Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The future of the northeast Atlantic benthic flora in a high CO2 world

Identifieur interne : 002F15 ( Pmc/Corpus ); précédent : 002F14; suivant : 002F16

The future of the northeast Atlantic benthic flora in a high CO2 world

Auteurs : Juliet Brodie ; Christopher J. Williamson ; Dan A. Smale ; Nicholas A. Kamenos ; Nova Mieszkowska ; Rui Santos ; Michael Cunliffe ; Michael Steinke ; Christopher Yesson ; Kathryn M. Anderson ; Valentina Asnaghi ; Colin Brownlee ; Heidi L. Burdett ; Michael T. Burrows ; Sinead Collins ; Penelope J C. Donohue ; Ben Harvey ; Andrew Foggo ; Fanny Noisette ; Joana Nunes ; Federica Ragazzola ; John A. Raven ; Daniela N. Schmidt ; David Suggett ; Mirta Teichberg ; Jason M. Hall-Spencer

Source :

RBID : PMC:4113300

Abstract

Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.


Url:
DOI: 10.1002/ece3.1105
PubMed: 25077027
PubMed Central: 4113300

Links to Exploration step

PMC:4113300

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The future of the northeast Atlantic benthic flora in a high CO
<sub>2</sub>
world</title>
<author>
<name sortKey="Brodie, Juliet" sort="Brodie, Juliet" uniqKey="Brodie J" first="Juliet" last="Brodie">Juliet Brodie</name>
<affiliation>
<nlm:aff id="au1">
<institution>Department of Life Sciences, The Natural History Museum</institution>
<addr-line>Cromwell Road, London, SW7 5BD, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Williamson, Christopher J" sort="Williamson, Christopher J" uniqKey="Williamson C" first="Christopher J" last="Williamson">Christopher J. Williamson</name>
<affiliation>
<nlm:aff id="au1">
<institution>Department of Life Sciences, The Natural History Museum</institution>
<addr-line>Cromwell Road, London, SW7 5BD, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>School of Earth and Ocean Sciences, Cardiff University</institution>
<addr-line>Main Building, Park Place, Cardiff, CF10 3YE, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Smale, Dan A" sort="Smale, Dan A" uniqKey="Smale D" first="Dan A" last="Smale">Dan A. Smale</name>
<affiliation>
<nlm:aff id="au3">
<institution>Marine Biological Association of the UK</institution>
<addr-line>Citadel Hill, Plymouth, PL1 2PB, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au4">
<institution>Ocean and Earth Science, National Oceanography Centre, University of Southampton</institution>
<addr-line>Waterfront Campus, European Way, Southampton, SO14 3ZH, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kamenos, Nicholas A" sort="Kamenos, Nicholas A" uniqKey="Kamenos N" first="Nicholas A" last="Kamenos">Nicholas A. Kamenos</name>
<affiliation>
<nlm:aff id="au5">
<institution>School of Geographical and Earth Sciences, University of Glasgow</institution>
<addr-line>Glasgow, G12 8QQ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mieszkowska, Nova" sort="Mieszkowska, Nova" uniqKey="Mieszkowska N" first="Nova" last="Mieszkowska">Nova Mieszkowska</name>
<affiliation>
<nlm:aff id="au3">
<institution>Marine Biological Association of the UK</institution>
<addr-line>Citadel Hill, Plymouth, PL1 2PB, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Santos, Rui" sort="Santos, Rui" uniqKey="Santos R" first="Rui" last="Santos">Rui Santos</name>
<affiliation>
<nlm:aff id="au6">
<institution>Marine Plant Ecology Research Group (ALGAE), Centre of Marine Sciences (CCMAR), University of Algarve</institution>
<addr-line>Campus of Gambelas, Faro, 8005-139, Portugal</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cunliffe, Michael" sort="Cunliffe, Michael" uniqKey="Cunliffe M" first="Michael" last="Cunliffe">Michael Cunliffe</name>
<affiliation>
<nlm:aff id="au3">
<institution>Marine Biological Association of the UK</institution>
<addr-line>Citadel Hill, Plymouth, PL1 2PB, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Steinke, Michael" sort="Steinke, Michael" uniqKey="Steinke M" first="Michael" last="Steinke">Michael Steinke</name>
<affiliation>
<nlm:aff id="au7">
<institution>School of Biological Sciences, University of Essex</institution>
<addr-line>Colchester, CO4 3SQ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yesson, Christopher" sort="Yesson, Christopher" uniqKey="Yesson C" first="Christopher" last="Yesson">Christopher Yesson</name>
<affiliation>
<nlm:aff id="au1">
<institution>Department of Life Sciences, The Natural History Museum</institution>
<addr-line>Cromwell Road, London, SW7 5BD, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au8">
<institution>Institute of Zoology, Zoological Society of London</institution>
<addr-line>Regent's Park, London, NW1 4RY, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Kathryn M" sort="Anderson, Kathryn M" uniqKey="Anderson K" first="Kathryn M" last="Anderson">Kathryn M. Anderson</name>
<affiliation>
<nlm:aff id="au9">
<institution>Department of Zoology, The University of British Columbia</institution>
<addr-line>#4200-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Asnaghi, Valentina" sort="Asnaghi, Valentina" uniqKey="Asnaghi V" first="Valentina" last="Asnaghi">Valentina Asnaghi</name>
<affiliation>
<nlm:aff id="au10">
<institution>DiSTAV - University of Genoa</institution>
<addr-line>C.so Europa 26, Genoa, 16132, Italy</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brownlee, Colin" sort="Brownlee, Colin" uniqKey="Brownlee C" first="Colin" last="Brownlee">Colin Brownlee</name>
<affiliation>
<nlm:aff id="au3">
<institution>Marine Biological Association of the UK</institution>
<addr-line>Citadel Hill, Plymouth, PL1 2PB, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Burdett, Heidi L" sort="Burdett, Heidi L" uniqKey="Burdett H" first="Heidi L" last="Burdett">Heidi L. Burdett</name>
<affiliation>
<nlm:aff id="au11">
<institution>Department of Earth and Environmental Sciences, University of St Andrews</institution>
<addr-line>St Andrews, Fife, KY16 9AL, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au12">
<institution>Scottish Oceans Institute, University of St Andrews</institution>
<addr-line>St Andrews, Fife, KY16 8LB, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Burrows, Michael T" sort="Burrows, Michael T" uniqKey="Burrows M" first="Michael T" last="Burrows">Michael T. Burrows</name>
<affiliation>
<nlm:aff id="au13">
<institution>Scottish Marine Institute</institution>
<addr-line>Oban, Argyll, PA37 1QA, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Collins, Sinead" sort="Collins, Sinead" uniqKey="Collins S" first="Sinead" last="Collins">Sinead Collins</name>
<affiliation>
<nlm:aff id="au14">
<institution>Institute of Evolutionary Biology, University of Edinburgh</institution>
<addr-line>The King's Building, West Mains Road, Edinburgh, EH9 3JT, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Donohue, Penelope J C" sort="Donohue, Penelope J C" uniqKey="Donohue P" first="Penelope J C" last="Donohue">Penelope J C. Donohue</name>
<affiliation>
<nlm:aff id="au5">
<institution>School of Geographical and Earth Sciences, University of Glasgow</institution>
<addr-line>Glasgow, G12 8QQ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harvey, Ben" sort="Harvey, Ben" uniqKey="Harvey B" first="Ben" last="Harvey">Ben Harvey</name>
<affiliation>
<nlm:aff id="au15">
<institution>Institute of Biology, Environmental and Rural Sciences, Aberystwyth University</institution>
<addr-line>Aberystwyth, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Foggo, Andrew" sort="Foggo, Andrew" uniqKey="Foggo A" first="Andrew" last="Foggo">Andrew Foggo</name>
<affiliation>
<nlm:aff id="au16">
<institution>Marine Biology and Ecology Research Centre, School of Marine Sciences and Engineering, Plymouth University</institution>
<addr-line>PL4 8AA, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Noisette, Fanny" sort="Noisette, Fanny" uniqKey="Noisette F" first="Fanny" last="Noisette">Fanny Noisette</name>
<affiliation>
<nlm:aff id="au17">
<institution>CNRS, UMR</institution>
<addr-line>7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff Cedex, 29688, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au18">
<institution>UPMC Univ. Paris 6, UMR 7144</institution>
<addr-line>Station Biologique de Roscoff, Place Georges Teissier, Roscoff Cedex, 29688, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nunes, Joana" sort="Nunes, Joana" uniqKey="Nunes J" first="Joana" last="Nunes">Joana Nunes</name>
<affiliation>
<nlm:aff id="au19">
<institution>Plymouth Marine Laboratory</institution>
<addr-line>Prospect Place, The Hoe, Plymouth, PL1 3DH, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ragazzola, Federica" sort="Ragazzola, Federica" uniqKey="Ragazzola F" first="Federica" last="Ragazzola">Federica Ragazzola</name>
<affiliation>
<nlm:aff id="au20">
<institution>School of Earth Sciences, University of Bristol</institution>
<addr-line>Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raven, John A" sort="Raven, John A" uniqKey="Raven J" first="John A" last="Raven">John A. Raven</name>
<affiliation>
<nlm:aff id="au21">
<institution>Division of Plant Science, University of Dundee at the James Hutton Institute</institution>
<addr-line>Invergowrie, Dundee, DD2 5DA, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au22">
<institution>Plant Functional Biology and Climate Change Cluster, University of Technology Sydney</institution>
<addr-line>Ultimo, NSW 2007, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Daniela N" sort="Schmidt, Daniela N" uniqKey="Schmidt D" first="Daniela N" last="Schmidt">Daniela N. Schmidt</name>
<affiliation>
<nlm:aff id="au20">
<institution>School of Earth Sciences, University of Bristol</institution>
<addr-line>Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Suggett, David" sort="Suggett, David" uniqKey="Suggett D" first="David" last="Suggett">David Suggett</name>
<affiliation>
<nlm:aff id="au7">
<institution>School of Biological Sciences, University of Essex</institution>
<addr-line>Colchester, CO4 3SQ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Teichberg, Mirta" sort="Teichberg, Mirta" uniqKey="Teichberg M" first="Mirta" last="Teichberg">Mirta Teichberg</name>
<affiliation>
<nlm:aff id="au23">
<institution>Leibniz-Zentrum für Marine Tropenökologie</institution>
<addr-line>Fahrenheitstraße 6, Bremen, D-28359, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hall Spencer, Jason M" sort="Hall Spencer, Jason M" uniqKey="Hall Spencer J" first="Jason M" last="Hall-Spencer">Jason M. Hall-Spencer</name>
<affiliation>
<nlm:aff id="au16">
<institution>Marine Biology and Ecology Research Centre, School of Marine Sciences and Engineering, Plymouth University</institution>
<addr-line>PL4 8AA, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25077027</idno>
<idno type="pmc">4113300</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113300</idno>
<idno type="RBID">PMC:4113300</idno>
<idno type="doi">10.1002/ece3.1105</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">002F15</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002F15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The future of the northeast Atlantic benthic flora in a high CO
<sub>2</sub>
world</title>
<author>
<name sortKey="Brodie, Juliet" sort="Brodie, Juliet" uniqKey="Brodie J" first="Juliet" last="Brodie">Juliet Brodie</name>
<affiliation>
<nlm:aff id="au1">
<institution>Department of Life Sciences, The Natural History Museum</institution>
<addr-line>Cromwell Road, London, SW7 5BD, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Williamson, Christopher J" sort="Williamson, Christopher J" uniqKey="Williamson C" first="Christopher J" last="Williamson">Christopher J. Williamson</name>
<affiliation>
<nlm:aff id="au1">
<institution>Department of Life Sciences, The Natural History Museum</institution>
<addr-line>Cromwell Road, London, SW7 5BD, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>School of Earth and Ocean Sciences, Cardiff University</institution>
<addr-line>Main Building, Park Place, Cardiff, CF10 3YE, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Smale, Dan A" sort="Smale, Dan A" uniqKey="Smale D" first="Dan A" last="Smale">Dan A. Smale</name>
<affiliation>
<nlm:aff id="au3">
<institution>Marine Biological Association of the UK</institution>
<addr-line>Citadel Hill, Plymouth, PL1 2PB, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au4">
<institution>Ocean and Earth Science, National Oceanography Centre, University of Southampton</institution>
<addr-line>Waterfront Campus, European Way, Southampton, SO14 3ZH, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kamenos, Nicholas A" sort="Kamenos, Nicholas A" uniqKey="Kamenos N" first="Nicholas A" last="Kamenos">Nicholas A. Kamenos</name>
<affiliation>
<nlm:aff id="au5">
<institution>School of Geographical and Earth Sciences, University of Glasgow</institution>
<addr-line>Glasgow, G12 8QQ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mieszkowska, Nova" sort="Mieszkowska, Nova" uniqKey="Mieszkowska N" first="Nova" last="Mieszkowska">Nova Mieszkowska</name>
<affiliation>
<nlm:aff id="au3">
<institution>Marine Biological Association of the UK</institution>
<addr-line>Citadel Hill, Plymouth, PL1 2PB, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Santos, Rui" sort="Santos, Rui" uniqKey="Santos R" first="Rui" last="Santos">Rui Santos</name>
<affiliation>
<nlm:aff id="au6">
<institution>Marine Plant Ecology Research Group (ALGAE), Centre of Marine Sciences (CCMAR), University of Algarve</institution>
<addr-line>Campus of Gambelas, Faro, 8005-139, Portugal</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cunliffe, Michael" sort="Cunliffe, Michael" uniqKey="Cunliffe M" first="Michael" last="Cunliffe">Michael Cunliffe</name>
<affiliation>
<nlm:aff id="au3">
<institution>Marine Biological Association of the UK</institution>
<addr-line>Citadel Hill, Plymouth, PL1 2PB, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Steinke, Michael" sort="Steinke, Michael" uniqKey="Steinke M" first="Michael" last="Steinke">Michael Steinke</name>
<affiliation>
<nlm:aff id="au7">
<institution>School of Biological Sciences, University of Essex</institution>
<addr-line>Colchester, CO4 3SQ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yesson, Christopher" sort="Yesson, Christopher" uniqKey="Yesson C" first="Christopher" last="Yesson">Christopher Yesson</name>
<affiliation>
<nlm:aff id="au1">
<institution>Department of Life Sciences, The Natural History Museum</institution>
<addr-line>Cromwell Road, London, SW7 5BD, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au8">
<institution>Institute of Zoology, Zoological Society of London</institution>
<addr-line>Regent's Park, London, NW1 4RY, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Kathryn M" sort="Anderson, Kathryn M" uniqKey="Anderson K" first="Kathryn M" last="Anderson">Kathryn M. Anderson</name>
<affiliation>
<nlm:aff id="au9">
<institution>Department of Zoology, The University of British Columbia</institution>
<addr-line>#4200-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Asnaghi, Valentina" sort="Asnaghi, Valentina" uniqKey="Asnaghi V" first="Valentina" last="Asnaghi">Valentina Asnaghi</name>
<affiliation>
<nlm:aff id="au10">
<institution>DiSTAV - University of Genoa</institution>
<addr-line>C.so Europa 26, Genoa, 16132, Italy</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brownlee, Colin" sort="Brownlee, Colin" uniqKey="Brownlee C" first="Colin" last="Brownlee">Colin Brownlee</name>
<affiliation>
<nlm:aff id="au3">
<institution>Marine Biological Association of the UK</institution>
<addr-line>Citadel Hill, Plymouth, PL1 2PB, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Burdett, Heidi L" sort="Burdett, Heidi L" uniqKey="Burdett H" first="Heidi L" last="Burdett">Heidi L. Burdett</name>
<affiliation>
<nlm:aff id="au11">
<institution>Department of Earth and Environmental Sciences, University of St Andrews</institution>
<addr-line>St Andrews, Fife, KY16 9AL, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au12">
<institution>Scottish Oceans Institute, University of St Andrews</institution>
<addr-line>St Andrews, Fife, KY16 8LB, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Burrows, Michael T" sort="Burrows, Michael T" uniqKey="Burrows M" first="Michael T" last="Burrows">Michael T. Burrows</name>
<affiliation>
<nlm:aff id="au13">
<institution>Scottish Marine Institute</institution>
<addr-line>Oban, Argyll, PA37 1QA, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Collins, Sinead" sort="Collins, Sinead" uniqKey="Collins S" first="Sinead" last="Collins">Sinead Collins</name>
<affiliation>
<nlm:aff id="au14">
<institution>Institute of Evolutionary Biology, University of Edinburgh</institution>
<addr-line>The King's Building, West Mains Road, Edinburgh, EH9 3JT, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Donohue, Penelope J C" sort="Donohue, Penelope J C" uniqKey="Donohue P" first="Penelope J C" last="Donohue">Penelope J C. Donohue</name>
<affiliation>
<nlm:aff id="au5">
<institution>School of Geographical and Earth Sciences, University of Glasgow</institution>
<addr-line>Glasgow, G12 8QQ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harvey, Ben" sort="Harvey, Ben" uniqKey="Harvey B" first="Ben" last="Harvey">Ben Harvey</name>
<affiliation>
<nlm:aff id="au15">
<institution>Institute of Biology, Environmental and Rural Sciences, Aberystwyth University</institution>
<addr-line>Aberystwyth, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Foggo, Andrew" sort="Foggo, Andrew" uniqKey="Foggo A" first="Andrew" last="Foggo">Andrew Foggo</name>
<affiliation>
<nlm:aff id="au16">
<institution>Marine Biology and Ecology Research Centre, School of Marine Sciences and Engineering, Plymouth University</institution>
<addr-line>PL4 8AA, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Noisette, Fanny" sort="Noisette, Fanny" uniqKey="Noisette F" first="Fanny" last="Noisette">Fanny Noisette</name>
<affiliation>
<nlm:aff id="au17">
<institution>CNRS, UMR</institution>
<addr-line>7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff Cedex, 29688, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au18">
<institution>UPMC Univ. Paris 6, UMR 7144</institution>
<addr-line>Station Biologique de Roscoff, Place Georges Teissier, Roscoff Cedex, 29688, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nunes, Joana" sort="Nunes, Joana" uniqKey="Nunes J" first="Joana" last="Nunes">Joana Nunes</name>
<affiliation>
<nlm:aff id="au19">
<institution>Plymouth Marine Laboratory</institution>
<addr-line>Prospect Place, The Hoe, Plymouth, PL1 3DH, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ragazzola, Federica" sort="Ragazzola, Federica" uniqKey="Ragazzola F" first="Federica" last="Ragazzola">Federica Ragazzola</name>
<affiliation>
<nlm:aff id="au20">
<institution>School of Earth Sciences, University of Bristol</institution>
<addr-line>Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raven, John A" sort="Raven, John A" uniqKey="Raven J" first="John A" last="Raven">John A. Raven</name>
<affiliation>
<nlm:aff id="au21">
<institution>Division of Plant Science, University of Dundee at the James Hutton Institute</institution>
<addr-line>Invergowrie, Dundee, DD2 5DA, UK</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au22">
<institution>Plant Functional Biology and Climate Change Cluster, University of Technology Sydney</institution>
<addr-line>Ultimo, NSW 2007, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Daniela N" sort="Schmidt, Daniela N" uniqKey="Schmidt D" first="Daniela N" last="Schmidt">Daniela N. Schmidt</name>
<affiliation>
<nlm:aff id="au20">
<institution>School of Earth Sciences, University of Bristol</institution>
<addr-line>Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Suggett, David" sort="Suggett, David" uniqKey="Suggett D" first="David" last="Suggett">David Suggett</name>
<affiliation>
<nlm:aff id="au7">
<institution>School of Biological Sciences, University of Essex</institution>
<addr-line>Colchester, CO4 3SQ, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Teichberg, Mirta" sort="Teichberg, Mirta" uniqKey="Teichberg M" first="Mirta" last="Teichberg">Mirta Teichberg</name>
<affiliation>
<nlm:aff id="au23">
<institution>Leibniz-Zentrum für Marine Tropenökologie</institution>
<addr-line>Fahrenheitstraße 6, Bremen, D-28359, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hall Spencer, Jason M" sort="Hall Spencer, Jason M" uniqKey="Hall Spencer J" first="Jason M" last="Hall-Spencer">Jason M. Hall-Spencer</name>
<affiliation>
<nlm:aff id="au16">
<institution>Marine Biology and Ecology Research Centre, School of Marine Sciences and Engineering, Plymouth University</institution>
<addr-line>PL4 8AA, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and Evolution</title>
<idno type="ISSN">2045-7758</idno>
<idno type="eISSN">2045-7758</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO
<sub>2</sub>
emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Alsterberg, C" uniqKey="Alsterberg C">C Alsterberg</name>
</author>
<author>
<name sortKey="Eklofa, Js" uniqKey="Eklofa J">JS Eklöfa</name>
</author>
<author>
<name sortKey="Gamfeldta, L" uniqKey="Gamfeldta L">L Gamfeldta</name>
</author>
<author>
<name sortKey="Havenhandb, Jn" uniqKey="Havenhandb J">JN Havenhandb</name>
</author>
<author>
<name sortKey="Sundb Cka, K" uniqKey="Sundb Cka K">K Sundbäcka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersson, Aj" uniqKey="Andersson A">AJ Andersson</name>
</author>
<author>
<name sortKey="Mackenzie, Ft" uniqKey="Mackenzie F">FT Mackenzie</name>
</author>
<author>
<name sortKey="Bates, Nr" uniqKey="Bates N">NR Bates</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arenas, F" uniqKey="Arenas F">F Arenas</name>
</author>
<author>
<name sortKey="Sanchez, I" uniqKey="Sanchez I">I Sanchez</name>
</author>
<author>
<name sortKey="Hawkins, Sj" uniqKey="Hawkins S">SJ Hawkins</name>
</author>
<author>
<name sortKey="Jenkins, Sr" uniqKey="Jenkins S">SR Jenkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnold, Tm" uniqKey="Arnold T">TM Arnold</name>
</author>
<author>
<name sortKey="Targett, Nm" uniqKey="Targett N">NM Targett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnold, T" uniqKey="Arnold T">T Arnold</name>
</author>
<author>
<name sortKey="Mealy, C" uniqKey="Mealy C">C Mealy</name>
</author>
<author>
<name sortKey="Leahey, H" uniqKey="Leahey H">H Leahey</name>
</author>
<author>
<name sortKey="Miller, Aw" uniqKey="Miller A">AW Miller</name>
</author>
<author>
<name sortKey="Hall Spencer, Jm" uniqKey="Hall Spencer J">JM Hall-Spencer</name>
</author>
<author>
<name sortKey="Milazzo, M" uniqKey="Milazzo M">M Milazzo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Asnaghi, V" uniqKey="Asnaghi V">V Asnaghi</name>
</author>
<author>
<name sortKey="Chiantore, M" uniqKey="Chiantore M">M Chiantore</name>
</author>
<author>
<name sortKey="Mangialajo, L" uniqKey="Mangialajo L">L Mangialajo</name>
</author>
<author>
<name sortKey="Gazeau, F" uniqKey="Gazeau F">F Gazeau</name>
</author>
<author>
<name sortKey="Francour, P" uniqKey="Francour P">P Francour</name>
</author>
<author>
<name sortKey="Alliouane, S" uniqKey="Alliouane S">S Alliouane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ayers, Gp" uniqKey="Ayers G">GP Ayers</name>
</author>
<author>
<name sortKey="Cainey, Jm" uniqKey="Cainey J">JM Cainey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartsch, I" uniqKey="Bartsch I">I Bartsch</name>
</author>
<author>
<name sortKey="Vogt, J" uniqKey="Vogt J">J Vogt</name>
</author>
<author>
<name sortKey="Muller Parker, G" uniqKey="Muller Parker G">G Muller-Parker</name>
</author>
<author>
<name sortKey="Oakley, Ca" uniqKey="Oakley C">CA Oakley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bijma, J" uniqKey="Bijma J">J Bijma</name>
</author>
<author>
<name sortKey="Portner, H O" uniqKey="Portner H">H-O Pörtner</name>
</author>
<author>
<name sortKey="Yesson, C" uniqKey="Yesson C">C Yesson</name>
</author>
<author>
<name sortKey="Rogers, Ad" uniqKey="Rogers A">AD Rogers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blight, Aj" uniqKey="Blight A">AJ Blight</name>
</author>
<author>
<name sortKey="Thompson, Rc" uniqKey="Thompson R">RC Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borchard, C" uniqKey="Borchard C">C Borchard</name>
</author>
<author>
<name sortKey="Engel, A" uniqKey="Engel A">A Engel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borell, Em" uniqKey="Borell E">EM Borell</name>
</author>
<author>
<name sortKey="Steinke, M" uniqKey="Steinke M">M Steinke</name>
</author>
<author>
<name sortKey="Fine, M" uniqKey="Fine M">M Fine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradassi, F" uniqKey="Bradassi F">F Bradassi</name>
</author>
<author>
<name sortKey="Cumani, F" uniqKey="Cumani F">F Cumani</name>
</author>
<author>
<name sortKey="Bressan, G" uniqKey="Bressan G">G Bressan</name>
</author>
<author>
<name sortKey="Dupont, S" uniqKey="Dupont S">S Dupont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breton, Sp" uniqKey="Breton S">SP Breton</name>
</author>
<author>
<name sortKey="Moe, G" uniqKey="Moe G">G Moe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brodie, J" uniqKey="Brodie J">J Brodie</name>
</author>
<author>
<name sortKey="Andersen, Ra" uniqKey="Andersen R">RA Andersen</name>
</author>
<author>
<name sortKey="Kawachi, M" uniqKey="Kawachi M">M Kawachi</name>
</author>
<author>
<name sortKey="Millar, Ajk" uniqKey="Millar A">AJK Millar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Budenbender, J" uniqKey="Budenbender J">J Büdenbender</name>
</author>
<author>
<name sortKey="Riebesell, U" uniqKey="Riebesell U">U Riebesell</name>
</author>
<author>
<name sortKey="Form, A" uniqKey="Form A">A Form</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burdett, Hl" uniqKey="Burdett H">HL Burdett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burdett, Hl" uniqKey="Burdett H">HL Burdett</name>
</author>
<author>
<name sortKey="Aloisio, E" uniqKey="Aloisio E">E Aloisio</name>
</author>
<author>
<name sortKey="Calosi, P" uniqKey="Calosi P">P Calosi</name>
</author>
<author>
<name sortKey="Findlay, Hs" uniqKey="Findlay H">HS Findlay</name>
</author>
<author>
<name sortKey="Widddicombe, S" uniqKey="Widddicombe S">S Widddicombe</name>
</author>
<author>
<name sortKey="Hatton, Ad" uniqKey="Hatton A">AD Hatton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carpenter, Lj" uniqKey="Carpenter L">LJ Carpenter</name>
</author>
<author>
<name sortKey="Archer, Sd" uniqKey="Archer S">SD Archer</name>
</author>
<author>
<name sortKey="Beale, R" uniqKey="Beale R">R Beale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Connell, Sd" uniqKey="Connell S">SD Connell</name>
</author>
<author>
<name sortKey="Kroeker, Kj" uniqKey="Kroeker K">KJ Kroeker</name>
</author>
<author>
<name sortKey="Fabricius, Ke" uniqKey="Fabricius K">KE Fabricius</name>
</author>
<author>
<name sortKey="Kline, Di" uniqKey="Kline D">DI Kline</name>
</author>
<author>
<name sortKey="Russell, Bd" uniqKey="Russell B">BD Russell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, Aj" uniqKey="Davies A">AJ Davies</name>
</author>
<author>
<name sortKey="Johnson, Mp" uniqKey="Johnson M">MP Johnson</name>
</author>
<author>
<name sortKey="Maggs, Ca" uniqKey="Maggs C">CA Maggs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dieck, It" uniqKey="Dieck I">IT Dieck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eberlein, T" uniqKey="Eberlein T">T Eberlein</name>
</author>
<author>
<name sortKey="Van De Waal, Db" uniqKey="Van De Waal D">DB Van De Waal</name>
</author>
<author>
<name sortKey="John, U" uniqKey="John U">U John</name>
</author>
<author>
<name sortKey="Rost, B" uniqKey="Rost B">B Rost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Egilsdottir, H" uniqKey="Egilsdottir H">H Egilsdottir</name>
</author>
<author>
<name sortKey="Noisette, F" uniqKey="Noisette F">F Noisette</name>
</author>
<author>
<name sortKey="Noel, Lm Lj" uniqKey="Noel L">LM-LJ Noel</name>
</author>
<author>
<name sortKey="Olafsson, J" uniqKey="Olafsson J">J Olafsson</name>
</author>
<author>
<name sortKey="Martin, S" uniqKey="Martin S">S Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eriksson, Bk" uniqKey="Eriksson B">BK Eriksson</name>
</author>
<author>
<name sortKey="Johansson, G" uniqKey="Johansson G">G Johansson</name>
</author>
<author>
<name sortKey="Snoeijs, P" uniqKey="Snoeijs P">P Snoeijs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falkenberg, Lj" uniqKey="Falkenberg L">LJ Falkenberg</name>
</author>
<author>
<name sortKey="Russell, Bd" uniqKey="Russell B">BD Russell</name>
</author>
<author>
<name sortKey="Connell, Sd" uniqKey="Connell S">SD Connell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feely, Ra" uniqKey="Feely R">RA Feely</name>
</author>
<author>
<name sortKey="Sabine, Cl" uniqKey="Sabine C">CL Sabine</name>
</author>
<author>
<name sortKey="Hernandez Ayon, Jm" uniqKey="Hernandez Ayon J">JM Hernandez-Ayon</name>
</author>
<author>
<name sortKey="Ianson, D" uniqKey="Ianson D">D Ianson</name>
</author>
<author>
<name sortKey="Hales, B" uniqKey="Hales B">B Hales</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C Fernández</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C Fernández</name>
</author>
<author>
<name sortKey="Niell, Fx" uniqKey="Niell F">FX Niell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flynn, Kj" uniqKey="Flynn K">KJ Flynn</name>
</author>
<author>
<name sortKey="Blackford, Jc" uniqKey="Blackford J">JC Blackford</name>
</author>
<author>
<name sortKey="Baird, Me" uniqKey="Baird M">ME Baird</name>
</author>
<author>
<name sortKey="Raven, Ja" uniqKey="Raven J">JA Raven</name>
</author>
<author>
<name sortKey="Clark, Dr" uniqKey="Clark D">DR Clark</name>
</author>
<author>
<name sortKey="Beardall, J" uniqKey="Beardall J">J Beardall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fourqurean, Jw" uniqKey="Fourqurean J">JW Fourqurean</name>
</author>
<author>
<name sortKey="Duarte, Cm" uniqKey="Duarte C">CM Duarte</name>
</author>
<author>
<name sortKey="Kennedy, H" uniqKey="Kennedy H">H Kennedy</name>
</author>
<author>
<name sortKey="Marba, N" uniqKey="Marba N">N Marba</name>
</author>
<author>
<name sortKey="Holmer, M" uniqKey="Holmer M">M Holmer</name>
</author>
<author>
<name sortKey="Angel Mateo, M" uniqKey="Angel Mateo M">M Angel Mateo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fredersdorf, J" uniqKey="Fredersdorf J">J Fredersdorf</name>
</author>
<author>
<name sortKey="Muller, R" uniqKey="Muller R">R Müller</name>
</author>
<author>
<name sortKey="Becker, S" uniqKey="Becker S">S Becker</name>
</author>
<author>
<name sortKey="Wiencke, C" uniqKey="Wiencke C">C Wiencke</name>
</author>
<author>
<name sortKey="Bischof, K" uniqKey="Bischof K">K Bischof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, F X" uniqKey="Fu F">F-X Fu</name>
</author>
<author>
<name sortKey="Place, Ar" uniqKey="Place A">AR Place</name>
</author>
<author>
<name sortKey="Garcia, Ns" uniqKey="Garcia N">NS Garcia</name>
</author>
<author>
<name sortKey="Hutchins, Da" uniqKey="Hutchins D">DA Hutchins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gollety, C" uniqKey="Gollety C">C Golléty</name>
</author>
<author>
<name sortKey="Migne, A" uniqKey="Migne A">A Migné</name>
</author>
<author>
<name sortKey="Davoult, D" uniqKey="Davoult D">D Davoult</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guiry, Md" uniqKey="Guiry M">MD Guiry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall Spencer, Jm" uniqKey="Hall Spencer J">JM Hall-Spencer</name>
</author>
<author>
<name sortKey="Rodolfo Metalpa, R" uniqKey="Rodolfo Metalpa R">R Rodolfo-Metalpa</name>
</author>
<author>
<name sortKey="Martin, S" uniqKey="Martin S">S Martin</name>
</author>
<author>
<name sortKey="Ransome, E" uniqKey="Ransome E">E Ransome</name>
</author>
<author>
<name sortKey="Fine, M" uniqKey="Fine M">M Fine</name>
</author>
<author>
<name sortKey="Turner, Sm" uniqKey="Turner S">SM Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall Spencer, Jm" uniqKey="Hall Spencer J">JM Hall-Spencer</name>
</author>
<author>
<name sortKey="Kelly, J" uniqKey="Kelly J">J Kelly</name>
</author>
<author>
<name sortKey="Maggs, Ca" uniqKey="Maggs C">CA Maggs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hardison, Ak" uniqKey="Hardison A">AK Hardison</name>
</author>
<author>
<name sortKey="Canuel, Ea" uniqKey="Canuel E">EA Canuel</name>
</author>
<author>
<name sortKey="Anderson, Ic" uniqKey="Anderson I">IC Anderson</name>
</author>
<author>
<name sortKey="Tobias, Cr" uniqKey="Tobias C">CR Tobias</name>
</author>
<author>
<name sortKey="Veuger, B" uniqKey="Veuger B">B Veuger</name>
</author>
<author>
<name sortKey="Waters, Mn" uniqKey="Waters M">MN Waters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harley, Cdg" uniqKey="Harley C">CDG Harley</name>
</author>
<author>
<name sortKey="Anderson, Km" uniqKey="Anderson K">KM Anderson</name>
</author>
<author>
<name sortKey="Demes, Kw" uniqKey="Demes K">KW Demes</name>
</author>
<author>
<name sortKey="Jorve, Jp" uniqKey="Jorve J">JP Jorve</name>
</author>
<author>
<name sortKey="Kordas, Rl" uniqKey="Kordas R">RL Kordas</name>
</author>
<author>
<name sortKey="Coyle, Ta" uniqKey="Coyle T">TA Coyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawkins, Sj" uniqKey="Hawkins S">SJ Hawkins</name>
</author>
<author>
<name sortKey="Harkin, E" uniqKey="Harkin E">E Harkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hay, Me" uniqKey="Hay M">ME Hay</name>
</author>
<author>
<name sortKey="Kappel, Qe" uniqKey="Kappel Q">QE Kappel</name>
</author>
<author>
<name sortKey="Fenical, W" uniqKey="Fenical W">W Fenical</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Den Hoek, C" uniqKey="Van Den Hoek C">C van den Hoek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Vr" uniqKey="Johnson V">VR Johnson</name>
</author>
<author>
<name sortKey="Russell, Bd" uniqKey="Russell B">BD Russell</name>
</author>
<author>
<name sortKey="Fabricius, Ke" uniqKey="Fabricius K">KE Fabricius</name>
</author>
<author>
<name sortKey="Brownlee, C" uniqKey="Brownlee C">C Brownlee</name>
</author>
<author>
<name sortKey="Hall Spencer, Jm" uniqKey="Hall Spencer J">JM Hall-Spencer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Vr" uniqKey="Johnson V">VR Johnson</name>
</author>
<author>
<name sortKey="Brownlee, C" uniqKey="Brownlee C">C Brownlee</name>
</author>
<author>
<name sortKey="Rickaby, Rem" uniqKey="Rickaby R">REM Rickaby</name>
</author>
<author>
<name sortKey="Graziano, M" uniqKey="Graziano M">M Graziano</name>
</author>
<author>
<name sortKey="Milazzo, M" uniqKey="Milazzo M">M Milazzo</name>
</author>
<author>
<name sortKey="Hall Spencer, Jm" uniqKey="Hall Spencer J">JM Hall-Spencer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jueterbock, A" uniqKey="Jueterbock A">A Jueterbock</name>
</author>
<author>
<name sortKey="Tyberghein, L" uniqKey="Tyberghein L">L Tyberghein</name>
</author>
<author>
<name sortKey="Verbruggen, H" uniqKey="Verbruggen H">H Verbruggen</name>
</author>
<author>
<name sortKey="Coyer, Ja" uniqKey="Coyer J">JA Coyer</name>
</author>
<author>
<name sortKey="Olsen, Jl" uniqKey="Olsen J">JL Olsen</name>
</author>
<author>
<name sortKey="Hoarau, G" uniqKey="Hoarau G">G Hoarau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamenos, Na" uniqKey="Kamenos N">NA Kamenos</name>
</author>
<author>
<name sortKey="Moore, Pg" uniqKey="Moore P">PG Moore</name>
</author>
<author>
<name sortKey="Hall Spencer, Jm" uniqKey="Hall Spencer J">JM Hall-Spencer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamenos, Na" uniqKey="Kamenos N">NA Kamenos</name>
</author>
<author>
<name sortKey="Burdett, Hl" uniqKey="Burdett H">HL Burdett</name>
</author>
<author>
<name sortKey="Aloisio, E" uniqKey="Aloisio E">E Aloisio</name>
</author>
<author>
<name sortKey="Findlay, Hs" uniqKey="Findlay H">HS Findlay</name>
</author>
<author>
<name sortKey="Martin, S" uniqKey="Martin S">S Martin</name>
</author>
<author>
<name sortKey="Longbone, C" uniqKey="Longbone C">C Longbone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koch, M" uniqKey="Koch M">M Koch</name>
</author>
<author>
<name sortKey="Bowes, G" uniqKey="Bowes G">G Bowes</name>
</author>
<author>
<name sortKey="Ross, C" uniqKey="Ross C">C Ross</name>
</author>
<author>
<name sortKey="Zhang, X H" uniqKey="Zhang X">X-H Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroeker, Kj" uniqKey="Kroeker K">KJ Kroeker</name>
</author>
<author>
<name sortKey="Kordas, Rl" uniqKey="Kordas R">RL Kordas</name>
</author>
<author>
<name sortKey="Crim, R" uniqKey="Crim R">R Crim</name>
</author>
<author>
<name sortKey="Hendriks, Ie" uniqKey="Hendriks I">IE Hendriks</name>
</author>
<author>
<name sortKey="Ramajo, L" uniqKey="Ramajo L">L Ramajo</name>
</author>
<author>
<name sortKey="Singh, Gs" uniqKey="Singh G">GS Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krumhansl, Ka" uniqKey="Krumhansl K">KA Krumhansl</name>
</author>
<author>
<name sortKey="Scheibling, Re" uniqKey="Scheibling R">RE Scheibling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuhn, Sf" uniqKey="Kuhn S">SF Kühn</name>
</author>
<author>
<name sortKey="Raven, Ja" uniqKey="Raven J">JA Raven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lidbury, I" uniqKey="Lidbury I">I Lidbury</name>
</author>
<author>
<name sortKey="Johnson, V" uniqKey="Johnson V">V Johnson</name>
</author>
<author>
<name sortKey="Hall Spencer, Jm" uniqKey="Hall Spencer J">JM Hall-Spencer</name>
</author>
<author>
<name sortKey="Munn, Cb" uniqKey="Munn C">CB Munn</name>
</author>
<author>
<name sortKey="Cunliffe, M" uniqKey="Cunliffe M">M Cunliffe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lima, Fp" uniqKey="Lima F">FP Lima</name>
</author>
<author>
<name sortKey="Ribeiro, Pa" uniqKey="Ribeiro P">PA Ribeiro</name>
</author>
<author>
<name sortKey="Queiroz, N" uniqKey="Queiroz N">N Queiroz</name>
</author>
<author>
<name sortKey="Hawkins, Sj" uniqKey="Hawkins S">SJ Hawkins</name>
</author>
<author>
<name sortKey="Santos, Am" uniqKey="Santos A">AM Santos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lohbeck, Kt" uniqKey="Lohbeck K">KT Lohbeck</name>
</author>
<author>
<name sortKey="Riebesell, U" uniqKey="Riebesell U">U Riebesell</name>
</author>
<author>
<name sortKey="Reusch, Tbh" uniqKey="Reusch T">TBH Reusch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mann, Kh" uniqKey="Mann K">KH Mann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mann, Kh" uniqKey="Mann K">KH Mann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, S" uniqKey="Martin S">S Martin</name>
</author>
<author>
<name sortKey="Rodolfo Metalpa, R" uniqKey="Rodolfo Metalpa R">R Rodolfo-Metalpa</name>
</author>
<author>
<name sortKey="Ransome, E" uniqKey="Ransome E">E Ransome</name>
</author>
<author>
<name sortKey="Rowley, S" uniqKey="Rowley S">S Rowley</name>
</author>
<author>
<name sortKey="Buia, Mc" uniqKey="Buia M">MC Buia</name>
</author>
<author>
<name sortKey="Gattuso, Jp" uniqKey="Gattuso J">JP Gattuso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, S" uniqKey="Martin S">S Martin</name>
</author>
<author>
<name sortKey="Cohu, S" uniqKey="Cohu S">S Cohu</name>
</author>
<author>
<name sortKey="Vignot, C" uniqKey="Vignot C">C Vignot</name>
</author>
<author>
<name sortKey="Zimmerman, G" uniqKey="Zimmerman G">G Zimmerman</name>
</author>
<author>
<name sortKey="Gattuso, Jp" uniqKey="Gattuso J">JP Gattuso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mateo, Ma" uniqKey="Mateo M">MA Mateo</name>
</author>
<author>
<name sortKey="Romero, J" uniqKey="Romero J">J Romero</name>
</author>
<author>
<name sortKey="Perez, M" uniqKey="Perez M">M Pérez</name>
</author>
<author>
<name sortKey="Littler, Mm" uniqKey="Littler M">MM Littler</name>
</author>
<author>
<name sortKey="Littler, Ds" uniqKey="Littler D">DS Littler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mateo, Ma" uniqKey="Mateo M">MA Mateo</name>
</author>
<author>
<name sortKey="Renom, P" uniqKey="Renom P">P Renom</name>
</author>
<author>
<name sortKey="Michener, Rh" uniqKey="Michener R">RH Michener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcleod, E" uniqKey="Mcleod E">E Mcleod</name>
</author>
<author>
<name sortKey="Chmura, Gl" uniqKey="Chmura G">GL Chmura</name>
</author>
<author>
<name sortKey="Bouillon, S" uniqKey="Bouillon S">S Bouillon</name>
</author>
<author>
<name sortKey="Salm, R" uniqKey="Salm R">R Salm</name>
</author>
<author>
<name sortKey="Bjork, M" uniqKey="Bjork M">M Björk</name>
</author>
<author>
<name sortKey="Duarte, Cm" uniqKey="Duarte C">CM Duarte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merzouk, A" uniqKey="Merzouk A">A Merzouk</name>
</author>
<author>
<name sortKey="Johnson, Le" uniqKey="Johnson L">LE Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mieszkowska, N" uniqKey="Mieszkowska N">N Mieszkowska</name>
</author>
<author>
<name sortKey="Leaper, R" uniqKey="Leaper R">R Leaper</name>
</author>
<author>
<name sortKey="Kendall, Ma" uniqKey="Kendall M">MA Kendall</name>
</author>
<author>
<name sortKey="Burrows, Mt" uniqKey="Burrows M">MT Burrows</name>
</author>
<author>
<name sortKey="Lear, D" uniqKey="Lear D">D Lear</name>
</author>
<author>
<name sortKey="Poloczanska, E" uniqKey="Poloczanska E">E Poloczanska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moy, Fe" uniqKey="Moy F">FE Moy</name>
</author>
<author>
<name sortKey="Christie, Hc" uniqKey="Christie H">HC Christie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nelson, Wa" uniqKey="Nelson W">WA Nelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicholls, Rj" uniqKey="Nicholls R">RJ Nicholls</name>
</author>
<author>
<name sortKey="Wong, Pp" uniqKey="Wong P">PP Wong</name>
</author>
<author>
<name sortKey="Burkett, Vr" uniqKey="Burkett V">VR Burkett</name>
</author>
<author>
<name sortKey="Codignotto, Jo" uniqKey="Codignotto J">JO Codignotto</name>
</author>
<author>
<name sortKey="Hay, Je" uniqKey="Hay J">JE Hay</name>
</author>
<author>
<name sortKey="Mclean, Rf" uniqKey="Mclean R">RF McLean</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noisette, F" uniqKey="Noisette F">F Noisette</name>
</author>
<author>
<name sortKey="Duong, G" uniqKey="Duong G">G Duong</name>
</author>
<author>
<name sortKey="Six, C" uniqKey="Six C">C Six</name>
</author>
<author>
<name sortKey="Davoult, D" uniqKey="Davoult D">D Davoult</name>
</author>
<author>
<name sortKey="Martin, S" uniqKey="Martin S">S Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyberg, Cd" uniqKey="Nyberg C">CD Nyberg</name>
</author>
<author>
<name sortKey="Wallentius, I" uniqKey="Wallentius I">I Wallentius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olischl Ger, M" uniqKey="Olischl Ger M">M Olischläger</name>
</author>
<author>
<name sortKey="Wiencke, C" uniqKey="Wiencke C">C Wiencke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pearson, Ga" uniqKey="Pearson G">GA Pearson</name>
</author>
<author>
<name sortKey="Lago Leston, A" uniqKey="Lago Leston A">A Lago-Leston</name>
</author>
<author>
<name sortKey="Mota, C" uniqKey="Mota C">C Mota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piontek, J" uniqKey="Piontek J">J Piontek</name>
</author>
<author>
<name sortKey="Lunau, M" uniqKey="Lunau M">M Lunau</name>
</author>
<author>
<name sortKey="Handel, N" uniqKey="Handel N">N Handel</name>
</author>
<author>
<name sortKey="Borchard, C" uniqKey="Borchard C">C Borchard</name>
</author>
<author>
<name sortKey="Wurst, M" uniqKey="Wurst M">M Wurst</name>
</author>
<author>
<name sortKey="Engel, A" uniqKey="Engel A">A Engel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poloczanska, Es" uniqKey="Poloczanska E">ES Poloczanska</name>
</author>
<author>
<name sortKey="Brown, Cj" uniqKey="Brown C">CJ Brown</name>
</author>
<author>
<name sortKey="Sydeman, Wj" uniqKey="Sydeman W">WJ Sydeman</name>
</author>
<author>
<name sortKey="Kiessling, W" uniqKey="Kiessling W">W Kiessling</name>
</author>
<author>
<name sortKey="Schoeman, Ds" uniqKey="Schoeman D">DS Schoeman</name>
</author>
<author>
<name sortKey="Moore, Pj" uniqKey="Moore P">PJ Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Portner, H O" uniqKey="Portner H">H-O Pörtner</name>
</author>
<author>
<name sortKey="Karl, D" uniqKey="Karl D">D Karl</name>
</author>
<author>
<name sortKey="Boyd, Pw" uniqKey="Boyd P">PW Boyd</name>
</author>
<author>
<name sortKey="Cheung, W" uniqKey="Cheung W">W Cheung</name>
</author>
<author>
<name sortKey="Lluch Cota, Se" uniqKey="Lluch Cota S">SE Lluch-Cota</name>
</author>
<author>
<name sortKey="Nojiri, Y" uniqKey="Nojiri Y">Y Nojiri</name>
</author>
<author>
<name sortKey="Schmidt, D" uniqKey="Schmidt D">D Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ragazzola, F" uniqKey="Ragazzola F">F Ragazzola</name>
</author>
<author>
<name sortKey="Foster, Lc" uniqKey="Foster L">LC Foster</name>
</author>
<author>
<name sortKey="Form, A" uniqKey="Form A">A Form</name>
</author>
<author>
<name sortKey="Anderson, Psl" uniqKey="Anderson P">PSL Anderson</name>
</author>
<author>
<name sortKey="Hansteen, Th" uniqKey="Hansteen T">TH Hansteen</name>
</author>
<author>
<name sortKey="Fietzke, J" uniqKey="Fietzke J">J Fietzke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raven, Ja" uniqKey="Raven J">JA Raven</name>
</author>
<author>
<name sortKey="Beardall, J" uniqKey="Beardall J">J Beardall</name>
</author>
<author>
<name sortKey="Giordano, M" uniqKey="Giordano M">M Giordano</name>
</author>
<author>
<name sortKey="Maberly, Sc" uniqKey="Maberly S">SC Maberly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reed, Dc" uniqKey="Reed D">DC Reed</name>
</author>
<author>
<name sortKey="Rassweiler, A" uniqKey="Rassweiler A">A Rassweiler</name>
</author>
<author>
<name sortKey="Arkema, Kk" uniqKey="Arkema K">KK Arkema</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reid, Pc" uniqKey="Reid P">PC Reid</name>
</author>
<author>
<name sortKey="Johns, Dg" uniqKey="Johns D">DG Johns</name>
</author>
<author>
<name sortKey="Edwards, M" uniqKey="Edwards M">M Edwards</name>
</author>
<author>
<name sortKey="Starr, M" uniqKey="Starr M">M Starr</name>
</author>
<author>
<name sortKey="Poulin, M" uniqKey="Poulin M">M Poulin</name>
</author>
<author>
<name sortKey="Snoeijs, P" uniqKey="Snoeijs P">P Snoeijs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reid, Pc" uniqKey="Reid P">PC Reid</name>
</author>
<author>
<name sortKey="Cook, Ej" uniqKey="Cook E">EJ Cook</name>
</author>
<author>
<name sortKey="Edwards, M" uniqKey="Edwards M">M Edwards</name>
</author>
<author>
<name sortKey="Mcquatters Gollop, A" uniqKey="Mcquatters Gollop A">A McQuatters-Gollop</name>
</author>
<author>
<name sortKey="Minchin, D" uniqKey="Minchin D">D Minchin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simkanin, C" uniqKey="Simkanin C">C Simkanin</name>
</author>
<author>
<name sortKey="Power, A" uniqKey="Power A">A Power</name>
</author>
<author>
<name sortKey="Myers, A" uniqKey="Myers A">A Myers</name>
</author>
<author>
<name sortKey="Mcgrath, D" uniqKey="Mcgrath D">D McGrath</name>
</author>
<author>
<name sortKey="Southward, A" uniqKey="Southward A">A Southward</name>
</author>
<author>
<name sortKey="Mieszkowska, N" uniqKey="Mieszkowska N">N Mieszkowska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sluijs, A" uniqKey="Sluijs A">A Sluijs</name>
</author>
<author>
<name sortKey="Brinkhuis, H" uniqKey="Brinkhuis H">H Brinkhuis</name>
</author>
<author>
<name sortKey="Schouten, S" uniqKey="Schouten S">S Schouten</name>
</author>
<author>
<name sortKey="Bohaty, Sm" uniqKey="Bohaty S">SM Bohaty</name>
</author>
<author>
<name sortKey="John, Cm" uniqKey="John C">CM John</name>
</author>
<author>
<name sortKey="Zachos, Jc" uniqKey="Zachos J">JC Zachos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smale, Da" uniqKey="Smale D">DA Smale</name>
</author>
<author>
<name sortKey="Wernberg, T" uniqKey="Wernberg T">T Wernberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smale, Da" uniqKey="Smale D">DA Smale</name>
</author>
<author>
<name sortKey="Burrows, Mt" uniqKey="Burrows M">MT Burrows</name>
</author>
<author>
<name sortKey="Moore, Pj" uniqKey="Moore P">PJ Moore</name>
</author>
<author>
<name sortKey="O Connor, N" uniqKey="O Connor N">N O'Connor</name>
</author>
<author>
<name sortKey="Hawkins, Sj" uniqKey="Hawkins S">SJ Hawkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sorte, Cjb" uniqKey="Sorte C">CJB Sorte</name>
</author>
<author>
<name sortKey="Williams, Sl" uniqKey="Williams S">SL Williams</name>
</author>
<author>
<name sortKey="Zerebecki, Ra" uniqKey="Zerebecki R">RA Zerebecki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stefels, J" uniqKey="Stefels J">J Stefels</name>
</author>
<author>
<name sortKey="Steinke, M" uniqKey="Steinke M">M Steinke</name>
</author>
<author>
<name sortKey="Turner, S" uniqKey="Turner S">S Turner</name>
</author>
<author>
<name sortKey="Malin, G" uniqKey="Malin G">G Malin</name>
</author>
<author>
<name sortKey="Belviso, S" uniqKey="Belviso S">S Belviso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steinacher, M" uniqKey="Steinacher M">M Steinacher</name>
</author>
<author>
<name sortKey="Joos, F" uniqKey="Joos F">F Joos</name>
</author>
<author>
<name sortKey="Frolicher, Tl" uniqKey="Frolicher T">TL Frolicher</name>
</author>
<author>
<name sortKey="Plattner, Gk" uniqKey="Plattner G">GK Plattner</name>
</author>
<author>
<name sortKey="Doney, Sc" uniqKey="Doney S">SC Doney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steneck, Rs" uniqKey="Steneck R">RS Steneck</name>
</author>
<author>
<name sortKey="Graham, Mh" uniqKey="Graham M">MH Graham</name>
</author>
<author>
<name sortKey="Bourque, Bj" uniqKey="Bourque B">BJ Bourque</name>
</author>
<author>
<name sortKey="Corbett, D" uniqKey="Corbett D">D Corbett</name>
</author>
<author>
<name sortKey="Erlandson, Jm" uniqKey="Erlandson J">JM Erlandson</name>
</author>
<author>
<name sortKey="Estes, Ja" uniqKey="Estes J">JA Estes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunday, Jm" uniqKey="Sunday J">JM Sunday</name>
</author>
<author>
<name sortKey="Calosi, P" uniqKey="Calosi P">P Calosi</name>
</author>
<author>
<name sortKey="Dupont, S" uniqKey="Dupont S">S Dupont</name>
</author>
<author>
<name sortKey="Munday, Pl" uniqKey="Munday P">PL Munday</name>
</author>
<author>
<name sortKey="Stillman, Jh" uniqKey="Stillman J">JH Stillman</name>
</author>
<author>
<name sortKey="Reusch, Tbh" uniqKey="Reusch T">TBH Reusch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Targett, Nm" uniqKey="Targett N">NM Targett</name>
</author>
<author>
<name sortKey="Coen, Ld" uniqKey="Coen L">LD Coen</name>
</author>
<author>
<name sortKey="Boettcher, Aa" uniqKey="Boettcher A">AA Boettcher</name>
</author>
<author>
<name sortKey="Tanner, Ce" uniqKey="Tanner C">CE Tanner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Ar" uniqKey="Taylor A">AR Taylor</name>
</author>
<author>
<name sortKey="Chrachri, A" uniqKey="Chrachri A">A Chrachri</name>
</author>
<author>
<name sortKey="Wheeler, G" uniqKey="Wheeler G">G Wheeler</name>
</author>
<author>
<name sortKey="Goddard, H" uniqKey="Goddard H">H Goddard</name>
</author>
<author>
<name sortKey="Brownlee, C" uniqKey="Brownlee C">C Brownlee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuya, F" uniqKey="Tuya F">F Tuya</name>
</author>
<author>
<name sortKey="Cacabelos, E" uniqKey="Cacabelos E">E Cacabelos</name>
</author>
<author>
<name sortKey="Duarte, P" uniqKey="Duarte P">P Duarte</name>
</author>
<author>
<name sortKey="Jacinto, D" uniqKey="Jacinto D">D Jacinto</name>
</author>
<author>
<name sortKey="Castro, Jj" uniqKey="Castro J">JJ Castro</name>
</author>
<author>
<name sortKey="Silva, T" uniqKey="Silva T">T Silva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vadas, Rl" uniqKey="Vadas R">RL Vadas</name>
</author>
<author>
<name sortKey="Beal, Bf" uniqKey="Beal B">BF Beal</name>
</author>
<author>
<name sortKey="Wright, Wa" uniqKey="Wright W">WA Wright</name>
</author>
<author>
<name sortKey="Nickl, S" uniqKey="Nickl S">S Nickl</name>
</author>
<author>
<name sortKey="Emerson, S" uniqKey="Emerson S">S Emerson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weltzin, Jf" uniqKey="Weltzin J">JF Weltzin</name>
</author>
<author>
<name sortKey="Belote, Rt" uniqKey="Belote R">RT Belote</name>
</author>
<author>
<name sortKey="Sanders, Nj" uniqKey="Sanders N">NJ Sanders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wernberg, T" uniqKey="Wernberg T">T Wernberg</name>
</author>
<author>
<name sortKey="Smale, Da" uniqKey="Smale D">DA Smale</name>
</author>
<author>
<name sortKey="Tuya, F" uniqKey="Tuya F">F Tuya</name>
</author>
<author>
<name sortKey="Thomsen, Ms" uniqKey="Thomsen M">MS Thomsen</name>
</author>
<author>
<name sortKey="Langlois, Tj" uniqKey="Langlois T">TJ Langlois</name>
</author>
<author>
<name sortKey="De Bettignies, T" uniqKey="De Bettignies T">T de Bettignies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Witt, V" uniqKey="Witt V">V Witt</name>
</author>
<author>
<name sortKey="Wild, C" uniqKey="Wild C">C Wild</name>
</author>
<author>
<name sortKey="Anthony, Krn" uniqKey="Anthony K">KRN Anthony</name>
</author>
<author>
<name sortKey="Diaz Pulido, G" uniqKey="Diaz Pulido G">G Diaz-Pulido</name>
</author>
<author>
<name sortKey="Uthicke, S" uniqKey="Uthicke S">S Uthicke</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Ecol Evol</journal-id>
<journal-id journal-id-type="iso-abbrev">Ecol Evol</journal-id>
<journal-id journal-id-type="publisher-id">ece3</journal-id>
<journal-title-group>
<journal-title>Ecology and Evolution</journal-title>
</journal-title-group>
<issn pub-type="ppub">2045-7758</issn>
<issn pub-type="epub">2045-7758</issn>
<publisher>
<publisher-name>BlackWell Publishing Ltd</publisher-name>
<publisher-loc>Oxford, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25077027</article-id>
<article-id pub-id-type="pmc">4113300</article-id>
<article-id pub-id-type="doi">10.1002/ece3.1105</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The future of the northeast Atlantic benthic flora in a high CO
<sub>2</sub>
world</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Brodie</surname>
<given-names>Juliet</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Williamson</surname>
<given-names>Christopher J</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="aff" rid="au2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Smale</surname>
<given-names>Dan A</given-names>
</name>
<xref ref-type="aff" rid="au3">3</xref>
<xref ref-type="aff" rid="au4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kamenos</surname>
<given-names>Nicholas A</given-names>
</name>
<xref ref-type="aff" rid="au5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mieszkowska</surname>
<given-names>Nova</given-names>
</name>
<xref ref-type="aff" rid="au3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Santos</surname>
<given-names>Rui</given-names>
</name>
<xref ref-type="aff" rid="au6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cunliffe</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="au3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Steinke</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="au7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yesson</surname>
<given-names>Christopher</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="aff" rid="au8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Anderson</surname>
<given-names>Kathryn M</given-names>
</name>
<xref ref-type="aff" rid="au9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Asnaghi</surname>
<given-names>Valentina</given-names>
</name>
<xref ref-type="aff" rid="au10">10</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brownlee</surname>
<given-names>Colin</given-names>
</name>
<xref ref-type="aff" rid="au3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Burdett</surname>
<given-names>Heidi L</given-names>
</name>
<xref ref-type="aff" rid="au11">11</xref>
<xref ref-type="aff" rid="au12">12</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Burrows</surname>
<given-names>Michael T</given-names>
</name>
<xref ref-type="aff" rid="au13">13</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Collins</surname>
<given-names>Sinead</given-names>
</name>
<xref ref-type="aff" rid="au14">14</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Donohue</surname>
<given-names>Penelope J C</given-names>
</name>
<xref ref-type="aff" rid="au5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Harvey</surname>
<given-names>Ben</given-names>
</name>
<xref ref-type="aff" rid="au15">15</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Foggo</surname>
<given-names>Andrew</given-names>
</name>
<xref ref-type="aff" rid="au16">16</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Noisette</surname>
<given-names>Fanny</given-names>
</name>
<xref ref-type="aff" rid="au17">17</xref>
<xref ref-type="aff" rid="au18">18</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nunes</surname>
<given-names>Joana</given-names>
</name>
<xref ref-type="aff" rid="au19">19</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ragazzola</surname>
<given-names>Federica</given-names>
</name>
<xref ref-type="aff" rid="au20">20</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Raven</surname>
<given-names>John A</given-names>
</name>
<xref ref-type="aff" rid="au21">21</xref>
<xref ref-type="aff" rid="au22">22</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schmidt</surname>
<given-names>Daniela N</given-names>
</name>
<xref ref-type="aff" rid="au20">20</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Suggett</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="au7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Teichberg</surname>
<given-names>Mirta</given-names>
</name>
<xref ref-type="aff" rid="au23">23</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hall-Spencer</surname>
<given-names>Jason M</given-names>
</name>
<xref ref-type="aff" rid="au16">16</xref>
</contrib>
<aff id="au1">
<label>1</label>
<institution>Department of Life Sciences, The Natural History Museum</institution>
<addr-line>Cromwell Road, London, SW7 5BD, UK</addr-line>
</aff>
<aff id="au2">
<label>2</label>
<institution>School of Earth and Ocean Sciences, Cardiff University</institution>
<addr-line>Main Building, Park Place, Cardiff, CF10 3YE, UK</addr-line>
</aff>
<aff id="au3">
<label>3</label>
<institution>Marine Biological Association of the UK</institution>
<addr-line>Citadel Hill, Plymouth, PL1 2PB, UK</addr-line>
</aff>
<aff id="au4">
<label>4</label>
<institution>Ocean and Earth Science, National Oceanography Centre, University of Southampton</institution>
<addr-line>Waterfront Campus, European Way, Southampton, SO14 3ZH, UK</addr-line>
</aff>
<aff id="au5">
<label>5</label>
<institution>School of Geographical and Earth Sciences, University of Glasgow</institution>
<addr-line>Glasgow, G12 8QQ, UK</addr-line>
</aff>
<aff id="au6">
<label>6</label>
<institution>Marine Plant Ecology Research Group (ALGAE), Centre of Marine Sciences (CCMAR), University of Algarve</institution>
<addr-line>Campus of Gambelas, Faro, 8005-139, Portugal</addr-line>
</aff>
<aff id="au7">
<label>7</label>
<institution>School of Biological Sciences, University of Essex</institution>
<addr-line>Colchester, CO4 3SQ, UK</addr-line>
</aff>
<aff id="au8">
<label>8</label>
<institution>Institute of Zoology, Zoological Society of London</institution>
<addr-line>Regent's Park, London, NW1 4RY, UK</addr-line>
</aff>
<aff id="au9">
<label>9</label>
<institution>Department of Zoology, The University of British Columbia</institution>
<addr-line>#4200-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada</addr-line>
</aff>
<aff id="au10">
<label>10</label>
<institution>DiSTAV - University of Genoa</institution>
<addr-line>C.so Europa 26, Genoa, 16132, Italy</addr-line>
</aff>
<aff id="au11">
<label>11</label>
<institution>Department of Earth and Environmental Sciences, University of St Andrews</institution>
<addr-line>St Andrews, Fife, KY16 9AL, UK</addr-line>
</aff>
<aff id="au12">
<label>12</label>
<institution>Scottish Oceans Institute, University of St Andrews</institution>
<addr-line>St Andrews, Fife, KY16 8LB, UK</addr-line>
</aff>
<aff id="au13">
<label>13</label>
<institution>Scottish Marine Institute</institution>
<addr-line>Oban, Argyll, PA37 1QA, UK</addr-line>
</aff>
<aff id="au14">
<label>14</label>
<institution>Institute of Evolutionary Biology, University of Edinburgh</institution>
<addr-line>The King's Building, West Mains Road, Edinburgh, EH9 3JT, UK</addr-line>
</aff>
<aff id="au15">
<label>15</label>
<institution>Institute of Biology, Environmental and Rural Sciences, Aberystwyth University</institution>
<addr-line>Aberystwyth, UK</addr-line>
</aff>
<aff id="au16">
<label>16</label>
<institution>Marine Biology and Ecology Research Centre, School of Marine Sciences and Engineering, Plymouth University</institution>
<addr-line>PL4 8AA, UK</addr-line>
</aff>
<aff id="au17">
<label>17</label>
<institution>CNRS, UMR</institution>
<addr-line>7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff Cedex, 29688, France</addr-line>
</aff>
<aff id="au18">
<label>18</label>
<institution>UPMC Univ. Paris 6, UMR 7144</institution>
<addr-line>Station Biologique de Roscoff, Place Georges Teissier, Roscoff Cedex, 29688, France</addr-line>
</aff>
<aff id="au19">
<label>19</label>
<institution>Plymouth Marine Laboratory</institution>
<addr-line>Prospect Place, The Hoe, Plymouth, PL1 3DH, UK</addr-line>
</aff>
<aff id="au20">
<label>20</label>
<institution>School of Earth Sciences, University of Bristol</institution>
<addr-line>Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK</addr-line>
</aff>
<aff id="au21">
<label>21</label>
<institution>Division of Plant Science, University of Dundee at the James Hutton Institute</institution>
<addr-line>Invergowrie, Dundee, DD2 5DA, UK</addr-line>
</aff>
<aff id="au22">
<label>22</label>
<institution>Plant Functional Biology and Climate Change Cluster, University of Technology Sydney</institution>
<addr-line>Ultimo, NSW 2007, Australia</addr-line>
</aff>
<aff id="au23">
<label>23</label>
<institution>Leibniz-Zentrum für Marine Tropenökologie</institution>
<addr-line>Fahrenheitstraße 6, Bremen, D-28359, Germany</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Juliet Brodie, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK. Tel: +44 207 942 5910; E-mail:
<email>j.brodie@nhm.ac.uk</email>
</corresp>
<fn>
<p>
<bold>Funding Information</bold>
This work was funded by the UK Ocean Acidification Research Programme (co-funded by NERC, Defra and DECC), NERC OARP Grant: NE/H016996/1 “Ocean Acidification Impacts on Sea-Surface Biogeochemistry and climate”.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>7</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>18</day>
<month>6</month>
<year>2014</year>
</pub-date>
<volume>4</volume>
<issue>13</issue>
<fpage>2787</fpage>
<lpage>2798</lpage>
<history>
<date date-type="received">
<day>31</day>
<month>1</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>15</day>
<month>4</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>4</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 The Authors.
<italic>Ecology and Evolution</italic>
published by John Wiley & Sons Ltd.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO
<sub>2</sub>
emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.</p>
</abstract>
<kwd-group>
<kwd>Calcified algae</kwd>
<kwd>climate change</kwd>
<kwd>invasive species</kwd>
<kwd>macroalgae</kwd>
<kwd>microphytobenthos</kwd>
<kwd>seagrasses</kwd>
<kwd>volatile gases</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO
<sub>2</sub>
emissions, mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Global reviews of the known effects of global warming and ocean acidification (i.e., falling pH and carbonate levels combined with rising CO
<sub>2</sub>
and bicarbonate levels) make it clear that although some taxa will benefit, others will be adversely impacted (Harley et al.
<xref rid="b39" ref-type="bibr">2012</xref>
; Koch et al.
<xref rid="b50" ref-type="bibr">2013</xref>
). Benthic phototrophs, that is, fleshy and calcified macroalgae, seagrasses, and microphytobenthos (MPBs), contribute significantly to coastal primary production, facilitate export of carbon from high to low productivity systems, and fuel entire food webs (Steneck et al.
<xref rid="b86" ref-type="bibr">2002</xref>
). They also produce various volatiles, notably dimethyl sulfide (DMS) involved in algal physiology and defense (Stefels et al.
<xref rid="b84" ref-type="bibr">2007</xref>
) that affect atmospheric chemistry and climate (Ayers and Cainey
<xref rid="b7" ref-type="bibr">2007</xref>
; Carpenter et al.
<xref rid="b19" ref-type="bibr">2012</xref>
). Species distributions are affected by a multitude of factors, but the major drivers of change are considered to be acidification and warming (Harley et al.
<xref rid="b39" ref-type="bibr">2012</xref>
; Bijma et al.
<xref rid="b9" ref-type="bibr">2013</xref>
). Some benthic algae and seagrasses are expected to thrive at higher CO
<sub>2</sub>
levels, whilst others might be negatively impacted (Koch et al.
<xref rid="b50" ref-type="bibr">2013</xref>
; Kroeker et al.
<xref rid="b51" ref-type="bibr">2013</xref>
). High-latitude calcifying algae are at particular risk as surface waters are becoming more corrosive to their skeletons (Kamenos et al.
<xref rid="b49" ref-type="bibr">2013</xref>
). Additionally, surface water warming is shifting the distributions of many species polewards (Poloczanska et al.
<xref rid="b74" ref-type="bibr">2013</xref>
). The success of any photoautotroph in a high CO
<sub>2</sub>
world will be a balance between its competitive ability for resources, resistance to herbivores, and tolerance to the environmental conditions (Connell et al.
<xref rid="b20" ref-type="bibr">2013</xref>
).</p>
<p>Here, we make predictions as to how rapid warming and acidification (Feely et al.
<xref rid="b27" ref-type="bibr">2008</xref>
; Steinacher et al.
<xref rid="b85" ref-type="bibr">2009</xref>
) are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century based on global evidence from the literature as interpreted by the collective knowledge of the authorship. There has been considerable progress in our understanding of how primary producers are affected by changes in ocean temperature and acidification, but it is still unclear how this will affect ecosystems at the regional scale. Here, we focus on the northeast Atlantic as its long history of study provides a unique baseline from which to assess change (Brodie et al.
<xref rid="b15" ref-type="bibr">2009</xref>
). The region supports a rich benthic flora including habitats formed by brown algae (e.g., kelp forests), coralline algae (e.g., carbonate deposits), and seagrass beds.</p>
<p>Over the last century, human activities have had more impact on the coastal zone than climate change but whilst such human activities continue to increase (Nicholls et al.
<xref rid="b68" ref-type="bibr">2007</xref>
and refs therein) this is expected to change as sea surface isotherms are moving polewards rapidly in the northeast Atlantic whilst waters corrosive to carbonate are now present in shallow Arctic waters and are spreading south (Fig.
<xref ref-type="fig" rid="fig01">1</xref>
).</p>
<fig id="fig01" position="float">
<label>Figure 1</label>
<caption>
<p>Present distribution of habitat-forming species in the northeast Atlantic, and an estimate of environmental change by 2100. SST anomaly (change from the present) is based on annual mean from an A1B scenario ensemble as Jueterbock et al. (
<xref rid="b46" ref-type="bibr">2013</xref>
). Many species' ranges such as the kelp
<italic>L. hyperborea</italic>
are thought to be limited by summer and winter thermoclines (van den Hoek
<xref rid="b42" ref-type="bibr">1982</xref>
; Dieck
<xref rid="b22" ref-type="bibr">1993</xref>
). Temperature changes are expected to impact distributions as species' ranges track these limits (Harley et al.
<xref rid="b39" ref-type="bibr">2012</xref>
). Maerl are calcifying species utilizing high magnesium calcite, which has a similar saturation state to aragonite in the northeast Atlantic (Andersson et al.
<xref rid="b2" ref-type="bibr">2008</xref>
). Most maerl are currently found in locations supersaturated for aragonite (Ω > 2). Predictions of the saturation state for 2100 (Steinacher et al.
<xref rid="b85" ref-type="bibr">2009</xref>
) suggest that most of the northeast Atlantic will be outside this range.</p>
</caption>
<graphic xlink:href="ece30004-2787-f1"></graphic>
</fig>
<p>In this study, we review evidence and make predictions about the combined effect of warming and acidification on the following major groups of organisms: fleshy, invasive and calcified macroalgae, seagrasses, and MPBs. We capture the combined predictions in Figures
<xref ref-type="fig" rid="fig01">1</xref>
and
<xref ref-type="fig" rid="fig02">2</xref>
and, at the end, provide an outline of research that we consider needs to be undertaken. Our overall objective is to illustrate how these changes will affect the diverse and well-studied benthic marine flora of the northeast Atlantic and the impact on ecosystem structure and function. This should serve as a template to stimulate further discussion and work.</p>
<fig id="fig02" position="float">
<label>Figure 2</label>
<caption>
<p>Predicted change in northeast Atlantic benthic marine flora if CO
<sub>2</sub>
emissions continue unabated. (A) Arctic region: warming will be detrimental to cold-adapted species, and acidification will corrode maerl (M.). Pacific species, for example,
<italic>Alaria marginata</italic>
(Am), will invade as polar ice melts, competing with native species such as
<italic>Laminaria hyperborea</italic>
(Lh) and
<italic>Alaria esculenta</italic>
(Ae). Fleshy invasives, for example,
<italic>Sargassum muticum</italic>
(Sm), will move north competing with fucoids, for example,
<italic>Fucus distichus</italic>
(Fd), in the intertidal. Acidification will corrode epiphytic calcified algae, for example,
<italic>Titanoderma pustulatum</italic>
(Tp), and increased CO
<sub>2</sub>
levels will stimulate growth of diatoms (D.) (magnified circles) and seagrasses such as
<italic>Zostera marina</italic>
(Zm). (B) Boreal region:
<italic>Laminaria hyperborea</italic>
(Lh) forests will be increasingly dominated by
<italic>Laminaria ochroleuca</italic>
(Lo), with the loss of
<italic>Alaria esculenta</italic>
(Ae) and fucoids, for example,
<italic>Fucus vesiculosus</italic>
(Fv) and the continued spread of invasive
<italic>Undaria pinnatifida</italic>
(Up),
<italic>Sargassum muticum</italic>
(Sm), and
<italic>Grateloupia turuturu</italic>
(Gt). As in the Arctic, maerl beds will be corroded, seagrasses will thrive, but epiphytic calcified algae will be reduced or replaced with diatoms and filamentous seaweeds (magnified circles). (C) Lusitanian region: kelps will be replaced by smaller, fleshy algae and invasive species, for example,
<italic>Caulerpa taxifolia</italic>
(Ct) will proliferate. Fucoids will be replaced by invasives such as
<italic>Asparagopsis armata</italic>
(Aa). Seagrasses will thrive, and it is expected that maerl and epiphytic calcified algae will be retained (magnified circles).</p>
</caption>
<graphic xlink:href="ece30004-2787-f2"></graphic>
</fig>
</sec>
<sec>
<title>Fleshy Algae</title>
<p>In the northeast Atlantic, kelp forests (Laminariales) dominate algal biomass in the subtidal and fucoids (Fucales) in the intertidal. Kelp beds are amongst the most productive habitats on Earth (Mann
<xref rid="b57" ref-type="bibr">1973</xref>
,
<xref rid="b58" ref-type="bibr">2000</xref>
; Reed et al.
<xref rid="b77" ref-type="bibr">2008</xref>
) and are a major source of primary production in coastal zones of temperate and polar oceans worldwide (Steneck et al.
<xref rid="b86" ref-type="bibr">2002</xref>
). Other fleshy algae, such as the large fucoids that dominate many intertidal habitats (e.g.,
<italic>Ascophyllum nodosum)</italic>
, are also highly productive and play a key role in carbon capture and transfer in coastal ecosystems (Golléty et al.
<xref rid="b34" ref-type="bibr">2008</xref>
). In the Atlantic, primary production can be 1000 g C m
<sup>−2</sup>
year
<sup>−1</sup>
for Laminariales and in excess of 500 g C m
<sup>−2</sup>
year
<sup>−1</sup>
for fucoids (Mann
<xref rid="b57" ref-type="bibr">1973</xref>
,
<xref rid="b58" ref-type="bibr">2000</xref>
; Vadas et al.
<xref rid="b91" ref-type="bibr">2004</xref>
); this productivity represents a major component of coastal food webs. Whilst some macroalgal biomass is consumed directly by herbivorous fish and invertebrates, most biomass is processed as detritus or dissolved organic matter. Detrital biomass is then processed by microbes and may be consumed by suspension feeders, detrital grazers, and general consumers of organic material in soft sediments (deposit feeders), thereby transferring energy to higher trophic levels.</p>
<p>It is predicted, based on the relatively limited data available, that rising temperatures and ocean acidification will combine to profoundly alter fleshy algal species composition, abundance, and productivity worldwide (Harley et al.
<xref rid="b39" ref-type="bibr">2012</xref>
; Krumhansl and Scheibling
<xref rid="b52" ref-type="bibr">2012</xref>
; Koch et al.
<xref rid="b50" ref-type="bibr">2013</xref>
). With continued warming, some species and populations will become chronically (gradual warming) or acutely (extreme events) stressed as temperatures exceed physiological thresholds. If physiological processes cannot be maintained, primary productivity will decrease and, ultimately, widespread mortality may ensue (Smale and Wernberg
<xref rid="b81" ref-type="bibr">2013</xref>
), as evidenced by the retraction of kelp beds at their low latitudinal limits (Tuya et al.
<xref rid="b90" ref-type="bibr">2012</xref>
; Wernberg et al.
<xref rid="b93" ref-type="bibr">2013</xref>
). On the other hand, where waters remain cool enough, assemblages of fleshy macroalgae are expected to benefit from high CO
<sub>2</sub>
conditions as increased inorganic carbon availability may enhance the growth and reproduction of fleshy macroalgae (reviewed in Harley et al.
<xref rid="b39" ref-type="bibr">2012</xref>
; Koch et al.
<xref rid="b50" ref-type="bibr">2013</xref>
; Kroeker et al.
<xref rid="b51" ref-type="bibr">2013</xref>
). In Figure
<xref ref-type="fig" rid="fig02">2</xref>
, we show examples of how such changes are predicted to affect the northeast Atlantic where the flora is dominated by kelps (Laminariales) in the subtidal and fucoids (Fucales) in the intertidal.</p>
<p>Such predictions are needed as kelp forests are amongst the most productive habitats on Earth and together with fucoids underpin the ecology of northeast Atlantic coastal ecosystems (Mann
<xref rid="b57" ref-type="bibr">1973</xref>
; Smale et al.
<xref rid="b82" ref-type="bibr">2013</xref>
). Algal communities are expected to increase in biomass, abundance, and detrital production in Boreal and Arctic waters in response to increased inorganic carbon availability as they lack calcified skeletons and so are immune to corrosion by acidified waters. We predict that North Pacific seaweeds, such as
<italic>Alaria marginata</italic>
, may colonize cooler regions of the northeast Atlantic (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
) due to warming and the opening of Arctic shipping routes. Species such as
<italic>Nereocystis luetkeana</italic>
are less likely to spread to the Atlantic as they are light limited at high latitudes and less easily spread via shipping. As kelps and fucoids are cool water adapted and stressed by high temperatures (Steneck et al.
<xref rid="b86" ref-type="bibr">2002</xref>
), we predict that they will undergo significant changes in their distribution; there have already been widespread northeast Atlantic losses of the kelps
<italic>Saccharina latissima</italic>
(Moy and Christie
<xref rid="b66" ref-type="bibr">2012</xref>
),
<italic>Saccorhiza polyschides</italic>
,
<italic>Laminaria ochroleuca</italic>
(Fernández
<xref rid="b28" ref-type="bibr">2011</xref>
),
<italic>Laminaria hyperborea</italic>
(Tuya et al.
<xref rid="b90" ref-type="bibr">2012</xref>
),
<italic>Laminaria digitata</italic>
(Yesson et al., unpublished manuscript), and
<italic>Alaria esculenta</italic>
(Simkanin et al.
<xref rid="b79" ref-type="bibr">2005</xref>
; Mieszkowska et al.
<xref rid="b65" ref-type="bibr">2006</xref>
; Merzouk and Johnson
<xref rid="b64" ref-type="bibr">2011</xref>
) attributed to ocean warming in conjunction with other stressors. Of note, Bartsch et al. (
<xref rid="b8" ref-type="bibr">2013</xref>
) have highlighted that the main determinant in survival of
<italic>Laminaria digitata</italic>
from Helgoland was restricted temperature windows for sporogenesis due to sea surface temperature warming. Warming in the Boreal region is expected to replace
<italic>Laminaria hyperborea</italic>
with
<italic>L. ochroleuca</italic>
; this may have limited ecological impact, as these kelps are similar both structurally and functionally, although subtle differences in kelp structure can influence their associated communities (Blight and Thompson
<xref rid="b10" ref-type="bibr">2008</xref>
).</p>
<p>There is considerable evidence of change in fucoid distribution in the northeast Atlantic. Range expansion in
<italic>F. vesiculosus</italic>
and no apparent change in distribution of
<italic>F. serratus</italic>
in Portugal (Lima et al.
<xref rid="b55" ref-type="bibr">2007</xref>
) are countered by depleted genetic diversity in the latter species (Pearson et al.
<xref rid="b72" ref-type="bibr">2009</xref>
; Jueterbock et al.
<xref rid="b46" ref-type="bibr">2013</xref>
) and evidence of a significant decline for both species in the UK (Yesson et al., unpublished manuscript). Further evidence of decline in some regions includes
<italic>Ascophyllum nodosum</italic>
(Simkanin et al.
<xref rid="b79" ref-type="bibr">2005</xref>
; Davies et al.
<xref rid="b21" ref-type="bibr">2007</xref>
),
<italic>Pelvetia canaliculata</italic>
(Lima et al.
<xref rid="b55" ref-type="bibr">2007</xref>
),
<italic>Chorda filum</italic>
(Eriksson et al.
<xref rid="b25" ref-type="bibr">2002</xref>
), and
<italic>Himanthalia elongata</italic>
(Fernández and Niell
<xref rid="b29" ref-type="bibr">1982</xref>
; Lima et al.
<xref rid="b55" ref-type="bibr">2007</xref>
). We predict that there will be declines in the fucoids
<italic>Ascophyllum nodosum</italic>
,
<italic>Fucus serratus</italic>
,
<italic>F. vesiculosus</italic>
(Fig.
<xref ref-type="fig" rid="fig02">2</xref>
),
<italic>Pelvetia canaliculata,</italic>
and the other large, common brown algae
<italic>Chorda filum</italic>
and
<italic>Himanthalia elongata</italic>
(Yesson et al., unpublished manuscript). We also predict that
<italic>Fucus distichus</italic>
will decline based on evidence of loss from its southern limit in the UK (Brodie et al.
<xref rid="b15" ref-type="bibr">2009</xref>
).</p>
<p>In parallel, an increase in the relative abundance of fast-growing “annuals”, such as
<italic>Saccorhiza polyschides</italic>
and
<italic>Undaria pinnatifida</italic>
, is expected to have major implications for kelp forest structure and functioning, as stable perennial habitats become more “boom and bust” in nature (Smale et al.
<xref rid="b82" ref-type="bibr">2013</xref>
). Whether or not a species is replaced by a functional equivalent could be key in future ecosystem functioning. For example, replacement of
<italic>Laminaria hyperborea</italic>
with
<italic>Laminaria ochroleuca</italic>
, which are similar both structurally and functionally, may have less impact, although
<italic>L. ochroleuca</italic>
does not support the diversity of stipe epiflora and fauna associated with
<italic>L. hyperborea</italic>
, and subtle differences in kelp species traits influence local biodiversity patterns (Blight and Thompson
<xref rid="b10" ref-type="bibr">2008</xref>
).</p>
<p>In contrast, warming is expected to cause losses of the cool-temperate species
<italic>Alaria esculenta</italic>
in the Boreal region (Fredersdorf et al.
<xref rid="b32" ref-type="bibr">2009</xref>
) which will alter ecosystems as it is the dominant species on very exposed shores and an important mid-successional species in more sheltered locations (Hawkins and Harkin
<xref rid="b40" ref-type="bibr">1985</xref>
), yet there is no warm water equivalent to take its place.</p>
<p>As the northeast Atlantic continues to warm and acidify, we predict that kelp forests will die out in the Lusitanian region (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
). This shift from highly productive, large, structural kelp species to smaller fleshy or filamentous species is expected to decrease macrophyte biomass and detrital input to coastal food webs (Krumhansl and Scheibling
<xref rid="b52" ref-type="bibr">2012</xref>
) with wide-ranging consequences for community structure and ecosystem functioning (Smale et al.
<xref rid="b82" ref-type="bibr">2013</xref>
).</p>
<p>Both direct and indirect effects of changing water chemistry are likely to affect grazers and alter food webs (Alsterberg et al.
<xref rid="b1" ref-type="bibr">2013</xref>
; Asnaghi et al.
<xref rid="b6" ref-type="bibr">2013</xref>
; Borell et al.
<xref rid="b12" ref-type="bibr">2013</xref>
; Falkenberg et al.
<xref rid="b26" ref-type="bibr">2013</xref>
). Differences in algal defensive chemistry, structural properties, and nutritional quality in response to ocean acidification are likely to be manifest at both intra- and interspecific levels as resource allocation patterns (see Arnold and Targett
<xref rid="b4" ref-type="bibr">2003</xref>
) and assemblages (see Kroeker et al.
<xref rid="b51" ref-type="bibr">2013</xref>
) respond to reduced alkalinity; indeed, evidence already exists for the direct effects of acidification upon defenses and structure (e.g., Borell et al.
<xref rid="b12" ref-type="bibr">2013</xref>
; Kamenos et al.
<xref rid="b49" ref-type="bibr">2013</xref>
). Phaeophytes may be particularly implicated in cascading effects resulting from altered biochemistry in response to acidification as their carbon-dense phlorotannins, which can constitute 15% of algal dry mass (Targett et al.
<xref rid="b88" ref-type="bibr">1992</xref>
), have reduced energetic production costs (see Arnold and Targett
<xref rid="b4" ref-type="bibr">2003</xref>
) but are known to significantly influence both primary consumer and detritivore exploitation of algal tissues. Thus, both intrabenthic and benthic-pelagic trophic linkages are dependent upon the consumption of live and decaying seaweeds by primary consumers, processes mediated by acidity-sensitive algal characteristics (Hay et al.
<xref rid="b41" ref-type="bibr">1994</xref>
).</p>
</sec>
<sec>
<title>Invasive Species</title>
<p>The rate of recorded introductions of non-native algae and the spread of invasive algae are increasing in the northeast Atlantic (Arenas et al.
<xref rid="b3" ref-type="bibr">2006</xref>
; Sorte et al.
<xref rid="b83" ref-type="bibr">2010</xref>
), although direct evidence to indicate non-native benthic algae cause extinctions in communities is lacking (Reid et al.
<xref rid="b100" ref-type="bibr">2009</xref>
). Approximately 44 species of non-native benthic macroalgae are reported for the northeast Atlantic (Guiry
<xref rid="b35" ref-type="bibr">2012</xref>
) including large brown species such as
<italic>Sargassum muticum</italic>
and
<italic>Undaria pinnatifida</italic>
.</p>
<p>As with native species, those opportunistic invasive fleshy algae that are tolerant of warming and low carbonate saturation are likely to benefit from increased carbon availability (Weltzin et al.
<xref rid="b92" ref-type="bibr">2003</xref>
). There is also evidence from a study of the invasive red seaweed
<italic>Neosiphonia harveyi</italic>
where the effects of low temperatures on photosynthesis were alleviated by increased
<italic>p</italic>
CO
<sub>2</sub>
(Olischläger and Wiencke
<xref rid="b71" ref-type="bibr">2013</xref>
) that suggests warmer water species will be able to move into cooler areas where calcareous algae and fleshy species such as the kelps and fucoids have been lost. At Mediterranean CO
<sub>2</sub>
vents, invasive genera such as
<italic>Sargassum</italic>
,
<italic>Caulerpa,</italic>
and
<italic>Asparagopsis</italic>
thrive where native coralline algae are excluded by acidified waters (Hall-Spencer et al.
<xref rid="b36" ref-type="bibr">2008</xref>
). Warming is expected to facilitate the spread of
<italic>Caulerpa taxifolia</italic>
into Lusitanian waters (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
), whilst northward range shifts of native fleshy species are expected to provide opportunities for invasive macroalgae to colonize. In Lusitanian regions, the die back of kelp forests due to increased temperatures may increase rates of macroalgal invasions by such species as
<italic>Asparagopsis armata</italic>
which is expected to proliferate alongside cooler water invasive species such as
<italic>Sargassum muticum</italic>
,
<italic>Undaria pinnatifida,</italic>
and
<italic>Grateloupia turuturu</italic>
in the Boreal region (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
).</p>
<p>Indirect changes associated with a high CO
<sub>2</sub>
world will also likely impact the future dynamics of macroalgal invasions in the northeast Atlantic. As we switch to reliance on offshore renewable energy capture (Breton and Moe
<xref rid="b14" ref-type="bibr">2009</xref>
), associated increases in new and artificial marine structures will likely provide important, competitor free, bare substrata, facilitating the spread, and establishment of non-natives (Nyberg and Wallentius
<xref rid="b70" ref-type="bibr">2005</xref>
). Melting of the polar ice cap will also open up new invasion corridors between the Pacific and Atlantic Oceans in the form of both natural dispersion and introduction associated with polar shipping routes (Reid et al.
<xref rid="b78" ref-type="bibr">2007</xref>
).</p>
<p>On the whole, we predict that under a high CO
<sub>2</sub>
world, macroalgal invasions in the northeast Atlantic will increase, aided by increased carbon availability, increased stress imposed on native (especially calcareous) macroalgal species, loss of key habitat-forming kelps at their southerly limits, and indirect factors facilitating dispersal, transportation, and establishment of non-native populations.</p>
</sec>
<sec>
<title>Calcified algae</title>
<p>There are a wide range of calcified taxa in the northeast Atlantic, including the red calcifying coralline algae, the green algal genus
<italic>Acetabularia,</italic>
and the brown algal genus
<italic>Padina</italic>
. The coralline algae include crustose coralline algae (CCA), free-living coralline algae (rhodolith/maerl), and geniculate (articulated) turfing algae. These form a cosmopolitan group of marine flora, ubiquitous in intertidal and shallow subtidal habitats, where they act as important ecosystem engineers (Kamenos et al.
<xref rid="b47" ref-type="bibr">2004</xref>
; Nelson
<xref rid="b67" ref-type="bibr">2009</xref>
).</p>
<p>As with fleshy algae, each calcified alga has a thermal optimum, so their distributions are probably already changing due to global warming and are expected to shift significantly as global sea surface temperatures continue to rise. Furthermore, calcified algae may not benefit from the increasing availability of inorganic carbon for photosynthesis as ocean acidification also increases the metabolic costs of calcification and can corrode their skeletons when carbonate becomes undersaturated (Nelson
<xref rid="b67" ref-type="bibr">2009</xref>
).</p>
<p>We predict that one of the largest impacts of sustained CO
<sub>2</sub>
emissions will likely be the dissolution of areas of dead maerl and to a lesser extent live maerl habitat in the northeast Atlantic. Surface water that is corrosive to algal carbonate is already expanding southwards in the Arctic (Steinacher et al.
<xref rid="b85" ref-type="bibr">2009</xref>
). Although there is conflicting laboratory evidence over the vulnerability of live maerl to future conditions (Noisette et al.
<xref rid="b69" ref-type="bibr">2013</xref>
), field observations show that maerl beds mainly form in waters with high carbonate saturation (Hall-Spencer et al.
<xref rid="b37" ref-type="bibr">2010</xref>
). Although some coralline algae sustain calcification over long periods of exposure to elevated
<italic>p</italic>
CO
<sub>2</sub>
, a loss of structural integrity is inherent (Ragazzola et al.
<xref rid="b75" ref-type="bibr">2012</xref>
; Kamenos et al.
<xref rid="b49" ref-type="bibr">2013</xref>
; Martin et al.
<xref rid="b60" ref-type="bibr">2013</xref>
), which presumably comes with an energetic cost to growth (Bradassi et al.
<xref rid="b13" ref-type="bibr">2013</xref>
). Those species that require stable conditions at high carbonate saturation states are likely to be negatively impacted (Büdenbender et al.
<xref rid="b16" ref-type="bibr">2011</xref>
). We expect that maerl habitat will be lost at high latitudes as aragonite saturation falls (Fig.
<xref ref-type="fig" rid="fig01">1</xref>
), although Lusitanian maerl will persist (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
). As thin epiphytic coralline algae dissolve easily (Martin et al.
<xref rid="b59" ref-type="bibr">2008</xref>
), they are expected to decline in areas where seawater becomes corrosive to their skeletons. Those species that tolerate widely fluctuating levels of CO
<sub>2</sub>
, such as intertidal
<italic>Corallina</italic>
and
<italic>Ellisolandia</italic>
species, will be more resilient to ocean acidification (Egilsdottir et al.
<xref rid="b24" ref-type="bibr">2013</xref>
). However, competition from fleshy algal species that benefit from high CO
<sub>2</sub>
may indirectly lead to loss of calcified species (Kroeker et al.
<xref rid="b51" ref-type="bibr">2013</xref>
). Similarly, persistence of species in decalcified forms under high CO
<sub>2</sub>
may contribute to phase shifts from calcified dominated assemblages to fleshy algae (Johnson et al.
<xref rid="b44" ref-type="bibr">2012</xref>
).</p>
<p>Northeast Atlantic coralline algal habitats are reported to contain more than double the annual open-ocean average of dissolved DMS concentration (Burdett
<xref rid="b17" ref-type="bibr">2013</xref>
); thus, loss of calcified algae, in combination with biogeographic shifts and species invasions, may alter habitat taxonomic composition to low-DMSP-producing fleshy algae (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
). The loss of structural integrity of coralline algal skeletons under high CO
<sub>2</sub>
conditions may also facilitate the release of DMSP into the surrounding water column, stimulating the microbial consumption of DMSP and production of DMS (Burdett et al.
<xref rid="b18" ref-type="bibr">2012</xref>
).</p>
<p>Overall, we predict there may be significant loss of primarily dead but also living calcified macroalgae in the northeast Atlantic by 2100, beginning at high latitudes and spreading further south over the century. Monitoring is required to assess the impact of these changes given the importance of calcified algae to fisheries and ecosystem function (Kamenos et al.
<xref rid="b49" ref-type="bibr">2013</xref>
).</p>
</sec>
<sec>
<title>Seagrasses</title>
<p>Extensive seagrass beds are found in the northeast Atlantic (Fig.
<xref ref-type="fig" rid="fig01">1</xref>
). They sequester carbon through photosynthesis and store large quantities in both the plants, but more importantly, in the sediment below them (Mcleod et al.
<xref rid="b63" ref-type="bibr">2011</xref>
; Fourqurean et al.
<xref rid="b31" ref-type="bibr">2012</xref>
). Unlike rainforests where the carbon captured remains for decades or centuries, the carbon captured by sediments from seagrasses can remain stored for millennia (Mateo et al.
<xref rid="b62" ref-type="bibr">1997</xref>
).</p>
<p>At present, seagrasses are carbon limited and are thus expected to benefit from ocean acidification due to increased available substrate for photosynthesis. Therefore, considering the carbon sequestration ability of seagrasses and predicted increases in inorganic carbon utilization due to ocean acidification (Koch et al.
<xref rid="b50" ref-type="bibr">2013</xref>
), we predict that in a high CO
<sub>2</sub>
world the below-ground carbon pool associated with northeast Atlantic seagrass beds will increase. Paleoreconstruction of sediments underlying old seagrass meadows may reveal the long-term carbon sequestration patterns of northeast Atlantic seagrass species (Mateo et al.
<xref rid="b61" ref-type="bibr">2010</xref>
) and allow future predictions.</p>
<p>Although loss of seagrass' calcareous epiphytes may be beneficial through removal of associated oxidative stress, under high CO
<sub>2</sub>
, nutrients and temperature, we predict that non-calcareous epiphytes such as filamentous algae and diatoms will increase (Alsterberg et al.
<xref rid="b1" ref-type="bibr">2013</xref>
). This may lead to shifts in the epiphyte community structure from less palatable calcareous, to more palatable algae. Additionally, decreased production of grazing deterrent phenolics by seagrasses under high CO
<sub>2</sub>
(Arnold et al.
<xref rid="b5" ref-type="bibr">2012</xref>
) may increase the palatability of seagrass leaves for a number of invertebrate and fish grazers, maintaining or increasing grazing rates of seagrass blades, depending on food preferences of grazers and the availability of other food sources.</p>
<p>Positive effects of increased CO
<sub>2</sub>
on seagrass physiology may help to ameliorate negative effects of other environmental stressors known to impact seagrass growth and survival. If seagrasses are afforded the protection they need from damage by fishing gear, dredging, and both organic and nutrient pollution, we predict these habitats will proliferate in a high CO
<sub>2</sub>
northeast Atlantic, albeit with the loss of certain calcified organisms and the increasing spread of invasive macroalgae within seagrass habitats (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
).</p>
</sec>
<sec>
<title>Microphytobenthos</title>
<p>The microphytobenthos (MPBs) are benthic microscopic algae including cyanobacteria, diatoms, benthic dinoflagellates, and diminutive life-history stages of macroalgae. They are the base of many food webs, sustaining thousands of species of grazing and deposit feeding invertebrates in the northeast Atlantic, and they form biofilms that affect the colonization of rocky substrata, the biogeochemistry of sediments, and stabilize coastal mud flats. Some MPBs effectively exist via symbiotic relationships with invertebrates such as anemones and corals whilst other MPBs live within shellfish and can be severely toxic to humans.</p>
<p>We predict that there will be an increasing abundance of diatoms in northeast Atlantic MPB, based on evidence from studies conducted at CO
<sub>2</sub>
vent sites in the Mediterranean Sea where most insight into the potential impacts of high CO
<sub>2</sub>
on the MPB come from. In these vent systems, diatom- and cyanobacteria-dominated biofilms predominate, and broad scale analysis of microeukaryote diversity has shown that MPB communities in high CO
<sub>2</sub>
water are substantially modified compared with ambient conditions (Lidbury et al.
<xref rid="b54" ref-type="bibr">2012</xref>
). Responses to elevated CO
<sub>2</sub>
are, however, variable between different diatom and cyanobacteria groups (Raven et al.
<xref rid="b76" ref-type="bibr">2012</xref>
; Johnson et al.
<xref rid="b45" ref-type="bibr">2013</xref>
). The response of toxic dinoflagellates to high CO
<sub>2</sub>
conditions should also be considered in the northeast Atlantic, given previous switches to toxic bloom states observed in paleo/fossil records (Sluijs et al.
<xref rid="b80" ref-type="bibr">2007</xref>
), evidence of shift toward less toxic variants under high CO
<sub>2</sub>
(Eberlein et al.
<xref rid="b23" ref-type="bibr">2012</xref>
), and the potential for enhanced production of toxins during high CO
<sub>2</sub>
conditions (Fu et al.
<xref rid="b33" ref-type="bibr">2010</xref>
).</p>
<p>Due to potential increased carbon uptake by MPB, it is also possible to predict an increased export of organic carbon and subsequent production of an extracellular biofilm matrix, as has been observed under high CO
<sub>2</sub>
conditions at the Volcano vents (Lidbury et al.
<xref rid="b54" ref-type="bibr">2012</xref>
), and in analogous planktonic systems (Borchard and Engel
<xref rid="b11" ref-type="bibr">2012</xref>
). Given that MPBs, with seagrasses, determine sediment organic matter composition (Hardison et al.
<xref rid="b38" ref-type="bibr">2013</xref>
), increased carbon export by CO
<sub>2</sub>
-stimulated MPB could significantly alter carbon cycling processes across northeast Atlantic sediment ecosystems. However, OA also increases degradation of polysaccharides by bacterial extracellular enzymes (Piontek et al.
<xref rid="b73" ref-type="bibr">2010</xref>
), indicating that OA-controlled feedback mechanisms will occur.</p>
<p>To allow further predictions, we require a deeper understanding of the mechanistic effects of high CO
<sub>2</sub>
on key MPB groups. This will require research into dissolved inorganic carbon (DIC) uptake-mechanisms and intracellular pH regulatory mechanisms. The production of CO
<sub>2</sub>
internally from active uptake of
<inline-formula>
<inline-graphic xlink:href="ece30004-2787-mu1.jpg" mimetype="image"></inline-graphic>
</inline-formula>
or externally via carbonic anhydrase activity will be strongly influenced by intracellular and cell surface pH (Taylor et al.
<xref rid="b89" ref-type="bibr">2011</xref>
; Flynn et al.
<xref rid="b30" ref-type="bibr">2012</xref>
). Additionally, cell size, shape, and biofilm formation can have profound effects on cell surface pH relations and consequent DIC speciation. pH at the surface of larger cells or aggregates is influenced significantly more by metabolic membrane H
<sup>+</sup>
fluxes, with substantial cell surface pH fluctuation in relation to photosynthetic metabolism observed for large diatom cells (Kühn and Raven
<xref rid="b53" ref-type="bibr">2008</xref>
; Flynn et al.
<xref rid="b30" ref-type="bibr">2012</xref>
). Under elevated CO
<sub>2</sub>
, larger cells are likely to experience substantially larger diurnal pH fluctuations than smaller cells (Flynn et al.
<xref rid="b30" ref-type="bibr">2012</xref>
). A deeper understanding of the direct effects on physiology will be critical in order to model impacts of elevated CO
<sub>2</sub>
on MPB.</p>
<p>In addition, MPB responses to high CO
<sub>2</sub>
need to be understood at the ecosystem level. For example, biogeochemical impacts of CO
<sub>2</sub>
enhanced MPB communities may be modulated by heterotrophic components of the same community (Witt et al.
<xref rid="b94" ref-type="bibr">2011</xref>
), or increased MPB biomass may be mediated by grazing pressure (Alsterberg et al.
<xref rid="b1" ref-type="bibr">2013</xref>
). In the northeast Atlantic, the impacts of OA on MPB community diversity could further modify, or be modified by, other impacts such as increased temperature and eutrophication.</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>Carbon dioxide emissions are causing rates of global warming and ocean acidification that will profoundly affect marine flora worldwide (Pörtner et al.
<xref rid="b43" ref-type="bibr">2014</xref>
). We have illustrated how these changes will affect the diverse and well-studied benthic marine flora of the northeast Atlantic (Figs.
<xref ref-type="fig" rid="fig01">1</xref>
and
<xref ref-type="fig" rid="fig02">2</xref>
), and how these changes will likely affect ecosystem structure and function. It is clear that unless CO
<sub>2</sub>
emissions are curbed, there will be far-reaching consequences for regional biodiversity patterns, trophic linkages, nutrient cycling, and habitat provision for socio-economically important marine organisms. Warming will kill off kelp forests in the south, and ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Thus, combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies with associated calcified and noncalcified flora with simple habitats dominated by noncalcified, turf-forming seaweeds.</p>
<p>Over the longer term, the ability and rate of species/populations to evolve will be crucial (Sunday et al.
<xref rid="b87" ref-type="bibr">2014</xref>
). Evolutionary change may lead to adaptation, but it still may not be enough to prevent extinctions due to warming and acidification (Lohbeck et al.
<xref rid="b56" ref-type="bibr">2012</xref>
). It will be vital to understand and measure predictors of evolution, such as genetic variability within and between populations, and to understand how knowledge of plastic responses can be leveraged to predict the evolutionary and/or adaptive potential of populations. A much greater effort is needed to develop real time maps of the key populations and their genetic diversity.</p>
<p>Future research must also address the impact that loss of the calcified and fleshy algae and their habitats will have on other benthic flora groups, and benthic, pelagic, and terrestrial fauna that are dependent on such resources. The responses of MPB assemblages, and species-specific information for DMSP and DMS production in algae and seagrasses that will form the benthic floral assemblages under increased CO
<sub>2,</sub>
are required. Underpinning this is a need to quantify natural variability in carbonate chemistry in the northeast Atlantic to gain a complete understanding of the carbonate chemistry environment experienced by species.</p>
<p>Finally, unless we take action, we will sleepwalk through radical ecological changes to the phycology of our coasts.</p>
</sec>
</body>
<back>
<ack>
<p>This work was funded by the UK Ocean Acidification Research Programme (cofunded by NERC, Defra, and DECC), NERC OARP Grant: NE/H016996/1 “Ocean Acidification Impacts on Sea-Surface Biogeochemistry and climate”, with additional support from the Marine Biological Association (MBA) and the Natural History Museum. We are grateful to Phil Williamson (Science Coordinator: UK Ocean Acidification Programme) for his support and encouragement. We thank Jack Sewell (MBA) for the graphics in Figure
<xref ref-type="fig" rid="fig02">2</xref>
. We are grateful to the MBA for hosting the workshop in June 2013 on which this paper is based. The University of Dundee is a registered Scottish charity, No, SC015096. Original concept, workshop development, drafting and editing manuscript: Juliet Brodie, Jason Hall-Spencer and Christopher Williamson. Group leaders: fleshy algae - Dan Smale; calcified algae - Nick Kamenos; invasives - Nova Mieszkowska; seagrasses - Rui Santos; microphytobenthos - Michael Cunliffe; volatile gases - Michael Steinke; evolution – Sinead Collins.
<xref ref-type="fig" rid="fig01">Figure 1</xref>
- Chris Yesson. All other authors contributed at the workshop and to the manuscript.</p>
</ack>
<sec>
<title>Conflict of Interest</title>
<p>None declared.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="b1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alsterberg</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Eklöfa</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Gamfeldta</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Havenhandb</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Sundbäcka</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Consumers mediate the effects of experimental ocean acidification and warming on primary producers</article-title>
<source>Proc. Natl. Acad. Sci</source>
<year>2013</year>
<volume>110</volume>
<fpage>8603</fpage>
<lpage>8608</lpage>
<pub-id pub-id-type="pmid">23630263</pub-id>
</element-citation>
</ref>
<ref id="b2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andersson</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Mackenzie</surname>
<given-names>FT</given-names>
</name>
<name>
<surname>Bates</surname>
<given-names>NR</given-names>
</name>
</person-group>
<article-title>Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers</article-title>
<source>Mar. Ecol. Prog. Ser</source>
<year>2008</year>
<volume>373</volume>
<fpage>265</fpage>
<lpage>273</lpage>
</element-citation>
</ref>
<ref id="b3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arenas</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Hawkins</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Jenkins</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>The invisibility of marine algal assemblages: role of functional diversity and identity</article-title>
<source>Ecology</source>
<year>2006</year>
<volume>87</volume>
<fpage>2851</fpage>
<lpage>2861</lpage>
<pub-id pub-id-type="pmid">17168029</pub-id>
</element-citation>
</ref>
<ref id="b4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnold</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Targett</surname>
<given-names>NM</given-names>
</name>
</person-group>
<article-title>To grow and defend: lack of tradeoffs for brown algal phlorotannins</article-title>
<source>Oikos</source>
<year>2003</year>
<volume>100</volume>
<fpage>406</fpage>
<lpage>408</lpage>
</element-citation>
</ref>
<ref id="b5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnold</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mealy</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Leahey</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>AW</given-names>
</name>
<name>
<surname>Hall-Spencer</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Milazzo</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ocean acidification and the loss of phenolic substances in marine plants</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e35107</fpage>
<pub-id pub-id-type="pmid">22558120</pub-id>
</element-citation>
</ref>
<ref id="b6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asnaghi</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Chiantore</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mangialajo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gazeau</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Francour</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Alliouane</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cascading effects of ocean acidification in a rocky subtidal community</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e61978</fpage>
<pub-id pub-id-type="pmid">23613994</pub-id>
</element-citation>
</ref>
<ref id="b7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ayers</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Cainey</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>The CLAW hypothesis: a review of the major developments</article-title>
<source>Environ. Chem</source>
<year>2007</year>
<volume>4</volume>
<fpage>366</fpage>
<lpage>374</lpage>
</element-citation>
</ref>
<ref id="b8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartsch</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Vogt</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Muller-Parker</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Oakley</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Prevailing sea surface temperatures inhibit summer reproduction of the kelp
<italic>Laminaria digitata</italic>
at Helgoland (North Sea)</article-title>
<source>J. Phycol</source>
<year>2013</year>
<volume>49</volume>
<fpage>1061</fpage>
<lpage>1073</lpage>
</element-citation>
</ref>
<ref id="b9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bijma</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pörtner</surname>
<given-names>H-O</given-names>
</name>
<name>
<surname>Yesson</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Climate change and the oceans – What does the future hold?</article-title>
<source>Mar. Pollut. Bull</source>
<year>2013</year>
<volume>74</volume>
<fpage>495</fpage>
<lpage>505</lpage>
<pub-id pub-id-type="pmid">23932473</pub-id>
</element-citation>
</ref>
<ref id="b10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blight</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>RC</given-names>
</name>
</person-group>
<article-title>Epibiont species richness varies between holdfasts of a northern and southerly distributed kelp species</article-title>
<source>J. Mar. Biolog. Assoc. U.K</source>
<year>2008</year>
<volume>88</volume>
<fpage>469</fpage>
<lpage>475</lpage>
</element-citation>
</ref>
<ref id="b11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borchard</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Engel</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Organic matter exudation by
<italic>Emiliania huxleyi</italic>
under simulated future ocean conditions</article-title>
<source>Biogeosciences</source>
<year>2012</year>
<volume>9</volume>
<fpage>3405</fpage>
<lpage>3423</lpage>
</element-citation>
</ref>
<ref id="b12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borell</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Steinke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fine</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Direct and indirect effects of high
<italic>p</italic>
CO
<sub>2</sub>
on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea)</article-title>
<source>Coral Reefs</source>
<year>2013</year>
<volume>32</volume>
<fpage>937</fpage>
<lpage>947</lpage>
</element-citation>
</ref>
<ref id="b13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bradassi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cumani</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bressan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dupont</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Early reproductive stages in the crustose coralline alga
<italic>Phymatolithon lenormandii</italic>
are strongly affected by mild ocean acidification</article-title>
<source>Mar. Biol</source>
<year>2013</year>
<volume>160</volume>
<fpage>2261</fpage>
<lpage>2269</lpage>
</element-citation>
</ref>
<ref id="b14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breton</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Moe</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Status, plans and technologies for offshore wind turbines in Europe and North America</article-title>
<source>Renewable Energy</source>
<year>2009</year>
<volume>34</volume>
<fpage>646</fpage>
<lpage>654</lpage>
</element-citation>
</ref>
<ref id="b15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brodie</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Kawachi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Millar</surname>
<given-names>AJK</given-names>
</name>
</person-group>
<article-title>Endangered algae and how to protect them</article-title>
<source>Phycologia</source>
<year>2009</year>
<volume>48</volume>
<fpage>423</fpage>
<lpage>438</lpage>
</element-citation>
</ref>
<ref id="b16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Büdenbender</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Riebesell</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Form</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Calcification of the Arctic coralline algae
<italic>Lithothamnion glaciale</italic>
in response to elevated CO
<sub>2</sub>
</article-title>
<source>Mar. Ecol. Prog. Ser</source>
<year>2011</year>
<volume>44</volume>
<fpage>79</fpage>
<lpage>87</lpage>
</element-citation>
</ref>
<ref id="b17">
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Burdett</surname>
<given-names>HL</given-names>
</name>
</person-group>
<year>2013</year>
<comment>DMSP Dynamics in Coralline Algal Habitats. [PhD thesis], University of Glasgow</comment>
</element-citation>
</ref>
<ref id="b18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burdett</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Aloisio</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Calosi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Findlay</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Widddicombe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hatton</surname>
<given-names>AD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The effect of chronic and acute low pH on the intracellular DMSP production and epithelial cell morphology of red coralline algae</article-title>
<source>Mar. Biol. Res</source>
<year>2012</year>
<volume>8</volume>
<fpage>756</fpage>
<lpage>763</lpage>
</element-citation>
</ref>
<ref id="b19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carpenter</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Archer</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Beale</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Ocean-atmosphere trace gas exchange</article-title>
<source>Chem. Soc. Rev</source>
<year>2012</year>
<volume>41</volume>
<fpage>6473</fpage>
<lpage>6506</lpage>
<pub-id pub-id-type="pmid">22821066</pub-id>
</element-citation>
</ref>
<ref id="b20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Connell</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Kroeker</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Fabricius</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Kline</surname>
<given-names>DI</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>BD</given-names>
</name>
</person-group>
<article-title>The other ocean acidification problem: CO
<sub>2</sub>
as a resource among competitors for ecosystem dominance</article-title>
<source>Philos. Trans. R. Soc. Lond. B Biol. Sci</source>
<year>2013</year>
<volume>368</volume>
<fpage>20120442</fpage>
<pub-id pub-id-type="pmid">23980244</pub-id>
</element-citation>
</ref>
<ref id="b21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davies</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Maggs</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Limpet grazing and loss of
<italic>Ascophyllum nodosum</italic>
canopies on decadal time scales</article-title>
<source>Mar. Ecol. Prog. Ser</source>
<year>2007</year>
<volume>339</volume>
<fpage>131</fpage>
<lpage>141</lpage>
</element-citation>
</ref>
<ref id="b22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dieck</surname>
<given-names>IT</given-names>
</name>
</person-group>
<article-title>Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta) – Ecological and Biogeographical implications</article-title>
<source>Mar. Ecol. Prog. Ser</source>
<year>1993</year>
<volume>100</volume>
<fpage>253</fpage>
<lpage>264</lpage>
</element-citation>
</ref>
<ref id="b23">
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Eberlein</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Van De Waal</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>John</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Rost</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2012</year>
<comment>Effects of ocean acidification on the eco-physiology of calcareous and toxic dinoflagellates. Third International Symposium on the Ocean in a High-CO2 World, 24-27 September 2012, Monterey (California)</comment>
</element-citation>
</ref>
<ref id="b24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Egilsdottir</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Noisette</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Noel</surname>
<given-names>LM-LJ</given-names>
</name>
<name>
<surname>Olafsson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Effects of
<italic>p</italic>
CO
<sub>2</sub>
on physiology and skeletal mineralogy in a tidal pool coralline alga
<italic>Corallina elongata</italic>
</article-title>
<source>Mar. Biol</source>
<year>2013</year>
<volume>160</volume>
<fpage>2103</fpage>
<lpage>2112</lpage>
</element-citation>
</ref>
<ref id="b25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eriksson</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Snoeijs</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Long-term changes in the macroalgal vegetation of the inner Gullmar Fjord, Swedish Skagerrak coast</article-title>
<source>J. Phycol</source>
<year>2002</year>
<volume>38</volume>
<fpage>284</fpage>
<lpage>296</lpage>
</element-citation>
</ref>
<ref id="b26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falkenberg</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Connell</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Future herbivory: the indirect effects of enriched CO
<sub>2</sub>
may rival its direct effects</article-title>
<source>Mar. Ecol. Prog. Ser</source>
<year>2013</year>
<volume>492</volume>
<fpage>85</fpage>
<lpage>95</lpage>
</element-citation>
</ref>
<ref id="b27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feely</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Sabine</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Hernandez-Ayon</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ianson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hales</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Evidence for upwelling of corrosive “acidified” water onto the continental shelf</article-title>
<source>Science</source>
<year>2008</year>
<volume>320</volume>
<fpage>1490</fpage>
<lpage>1492</lpage>
<pub-id pub-id-type="pmid">18497259</pub-id>
</element-citation>
</ref>
<ref id="b28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernández</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The retreat of large brown seaweeds on the north coast of Spain: the case of
<italic>Sacchoriza polyschides</italic>
</article-title>
<source>Eur. J. Phycol</source>
<year>2011</year>
<volume>46</volume>
<fpage>352</fpage>
<lpage>360</lpage>
</element-citation>
</ref>
<ref id="b29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernández</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Niell</surname>
<given-names>FX</given-names>
</name>
</person-group>
<article-title>Patterns of zonation in rocky inter-tidal shores at Cape Penas region (Asturias, N of Spain)</article-title>
<source>Investigacion Pesquera</source>
<year>1982</year>
<volume>46</volume>
<fpage>121</fpage>
<lpage>141</lpage>
</element-citation>
</ref>
<ref id="b30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flynn</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Blackford</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Baird</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Raven</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Beardall</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Changes in pH at the exterior surface of plankton with ocean acidification</article-title>
<source>Nat. Clim. Chang</source>
<year>2012</year>
<volume>2</volume>
<fpage>510</fpage>
<lpage>513</lpage>
</element-citation>
</ref>
<ref id="b31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fourqurean</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Duarte</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Marba</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Holmer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Angel Mateo</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Seagrass ecosystems as a globally significant carbon stock</article-title>
<source>Nat. Geosci</source>
<year>2012</year>
<volume>5</volume>
<fpage>505</fpage>
<lpage>509</lpage>
</element-citation>
</ref>
<ref id="b32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fredersdorf</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wiencke</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bischof</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp
<italic>Alaria esculenta</italic>
(Phaeophyceae)</article-title>
<source>Oecologia</source>
<year>2009</year>
<volume>160</volume>
<fpage>483</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="pmid">19330357</pub-id>
</element-citation>
</ref>
<ref id="b33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>F-X</given-names>
</name>
<name>
<surname>Place</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Hutchins</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>CO
<sub>2</sub>
and phosphate availability control the toxicity of the harmful bloom dinoflagellate
<italic>Karlodinium veneficum</italic>
</article-title>
<source>Aquat. Microb. Ecol</source>
<year>2010</year>
<volume>59</volume>
<fpage>55</fpage>
<lpage>65</lpage>
</element-citation>
</ref>
<ref id="b34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Golléty</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Migné</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Davoult</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Benthic metabolism on a sheltered rocky shore: role of the canopy in the carbon budget</article-title>
<source>J. Phycol</source>
<year>2008</year>
<volume>44</volume>
<fpage>1146</fpage>
<lpage>1153</lpage>
</element-citation>
</ref>
<ref id="b35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guiry</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>How many species of algae are there?</article-title>
<source>J. Phycol</source>
<year>2012</year>
<volume>48</volume>
<fpage>1057</fpage>
<lpage>1303</lpage>
</element-citation>
</ref>
<ref id="b36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hall-Spencer</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Rodolfo-Metalpa</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ransome</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Fine</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>SM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Volcanic carbon dioxide vents show ecosystem effects of ocean acidification</article-title>
<source>Nature</source>
<year>2008</year>
<volume>454</volume>
<fpage>96</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">18536730</pub-id>
</element-citation>
</ref>
<ref id="b37">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hall-Spencer</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Maggs</surname>
<given-names>CA</given-names>
</name>
</person-group>
<source>Background document for maerl beds</source>
<year>2010</year>
<publisher-loc>London</publisher-loc>
<publisher-name>OSPAR Commission</publisher-name>
<comment>Publication 491/2010 36pp. ISBN 978-1-907390-32-6</comment>
</element-citation>
</ref>
<ref id="b38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hardison</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Canuel</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>IC</given-names>
</name>
<name>
<surname>Tobias</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Veuger</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Waters</surname>
<given-names>MN</given-names>
</name>
</person-group>
<article-title>Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments</article-title>
<source>Biogeosciences</source>
<year>2013</year>
<volume>10</volume>
<fpage>5571</fpage>
<lpage>5588</lpage>
</element-citation>
</ref>
<ref id="b39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harley</surname>
<given-names>CDG</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Demes</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Jorve</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Kordas</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Coyle</surname>
<given-names>TA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of climate change on global seaweed communities</article-title>
<source>J. Phycol</source>
<year>2012</year>
<volume>48</volume>
<fpage>1064</fpage>
<lpage>1078</lpage>
</element-citation>
</ref>
<ref id="b40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hawkins</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Harkin</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Preliminary canopy removal experiments in algal dominated communities low on the shore and in the shallow subtidal on the Isle of Man</article-title>
<source>Bot. Mar</source>
<year>1985</year>
<volume>28</volume>
<fpage>223</fpage>
<lpage>230</lpage>
</element-citation>
</ref>
<ref id="b41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hay</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Kappel</surname>
<given-names>QE</given-names>
</name>
<name>
<surname>Fenical</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Synergisms in plant defences against herbivores - interactions of chemistry, calcification, and plant-quality</article-title>
<source>Ecology</source>
<year>1994</year>
<volume>75</volume>
<fpage>1714</fpage>
<lpage>1726</lpage>
</element-citation>
</ref>
<ref id="b42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van den Hoek</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The distribution of benthic marine algae in relation to the temperature regulation of their life histories</article-title>
<source>Biol. J. Linn. Soc</source>
<year>1982</year>
<volume>18</volume>
<fpage>81</fpage>
<lpage>144</lpage>
</element-citation>
</ref>
<ref id="b44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Fabricius</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Brownlee</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hall-Spencer</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Temperate and tropical brown algae thrive, despite decalcification, along natural CO
<sub>2</sub>
gradients</article-title>
<source>Glob. Change Biol</source>
<year>2012</year>
<volume>18</volume>
<fpage>2792</fpage>
<lpage>2803</lpage>
</element-citation>
</ref>
<ref id="b45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Brownlee</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rickaby</surname>
<given-names>REM</given-names>
</name>
<name>
<surname>Graziano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Milazzo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hall-Spencer</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Responses of marine benthic microalgae to elevated CO
<sub>2</sub>
</article-title>
<source>Mar. Biol</source>
<year>2013</year>
<volume>160</volume>
<fpage>1813</fpage>
<lpage>1824</lpage>
</element-citation>
</ref>
<ref id="b46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jueterbock</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tyberghein</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Verbruggen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Coyer</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Olsen</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Hoarau</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal</article-title>
<source>Ecol. Evol</source>
<year>2013</year>
<volume>3</volume>
<fpage>1356</fpage>
<lpage>1373</lpage>
<pub-id pub-id-type="pmid">23762521</pub-id>
</element-citation>
</ref>
<ref id="b47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamenos</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Hall-Spencer</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Nursery-area function of maerl grounds for juvenile queen scallops
<italic>Aequipecten opercularis</italic>
and other invertebrates</article-title>
<source>Mar. Ecol. Prog. Ser</source>
<year>2004</year>
<volume>274</volume>
<fpage>183</fpage>
<lpage>189</lpage>
</element-citation>
</ref>
<ref id="b49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamenos</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Burdett</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Aloisio</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Findlay</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Longbone</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification</article-title>
<source>Glob. Change Biol</source>
<year>2013</year>
<volume>19</volume>
<fpage>3621</fpage>
<lpage>3628</lpage>
</element-citation>
</ref>
<ref id="b50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bowes</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X-H</given-names>
</name>
</person-group>
<article-title>Climate change and ocean acidification effects on seagrasses and marine macroalgae</article-title>
<source>Glob. Change Biol</source>
<year>2013</year>
<volume>19</volume>
<fpage>103</fpage>
<lpage>132</lpage>
</element-citation>
</ref>
<ref id="b51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroeker</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Kordas</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Crim</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hendriks</surname>
<given-names>IE</given-names>
</name>
<name>
<surname>Ramajo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>GS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming</article-title>
<source>Glob. Change Biol</source>
<year>2013</year>
<volume>19</volume>
<fpage>1884</fpage>
<lpage>1896</lpage>
</element-citation>
</ref>
<ref id="b52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krumhansl</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Scheibling</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>Production and fate of kelp detritus</article-title>
<source>Mar. Ecol. Prog. Ser</source>
<year>2012</year>
<volume>467</volume>
<fpage>281</fpage>
<lpage>302</lpage>
</element-citation>
</ref>
<ref id="b53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kühn</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Raven</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Photosynthetic oscillation in individual cells of the marine diatom
<italic>Coscinodiscus wailesii</italic>
(Bacillariophyceae) revealed by microsensor measurements</article-title>
<source>Photosynth. Res</source>
<year>2008</year>
<volume>95</volume>
<fpage>37</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="pmid">17717725</pub-id>
</element-citation>
</ref>
<ref id="b54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lidbury</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Hall-Spencer</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Munn</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Cunliffe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent system</article-title>
<source>Mar. Pollut. Bull</source>
<year>2012</year>
<volume>64</volume>
<fpage>1063</fpage>
<lpage>1066</lpage>
<pub-id pub-id-type="pmid">22414852</pub-id>
</element-citation>
</ref>
<ref id="b55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lima</surname>
<given-names>FP</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Queiroz</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hawkins</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Do distributional shifts of northern and southern species of algae match the warming patter?</article-title>
<source>Glob. Change Biol</source>
<year>2007</year>
<volume>13</volume>
<fpage>2592</fpage>
<lpage>2604</lpage>
</element-citation>
</ref>
<ref id="b56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lohbeck</surname>
<given-names>KT</given-names>
</name>
<name>
<surname>Riebesell</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Reusch</surname>
<given-names>TBH</given-names>
</name>
</person-group>
<article-title>Adaptive evolution of a key phytoplankton species to ocean acidification</article-title>
<source>Nat. Geosci</source>
<year>2012</year>
<volume>5</volume>
<fpage>346</fpage>
<lpage>351</lpage>
</element-citation>
</ref>
<ref id="b57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mann</surname>
<given-names>KH</given-names>
</name>
</person-group>
<article-title>Seaweeds: their productivity and strategy for growth</article-title>
<source>Science</source>
<year>1973</year>
<volume>182</volume>
<fpage>975</fpage>
<lpage>981</lpage>
<pub-id pub-id-type="pmid">17833778</pub-id>
</element-citation>
</ref>
<ref id="b58">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Mann</surname>
<given-names>KH</given-names>
</name>
</person-group>
<source>Ecology of coastal waters, with implications for management</source>
<year>2000</year>
<volume>2</volume>
<publisher-loc>Oxford, UK</publisher-loc>
<publisher-name>Blackwell Science</publisher-name>
<fpage>406</fpage>
</element-citation>
</ref>
<ref id="b59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rodolfo-Metalpa</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ransome</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rowley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Buia</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Gattuso</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of naturally acidified seawater on seagrass calcareous epibionts</article-title>
<source>Biol. Lett</source>
<year>2008</year>
<volume>4</volume>
<fpage>41</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="pmid">17986428</pub-id>
</element-citation>
</ref>
<ref id="b60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cohu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vignot</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zimmerman</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gattuso</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>One-year experiment on the physiological response of the Mediterranean crustose coralline alga,
<italic>Lithophyllum cabiochae</italic>
, to elevated
<italic>p</italic>
CO
<sub>2</sub>
and temperature</article-title>
<source>Ecol. Evol</source>
<year>2013</year>
<volume>3</volume>
<fpage>676</fpage>
<lpage>693</lpage>
<pub-id pub-id-type="pmid">23533024</pub-id>
</element-citation>
</ref>
<ref id="b62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mateo</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Romero</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pérez</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Littler</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Littler</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass
<italic>Posidonia oceanica</italic>
</article-title>
<source>Estuar. Coast. Shelf Sci</source>
<year>1997</year>
<volume>44</volume>
<fpage>103</fpage>
<lpage>110</lpage>
</element-citation>
</ref>
<ref id="b61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mateo</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Renom</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Michener</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Long-term stability in the production of a NW Mediterranean
<italic>Posidonia oceanica</italic>
(L.) Delile meadow</article-title>
<source>Palaeogeogr. Palaeoclimatol. Palaeoecol</source>
<year>2010</year>
<volume>291</volume>
<fpage>286</fpage>
<lpage>296</lpage>
</element-citation>
</ref>
<ref id="b63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mcleod</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Chmura</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Bouillon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Salm</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Björk</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Duarte</surname>
<given-names>CM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO
<sub>2</sub>
</article-title>
<source>Front. Ecol. Environ</source>
<year>2011</year>
<volume>9</volume>
<fpage>552</fpage>
<lpage>560</lpage>
</element-citation>
</ref>
<ref id="b64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merzouk</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>LE</given-names>
</name>
</person-group>
<article-title>Kelp distribution in the northwest Atlantic Ocean under a changing climate</article-title>
<source>J. Exp. Mar. Biol. Ecol</source>
<year>2011</year>
<volume>100</volume>
<fpage>90</fpage>
<lpage>98</lpage>
</element-citation>
</ref>
<ref id="b65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mieszkowska</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Leaper</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kendall</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Burrows</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Lear</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Poloczanska</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<volume>202</volume>
<fpage>1</fpage>
<lpage>52</lpage>
<comment>Marine biodiversity and climate change: assessing and predicting the influence of climatic change using intertidal rocky shore biota. Final report for United Kingdom funders. Scottish Natural Heritage Commissioned Report</comment>
</element-citation>
</ref>
<ref id="b66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moy</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Christie</surname>
<given-names>HC</given-names>
</name>
</person-group>
<article-title>Large-scale shift from sugar kelp (
<italic>Saccharina latissima</italic>
) to ephemeral algae along the south and west coast of Norway</article-title>
<source>Mar. Biol. Res</source>
<year>2012</year>
<volume>8</volume>
<fpage>309</fpage>
<lpage>321</lpage>
</element-citation>
</ref>
<ref id="b67">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nelson</surname>
<given-names>WA</given-names>
</name>
</person-group>
<article-title>Calcified macroalgae - critical to coastal ecosystems and vulnerable to change: a review</article-title>
<source>Mar. Freshw. Res</source>
<year>2009</year>
<volume>60</volume>
<fpage>787</fpage>
<lpage>801</lpage>
</element-citation>
</ref>
<ref id="b68">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Nicholls</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Burkett</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Codignotto</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Hay</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>McLean</surname>
<given-names>RF</given-names>
</name>
<etal></etal>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Parry</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Canziani</surname>
<given-names>OF</given-names>
</name>
<name>
<surname>Palutikof</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Linden</surname>
<given-names>PJVD</given-names>
</name>
<name>
<surname>Hanson</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Coastal systems and low-lying areas</article-title>
<source>Contributions of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: “Impacts, Adaptation and Vulnerability”</source>
<year>2007</year>
<publisher-loc>Cambridge</publisher-loc>
<publisher-name>Cambridge Univ. Press</publisher-name>
<fpage>315</fpage>
<lpage>356</lpage>
</element-citation>
</ref>
<ref id="b69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noisette</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Duong</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Six</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Davoult</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Effects of elevated
<italic>p</italic>
CO
<sub>2</sub>
on the metabolism of a temperate rhodolith
<italic>Lithothamnion coralloides</italic>
grown under different temperatures</article-title>
<source>J. Phycol</source>
<year>2013</year>
<volume>49</volume>
<fpage>746</fpage>
<lpage>757</lpage>
</element-citation>
</ref>
<ref id="b70">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nyberg</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Wallentius</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Can species traits be used to predict marine macroalgal introductions?</article-title>
<source>Biol. Invasions</source>
<year>2005</year>
<volume>7</volume>
<fpage>265</fpage>
<lpage>279</lpage>
</element-citation>
</ref>
<ref id="b71">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olischläger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wiencke</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga
<italic>Neosiphonia harveyi</italic>
(Rhodophyta)</article-title>
<source>J. Exp. Bot</source>
<year>2013</year>
<volume>64</volume>
<fpage>5587</fpage>
<lpage>5597</lpage>
<pub-id pub-id-type="pmid">24127518</pub-id>
</element-citation>
</ref>
<ref id="b72">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pearson</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Lago-Leston</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mota</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations</article-title>
<source>J. Ecol</source>
<year>2009</year>
<volume>97</volume>
<fpage>450</fpage>
<lpage>462</lpage>
</element-citation>
</ref>
<ref id="b73">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piontek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lunau</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Handel</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Borchard</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wurst</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Engel</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Acidification increases microbial polysaccharide degradation in the ocean</article-title>
<source>Biogeosciences</source>
<year>2010</year>
<volume>7</volume>
<fpage>1615</fpage>
<lpage>1624</lpage>
</element-citation>
</ref>
<ref id="b74">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poloczanska</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Sydeman</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Kiessling</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Schoeman</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>PJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Global imprint of climate change on marine life</article-title>
<source>Nat. Clim. Chang</source>
<year>2013</year>
<volume>3</volume>
<fpage>919</fpage>
<lpage>925</lpage>
</element-citation>
</ref>
<ref id="b43">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Pörtner</surname>
<given-names>H-O</given-names>
</name>
<name>
<surname>Karl</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Boyd</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lluch-Cota</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Nojiri</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>D</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Stocker</surname>
<given-names>TF</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Plattner</surname>
<given-names>G-K</given-names>
</name>
<name>
<surname>Tignor</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Boschung</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nauels</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bex</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Midgley</surname>
<given-names>PM</given-names>
</name>
</person-group>
<article-title>Ocean systems</article-title>
<source>Climate change 2014: impacts, adaptation, and vulnerability. Working Group II Contribution to the IPCC 5th Assessment Report of the Intergovernmental Panel on Climate Change</source>
<year>2014</year>
<publisher-loc>Cambridge, U.K. and New York, NY</publisher-loc>
<publisher-name>Cambridge Univ. Press</publisher-name>
</element-citation>
</ref>
<ref id="b75">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ragazzola</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Foster</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Form</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>PSL</given-names>
</name>
<name>
<surname>Hansteen</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Fietzke</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Ocean acidification weakens the structural integrity of coralline algae</article-title>
<source>Glob. Change Biol</source>
<year>2012</year>
<volume>18</volume>
<fpage>2804</fpage>
<lpage>2812</lpage>
</element-citation>
</ref>
<ref id="b76">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raven</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Beardall</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Giordano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Maberly</surname>
<given-names>SC</given-names>
</name>
</person-group>
<article-title>Algal evolution in relation to atmospheric CO
<sub>2</sub>
: carboxylases, carbon concentrating mechanisms and carbon oxidation cycles</article-title>
<source>Philos. Trans. R. Soc. Lond. B Biol. Sci</source>
<year>2012</year>
<volume>367</volume>
<fpage>493</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="pmid">22232762</pub-id>
</element-citation>
</ref>
<ref id="b77">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reed</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Rassweiler</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arkema</surname>
<given-names>KK</given-names>
</name>
</person-group>
<article-title>Biomass rather than growth rate determines variation in net primary production by giant kelp</article-title>
<source>Ecology</source>
<year>2008</year>
<volume>89</volume>
<fpage>2493</fpage>
<lpage>2505</lpage>
<pub-id pub-id-type="pmid">18831171</pub-id>
</element-citation>
</ref>
<ref id="b78">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reid</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Johns</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Starr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Poulin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Snoeijs</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom
<italic>Neodenticula seminae</italic>
in the North Atlantic for the first time in 800,000 years</article-title>
<source>Glob. Change Biol</source>
<year>2007</year>
<volume>13</volume>
<fpage>1910</fpage>
<lpage>1921</lpage>
</element-citation>
</ref>
<ref id="b100">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Reid</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McQuatters-Gollop</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Minchin</surname>
<given-names>D</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>McCollin</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Frost</surname>
<given-names>MT</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Baxter</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Buckley</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Marine non-native species</article-title>
<source>Marine climate change ecosystem linkages report card 2009</source>
<year>2009</year>
<fpage>29</fpage>
<comment>Online science reviews</comment>
</element-citation>
</ref>
<ref id="b79">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simkanin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Power</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McGrath</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Southward</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mieszkowska</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Using historical data to detect temporal changes in the abundances of intertidal species on Irish shores</article-title>
<source>J. Mar. Biolog. Assoc. U.K</source>
<year>2005</year>
<volume>85</volume>
<fpage>1329</fpage>
<lpage>1340</lpage>
</element-citation>
</ref>
<ref id="b80">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sluijs</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brinkhuis</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Schouten</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bohaty</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>John</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Zachos</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary</article-title>
<source>Nature</source>
<year>2007</year>
<volume>450</volume>
<fpage>1218</fpage>
<lpage>1221</lpage>
<pub-id pub-id-type="pmid">18097406</pub-id>
</element-citation>
</ref>
<ref id="b81">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smale</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Wernberg</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Extreme climatic event drives range contraction of a habitat-forming species</article-title>
<source>Proc. R. Soc. Lond. B Biol. Sci</source>
<year>2013</year>
<volume>280</volume>
<fpage>20122829</fpage>
</element-citation>
</ref>
<ref id="b82">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smale</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Burrows</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hawkins</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective</article-title>
<source>Ecol. Evol</source>
<year>2013</year>
<volume>3</volume>
<fpage>4016</fpage>
<lpage>4038</lpage>
<pub-id pub-id-type="pmid">24198956</pub-id>
</element-citation>
</ref>
<ref id="b83">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sorte</surname>
<given-names>CJB</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Zerebecki</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Ocean warming increases threat of invasive species in a marine fouling community</article-title>
<source>Ecology</source>
<year>2010</year>
<volume>91</volume>
<fpage>2198</fpage>
<lpage>2204</lpage>
<pub-id pub-id-type="pmid">20836440</pub-id>
</element-citation>
</ref>
<ref id="b84">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stefels</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Steinke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Malin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Belviso</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling</article-title>
<source>Biogeochemistry</source>
<year>2007</year>
<volume>83</volume>
<fpage>245</fpage>
<lpage>275</lpage>
</element-citation>
</ref>
<ref id="b85">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steinacher</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Joos</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Frolicher</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Plattner</surname>
<given-names>GK</given-names>
</name>
<name>
<surname>Doney</surname>
<given-names>SC</given-names>
</name>
</person-group>
<article-title>Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model</article-title>
<source>Biogeosciences</source>
<year>2009</year>
<volume>6</volume>
<fpage>515</fpage>
<lpage>533</lpage>
</element-citation>
</ref>
<ref id="b86">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steneck</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Bourque</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Corbett</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Erlandson</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Estes</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Kelp forest ecosystems: biodiversity, stability, resilience and future</article-title>
<source>Environ. Conserv</source>
<year>2002</year>
<volume>29</volume>
<fpage>436</fpage>
<lpage>459</lpage>
</element-citation>
</ref>
<ref id="b87">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sunday</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Calosi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dupont</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Munday</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Stillman</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Reusch</surname>
<given-names>TBH</given-names>
</name>
</person-group>
<article-title>Evolution in an acidifying ocean</article-title>
<source>Trends Ecol. Evol</source>
<year>2014</year>
<volume>29</volume>
<fpage>117</fpage>
<lpage>125</lpage>
<pub-id pub-id-type="pmid">24355315</pub-id>
</element-citation>
</ref>
<ref id="b88">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Targett</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Coen</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>Boettcher</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Tanner</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Biogeographic comparisons of marine algal polyphenolics - evidence against a latitudinal trend</article-title>
<source>Oecologia</source>
<year>1992</year>
<volume>89</volume>
<fpage>464</fpage>
<lpage>470</lpage>
</element-citation>
</ref>
<ref id="b89">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Chrachri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wheeler</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Goddard</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Brownlee</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A voltage-gated H
<sup>+</sup>
channel underlying pH homeostasis in calcifying coccolithophores</article-title>
<source>PLoS Biol</source>
<year>2011</year>
<volume>9</volume>
<fpage>e1001085</fpage>
<pub-id pub-id-type="pmid">21713028</pub-id>
</element-citation>
</ref>
<ref id="b90">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuya</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cacabelos</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Duarte</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jacinto</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Patterns of landscape and assemblage structure along a latitudinal gradient in ocean climate</article-title>
<source>Mar. Ecol. Prog. Ser</source>
<year>2012</year>
<volume>466</volume>
<fpage>9</fpage>
<lpage>19</lpage>
</element-citation>
</ref>
<ref id="b91">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vadas</surname>
<given-names>RL</given-names>
<suffix>Sr</suffix>
</name>
<name>
<surname>Beal</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Nickl</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Emerson</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Growth and productivity of sublittoral fringe kelps (
<italic>Laminaria longicruris</italic>
) Bach. Pyl. in Cobscook Bay, Maine</article-title>
<source>Northeastern Nat</source>
<year>2004</year>
<volume>11</volume>
<fpage>143</fpage>
<lpage>162</lpage>
</element-citation>
</ref>
<ref id="b92">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weltzin</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Belote</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Sanders</surname>
<given-names>NJ</given-names>
</name>
</person-group>
<article-title>Biological invaders in a greenhouse world: will elevated CO
<sub>2</sub>
fuel plant invasions?</article-title>
<source>Front. Ecol. Environ</source>
<year>2003</year>
<volume>1</volume>
<fpage>146</fpage>
<lpage>153</lpage>
</element-citation>
</ref>
<ref id="b93">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wernberg</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Smale</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Tuya</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Thomsen</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Langlois</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>de Bettignies</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot</article-title>
<source>Nat. Clim. Chang</source>
<year>2013</year>
<volume>3</volume>
<fpage>78</fpage>
<lpage>82</lpage>
</element-citation>
</ref>
<ref id="b94">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Witt</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Wild</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Anthony</surname>
<given-names>KRN</given-names>
</name>
<name>
<surname>Diaz-Pulido</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Uthicke</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reefs</article-title>
<source>Environ. Microbiol</source>
<year>2011</year>
<volume>13</volume>
<fpage>2976</fpage>
<lpage>2989</lpage>
<pub-id pub-id-type="pmid">21906222</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002F15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4113300
   |texte=   The future of the northeast Atlantic benthic flora in a high CO2 world
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25077027" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024