Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002F049 ( Pmc/Corpus ); précédent : 002F048; suivant : 002F050 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering Functional Epithelium for Regenerative Medicine and
<italic>In Vitro</italic>
Organ Models: A Review</title>
<author>
<name sortKey="Vrana, Nihal E" sort="Vrana, Nihal E" uniqKey="Vrana N" first="Nihal E." last="Vrana">Nihal E. Vrana</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lavalle, Philippe" sort="Lavalle, Philippe" uniqKey="Lavalle P" first="Philippe" last="Lavalle">Philippe Lavalle</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dokmeci, Mehmet R" sort="Dokmeci, Mehmet R" uniqKey="Dokmeci M" first="Mehmet R." last="Dokmeci">Mehmet R. Dokmeci</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dehghani, Fariba" sort="Dehghani, Fariba" uniqKey="Dehghani F" first="Fariba" last="Dehghani">Fariba Dehghani</name>
<affiliation>
<nlm:aff id="aff5"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ghaemmaghami, Amir M" sort="Ghaemmaghami, Amir M" uniqKey="Ghaemmaghami A" first="Amir M." last="Ghaemmaghami">Amir M. Ghaemmaghami</name>
<affiliation>
<nlm:aff id="aff6"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khademhosseini, Ali" sort="Khademhosseini, Ali" uniqKey="Khademhosseini A" first="Ali" last="Khademhosseini">Ali Khademhosseini</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23705900</idno>
<idno type="pmc">3826472</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826472</idno>
<idno type="RBID">PMC:3826472</idno>
<idno type="doi">10.1089/ten.teb.2012.0603</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002F04</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002F04</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Engineering Functional Epithelium for Regenerative Medicine and
<italic>In Vitro</italic>
Organ Models: A Review</title>
<author>
<name sortKey="Vrana, Nihal E" sort="Vrana, Nihal E" uniqKey="Vrana N" first="Nihal E." last="Vrana">Nihal E. Vrana</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lavalle, Philippe" sort="Lavalle, Philippe" uniqKey="Lavalle P" first="Philippe" last="Lavalle">Philippe Lavalle</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dokmeci, Mehmet R" sort="Dokmeci, Mehmet R" uniqKey="Dokmeci M" first="Mehmet R." last="Dokmeci">Mehmet R. Dokmeci</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dehghani, Fariba" sort="Dehghani, Fariba" uniqKey="Dehghani F" first="Fariba" last="Dehghani">Fariba Dehghani</name>
<affiliation>
<nlm:aff id="aff5"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ghaemmaghami, Amir M" sort="Ghaemmaghami, Amir M" uniqKey="Ghaemmaghami A" first="Amir M." last="Ghaemmaghami">Amir M. Ghaemmaghami</name>
<affiliation>
<nlm:aff id="aff6"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khademhosseini, Ali" sort="Khademhosseini, Ali" uniqKey="Khademhosseini A" first="Ali" last="Khademhosseini">Ali Khademhosseini</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Tissue Engineering. Part B, Reviews</title>
<idno type="ISSN">1937-3368</idno>
<idno type="eISSN">1937-3376</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and
<italic>in situ</italic>
epithelialization. However, for organs composed of several tissues, other important factors such as (1)
<italic>in vivo</italic>
epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems.</p>
</div>
</front>
</TEI>
<pmc article-type="review-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Tissue Eng Part B Rev</journal-id>
<journal-id journal-id-type="iso-abbrev">Tissue Eng Part B Rev</journal-id>
<journal-id journal-id-type="publisher-id">teb</journal-id>
<journal-title-group>
<journal-title>Tissue Engineering. Part B, Reviews</journal-title>
</journal-title-group>
<issn pub-type="ppub">1937-3368</issn>
<issn pub-type="epub">1937-3376</issn>
<publisher>
<publisher-name>Mary Ann Liebert, Inc.</publisher-name>
<publisher-loc>140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23705900</article-id>
<article-id pub-id-type="pmc">3826472</article-id>
<article-id pub-id-type="publisher-id">10.1089/ten.teb.2012.0603</article-id>
<article-id pub-id-type="doi">10.1089/ten.teb.2012.0603</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Engineering Functional Epithelium for Regenerative Medicine and
<italic>In Vitro</italic>
Organ Models: A Review</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Vrana</surname>
<given-names>Nihal E.</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lavalle</surname>
<given-names>Philippe</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dokmeci</surname>
<given-names>Mehmet R.</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dehghani</surname>
<given-names>Fariba</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ghaemmaghami</surname>
<given-names>Amir M.</given-names>
</name>
<degrees>MD, PhD</degrees>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Khademhosseini</surname>
<given-names>Ali</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
</contrib>
<aff id="aff1">
<label>
<sup>1</sup>
</label>
<institution>Institut National de la Santé et de la Recherche Médicale</institution>
, INSERM, UMR-S 1121, “Biomatériaux et Bioingénierie,” Strasbourg Cedex,
<country>France</country>
.</aff>
<aff id="aff2">
<label>
<sup>2</sup>
</label>
Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital,
<institution>Harvard Medical School</institution>
, Cambridge, Massachusetts.</aff>
<aff id="aff3">
<label>
<sup>3</sup>
</label>
Harvard-MIT Division of Health Sciences and Technology,
<institution>Massachusetts Institute of Technology</institution>
, Cambridge, Massachusetts.</aff>
<aff id="aff4">
<label>
<sup>4</sup>
</label>
Faculté de Chirurgie Dentaire,
<institution>Université de Strasbourg</institution>
, 1 Place de l'Hôpital, Strasbourg,
<country>France</country>
.</aff>
<aff id="aff5">
<label>
<sup>5</sup>
</label>
School of Chemical and Biomolecular Engineering,
<institution>The University of Sydney</institution>
, Sydney,
<country>Australia</country>
.</aff>
<aff id="aff6">
<label>
<sup>6</sup>
</label>
Faculty of Medicine,
<institution>University of Nottingham</institution>
, Nottingham,
<country>United Kingdom</country>
.</aff>
<aff id="aff7">
<label>
<sup>7</sup>
</label>
<institution>Wyss Institute for Biologically Inspired Engineering</institution>
, Harvard Medical School, Boston, Massachusetts.</aff>
</contrib-group>
<author-notes>
<corresp>Address correspondence to:
<italic>Ali Khademhosseini, PhD, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, PRB, Rm 252, 65 Landsdowne Street, Cambridge, MA 02139. E-mail:</italic>
<email xlink:href="mailto:alik@rics.bwh.harvard.edu">alik@rics.bwh.harvard.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>12</month>
<year>2013</year>
<pmc-comment>string-date: December 2013</pmc-comment>
</pub-date>
<pub-date pub-type="epub">
<day>06</day>
<month>8</month>
<year>2013</year>
<pmc-comment>string-date: Online Publication Date: August 6, 2013</pmc-comment>
</pub-date>
<volume>19</volume>
<issue>6</issue>
<fpage>529</fpage>
<lpage>543</lpage>
<history>
<date date-type="received">
<day>07</day>
<month>10</month>
<year>2012</year>
<pmc-comment>string-date: Received: October 7, 2012</pmc-comment>
</date>
<date date-type="accepted">
<day>07</day>
<month>5</month>
<year>2013</year>
<pmc-comment>string-date: Accepted: May 7, 2013</pmc-comment>
</date>
</history>
<permissions>
<copyright-statement>Copyright 2013, Mary Ann Liebert, Inc.</copyright-statement>
<copyright-year>2013</copyright-year>
</permissions>
<self-uri xlink:type="simple" xlink:href="ten.teb.2012.0603.pdf"></self-uri>
<abstract>
<p>Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and
<italic>in situ</italic>
epithelialization. However, for organs composed of several tissues, other important factors such as (1)
<italic>in vivo</italic>
epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems.</p>
</abstract>
<counts>
<fig-count count="7"></fig-count>
<table-count count="1"></table-count>
<ref-count count="129"></ref-count>
<page-count count="15"></page-count>
</counts>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F049 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002F049 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024