</article-title>
.
<source>Cell Host Microbe</source>
(
<year>2016</year>
)
<volume>20</volume>
:
<fpage>202</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.chom.2016.07.001</pub-id>
<pub-id pub-id-type="pmid">27476413</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<label>32</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trompette</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gollwitzer</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Yadava</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sichelstiel</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Sprenger</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ngom-Bru</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis</article-title>
.
<source>Nat Med</source>
(
<year>2014</year>
)
<volume>20</volume>
:
<fpage>159</fpage>
<lpage>66</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.3444</pub-id>
<pub-id pub-id-type="pmid">24390308</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<label>33</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peterson</surname>
<given-names>LW</given-names>
</name>
<name>
<surname>Artis</surname>
<given-names>D</given-names>
</name>
</person-group>
.
<article-title>Intestinal epithelial cells: regulators of barrier function and immune homeostasis</article-title>
.
<source>Nat Rev Immunol</source>
(
<year>2014</year>
)
<volume>14</volume>
:
<fpage>141</fpage>
<lpage>53</lpage>
.
<pub-id pub-id-type="doi">10.1038/nri3608</pub-id>
<pub-id pub-id-type="pmid">24566914</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<label>34</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukuda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Toh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hase</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Oshima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakanishi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yoshimura</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bifidobacteria can protect from enteropathogenic infection through production of acetate</article-title>
.
<source>Nature</source>
(
<year>2011</year>
)
<volume>469</volume>
:
<fpage>543</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature09646</pub-id>
<pub-id pub-id-type="pmid">21270894</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<label>35</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wrzosek</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Miquel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Noordine</surname>
<given-names>M-L</given-names>
</name>
<name>
<surname>Bouet</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Joncquel Chevalier-Curt</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Robert</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Bacteroides thetaiotaomicron</italic>
and
<italic>Faecalibacterium prausnitzii</italic>
influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent</article-title>
.
<source>BMC Biol</source>
(
<year>2013</year>
)
<volume>11</volume>
:
<fpage>61</fpage>
.
<pub-id pub-id-type="doi">10.1186/1741-7007-11-61</pub-id>
<pub-id pub-id-type="pmid">23692866</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<label>36</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Willemsen</surname>
<given-names>LEM</given-names>
</name>
<name>
<surname>Koetsier</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>van Deventer</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>van Tol</surname>
<given-names>EA</given-names>
</name>
</person-group>
.
<article-title>Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts</article-title>
.
<source>Gut</source>
(
<year>2003</year>
)
<volume>52</volume>
:
<fpage>1442</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1136/gut.52.10.1442</pub-id>
<pub-id pub-id-type="pmid">12970137</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<label>37</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaudier</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jarry</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Blottière</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>de Coppet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Buisine</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Aubert</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose</article-title>
.
<source>Am J Physiol Gastrointest Liver Physiol</source>
(
<year>2004</year>
)
<volume>287</volume>
:
<fpage>G1168</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajpgi.00219.2004</pub-id>
<pub-id pub-id-type="pmid">15308471</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<label>38</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Boyd</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kastan</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Lamkanfi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kanneganti</surname>
<given-names>T-D</given-names>
</name>
</person-group>
.
<article-title>The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis</article-title>
.
<source>Immunity</source>
(
<year>2010</year>
)
<volume>32</volume>
:
<fpage>379</fpage>
<lpage>91</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.immuni.2010.03.003</pub-id>
<pub-id pub-id-type="pmid">20303296</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<label>39</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamkanfi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dixit</surname>
<given-names>VM</given-names>
</name>
</person-group>
<article-title>Mechanisms and functions of inflammasomes</article-title>
.
<source>Cell</source>
(
<year>2014</year>
)
<volume>157</volume>
(
<issue>5</issue>
):
<fpage>1013</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2014.04.007</pub-id>
<pub-id pub-id-type="pmid">24855941</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<label>40</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goverse</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Molenaar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Macia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Erkelens</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Konijn</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells</article-title>
.
<source>J Immunol</source>
(
<year>2017</year>
)
<volume>198</volume>
(
<issue>5</issue>
):
<fpage>2172</fpage>
<lpage>81</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1600165</pub-id>
<pub-id pub-id-type="pmid">28100682</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<label>41</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macpherson</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Geuking</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>McCoy</surname>
<given-names>KD</given-names>
</name>
</person-group>
.
<article-title>Innate and adaptive immunity in host-microbiota mutualism</article-title>
.
<source>Front Biosci (Schol Ed)</source>
(
<year>2012</year>
)
<volume>4</volume>
:
<fpage>685</fpage>
<lpage>98</lpage>
.
<pub-id pub-id-type="pmid">22202085</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<label>42</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizuno</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Noto</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kaga</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chiba</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Miyake</surname>
<given-names>S</given-names>
</name>
</person-group>
.
<article-title>The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models</article-title>
.
<source>PLoS One</source>
(
<year>2017</year>
)
<volume>12</volume>
:
<fpage>e0173032</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0173032</pub-id>
<pub-id pub-id-type="pmid">28235016</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<label>43</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arpaia</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dikiy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>van der Veeken</surname>
<given-names>J</given-names>
</name>
<name>
<surname>deRoos</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation</article-title>
.
<source>Nature</source>
(
<year>2013</year>
)
<volume>504</volume>
:
<fpage>451</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature12726</pub-id>
<pub-id pub-id-type="pmid">24226773</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<label>44</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Furusawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Obata</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Endo</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Nakato</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells</article-title>
.
<source>Nature</source>
(
<year>2013</year>
)
<volume>504</volume>
:
<fpage>446</fpage>
<lpage>50</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature12721</pub-id>
<pub-id pub-id-type="pmid">24226770</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<label>45</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Jannasch</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Patterson</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway</article-title>
.
<source>Mucosal Immunol</source>
(
<year>2015</year>
)
<volume>8</volume>
:
<fpage>80</fpage>
<lpage>93</lpage>
.
<pub-id pub-id-type="doi">10.1038/mi.2014.44</pub-id>
<pub-id pub-id-type="pmid">24917457</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<label>46</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiminez</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Uwiera</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Abbott</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Uwiera</surname>
<given-names>RRE</given-names>
</name>
<name>
<surname>Inglis</surname>
<given-names>GD</given-names>
</name>
</person-group>
.
<article-title>Impacts of resistant starch and wheat bran consumption on enteric inflammation in relation to colonic bacterial community structures and short-chain fatty acid concentrations in mice</article-title>
.
<source>Gut Pathog</source>
(
<year>2016</year>
)
<volume>8</volume>
:
<fpage>67</fpage>
.
<pub-id pub-id-type="doi">10.1186/s13099-016-0149-6</pub-id>
<pub-id pub-id-type="pmid">28031748</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<label>47</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maslowski</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kranich</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sierro</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43</article-title>
.
<source>Nature</source>
(
<year>2009</year>
)
<volume>461</volume>
:
<fpage>1282</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature08530</pub-id>
<pub-id pub-id-type="pmid">19865172</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<label>48</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vinolo</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Kulkarni</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Damoulakis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bohlooly-Y</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor</article-title>
.
<source>PLoS One</source>
(
<year>2011</year>
)
<volume>6</volume>
(
<issue>6</issue>
):
<fpage>e21205</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0021205</pub-id>
<pub-id pub-id-type="pmid">21698257</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<label>49</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sina</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gavrilova</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Förster</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Till</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Derer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hildebrand</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation</article-title>
.
<source>J Immunol</source>
(
<year>2009</year>
)
<volume>183</volume>
:
<fpage>7514</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.0900063</pub-id>
<pub-id pub-id-type="pmid">19917676</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<label>50</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamp</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Shim</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nicholls</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Mason</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Binge</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>G protein-coupled receptor 43 modulates neutrophil recruitment during acute inflammation</article-title>
.
<source>PLoS One</source>
(
<year>2016</year>
)
<volume>11</volume>
:
<fpage>e0163750</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0163750</pub-id>
<pub-id pub-id-type="pmid">27658303</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<label>51</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vieira</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Galvão</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Macia</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Sernaglia</surname>
<given-names>ÉM</given-names>
</name>
<name>
<surname>Vinolo</surname>
<given-names>MAR</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice</article-title>
.
<source>J Leukoc Biol</source>
(
<year>2017</year>
)
<volume>101</volume>
:
<fpage>275</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="doi">10.1189/jlb.3A1015-453RRR</pub-id>
<pub-id pub-id-type="pmid">27496979</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<label>52</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Julia</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Macia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dombrowicz</surname>
<given-names>D</given-names>
</name>
</person-group>
.
<article-title>The impact of diet on asthma and allergic diseases</article-title>
.
<source>Nat Rev Immunol</source>
(
<year>2015</year>
)
<volume>15</volume>
:
<fpage>308</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="doi">10.1038/nri3830</pub-id>
<pub-id pub-id-type="pmid">25907459</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002F28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5427073
   |texte=   Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28553291" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024