Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002E42 ( Pmc/Corpus ); précédent : 002E419; suivant : 002E430 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma</title>
<author>
<name sortKey="Law, Matthew H" sort="Law, Matthew H" uniqKey="Law M" first="Matthew H." last="Law">Matthew H. Law</name>
<affiliation>
<nlm:aff id="A1">Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bishop, D Timothy" sort="Bishop, D Timothy" uniqKey="Bishop D" first="D. Timothy" last="Bishop">D. Timothy Bishop</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jeffrey E" sort="Lee, Jeffrey E" uniqKey="Lee J" first="Jeffrey E." last="Lee">Jeffrey E. Lee</name>
<affiliation>
<nlm:aff id="A3">Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brossard, Myriam" sort="Brossard, Myriam" uniqKey="Brossard M" first="Myriam" last="Brossard">Myriam Brossard</name>
<affiliation>
<nlm:aff id="A4">Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-946, Genetic Variation and Human Diseases Unit, Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A5">Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martin, Nicholas G" sort="Martin, Nicholas G" uniqKey="Martin N" first="Nicholas G." last="Martin">Nicholas G. Martin</name>
<affiliation>
<nlm:aff id="A6">Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moses, Eric K" sort="Moses, Eric K" uniqKey="Moses E" first="Eric K." last="Moses">Eric K. Moses</name>
<affiliation>
<nlm:aff id="A7">Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Western Australia, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Fengju" sort="Song, Fengju" uniqKey="Song F" first="Fengju" last="Song">Fengju Song</name>
<affiliation>
<nlm:aff id="A8">Departments of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barrett, Jennifer H" sort="Barrett, Jennifer H" uniqKey="Barrett J" first="Jennifer H." last="Barrett">Jennifer H. Barrett</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajiv" sort="Kumar, Rajiv" uniqKey="Kumar R" first="Rajiv" last="Kumar">Rajiv Kumar</name>
<affiliation>
<nlm:aff id="A9">Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Easton, Douglas F" sort="Easton, Douglas F" uniqKey="Easton D" first="Douglas F." last="Easton">Douglas F. Easton</name>
<affiliation>
<nlm:aff id="A10">Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pharoah, Paul D P" sort="Pharoah, Paul D P" uniqKey="Pharoah P" first="Paul D. P." last="Pharoah">Paul D. P. Pharoah</name>
<affiliation>
<nlm:aff id="A11">Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Swerdlow, Anthony J" sort="Swerdlow, Anthony J" uniqKey="Swerdlow A" first="Anthony J." last="Swerdlow">Anthony J. Swerdlow</name>
<affiliation>
<nlm:aff id="A12">Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A13">Division of Breast Cancer Research, The Institute of Cancer Research, London, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kypreou, Katerina P" sort="Kypreou, Katerina P" uniqKey="Kypreou K" first="Katerina P." last="Kypreou">Katerina P. Kypreou</name>
<affiliation>
<nlm:aff id="A14">Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Taylor, John C" sort="Taylor, John C" uniqKey="Taylor J" first="John C." last="Taylor">John C. Taylor</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harland, Mark" sort="Harland, Mark" uniqKey="Harland M" first="Mark" last="Harland">Mark Harland</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Randerson Moor, Juliette" sort="Randerson Moor, Juliette" uniqKey="Randerson Moor J" first="Juliette" last="Randerson-Moor">Juliette Randerson-Moor</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akslen, Lars A" sort="Akslen, Lars A" uniqKey="Akslen L" first="Lars A." last="Akslen">Lars A. Akslen</name>
<affiliation>
<nlm:aff id="A15">Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A16">Department of Pathology, Haukeland University Hospital, Bergen, Norway</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Andresen, Per A" sort="Andresen, Per A" uniqKey="Andresen P" first="Per A." last="Andresen">Per A. Andresen</name>
<affiliation>
<nlm:aff id="A17">Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Avril, Marie Francoise" sort="Avril, Marie Francoise" uniqKey="Avril M" first="Marie-Françoise" last="Avril">Marie-Françoise Avril</name>
<affiliation>
<nlm:aff id="A18">Assistance Publique–Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Azizi, Esther" sort="Azizi, Esther" uniqKey="Azizi E" first="Esther" last="Azizi">Esther Azizi</name>
<affiliation>
<nlm:aff id="A19">Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A20">Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Scarra, Giovanna Bianchi" sort="Scarra, Giovanna Bianchi" uniqKey="Scarra G" first="Giovanna Bianchi" last="Scarrà">Giovanna Bianchi Scarrà</name>
<affiliation>
<nlm:aff id="A21">Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A22">Laboratory of Genetics of Rare Cancers, Istituto di ricovero e cura a carattere scientifico Azienda Ospedaliera Universitaria (IRCCS AOU) San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brown, Kevin M" sort="Brown, Kevin M" uniqKey="Brown K" first="Kevin M." last="Brown">Kevin M. Brown</name>
<affiliation>
<nlm:aff id="A23">Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="D Bniak, Tadeusz" sort="D Bniak, Tadeusz" uniqKey="D Bniak T" first="Tadeusz" last="D Bniak">Tadeusz D Bniak</name>
<affiliation>
<nlm:aff id="A24">International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Duffy, David L" sort="Duffy, David L" uniqKey="Duffy D" first="David L." last="Duffy">David L. Duffy</name>
<affiliation>
<nlm:aff id="A6">Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Elder, David E" sort="Elder, David E" uniqKey="Elder D" first="David E." last="Elder">David E. Elder</name>
<affiliation>
<nlm:aff id="A25">Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Shenying" sort="Fang, Shenying" uniqKey="Fang S" first="Shenying" last="Fang">Shenying Fang</name>
<affiliation>
<nlm:aff id="A3">Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Friedman, Eitan" sort="Friedman, Eitan" uniqKey="Friedman E" first="Eitan" last="Friedman">Eitan Friedman</name>
<affiliation>
<nlm:aff id="A20">Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Galan, Pilar" sort="Galan, Pilar" uniqKey="Galan P" first="Pilar" last="Galan">Pilar Galan</name>
<affiliation>
<nlm:aff id="A26">Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Institut National de la Santé et de la Recherche Médicale (INSERM U1153), Institut National de la Recherche Agronomique (INRA U1125), Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, F-93017 Bobigny, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ghiorzo, Paola" sort="Ghiorzo, Paola" uniqKey="Ghiorzo P" first="Paola" last="Ghiorzo">Paola Ghiorzo</name>
<affiliation>
<nlm:aff id="A21">Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A22">Laboratory of Genetics of Rare Cancers, Istituto di ricovero e cura a carattere scientifico Azienda Ospedaliera Universitaria (IRCCS AOU) San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gillanders, Elizabeth M" sort="Gillanders, Elizabeth M" uniqKey="Gillanders E" first="Elizabeth M." last="Gillanders">Elizabeth M. Gillanders</name>
<affiliation>
<nlm:aff id="A27">Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goldstein, Alisa M" sort="Goldstein, Alisa M" uniqKey="Goldstein A" first="Alisa M." last="Goldstein">Alisa M. Goldstein</name>
<affiliation>
<nlm:aff id="A23">Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gruis, Nelleke A" sort="Gruis, Nelleke A" uniqKey="Gruis N" first="Nelleke A." last="Gruis">Nelleke A. Gruis</name>
<affiliation>
<nlm:aff id="A28">Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hansson, Johan" sort="Hansson, Johan" uniqKey="Hansson J" first="Johan" last="Hansson">Johan Hansson</name>
<affiliation>
<nlm:aff id="A29">Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Helsing, Per" sort="Helsing, Per" uniqKey="Helsing P" first="Per" last="Helsing">Per Helsing</name>
<affiliation>
<nlm:aff id="A30">Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ho Evar, Marko" sort="Ho Evar, Marko" uniqKey="Ho Evar M" first="Marko" last="Ho Evar">Marko Ho Evar</name>
<affiliation>
<nlm:aff id="A31">Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hoiom, Veronica" sort="Hoiom, Veronica" uniqKey="Hoiom V" first="Veronica" last="Höiom">Veronica Höiom</name>
<affiliation>
<nlm:aff id="A29">Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ingvar, Christian" sort="Ingvar, Christian" uniqKey="Ingvar C" first="Christian" last="Ingvar">Christian Ingvar</name>
<affiliation>
<nlm:aff id="A32">Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kanetsky, Peter A" sort="Kanetsky, Peter A" uniqKey="Kanetsky P" first="Peter A." last="Kanetsky">Peter A. Kanetsky</name>
<affiliation>
<nlm:aff id="A33">Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Wei V" sort="Chen, Wei V" uniqKey="Chen W" first="Wei V." last="Chen">Wei V. Chen</name>
<affiliation>
<nlm:aff id="A34">Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Landi, Maria Teresa" sort="Landi, Maria Teresa" uniqKey="Landi M" first="Maria Teresa" last="Landi">Maria Teresa Landi</name>
<affiliation>
<nlm:aff id="A23">Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lang, Julie" sort="Lang, Julie" uniqKey="Lang J" first="Julie" last="Lang">Julie Lang</name>
<affiliation>
<nlm:aff id="A35">Department of Medical Genetics, University of Glasgow, Glasgow, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lathrop, G Mark" sort="Lathrop, G Mark" uniqKey="Lathrop G" first="G. Mark" last="Lathrop">G. Mark Lathrop</name>
<affiliation>
<nlm:aff id="A36">McGill University and Genome Quebec Innovation Centre, Montreal, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lubi Ski, Jan" sort="Lubi Ski, Jan" uniqKey="Lubi Ski J" first="Jan" last="Lubi Ski">Jan Lubi Ski</name>
<affiliation>
<nlm:aff id="A24">International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mackie, Rona M" sort="Mackie, Rona M" uniqKey="Mackie R" first="Rona M." last="Mackie">Rona M. Mackie</name>
<affiliation>
<nlm:aff id="A37">Department of Public Health, University of Glasgow, Glasgow UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A38">Department of Medical Genetics, University of Glasgow, Glasgow, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mann, Graham J" sort="Mann, Graham J" uniqKey="Mann G" first="Graham J." last="Mann">Graham J. Mann</name>
<affiliation>
<nlm:aff id="A39">Centre for Cancer Research, University of Sydney at Westmead, Millennium Institute for Medical Research and Melanoma Institute Australia, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Molven, Anders" sort="Molven, Anders" uniqKey="Molven A" first="Anders" last="Molven">Anders Molven</name>
<affiliation>
<nlm:aff id="A16">Department of Pathology, Haukeland University Hospital, Bergen, Norway</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A40">Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Montgomery, Grant W" sort="Montgomery, Grant W" uniqKey="Montgomery G" first="Grant W." last="Montgomery">Grant W. Montgomery</name>
<affiliation>
<nlm:aff id="A41">Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Novakovi, Srdjan" sort="Novakovi, Srdjan" uniqKey="Novakovi S" first="Srdjan" last="Novakovi">Srdjan Novakovi</name>
<affiliation>
<nlm:aff id="A42">Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Olsson, H Kan" sort="Olsson, H Kan" uniqKey="Olsson H" first="H Kan" last="Olsson">H Kan Olsson</name>
<affiliation>
<nlm:aff id="A43">Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund; Sweden</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A44">Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Puig, Susana" sort="Puig, Susana" uniqKey="Puig S" first="Susana" last="Puig">Susana Puig</name>
<affiliation>
<nlm:aff id="A45">Melanoma Unit, Dermatology Department & Biochemistry and Molecular Genetics Departments, Hospital Clinic, Institut de Investigacó Biomèdica August Pi Suñe, Universitat de Barcelona, Barcelona, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A46">Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Puig Butille, Joan Anton" sort="Puig Butille, Joan Anton" uniqKey="Puig Butille J" first="Joan Anton" last="Puig-Butille">Joan Anton Puig-Butille</name>
<affiliation>
<nlm:aff id="A45">Melanoma Unit, Dermatology Department & Biochemistry and Molecular Genetics Departments, Hospital Clinic, Institut de Investigacó Biomèdica August Pi Suñe, Universitat de Barcelona, Barcelona, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A46">Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qureshi, Abrar A" sort="Qureshi, Abrar A" uniqKey="Qureshi A" first="Abrar A." last="Qureshi">Abrar A. Qureshi</name>
<affiliation>
<nlm:aff id="A47">Department of Dermatology, The Warren Alpert Medical School of Brown University, Rhode Island, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Radford Smith, Graham L" sort="Radford Smith, Graham L" uniqKey="Radford Smith G" first="Graham L." last="Radford-Smith">Graham L. Radford-Smith</name>
<affiliation>
<nlm:aff id="A48">Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A49">Department of Gastroenterology and Hepatology, Royal Brisbane & Women's Hospital, Brisbane, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A50">University of Queensland School of Medicine, Herston Campus, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Der Stoep, Nienke" sort="Van Der Stoep, Nienke" uniqKey="Van Der Stoep N" first="Nienke" last="Van Der Stoep">Nienke Van Der Stoep</name>
<affiliation>
<nlm:aff id="A51">Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Doorn, Remco" sort="Van Doorn, Remco" uniqKey="Van Doorn R" first="Remco" last="Van Doorn">Remco Van Doorn</name>
<affiliation>
<nlm:aff id="A28">Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Whiteman, David C" sort="Whiteman, David C" uniqKey="Whiteman D" first="David C." last="Whiteman">David C. Whiteman</name>
<affiliation>
<nlm:aff id="A52">Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Craig, Jamie E" sort="Craig, Jamie E" uniqKey="Craig J" first="Jamie E." last="Craig">Jamie E. Craig</name>
<affiliation>
<nlm:aff id="A53">Department of Ophthalmology, Flinders University, Adelaide, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schadendorf, Dirk" sort="Schadendorf, Dirk" uniqKey="Schadendorf D" first="Dirk" last="Schadendorf">Dirk Schadendorf</name>
<affiliation>
<nlm:aff id="A54">Department of Dermatology, University Hospital Essen, Essen, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A55">German Consortium Translational Cancer Research (DKTK), Heidelberg, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simms, Lisa A" sort="Simms, Lisa A" uniqKey="Simms L" first="Lisa A." last="Simms">Lisa A. Simms</name>
<affiliation>
<nlm:aff id="A48">Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Burdon, Kathryn P" sort="Burdon, Kathryn P" uniqKey="Burdon K" first="Kathryn P." last="Burdon">Kathryn P. Burdon</name>
<affiliation>
<nlm:aff id="A56">Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nyholt, Dale R" sort="Nyholt, Dale R" uniqKey="Nyholt D" first="Dale R." last="Nyholt">Dale R. Nyholt</name>
<affiliation>
<nlm:aff id="A57">Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A41">Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pooley, Karen A" sort="Pooley, Karen A" uniqKey="Pooley K" first="Karen A." last="Pooley">Karen A. Pooley</name>
<affiliation>
<nlm:aff id="A10">Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Orr, Nick" sort="Orr, Nick" uniqKey="Orr N" first="Nick" last="Orr">Nick Orr</name>
<affiliation>
<nlm:aff id="A58">Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stratigos, Alexander J" sort="Stratigos, Alexander J" uniqKey="Stratigos A" first="Alexander J." last="Stratigos">Alexander J. Stratigos</name>
<affiliation>
<nlm:aff id="A14">Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cust, Anne E" sort="Cust, Anne E" uniqKey="Cust A" first="Anne E." last="Cust">Anne E. Cust</name>
<affiliation>
<nlm:aff id="A59">Cancer Epidemiology and Services Research, Sydney School of Public Health, The University of Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ward, Sarah V" sort="Ward, Sarah V" uniqKey="Ward S" first="Sarah V." last="Ward">Sarah V. Ward</name>
<affiliation>
<nlm:aff id="A7">Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Western Australia, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Nicholas K" sort="Hayward, Nicholas K" uniqKey="Hayward N" first="Nicholas K." last="Hayward">Nicholas K. Hayward</name>
<affiliation>
<nlm:aff id="A60">Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Han, Jiali" sort="Han, Jiali" uniqKey="Han J" first="Jiali" last="Han">Jiali Han</name>
<affiliation>
<nlm:aff id="A61">Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A62">Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schulze, Hans Joachim" sort="Schulze, Hans Joachim" uniqKey="Schulze H" first="Hans-Joachim" last="Schulze">Hans-Joachim Schulze</name>
<affiliation>
<nlm:aff id="A63">Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin at the University of Münster, Münster, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dunning, Alison M" sort="Dunning, Alison M" uniqKey="Dunning A" first="Alison M." last="Dunning">Alison M. Dunning</name>
<affiliation>
<nlm:aff id="A11">Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bishop, Julia A Newton" sort="Bishop, Julia A Newton" uniqKey="Bishop J" first="Julia A. Newton" last="Bishop">Julia A. Newton Bishop</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Demenais, Florence" sort="Demenais, Florence" uniqKey="Demenais F" first="Florence" last="Demenais">Florence Demenais</name>
<affiliation>
<nlm:aff id="A4">Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-946, Genetic Variation and Human Diseases Unit, Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A5">Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Amos, Christopher I" sort="Amos, Christopher I" uniqKey="Amos C" first="Christopher I." last="Amos">Christopher I. Amos</name>
<affiliation>
<nlm:aff id="A64">Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Macgregor, Stuart" sort="Macgregor, Stuart" uniqKey="Macgregor S" first="Stuart" last="Macgregor">Stuart Macgregor</name>
<affiliation>
<nlm:aff id="A1">Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Iles, Mark M" sort="Iles, Mark M" uniqKey="Iles M" first="Mark M." last="Iles">Mark M. Iles</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26237428</idno>
<idno type="pmc">4557485</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557485</idno>
<idno type="RBID">PMC:4557485</idno>
<idno type="doi">10.1038/ng.3373</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">002E42</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002E42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma</title>
<author>
<name sortKey="Law, Matthew H" sort="Law, Matthew H" uniqKey="Law M" first="Matthew H." last="Law">Matthew H. Law</name>
<affiliation>
<nlm:aff id="A1">Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bishop, D Timothy" sort="Bishop, D Timothy" uniqKey="Bishop D" first="D. Timothy" last="Bishop">D. Timothy Bishop</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jeffrey E" sort="Lee, Jeffrey E" uniqKey="Lee J" first="Jeffrey E." last="Lee">Jeffrey E. Lee</name>
<affiliation>
<nlm:aff id="A3">Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brossard, Myriam" sort="Brossard, Myriam" uniqKey="Brossard M" first="Myriam" last="Brossard">Myriam Brossard</name>
<affiliation>
<nlm:aff id="A4">Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-946, Genetic Variation and Human Diseases Unit, Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A5">Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martin, Nicholas G" sort="Martin, Nicholas G" uniqKey="Martin N" first="Nicholas G." last="Martin">Nicholas G. Martin</name>
<affiliation>
<nlm:aff id="A6">Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moses, Eric K" sort="Moses, Eric K" uniqKey="Moses E" first="Eric K." last="Moses">Eric K. Moses</name>
<affiliation>
<nlm:aff id="A7">Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Western Australia, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Fengju" sort="Song, Fengju" uniqKey="Song F" first="Fengju" last="Song">Fengju Song</name>
<affiliation>
<nlm:aff id="A8">Departments of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barrett, Jennifer H" sort="Barrett, Jennifer H" uniqKey="Barrett J" first="Jennifer H." last="Barrett">Jennifer H. Barrett</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajiv" sort="Kumar, Rajiv" uniqKey="Kumar R" first="Rajiv" last="Kumar">Rajiv Kumar</name>
<affiliation>
<nlm:aff id="A9">Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Easton, Douglas F" sort="Easton, Douglas F" uniqKey="Easton D" first="Douglas F." last="Easton">Douglas F. Easton</name>
<affiliation>
<nlm:aff id="A10">Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pharoah, Paul D P" sort="Pharoah, Paul D P" uniqKey="Pharoah P" first="Paul D. P." last="Pharoah">Paul D. P. Pharoah</name>
<affiliation>
<nlm:aff id="A11">Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Swerdlow, Anthony J" sort="Swerdlow, Anthony J" uniqKey="Swerdlow A" first="Anthony J." last="Swerdlow">Anthony J. Swerdlow</name>
<affiliation>
<nlm:aff id="A12">Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A13">Division of Breast Cancer Research, The Institute of Cancer Research, London, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kypreou, Katerina P" sort="Kypreou, Katerina P" uniqKey="Kypreou K" first="Katerina P." last="Kypreou">Katerina P. Kypreou</name>
<affiliation>
<nlm:aff id="A14">Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Taylor, John C" sort="Taylor, John C" uniqKey="Taylor J" first="John C." last="Taylor">John C. Taylor</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harland, Mark" sort="Harland, Mark" uniqKey="Harland M" first="Mark" last="Harland">Mark Harland</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Randerson Moor, Juliette" sort="Randerson Moor, Juliette" uniqKey="Randerson Moor J" first="Juliette" last="Randerson-Moor">Juliette Randerson-Moor</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akslen, Lars A" sort="Akslen, Lars A" uniqKey="Akslen L" first="Lars A." last="Akslen">Lars A. Akslen</name>
<affiliation>
<nlm:aff id="A15">Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A16">Department of Pathology, Haukeland University Hospital, Bergen, Norway</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Andresen, Per A" sort="Andresen, Per A" uniqKey="Andresen P" first="Per A." last="Andresen">Per A. Andresen</name>
<affiliation>
<nlm:aff id="A17">Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Avril, Marie Francoise" sort="Avril, Marie Francoise" uniqKey="Avril M" first="Marie-Françoise" last="Avril">Marie-Françoise Avril</name>
<affiliation>
<nlm:aff id="A18">Assistance Publique–Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Azizi, Esther" sort="Azizi, Esther" uniqKey="Azizi E" first="Esther" last="Azizi">Esther Azizi</name>
<affiliation>
<nlm:aff id="A19">Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A20">Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Scarra, Giovanna Bianchi" sort="Scarra, Giovanna Bianchi" uniqKey="Scarra G" first="Giovanna Bianchi" last="Scarrà">Giovanna Bianchi Scarrà</name>
<affiliation>
<nlm:aff id="A21">Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A22">Laboratory of Genetics of Rare Cancers, Istituto di ricovero e cura a carattere scientifico Azienda Ospedaliera Universitaria (IRCCS AOU) San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brown, Kevin M" sort="Brown, Kevin M" uniqKey="Brown K" first="Kevin M." last="Brown">Kevin M. Brown</name>
<affiliation>
<nlm:aff id="A23">Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="D Bniak, Tadeusz" sort="D Bniak, Tadeusz" uniqKey="D Bniak T" first="Tadeusz" last="D Bniak">Tadeusz D Bniak</name>
<affiliation>
<nlm:aff id="A24">International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Duffy, David L" sort="Duffy, David L" uniqKey="Duffy D" first="David L." last="Duffy">David L. Duffy</name>
<affiliation>
<nlm:aff id="A6">Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Elder, David E" sort="Elder, David E" uniqKey="Elder D" first="David E." last="Elder">David E. Elder</name>
<affiliation>
<nlm:aff id="A25">Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Shenying" sort="Fang, Shenying" uniqKey="Fang S" first="Shenying" last="Fang">Shenying Fang</name>
<affiliation>
<nlm:aff id="A3">Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Friedman, Eitan" sort="Friedman, Eitan" uniqKey="Friedman E" first="Eitan" last="Friedman">Eitan Friedman</name>
<affiliation>
<nlm:aff id="A20">Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Galan, Pilar" sort="Galan, Pilar" uniqKey="Galan P" first="Pilar" last="Galan">Pilar Galan</name>
<affiliation>
<nlm:aff id="A26">Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Institut National de la Santé et de la Recherche Médicale (INSERM U1153), Institut National de la Recherche Agronomique (INRA U1125), Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, F-93017 Bobigny, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ghiorzo, Paola" sort="Ghiorzo, Paola" uniqKey="Ghiorzo P" first="Paola" last="Ghiorzo">Paola Ghiorzo</name>
<affiliation>
<nlm:aff id="A21">Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A22">Laboratory of Genetics of Rare Cancers, Istituto di ricovero e cura a carattere scientifico Azienda Ospedaliera Universitaria (IRCCS AOU) San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gillanders, Elizabeth M" sort="Gillanders, Elizabeth M" uniqKey="Gillanders E" first="Elizabeth M." last="Gillanders">Elizabeth M. Gillanders</name>
<affiliation>
<nlm:aff id="A27">Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goldstein, Alisa M" sort="Goldstein, Alisa M" uniqKey="Goldstein A" first="Alisa M." last="Goldstein">Alisa M. Goldstein</name>
<affiliation>
<nlm:aff id="A23">Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gruis, Nelleke A" sort="Gruis, Nelleke A" uniqKey="Gruis N" first="Nelleke A." last="Gruis">Nelleke A. Gruis</name>
<affiliation>
<nlm:aff id="A28">Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hansson, Johan" sort="Hansson, Johan" uniqKey="Hansson J" first="Johan" last="Hansson">Johan Hansson</name>
<affiliation>
<nlm:aff id="A29">Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Helsing, Per" sort="Helsing, Per" uniqKey="Helsing P" first="Per" last="Helsing">Per Helsing</name>
<affiliation>
<nlm:aff id="A30">Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ho Evar, Marko" sort="Ho Evar, Marko" uniqKey="Ho Evar M" first="Marko" last="Ho Evar">Marko Ho Evar</name>
<affiliation>
<nlm:aff id="A31">Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hoiom, Veronica" sort="Hoiom, Veronica" uniqKey="Hoiom V" first="Veronica" last="Höiom">Veronica Höiom</name>
<affiliation>
<nlm:aff id="A29">Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ingvar, Christian" sort="Ingvar, Christian" uniqKey="Ingvar C" first="Christian" last="Ingvar">Christian Ingvar</name>
<affiliation>
<nlm:aff id="A32">Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kanetsky, Peter A" sort="Kanetsky, Peter A" uniqKey="Kanetsky P" first="Peter A." last="Kanetsky">Peter A. Kanetsky</name>
<affiliation>
<nlm:aff id="A33">Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Wei V" sort="Chen, Wei V" uniqKey="Chen W" first="Wei V." last="Chen">Wei V. Chen</name>
<affiliation>
<nlm:aff id="A34">Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Landi, Maria Teresa" sort="Landi, Maria Teresa" uniqKey="Landi M" first="Maria Teresa" last="Landi">Maria Teresa Landi</name>
<affiliation>
<nlm:aff id="A23">Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lang, Julie" sort="Lang, Julie" uniqKey="Lang J" first="Julie" last="Lang">Julie Lang</name>
<affiliation>
<nlm:aff id="A35">Department of Medical Genetics, University of Glasgow, Glasgow, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lathrop, G Mark" sort="Lathrop, G Mark" uniqKey="Lathrop G" first="G. Mark" last="Lathrop">G. Mark Lathrop</name>
<affiliation>
<nlm:aff id="A36">McGill University and Genome Quebec Innovation Centre, Montreal, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lubi Ski, Jan" sort="Lubi Ski, Jan" uniqKey="Lubi Ski J" first="Jan" last="Lubi Ski">Jan Lubi Ski</name>
<affiliation>
<nlm:aff id="A24">International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mackie, Rona M" sort="Mackie, Rona M" uniqKey="Mackie R" first="Rona M." last="Mackie">Rona M. Mackie</name>
<affiliation>
<nlm:aff id="A37">Department of Public Health, University of Glasgow, Glasgow UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A38">Department of Medical Genetics, University of Glasgow, Glasgow, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mann, Graham J" sort="Mann, Graham J" uniqKey="Mann G" first="Graham J." last="Mann">Graham J. Mann</name>
<affiliation>
<nlm:aff id="A39">Centre for Cancer Research, University of Sydney at Westmead, Millennium Institute for Medical Research and Melanoma Institute Australia, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Molven, Anders" sort="Molven, Anders" uniqKey="Molven A" first="Anders" last="Molven">Anders Molven</name>
<affiliation>
<nlm:aff id="A16">Department of Pathology, Haukeland University Hospital, Bergen, Norway</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A40">Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Montgomery, Grant W" sort="Montgomery, Grant W" uniqKey="Montgomery G" first="Grant W." last="Montgomery">Grant W. Montgomery</name>
<affiliation>
<nlm:aff id="A41">Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Novakovi, Srdjan" sort="Novakovi, Srdjan" uniqKey="Novakovi S" first="Srdjan" last="Novakovi">Srdjan Novakovi</name>
<affiliation>
<nlm:aff id="A42">Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Olsson, H Kan" sort="Olsson, H Kan" uniqKey="Olsson H" first="H Kan" last="Olsson">H Kan Olsson</name>
<affiliation>
<nlm:aff id="A43">Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund; Sweden</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A44">Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Puig, Susana" sort="Puig, Susana" uniqKey="Puig S" first="Susana" last="Puig">Susana Puig</name>
<affiliation>
<nlm:aff id="A45">Melanoma Unit, Dermatology Department & Biochemistry and Molecular Genetics Departments, Hospital Clinic, Institut de Investigacó Biomèdica August Pi Suñe, Universitat de Barcelona, Barcelona, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A46">Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Puig Butille, Joan Anton" sort="Puig Butille, Joan Anton" uniqKey="Puig Butille J" first="Joan Anton" last="Puig-Butille">Joan Anton Puig-Butille</name>
<affiliation>
<nlm:aff id="A45">Melanoma Unit, Dermatology Department & Biochemistry and Molecular Genetics Departments, Hospital Clinic, Institut de Investigacó Biomèdica August Pi Suñe, Universitat de Barcelona, Barcelona, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A46">Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qureshi, Abrar A" sort="Qureshi, Abrar A" uniqKey="Qureshi A" first="Abrar A." last="Qureshi">Abrar A. Qureshi</name>
<affiliation>
<nlm:aff id="A47">Department of Dermatology, The Warren Alpert Medical School of Brown University, Rhode Island, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Radford Smith, Graham L" sort="Radford Smith, Graham L" uniqKey="Radford Smith G" first="Graham L." last="Radford-Smith">Graham L. Radford-Smith</name>
<affiliation>
<nlm:aff id="A48">Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A49">Department of Gastroenterology and Hepatology, Royal Brisbane & Women's Hospital, Brisbane, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A50">University of Queensland School of Medicine, Herston Campus, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Der Stoep, Nienke" sort="Van Der Stoep, Nienke" uniqKey="Van Der Stoep N" first="Nienke" last="Van Der Stoep">Nienke Van Der Stoep</name>
<affiliation>
<nlm:aff id="A51">Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Doorn, Remco" sort="Van Doorn, Remco" uniqKey="Van Doorn R" first="Remco" last="Van Doorn">Remco Van Doorn</name>
<affiliation>
<nlm:aff id="A28">Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Whiteman, David C" sort="Whiteman, David C" uniqKey="Whiteman D" first="David C." last="Whiteman">David C. Whiteman</name>
<affiliation>
<nlm:aff id="A52">Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Craig, Jamie E" sort="Craig, Jamie E" uniqKey="Craig J" first="Jamie E." last="Craig">Jamie E. Craig</name>
<affiliation>
<nlm:aff id="A53">Department of Ophthalmology, Flinders University, Adelaide, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schadendorf, Dirk" sort="Schadendorf, Dirk" uniqKey="Schadendorf D" first="Dirk" last="Schadendorf">Dirk Schadendorf</name>
<affiliation>
<nlm:aff id="A54">Department of Dermatology, University Hospital Essen, Essen, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A55">German Consortium Translational Cancer Research (DKTK), Heidelberg, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simms, Lisa A" sort="Simms, Lisa A" uniqKey="Simms L" first="Lisa A." last="Simms">Lisa A. Simms</name>
<affiliation>
<nlm:aff id="A48">Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Burdon, Kathryn P" sort="Burdon, Kathryn P" uniqKey="Burdon K" first="Kathryn P." last="Burdon">Kathryn P. Burdon</name>
<affiliation>
<nlm:aff id="A56">Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nyholt, Dale R" sort="Nyholt, Dale R" uniqKey="Nyholt D" first="Dale R." last="Nyholt">Dale R. Nyholt</name>
<affiliation>
<nlm:aff id="A57">Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A41">Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pooley, Karen A" sort="Pooley, Karen A" uniqKey="Pooley K" first="Karen A." last="Pooley">Karen A. Pooley</name>
<affiliation>
<nlm:aff id="A10">Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Orr, Nick" sort="Orr, Nick" uniqKey="Orr N" first="Nick" last="Orr">Nick Orr</name>
<affiliation>
<nlm:aff id="A58">Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stratigos, Alexander J" sort="Stratigos, Alexander J" uniqKey="Stratigos A" first="Alexander J." last="Stratigos">Alexander J. Stratigos</name>
<affiliation>
<nlm:aff id="A14">Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cust, Anne E" sort="Cust, Anne E" uniqKey="Cust A" first="Anne E." last="Cust">Anne E. Cust</name>
<affiliation>
<nlm:aff id="A59">Cancer Epidemiology and Services Research, Sydney School of Public Health, The University of Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ward, Sarah V" sort="Ward, Sarah V" uniqKey="Ward S" first="Sarah V." last="Ward">Sarah V. Ward</name>
<affiliation>
<nlm:aff id="A7">Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Western Australia, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Nicholas K" sort="Hayward, Nicholas K" uniqKey="Hayward N" first="Nicholas K." last="Hayward">Nicholas K. Hayward</name>
<affiliation>
<nlm:aff id="A60">Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Han, Jiali" sort="Han, Jiali" uniqKey="Han J" first="Jiali" last="Han">Jiali Han</name>
<affiliation>
<nlm:aff id="A61">Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A62">Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schulze, Hans Joachim" sort="Schulze, Hans Joachim" uniqKey="Schulze H" first="Hans-Joachim" last="Schulze">Hans-Joachim Schulze</name>
<affiliation>
<nlm:aff id="A63">Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin at the University of Münster, Münster, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dunning, Alison M" sort="Dunning, Alison M" uniqKey="Dunning A" first="Alison M." last="Dunning">Alison M. Dunning</name>
<affiliation>
<nlm:aff id="A11">Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bishop, Julia A Newton" sort="Bishop, Julia A Newton" uniqKey="Bishop J" first="Julia A. Newton" last="Bishop">Julia A. Newton Bishop</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Demenais, Florence" sort="Demenais, Florence" uniqKey="Demenais F" first="Florence" last="Demenais">Florence Demenais</name>
<affiliation>
<nlm:aff id="A4">Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-946, Genetic Variation and Human Diseases Unit, Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A5">Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Amos, Christopher I" sort="Amos, Christopher I" uniqKey="Amos C" first="Christopher I." last="Amos">Christopher I. Amos</name>
<affiliation>
<nlm:aff id="A64">Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Macgregor, Stuart" sort="Macgregor, Stuart" uniqKey="Macgregor S" first="Stuart" last="Macgregor">Stuart Macgregor</name>
<affiliation>
<nlm:aff id="A1">Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Iles, Mark M" sort="Iles, Mark M" uniqKey="Iles M" first="Mark M." last="Iles">Mark M. Iles</name>
<affiliation>
<nlm:aff id="A2">Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature genetics</title>
<idno type="ISSN">1061-4036</idno>
<idno type="eISSN">1546-1718</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P3">Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (
<italic>P</italic>
< 5×10
<sup>–8</sup>
), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Holly, Ea" uniqKey="Holly E">EA Holly</name>
</author>
<author>
<name sortKey="Aston, Da" uniqKey="Aston D">DA Aston</name>
</author>
<author>
<name sortKey="Cress, Rd" uniqKey="Cress R">RD Cress</name>
</author>
<author>
<name sortKey="Ahn, Dk" uniqKey="Ahn D">DK Ahn</name>
</author>
<author>
<name sortKey="Kristiansen, Jj" uniqKey="Kristiansen J">JJ Kristiansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holly, Ea" uniqKey="Holly E">EA Holly</name>
</author>
<author>
<name sortKey="Aston, Da" uniqKey="Aston D">DA Aston</name>
</author>
<author>
<name sortKey="Cress, Rd" uniqKey="Cress R">RD Cress</name>
</author>
<author>
<name sortKey="Ahn, Dk" uniqKey="Ahn D">DK Ahn</name>
</author>
<author>
<name sortKey="Kristiansen, Jj" uniqKey="Kristiansen J">JJ Kristiansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naldi, L" uniqKey="Naldi L">L Naldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Titus Ernstoff, L" uniqKey="Titus Ernstoff L">L Titus-Ernstoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bataille, V" uniqKey="Bataille V">V Bataille</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Ym" uniqKey="Chang Y">YM Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cannon Albright, La" uniqKey="Cannon Albright L">LA Cannon-Albright</name>
</author>
<author>
<name sortKey="Bishop, Dt" uniqKey="Bishop D">DT Bishop</name>
</author>
<author>
<name sortKey="Goldgar, C" uniqKey="Goldgar C">C Goldgar</name>
</author>
<author>
<name sortKey="Skolnick, Mh" uniqKey="Skolnick M">MH Skolnick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, Km" uniqKey="Brown K">KM Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bishop, Dt" uniqKey="Bishop D">DT Bishop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amos, Ci" uniqKey="Amos C">CI Amos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrett, Jh" uniqKey="Barrett J">JH Barrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macgregor, S" uniqKey="Macgregor S">S Macgregor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iles, Mm" uniqKey="Iles M">MM Iles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gudbjartsson, Df" uniqKey="Gudbjartsson D">DF Gudbjartsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Antonopoulou, K" uniqKey="Antonopoulou K">K Antonopoulou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pena Chilet, M" uniqKey="Pena Chilet M">M Pena-Chilet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falchi, M" uniqKey="Falchi M">M Falchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rafnar, T" uniqKey="Rafnar T">T Rafnar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pooley, Ka" uniqKey="Pooley K">KA Pooley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nan, H" uniqKey="Nan H">H Nan</name>
</author>
<author>
<name sortKey="Qureshi, Aa" uniqKey="Qureshi A">AA Qureshi</name>
</author>
<author>
<name sortKey="Prescott, J" uniqKey="Prescott J">J Prescott</name>
</author>
<author>
<name sortKey="De Vivo, I" uniqKey="De Vivo I">I De Vivo</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Law, Mh" uniqKey="Law M">MH Law</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mocellin, S" uniqKey="Mocellin S">S Mocellin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gomez, M" uniqKey="Gomez M">M Gomez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Derheimer, Fa" uniqKey="Derheimer F">FA Derheimer</name>
</author>
<author>
<name sortKey="Kastan, Mb" uniqKey="Kastan M">MB Kastan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bataille, V" uniqKey="Bataille V">V Bataille</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, J" uniqKey="Han J">J Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burke, Ls" uniqKey="Burke L">LS Burke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iles, Mm" uniqKey="Iles M">MM Iles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrett, Jh" uniqKey="Barrett J">JH Barrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Bakker, Pi" uniqKey="De Bakker P">PI de Bakker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miyake, Y" uniqKey="Miyake Y">Y Miyake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Steensel, B" uniqKey="Van Steensel B">B van Steensel</name>
</author>
<author>
<name sortKey="De Lange, T" uniqKey="De Lange T">T de Lange</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robles Espinoza, Cd" uniqKey="Robles Espinoza C">CD Robles-Espinoza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Codd, V" uniqKey="Codd V">V Codd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ward, Ld" uniqKey="Ward L">LD Ward</name>
</author>
<author>
<name sortKey="Kellis, M" uniqKey="Kellis M">M Kellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernstein, Be" uniqKey="Bernstein B">BE Bernstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Consortium, Ep" uniqKey="Consortium E">EP Consortium</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boyle, Ap" uniqKey="Boyle A">AP Boyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schadt, Ee" uniqKey="Schadt E">EE Schadt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Innocenti, F" uniqKey="Innocenti F">F Innocenti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grundberg, E" uniqKey="Grundberg E">E Grundberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gajjar, K" uniqKey="Gajjar K">K Gajjar</name>
</author>
<author>
<name sortKey="Martin Hirsch, Pl" uniqKey="Martin Hirsch P">PL Martin-Hirsch</name>
</author>
<author>
<name sortKey="Martin, Fl" uniqKey="Martin F">FL Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muthusamy, V" uniqKey="Muthusamy V">V Muthusamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, M" uniqKey="Shen M">M Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stoilov, I" uniqKey="Stoilov I">I Stoilov</name>
</author>
<author>
<name sortKey="Akarsu, An" uniqKey="Akarsu A">AN Akarsu</name>
</author>
<author>
<name sortKey="Sarfarazi, M" uniqKey="Sarfarazi M">M Sarfarazi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arragain, S" uniqKey="Arragain S">S Arragain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brambillasca, S" uniqKey="Brambillasca S">S Brambillasca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Praetorius, C" uniqKey="Praetorius C">C Praetorius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sulem, P" uniqKey="Sulem P">P Sulem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, J" uniqKey="Han J">J Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duffy, Dl" uniqKey="Duffy D">DL Duffy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Consortium, Gt" uniqKey="Consortium G">GT Consortium</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Consortium, Gt" uniqKey="Consortium G">GT Consortium</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Persson, S" uniqKey="Persson S">S Persson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fletcher, Gc" uniqKey="Fletcher G">GC Fletcher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="King, Er" uniqKey="King E">ER King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kent, Wj" uniqKey="Kent W">WJ Kent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masutani, C" uniqKey="Masutani C">C Masutani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, Cw" uniqKey="Wong C">CW Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoffmeyer, K" uniqKey="Hoffmeyer K">K Hoffmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teerlink, C" uniqKey="Teerlink C">C Teerlink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vizkeleti, L" uniqKey="Vizkeleti L">L Vizkeleti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, Rj" uniqKey="Young R">RJ Young</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="French, Jd" uniqKey="French J">JD French</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duffy, Dl" uniqKey="Duffy D">DL Duffy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruiz, Y" uniqKey="Ruiz Y">Y Ruiz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Price, Al" uniqKey="Price A">AL Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howie, Bn" uniqKey="Howie B">BN Howie</name>
</author>
<author>
<name sortKey="Donnelly, P" uniqKey="Donnelly P">P Donnelly</name>
</author>
<author>
<name sortKey="Marchini, J" uniqKey="Marchini J">J Marchini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchini, J" uniqKey="Marchini J">J Marchini</name>
</author>
<author>
<name sortKey="Howie, B" uniqKey="Howie B">B Howie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Willer, Cj" uniqKey="Willer C">CJ Willer</name>
</author>
<author>
<name sortKey="Ding, J" uniqKey="Ding J">J Ding</name>
</author>
<author>
<name sortKey="Scheet, P" uniqKey="Scheet P">P Scheet</name>
</author>
<author>
<name sortKey="Abecasis, Gr" uniqKey="Abecasis G">GR Abecasis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Willer, C" uniqKey="Willer C">C Willer</name>
</author>
<author>
<name sortKey="Sanna, S" uniqKey="Sanna S">S Sanna</name>
</author>
<author>
<name sortKey="Abecasis, G" uniqKey="Abecasis G">G Abecasis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howie, B" uniqKey="Howie B">B Howie</name>
</author>
<author>
<name sortKey="Fuchsberger, C" uniqKey="Fuchsberger C">C Fuchsberger</name>
</author>
<author>
<name sortKey="Stephens, M" uniqKey="Stephens M">M Stephens</name>
</author>
<author>
<name sortKey="Marchini, J" uniqKey="Marchini J">J Marchini</name>
</author>
<author>
<name sortKey="Abecasis, Gr" uniqKey="Abecasis G">GR Abecasis</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchini, J" uniqKey="Marchini J">J Marchini</name>
</author>
<author>
<name sortKey="Howie, B" uniqKey="Howie B">B Howie</name>
</author>
<author>
<name sortKey="Myers, S" uniqKey="Myers S">S Myers</name>
</author>
<author>
<name sortKey="Mcvean, G" uniqKey="Mcvean G">G McVean</name>
</author>
<author>
<name sortKey="Donnelly, P" uniqKey="Donnelly P">P Donnelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Higgins, Jp" uniqKey="Higgins J">JP Higgins</name>
</author>
<author>
<name sortKey="Thompson, Sg" uniqKey="Thompson S">SG Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dersimonian, R" uniqKey="Dersimonian R">R DerSimonian</name>
</author>
<author>
<name sortKey="Laird, N" uniqKey="Laird N">N Laird</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Magi, R" uniqKey="Magi R">R Magi</name>
</author>
<author>
<name sortKey="Morris, Ap" uniqKey="Morris A">AP Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gabriel, S" uniqKey="Gabriel S">S Gabriel</name>
</author>
<author>
<name sortKey="Ziaugra, L" uniqKey="Ziaugra L">L Ziaugra</name>
</author>
<author>
<name sortKey="Tabbaa, D" uniqKey="Tabbaa D">D Tabbaa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, E" uniqKey="Cho E">E Cho</name>
</author>
<author>
<name sortKey="Rosner, Ba" uniqKey="Rosner B">BA Rosner</name>
</author>
<author>
<name sortKey="Feskanich, D" uniqKey="Feskanich D">D Feskanich</name>
</author>
<author>
<name sortKey="Colditz, Ga" uniqKey="Colditz G">GA Colditz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newton Bishop, Ja" uniqKey="Newton Bishop J">JA Newton-Bishop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newton Bishop, Ja" uniqKey="Newton Bishop J">JA Newton-Bishop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newton Bishop, Ja" uniqKey="Newton Bishop J">JA Newton-Bishop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edwards, Sl" uniqKey="Edwards S">SL Edwards</name>
</author>
<author>
<name sortKey="Beesley, J" uniqKey="Beesley J">J Beesley</name>
</author>
<author>
<name sortKey="French, Jd" uniqKey="French J">JD French</name>
</author>
<author>
<name sortKey="Dunning, Am" uniqKey="Dunning A">AM Dunning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nica, Ac" uniqKey="Nica A">AC Nica</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pruim, Rj" uniqKey="Pruim R">RJ Pruim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Purcell, S" uniqKey="Purcell S">S Purcell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danecek, P" uniqKey="Danecek P">P Danecek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lumley, T" uniqKey="Lumley T">T Lumley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Mx" uniqKey="Li M">MX Li</name>
</author>
<author>
<name sortKey="Yeung, Jm" uniqKey="Yeung J">JM Yeung</name>
</author>
<author>
<name sortKey="Cherny, Ss" uniqKey="Cherny S">SS Cherny</name>
</author>
<author>
<name sortKey="Sham, Pc" uniqKey="Sham P">PC Sham</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">9216904</journal-id>
<journal-id journal-id-type="pubmed-jr-id">2419</journal-id>
<journal-id journal-id-type="nlm-ta">Nat Genet</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat. Genet.</journal-id>
<journal-title-group>
<journal-title>Nature genetics</journal-title>
</journal-title-group>
<issn pub-type="ppub">1061-4036</issn>
<issn pub-type="epub">1546-1718</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26237428</article-id>
<article-id pub-id-type="pmc">4557485</article-id>
<article-id pub-id-type="doi">10.1038/ng.3373</article-id>
<article-id pub-id-type="manuscript">NIHMS707176</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Law</surname>
<given-names>Matthew H.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="author-notes" rid="FN2">67</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bishop</surname>
<given-names>D. Timothy</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="author-notes" rid="FN2">67</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Lee</surname>
<given-names>Jeffrey E.</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Brossard</surname>
<given-names>Myriam</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
<xref ref-type="aff" rid="A5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Martin</surname>
<given-names>Nicholas G.</given-names>
</name>
<xref ref-type="aff" rid="A6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moses</surname>
<given-names>Eric K.</given-names>
</name>
<xref ref-type="aff" rid="A7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Song</surname>
<given-names>Fengju</given-names>
</name>
<xref ref-type="aff" rid="A8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Barrett</surname>
<given-names>Jennifer H.</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kumar</surname>
<given-names>Rajiv</given-names>
</name>
<xref ref-type="aff" rid="A9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Easton</surname>
<given-names>Douglas F.</given-names>
</name>
<xref ref-type="aff" rid="A10">10</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pharoah</surname>
<given-names>Paul D. P.</given-names>
</name>
<xref ref-type="aff" rid="A11">11</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Swerdlow</surname>
<given-names>Anthony J.</given-names>
</name>
<xref ref-type="aff" rid="A12">12</xref>
<xref ref-type="aff" rid="A13">13</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kypreou</surname>
<given-names>Katerina P.</given-names>
</name>
<xref ref-type="aff" rid="A14">14</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Taylor</surname>
<given-names>John C.</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Harland</surname>
<given-names>Mark</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Randerson-Moor</surname>
<given-names>Juliette</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Akslen</surname>
<given-names>Lars A.</given-names>
</name>
<xref ref-type="aff" rid="A15">15</xref>
<xref ref-type="aff" rid="A16">16</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Andresen</surname>
<given-names>Per A.</given-names>
</name>
<xref ref-type="aff" rid="A17">17</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Avril</surname>
<given-names>Marie-Françoise</given-names>
</name>
<xref ref-type="aff" rid="A18">18</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Azizi</surname>
<given-names>Esther</given-names>
</name>
<xref ref-type="aff" rid="A19">19</xref>
<xref ref-type="aff" rid="A20">20</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Scarrà</surname>
<given-names>Giovanna Bianchi</given-names>
</name>
<xref ref-type="aff" rid="A21">21</xref>
<xref ref-type="aff" rid="A22">22</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brown</surname>
<given-names>Kevin M.</given-names>
</name>
<xref ref-type="aff" rid="A23">23</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dębniak</surname>
<given-names>Tadeusz</given-names>
</name>
<xref ref-type="aff" rid="A24">24</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Duffy</surname>
<given-names>David L.</given-names>
</name>
<xref ref-type="aff" rid="A6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Elder</surname>
<given-names>David E.</given-names>
</name>
<xref ref-type="aff" rid="A25">25</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fang</surname>
<given-names>Shenying</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Friedman</surname>
<given-names>Eitan</given-names>
</name>
<xref ref-type="aff" rid="A20">20</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Galan</surname>
<given-names>Pilar</given-names>
</name>
<xref ref-type="aff" rid="A26">26</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ghiorzo</surname>
<given-names>Paola</given-names>
</name>
<xref ref-type="aff" rid="A21">21</xref>
<xref ref-type="aff" rid="A22">22</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gillanders</surname>
<given-names>Elizabeth M.</given-names>
</name>
<xref ref-type="aff" rid="A27">27</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Goldstein</surname>
<given-names>Alisa M.</given-names>
</name>
<xref ref-type="aff" rid="A23">23</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gruis</surname>
<given-names>Nelleke A.</given-names>
</name>
<xref ref-type="aff" rid="A28">28</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hansson</surname>
<given-names>Johan</given-names>
</name>
<xref ref-type="aff" rid="A29">29</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Helsing</surname>
<given-names>Per</given-names>
</name>
<xref ref-type="aff" rid="A30">30</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hočevar</surname>
<given-names>Marko</given-names>
</name>
<xref ref-type="aff" rid="A31">31</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Höiom</surname>
<given-names>Veronica</given-names>
</name>
<xref ref-type="aff" rid="A29">29</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ingvar</surname>
<given-names>Christian</given-names>
</name>
<xref ref-type="aff" rid="A32">32</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kanetsky</surname>
<given-names>Peter A.</given-names>
</name>
<xref ref-type="aff" rid="A33">33</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Wei V.</given-names>
</name>
<xref ref-type="aff" rid="A34">34</xref>
</contrib>
<contrib contrib-type="author">
<collab>GenoMEL Consortium</collab>
<xref ref-type="author-notes" rid="FN1">35</xref>
</contrib>
<contrib contrib-type="author">
<collab>Essen-Heidelberg Investigators</collab>
<xref ref-type="author-notes" rid="FN1">35</xref>
</contrib>
<contrib contrib-type="author">
<collab>The SDH Study Group</collab>
<xref ref-type="author-notes" rid="FN1">35</xref>
</contrib>
<contrib contrib-type="author">
<collab>Q-MEGA and QTWIN Investigators</collab>
<xref ref-type="author-notes" rid="FN1">35</xref>
</contrib>
<contrib contrib-type="author">
<collab>AMFS Investigators</collab>
<xref ref-type="author-notes" rid="FN1">35</xref>
</contrib>
<contrib contrib-type="author">
<collab>ATHENS Melanoma Study Group</collab>
<xref ref-type="author-notes" rid="FN1">35</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Landi</surname>
<given-names>Maria Teresa</given-names>
</name>
<xref ref-type="aff" rid="A23">23</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lang</surname>
<given-names>Julie</given-names>
</name>
<xref ref-type="aff" rid="A35">36</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lathrop</surname>
<given-names>G. Mark</given-names>
</name>
<xref ref-type="aff" rid="A36">37</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lubiński</surname>
<given-names>Jan</given-names>
</name>
<xref ref-type="aff" rid="A24">24</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mackie</surname>
<given-names>Rona M.</given-names>
</name>
<xref ref-type="aff" rid="A37">38</xref>
<xref ref-type="aff" rid="A38">39</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mann</surname>
<given-names>Graham J.</given-names>
</name>
<xref ref-type="aff" rid="A39">40</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Molven</surname>
<given-names>Anders</given-names>
</name>
<xref ref-type="aff" rid="A16">16</xref>
<xref ref-type="aff" rid="A40">41</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Montgomery</surname>
<given-names>Grant W.</given-names>
</name>
<xref ref-type="aff" rid="A41">42</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Novaković</surname>
<given-names>Srdjan</given-names>
</name>
<xref ref-type="aff" rid="A42">43</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Olsson</surname>
<given-names>Håkan</given-names>
</name>
<xref ref-type="aff" rid="A43">44</xref>
<xref ref-type="aff" rid="A44">45</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Puig</surname>
<given-names>Susana</given-names>
</name>
<xref ref-type="aff" rid="A45">46</xref>
<xref ref-type="aff" rid="A46">47</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Puig-Butille</surname>
<given-names>Joan Anton</given-names>
</name>
<xref ref-type="aff" rid="A45">46</xref>
<xref ref-type="aff" rid="A46">47</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Qureshi</surname>
<given-names>Abrar A.</given-names>
</name>
<xref ref-type="aff" rid="A47">48</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Radford-Smith</surname>
<given-names>Graham L.</given-names>
</name>
<xref ref-type="aff" rid="A48">49</xref>
<xref ref-type="aff" rid="A49">50</xref>
<xref ref-type="aff" rid="A50">51</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>van der Stoep</surname>
<given-names>Nienke</given-names>
</name>
<xref ref-type="aff" rid="A51">52</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>van Doorn</surname>
<given-names>Remco</given-names>
</name>
<xref ref-type="aff" rid="A28">28</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Whiteman</surname>
<given-names>David C.</given-names>
</name>
<xref ref-type="aff" rid="A52">53</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Craig</surname>
<given-names>Jamie E.</given-names>
</name>
<xref ref-type="aff" rid="A53">54</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schadendorf</surname>
<given-names>Dirk</given-names>
</name>
<xref ref-type="aff" rid="A54">55</xref>
<xref ref-type="aff" rid="A55">56</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Simms</surname>
<given-names>Lisa A.</given-names>
</name>
<xref ref-type="aff" rid="A48">49</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Burdon</surname>
<given-names>Kathryn P.</given-names>
</name>
<xref ref-type="aff" rid="A56">57</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nyholt</surname>
<given-names>Dale R.</given-names>
</name>
<xref ref-type="aff" rid="A57">58</xref>
<xref ref-type="aff" rid="A41">42</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pooley</surname>
<given-names>Karen A.</given-names>
</name>
<xref ref-type="aff" rid="A10">10</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Orr</surname>
<given-names>Nick</given-names>
</name>
<xref ref-type="aff" rid="A58">59</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stratigos</surname>
<given-names>Alexander J.</given-names>
</name>
<xref ref-type="aff" rid="A14">14</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cust</surname>
<given-names>Anne E.</given-names>
</name>
<xref ref-type="aff" rid="A59">60</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ward</surname>
<given-names>Sarah V.</given-names>
</name>
<xref ref-type="aff" rid="A7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hayward</surname>
<given-names>Nicholas K.</given-names>
</name>
<xref ref-type="aff" rid="A60">61</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Han</surname>
<given-names>Jiali</given-names>
</name>
<xref ref-type="aff" rid="A61">62</xref>
<xref ref-type="aff" rid="A62">63</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schulze</surname>
<given-names>Hans-Joachim</given-names>
</name>
<xref ref-type="aff" rid="A63">64</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dunning</surname>
<given-names>Alison M.</given-names>
</name>
<xref ref-type="aff" rid="A11">11</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bishop</surname>
<given-names>Julia A. Newton</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Demenais</surname>
<given-names>Florence</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
<xref ref-type="aff" rid="A5">5</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Amos</surname>
<given-names>Christopher I.</given-names>
</name>
<xref ref-type="aff" rid="A64">65</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>MacGregor</surname>
<given-names>Stuart</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="author-notes" rid="FN2">67</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Iles</surname>
<given-names>Mark M.</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="author-notes" rid="FN2">67</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia</aff>
<aff id="A2">
<label>2</label>
Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK</aff>
<aff id="A3">
<label>3</label>
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA</aff>
<aff id="A4">
<label>4</label>
Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-946, Genetic Variation and Human Diseases Unit, Paris, France</aff>
<aff id="A5">
<label>5</label>
Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France</aff>
<aff id="A6">
<label>6</label>
Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</aff>
<aff id="A7">
<label>7</label>
Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Western Australia, Australia</aff>
<aff id="A8">
<label>8</label>
Departments of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China</aff>
<aff id="A9">
<label>9</label>
Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg Germany</aff>
<aff id="A10">
<label>10</label>
Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK</aff>
<aff id="A11">
<label>11</label>
Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK</aff>
<aff id="A12">
<label>12</label>
Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK</aff>
<aff id="A13">
<label>13</label>
Division of Breast Cancer Research, The Institute of Cancer Research, London, UK</aff>
<aff id="A14">
<label>14</label>
Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece</aff>
<aff id="A15">
<label>15</label>
Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway</aff>
<aff id="A16">
<label>16</label>
Department of Pathology, Haukeland University Hospital, Bergen, Norway</aff>
<aff id="A17">
<label>17</label>
Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway</aff>
<aff id="A18">
<label>18</label>
Assistance Publique–Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France</aff>
<aff id="A19">
<label>19</label>
Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel</aff>
<aff id="A20">
<label>20</label>
Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel</aff>
<aff id="A21">
<label>21</label>
Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy</aff>
<aff id="A22">
<label>22</label>
Laboratory of Genetics of Rare Cancers, Istituto di ricovero e cura a carattere scientifico Azienda Ospedaliera Universitaria (IRCCS AOU) San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy</aff>
<aff id="A23">
<label>23</label>
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA</aff>
<aff id="A24">
<label>24</label>
International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland</aff>
<aff id="A25">
<label>25</label>
Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA</aff>
<aff id="A26">
<label>26</label>
Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Institut National de la Santé et de la Recherche Médicale (INSERM U1153), Institut National de la Recherche Agronomique (INRA U1125), Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, F-93017 Bobigny, France</aff>
<aff id="A27">
<label>27</label>
Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA</aff>
<aff id="A28">
<label>28</label>
Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands</aff>
<aff id="A29">
<label>29</label>
Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden</aff>
<aff id="A30">
<label>30</label>
Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway</aff>
<aff id="A31">
<label>31</label>
Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia</aff>
<aff id="A32">
<label>32</label>
Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden</aff>
<aff id="A33">
<label>33</label>
Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA</aff>
<aff id="A34">
<label>34</label>
Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA</aff>
<aff id="A35">
<label>36</label>
Department of Medical Genetics, University of Glasgow, Glasgow, UK</aff>
<aff id="A36">
<label>37</label>
McGill University and Genome Quebec Innovation Centre, Montreal, Canada</aff>
<aff id="A37">
<label>38</label>
Department of Public Health, University of Glasgow, Glasgow UK</aff>
<aff id="A38">
<label>39</label>
Department of Medical Genetics, University of Glasgow, Glasgow, UK</aff>
<aff id="A39">
<label>40</label>
Centre for Cancer Research, University of Sydney at Westmead, Millennium Institute for Medical Research and Melanoma Institute Australia, Sydney, Australia</aff>
<aff id="A40">
<label>41</label>
Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway</aff>
<aff id="A41">
<label>42</label>
Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia</aff>
<aff id="A42">
<label>43</label>
Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia</aff>
<aff id="A43">
<label>44</label>
Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund; Sweden</aff>
<aff id="A44">
<label>45</label>
Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden</aff>
<aff id="A45">
<label>46</label>
Melanoma Unit, Dermatology Department & Biochemistry and Molecular Genetics Departments, Hospital Clinic, Institut de Investigacó Biomèdica August Pi Suñe, Universitat de Barcelona, Barcelona, Spain</aff>
<aff id="A46">
<label>47</label>
Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain</aff>
<aff id="A47">
<label>48</label>
Department of Dermatology, The Warren Alpert Medical School of Brown University, Rhode Island, USA</aff>
<aff id="A48">
<label>49</label>
Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia</aff>
<aff id="A49">
<label>50</label>
Department of Gastroenterology and Hepatology, Royal Brisbane & Women's Hospital, Brisbane, Australia</aff>
<aff id="A50">
<label>51</label>
University of Queensland School of Medicine, Herston Campus, Brisbane, Australia</aff>
<aff id="A51">
<label>52</label>
Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands</aff>
<aff id="A52">
<label>53</label>
Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia</aff>
<aff id="A53">
<label>54</label>
Department of Ophthalmology, Flinders University, Adelaide, Australia</aff>
<aff id="A54">
<label>55</label>
Department of Dermatology, University Hospital Essen, Essen, Germany</aff>
<aff id="A55">
<label>56</label>
German Consortium Translational Cancer Research (DKTK), Heidelberg, Germany</aff>
<aff id="A56">
<label>57</label>
Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia</aff>
<aff id="A57">
<label>58</label>
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia</aff>
<aff id="A58">
<label>59</label>
Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK</aff>
<aff id="A59">
<label>60</label>
Cancer Epidemiology and Services Research, Sydney School of Public Health, The University of Sydney, Australia</aff>
<aff id="A60">
<label>61</label>
Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia</aff>
<aff id="A61">
<label>62</label>
Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA</aff>
<aff id="A62">
<label>63</label>
Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA</aff>
<aff id="A63">
<label>64</label>
Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin at the University of Münster, Münster, Germany</aff>
<aff id="A64">
<label>65</label>
Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA</aff>
<author-notes>
<fn id="FN1">
<label>35</label>
<p id="P1">A full list of members and affiliations appears in the
<xref ref-type="supplementary-material" rid="SD1">Supplementary Note</xref>
.</p>
</fn>
<fn id="FN2">
<label>67</label>
<p id="P2">These authors jointly supervised this work.</p>
</fn>
<corresp id="CR1">
<bold>Correspondence</bold>
Correspondence should be addressed to Matthew H. Law (
<email>matthew.law@qimrberghofer.edu.au</email>
) and Mark M. Iles (
<email>M.M.Iles@leeds.ac.uk</email>
)</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>23</day>
<month>7</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>03</day>
<month>8</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<month>9</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>3</month>
<year>2016</year>
</pub-date>
<volume>47</volume>
<issue>9</issue>
<fpage>987</fpage>
<lpage>995</lpage>
<pmc-comment>elocation-id from pubmed: 10.1038/ng.3373</pmc-comment>
<permissions>
<license xlink:href="http://www.nature.com/authors/editorial_policies/license.html#terms">
<license-p>Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
<ext-link ext-link-type="uri" xlink:href="http://www.nature.com/authors/editorial_policies/license.html#terms">http://www.nature.com/authors/editorial_policies/license.html#terms</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p id="P3">Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (
<italic>P</italic>
< 5×10
<sup>–8</sup>
), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology.</p>
</abstract>
</article-meta>
</front>
<body>
<p id="P4">Cutaneous malignant melanoma (CMM) primarily occurs in fair-skinned individuals; the major host risk factors for CMM include pigmentation phenotypes
<sup>
<xref rid="R1" ref-type="bibr">1</xref>
-
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
, the number of melanocytic nevi
<sup>
<xref rid="R5" ref-type="bibr">5</xref>
,
<xref rid="R6" ref-type="bibr">6</xref>
</sup>
and a family history of melanoma
<sup>
<xref rid="R7" ref-type="bibr">7</xref>
</sup>
.</p>
<p id="P5">Six population-based genome-wide association studies (GWAS) of CMM have been published
<sup>
<xref rid="R8" ref-type="bibr">8</xref>
-
<xref rid="R13" ref-type="bibr">13</xref>
</sup>
identifying 12 regions that reach genome-wide significance. Some of these regions were already established melanoma risk loci, for example through candidate gene studies
<sup>
<xref rid="R14" ref-type="bibr">14</xref>
</sup>
(for review see
<sup>
<xref rid="R15" ref-type="bibr">15</xref>
</sup>
). A 13
<sup>th</sup>
region in 1q42.12, tagged by rs3219090 in
<italic>PARP1</italic>
, that was borderline in the initial publication (
<italic>P</italic>
= 9.3 × 10
<sup>–8</sup>
)
<sup>
<xref rid="R12" ref-type="bibr">12</xref>
</sup>
was confirmed as genome-wide significant by a recent study (
<italic>P</italic>
= 1.03 × 10
<sup>–8</sup>
)
<sup>
<xref rid="R16" ref-type="bibr">16</xref>
</sup>
. As might be expected for common variants influencing CMM risk many of these loci contain genes that are implicated in one of the two well-established heritable risk phenotypes for melanoma, pigmentation (
<italic>SLC45A2, TYR, MC1R</italic>
and
<italic>ASIP</italic>
) and nevus count (
<italic>CDKN2A/MTAP</italic>
,
<italic>PLA2G6</italic>
and
<italic>TERT</italic>
) (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 1</xref>
)
<sup>
<xref rid="R17" ref-type="bibr">17</xref>
</sup>
. The presence of DNA repair genes such as
<italic>PARP1</italic>
and
<italic>ATM</italic>
at two loci suggests a role for DNA maintenance pathways, leaving four loci where the functional mechanism is less clear (
<italic>ARNT/SETDB1</italic>
,
<italic>CASP8</italic>
,
<italic>FTO</italic>
and
<italic>MX2</italic>
).</p>
<p id="P6">Of particular interest is
<italic>TERT</italic>
, which is involved in telomere maintenance; SNPs in this region have been associated with a variety of cancers
<sup>
<xref rid="R11" ref-type="bibr">11</xref>
,
<xref rid="R18" ref-type="bibr">18</xref>
-
<xref rid="R22" ref-type="bibr">22</xref>
</sup>
. Further,
<italic>ATM</italic>
and
<italic>PARP1</italic>
's DNA repair functions extend to telomere maintenance and response to telomere damage
<sup>
<xref rid="R23" ref-type="bibr">23</xref>
,
<xref rid="R24" ref-type="bibr">24</xref>
</sup>
. Longer telomeres have been associated with higher nevus counts and it has been proposed that longer telomeres delay the onset of cell senescence, allowing further time for mutations leading to malignancy to occur
<sup>
<xref rid="R20" ref-type="bibr">20</xref>
,
<xref rid="R25" ref-type="bibr">25</xref>
</sup>
. There is evidence that longer telomeres increase melanoma risk
<sup>
<xref rid="R20" ref-type="bibr">20</xref>
,
<xref rid="R26" ref-type="bibr">26</xref>
,
<xref rid="R27" ref-type="bibr">27</xref>
</sup>
and that other telomere-related genes are likely involved in the etiology of melanoma, but none of these loci has yet reached genome-wide significance (or even
<italic>P</italic>
< 10
<sup>–6</sup>
)
<sup>
<xref rid="R28" ref-type="bibr">28</xref>
</sup>
.</p>
<p id="P7">In addition, two independent SNPs at 11q13.3, near
<italic>CCND1</italic>
, and 15q13.1, adjacent to the pigmentation gene
<italic>OCA2</italic>
, have been associated previously with melanoma, but did not meet the strict requirements for genome-wide significance, either not reaching
<italic>P</italic>
= 5 × 10
<sup>–8</sup>
in the initial report, or not replicating in additional studies
<sup>
<xref rid="R10" ref-type="bibr">10</xref>
,
<xref rid="R11" ref-type="bibr">11</xref>
,
<xref rid="R29" ref-type="bibr">29</xref>
</sup>
. This meta-analysis has resolved the status of these two loci, as well as identified novel melanoma susceptibility loci.</p>
<sec id="S1">
<title>Results and Discussion</title>
<p id="P8">We conducted a two-stage genome-wide meta-analysis. Stage one consisted of 11 GWAS totaling 12,874 cases and 23,203 controls from Europe, Australia and the USA; this includes all six published CMM GWAS and five unpublished ones (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 2</xref>
). In Stage two we genotyped 3,116 CMM cases and 3,206 controls from three additional datasets (consisting of 1,692 cases and 1,592 controls from Cambridge, UK, 639 cases and 823 controls from Breakthrough Generations, UK, and 785 cases and 791 controls from Athens, Greece; Online Methods) for the most significant SNP from each region reaching
<italic>P</italic>
< 10
<sup>–6</sup>
in Stage one and included these results in an Overall meta-analysis of both stages, totaling 15,990 melanoma cases and 26,409 controls. Details of these studies can be found in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Note</xref>
. Given that the previous single-largest melanoma GWAS was of 2,804 cases and 7,618 controls
<sup>
<xref rid="R11" ref-type="bibr">11</xref>
</sup>
, this meta-analysis represents a fourfold increase in sample size compared to previous efforts to identify the genetic determinants of melanoma risk. Unless otherwise indicated we report the
<italic>P</italic>
-values from the Overall meta-analysis combining the two stages (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
). Forest plots of the individual GWAS study results can be found in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figure 1</xref>
.</p>
<p id="P9">All Stage one studies underwent similar quality control (QC) procedures, were imputed using the same reference panel and the results analyzed in the same way, with the exception of the Harvard and MD Anderson Cancer Center (MDACC) studies (see Online Methods). A fixed effects (
<italic>P
<sub>fixed</sub>
</italic>
) or random effects (
<italic>P
<sub>random</sub>
</italic>
) meta-analysis was conducted as appropriate depending on between-study heterogeneity. 9,470,333 imputed variants passed QC in at least two studies, of which 3,253 reached
<italic>P
<sub>fixed</sub>
</italic>
< 1 × 10
<sup>–6</sup>
and 2,543 reached
<italic>P
<sub>fixed</sub>
</italic>
< 5 × 10
<sup>–8</sup>
. For reference we provide a list of SNPs that reached a
<italic>P
<sub>fixed</sub>
</italic>
, or
<italic>P
<sub>random</sub>
</italic>
if I
<sup>2</sup>
> 31%, value < 1 × 10
<sup>–7</sup>
(
<xref ref-type="supplementary-material" rid="SD2">Supplementary Table 4</xref>
). The Stage one meta-analysis genome-wide inflation value (λ) was 1.032, and as λ increases with sample size we also adjusted the λ to a population of 1,000 cases and 1,000 controls
<sup>
<xref rid="R30" ref-type="bibr">30</xref>
</sup>
. The resulting λ
<sub>1000</sub>
of 1.002 suggested minimal inflation. Quantile-quantile (QQ) plots for the Stage one meta-analysis and individual GWAS studies can be found in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figures 2 and 3</xref>
. To further confirm that our results were not influenced by inflation, the Stage one meta-analysis was repeated correcting for individual studies’ λ;
<italic>P</italic>
-values were essentially unchanged (Online Methods,
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
).</p>
<p id="P10">All 13 previously-reported genome-wide significant loci (most first identified in one of the studies included here) reached
<italic>P</italic>
< 5 × 10
<sup>–8</sup>
in Stage one (
<xref ref-type="fig" rid="F1">Figure 1</xref>
,
<xref ref-type="supplementary-material" rid="SD2">Supplementary Table 4</xref>
). In addition to confirming the two previously-reported sub-genome-wide significant loci at 11q13.3 (rs498136, 89 kb from
<italic>CCND1</italic>
) and 15q13.1 (rs4778138 in
<italic>OCA2</italic>
) we found three novel loci reaching genome-wide significance at 6p22.3, 7p21.1, and 9q31.2 (
<xref ref-type="table" rid="T1">Table 1</xref>
;
<xref ref-type="fig" rid="F2">Figure 2</xref>
). SNPs in another 11 regions reached
<italic>P</italic>
< 10
<sup>–6</sup>
(
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
); notably, three were close to known telomere-related genes (rs2995264 is in
<italic>OBFC1</italic>
<sup>
<xref rid="R31" ref-type="bibr">31</xref>
</sup>
in 10q24.33, rs11779437 is 1.1 Mb from
<italic>TERF1
<sup>
<xref rid="R32" ref-type="bibr">32</xref>
</sup>
</italic>
in 8q13.3, and rs4731207 is 66 kb from
<italic>POT1</italic>
in 7q31.33, in which loss-of-function variants occur in some melanoma families
<sup>
<xref rid="R33" ref-type="bibr">33</xref>
,
<xref rid="R34" ref-type="bibr">34</xref>
</sup>
). Given the importance of telomeres in melanoma we additionally genotyped two SNPs that did not quite reach our
<italic>P</italic>
< 10
<sup>–6</sup>
threshold but are close to telomere-related genes
<sup>
<xref rid="R35" ref-type="bibr">35</xref>
</sup>
: rs12696304 in 3q26.2 (
<italic>P</italic>
<sub>fixed</sub>
= 1.6 × 10
<sup>–5</sup>
) is 1.1 kb from
<italic>TERC</italic>
and rs75691080 in 20q13.33 (
<italic>P</italic>
<sub>fixed</sub>
= 1.0 × 10
<sup>–6</sup>
) is 19.4 kb from
<italic>RTEL1</italic>
. In total 18 SNPs were carried through to Stage two (Online methods).</p>
<p id="P11">Including the Stage two results in the Overall meta-analysis led to two new genome-wide significant regions, 2p22.2 and 10q24.33 (
<xref ref-type="fig" rid="F2">Figure 2</xref>
;
<xref ref-type="table" rid="T1">Table 1</xref>
,
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
). The Stage two data also serve the purpose of independently confirming with genotype data the meta-analysis results from imputed SNPs. Five SNPs, rs4778138 (
<italic>OCA2</italic>
/15q13.1
<italic>),</italic>
rs498136 (
<italic>CCND1</italic>
/11q13.3
<italic>),</italic>
and the novel rs10739221 (9q31.2), rs6750047 (2p22.2) and rs2995264 (10q24.33) all reached
<italic>P</italic>
< 0.05 in the genotyped Stage two samples. We have estimated the power to reach
<italic>P</italic>
< 0.05 in the Stage two samples for all SNPs that reached genome-wide significance in the Stage one meta-analysis (Online Methods,
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 5</xref>
). rs6914598 (6p22.3) was only genotyped in the Athens sample and thus had a power of only 0.35. Of the remaining four SNPs that were genome-wide significant in Stage one, while the 7p21.1 SNP rs1636744 was well powered ( > 90%), the probability that all four of these well-powered SNPs would reach
<italic>P</italic>
< 0.05 in the analysis of Stage two data was only (0.916 × 0.736 × 0.787 × 0.955) = 0.51, so it is not surprising that one was not significant. The SNPs in 7p21.1 (rs1636744) and 6p22.3 (rs6914598) did not reach nominal significance in Stage two, but for both SNPs the confidence intervals for the effect estimates overlapped those from the Stage one meta-analysis.</p>
<p id="P12">In terms of heritability the 13 loci that were genome-wide significant before this meta-analysis explained 16.9% of the familial relative risk (FRR) for CMM, with
<italic>MC1R</italic>
explaining 5.3% alone (Online Methods). Including the seven loci confirmed or reported here (2p22.2, 6p22.3, 7p21.1, 9q31.2, 10q24.33, 11q13.3, 15q13.1), an additional 2.3% of FRR is explained. In total, all 20 loci explain 19.2% of the FRR for CMM; this is a conservative estimate given the assumption of a single SNP per locus.</p>
<p id="P13">We tested all new and known CMM risk loci for association with nevus count or pigmentation (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 1</xref>
). Aside from the known association between
<italic>OCA2</italic>
and pigmentation, none of the newly-identified loci were associated (
<italic>P</italic>
> 0.05). Following confirmation of the loci in the Stage two analysis, we performed conditional analysis on the Stage one meta-analysis results to determine whether there were additional association signals within 1 Mb either side of the top SNP at each locus using the Genome-wide Complex Trait Analysis (GCTA) software
<sup>
<xref rid="R36" ref-type="bibr">36</xref>
</sup>
(Online Methods;
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 6</xref>
). This indicated that while there are additional SNPs associated with CMM at each locus, for all but chromosome 7 and 11 the additional signals were not strongly associated with melanoma (
<italic>P</italic>
< 1 × 10
<sup>–7</sup>
; for more detail see
<xref ref-type="supplementary-material" rid="SD1">Supplementary Note and Supplementary Figures 4 and 5</xref>
). We then conducted a comprehensive bioinformatic assessment of the top SNP from each of the seven new genome-wide significant loci using a range of annotation tools, databases of functional and eQTL results and previously-published GWAS results (see Online Methods,
<xref ref-type="supplementary-material" rid="SD1">Supplementary Tables 7</xref>
<xref ref-type="supplementary-material" rid="SD3">9</xref>
). We applied the same analyses to each locus but, to limit repetition, where nothing was found for a given resource (e.g. NHGRI GWAS catalog) we do not explicitly report this.</p>
<sec id="S2">
<title>2p22.2</title>
<p id="P14">While rs6750047 in 2p22.2 was not genome-wide significant in the Stage one meta-analysis it reached genome-wide significance (
<italic>P
<sub>fixed</sub>
</italic>
= 7.0 × 10
<sup>–9</sup>
, OR = 1.10, I
<sup>2</sup>
= 0.00;
<xref ref-type="table" rid="T1">Table 1</xref>
,
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
) in the Stage two and Overall meta-analysis. The association signals for 2p22.2 (
<xref ref-type="fig" rid="F2">Figure 2</xref>
) span the 3' UTR of
<italic>RMDN2</italic>
(also known as
<italic>FAM82A1</italic>
) and the entirety of the
<italic>CYP1B1</italic>
gene, and as such there is a wealth of bioinformatic annotation for SNPs associated with CMM risk. Considering the 26 SNPs with
<italic>P</italic>
-values within two orders of magnitude of rs6750047 in 2p22.2 (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Tables 7</xref>
<xref ref-type="supplementary-material" rid="SD3">9</xref>
), HaploReg
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
</sup>
reports a significant enrichment of strong enhancers in epidermal keratinocytes (4 observed, 0.6 expected,
<italic>P =</italic>
0.003). The paired rs162329 and rs162330 (LD r
<sup>2</sup>
=1.0, 98 bp apart;
<italic>P
<sub>fixed</sub>
</italic>
= 3.91 ×10
<sup>–6</sup>
, I
<sup>2</sup>
= 11.23) lie approximately 10 kb upstream from the
<italic>CYP1B1</italic>
transcription start site in a potential enhancer in keratinocytes and other cell types
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
-
<xref rid="R40" ref-type="bibr">40</xref>
</sup>
. These two SNPs are eQTLs for
<italic>CYP1B1</italic>
in three independent liver sample sets
<sup>
<xref rid="R41" ref-type="bibr">41</xref>
,
<xref rid="R42" ref-type="bibr">42</xref>
</sup>
. In addition several SNPs, including the peak SNP for 2p22.2, rs6750047, are strong
<italic>CYP1B1</italic>
eQTLs in LCLs in the Multiple Tissue Human Expression Resource
<sup>
<xref rid="R43" ref-type="bibr">43</xref>
</sup>
(MuTHER;
<italic>P</italic>
< 5 × 10
<sup>–5</sup>
). It is worth noting the overlap between the liver and lymphoblastoid cell line (LCL) eQTLs is incomplete; rs162330 and rs162331 are only weak eQTLs in MuTHER data (
<italic>P</italic>
~ 0.01). In terms of functional annotation the most promising SNP near rs6750047 is rs1374191 (
<italic>P
<sub>fixed</sub>
</italic>
= 5.4 × 10
<sup>–5</sup>
, OR = 1.07, I
<sup>2</sup>
= 0.00); in addition to being a
<italic>CYP1B1</italic>
eQTL in LCLs (MuTHER P = 6.9 × 10
<sup>–8</sup>
); this SNP is positioned in a strong enhancer region in multiple cell types including melanocytes and keratinocytes
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
-
<xref rid="R40" ref-type="bibr">40</xref>
</sup>
. In summary, SNPs in 2p22.2 associated with melanoma lie in putative melanocyte and keratinocyte enhancers and are also cross-tissue eQTLs for
<italic>CYP1B1</italic>
.</p>
<p id="P15">
<italic>CYP1B1</italic>
metabolizes endogenous hormones, playing a role in hormone associated cancers including breast and prostate (reviewed in
<sup>
<xref rid="R44" ref-type="bibr">44</xref>
</sup>
).
<italic>CYP1B1</italic>
also metabolizes exogenous chemicals, resulting in pro-cancer (e.g. polycyclic aromatic hydrocarbons) and anti-cancer (e.g. tamoxifen) outcomes
<sup>
<xref rid="R44" ref-type="bibr">44</xref>
</sup>
. The former is of interest as
<italic>CYP1B1</italic>
is regulated by
<italic>ARNT</italic>
, a gene at the melanoma-associated 1q21 locus
<sup>
<xref rid="R12" ref-type="bibr">12</xref>
</sup>
. The
<italic>CYP1B1</italic>
promotor is methylated in melanoma cell lines and tumor samples
<sup>
<xref rid="R45" ref-type="bibr">45</xref>
</sup>
. CYP1B1 missense protein variants have been associated with cancers including squamous cell carcinoma and hormone associated cancers
<sup>
<xref rid="R44" ref-type="bibr">44</xref>
,
<xref rid="R46" ref-type="bibr">46</xref>
</sup>
. Of these only rs1800440 (p.Asn453Ser) is moderately associated with melanoma (
<italic>P
<sub>fixed</sub>
</italic>
= 1.83 × 10
<sup>–5</sup>
, OR = 0.90, I
<sup>2</sup>
= 0.00), and it was included in the bioinformatic annotation (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Tables 7</xref>
<xref ref-type="supplementary-material" rid="SD3">9</xref>
). rs1800440 is not in LD with the CMM risk meta-analysis peak SNP rs6750047/2p22.2 (LD r
<sup>2</sup>
= 0.04) and adjusting for rs6750047 only slightly reduces its association with CMM (
<italic>P</italic>
= 4.3 × 10
<sup>–4</sup>
, Online Methods). Truncating mutations in
<italic>CYP1B1</italic>
are implicated in primary congenital glaucoma
<sup>
<xref rid="R47" ref-type="bibr">47</xref>
</sup>
and since glaucoma cases are used as controls in the contributing Western Australian Melanoma Health Study (WAMHS) melanoma GWAS, we considered the impact of excluding glaucoma cases; the SNP remains genome-wide significantly associated with CMM even after such exclusions (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Note, Supplementary Table 10</xref>
). While the association with melanoma in the WAMHS set is stronger without glaucoma cases (beta 0.05 vs. 0.19) both betas are within the range observed for other melanoma datasets and no heterogeneity (I
<sup>2</sup>
= 0.00) is observed with or without the glaucoma samples.</p>
</sec>
<sec id="S3">
<title>6p22.3</title>
<p id="P16">rs6914598 (
<italic>P
<sub>fixed</sub>
</italic>
= 3.5 × 10
<sup>–8</sup>
, OR = 1.11, I
<sup>2</sup>
= 0.00) lies in 6p22.3, in intron 12 of
<italic>CDKAL1,</italic>
a gene that modulates the expression of a range of genes including proinsulin via tRNA methylthiolation
<sup>
<xref rid="R48" ref-type="bibr">48</xref>
,
<xref rid="R49" ref-type="bibr">49</xref>
</sup>
. Bioinformatic assessment of the 35 SNPs with
<italic>P</italic>
-values within two orders of magnitude of the 6p22.3 peak rs6914598 by HaploReg
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
</sup>
indicates that the most functionally interesting SNP is rs7776158 (Stage one
<italic>P
<sub>fixed</sub>
</italic>
= 3.8 × 10
<sup>–8</sup>
, I
<sup>2</sup>
= 0, in complete LD with rs6914598, r
<sup>2</sup>
= 1.0), which lies in a predicted melanocyte enhancer that binds IRF4
<sup>
<xref rid="R38" ref-type="bibr">38</xref>
,
<xref rid="R39" ref-type="bibr">39</xref>
</sup>
. IRF4 binding is of interest given the existence of a functional SNP rs12203592 in the
<italic>IRF4</italic>
gene
<sup>
<xref rid="R50" ref-type="bibr">50</xref>
</sup>
, associated with nevus count, skin pigmentation and tanning response
<sup>
<xref rid="R51" ref-type="bibr">51</xref>
-
<xref rid="R54" ref-type="bibr">54</xref>
</sup>
.</p>
</sec>
<sec id="S4">
<title>7p21.1</title>
<p id="P17">rs1636744 (
<italic>P
<sub>fixed</sub>
</italic>
= 7.1 × 10
<sup>–9</sup>
, OR = 1.10, I
<sup>2</sup>
= 0.00;
<xref ref-type="fig" rid="F2">Figure 2</xref>
) is in an intergenic region of 7p21.1 and lies 63 kb from
<italic>AGR3</italic>
. rs1636744 is an eQTL for
<italic>AGR3</italic>
in lung tissue (Genotype-Tissue Expression (GTEx) project
<italic>P</italic>
= 1.6 × 10
<sup>–6</sup>
)
<sup>
<xref rid="R55" ref-type="bibr">55</xref>
,
<xref rid="R56" ref-type="bibr">56</xref>
</sup>
.
<italic>AGR3</italic>
is a member of the protein disulphide isomerase family, which generate and modify disulphide bonds during protein folding
<sup>
<xref rid="R57" ref-type="bibr">57</xref>
</sup>
.
<italic>AGR3</italic>
expression has been associated with breast cancer risk
<sup>
<xref rid="R58" ref-type="bibr">58</xref>
</sup>
and poor survival in ovarian cancer
<sup>
<xref rid="R59" ref-type="bibr">59</xref>
</sup>
. GTEx confirms that
<italic>AGR3</italic>
is expressed in human skin samples. The region containing rs1636744 is not conserved in primates (UCSC genome browser
<sup>
<xref rid="R60" ref-type="bibr">60</xref>
</sup>
), and RegulomeDB
<sup>
<xref rid="R40" ref-type="bibr">40</xref>
</sup>
indicates there is little functional activity at this SNP. More promising are rs847377 and rs847404 which, in addition to being both
<italic>AGR3</italic>
eQTLs in lung tissue
<sup>
<xref rid="R55" ref-type="bibr">55</xref>
</sup>
and associated with CMM risk (Stage one
<italic>P
<sub>fixed</sub>
</italic>
= 3.89 × 10
<sup>–8</sup>
and 1.72 × 10
<sup>–7</sup>
), are in putative weak enhancers in a range of cells including melanocytes and keratinocytes
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
-
<xref rid="R40" ref-type="bibr">40</xref>
</sup>
. Adjusting for rs1636744 renders rs847377 and rs847404 non-significant (
<italic>P</italic>
> 0.6) indicating that they are tagging a common signal. rs1636744, rs847377 and rs847404 are not eQTLs for
<italic>AGR3</italic>
in sun-exposed skin.</p>
</sec>
<sec id="S5">
<title>9q31.2</title>
<p id="P18">The melanoma-associated variants at 9q31.2, peaking at rs10739221 (Overall
<italic>P
<sub>fixed</sub>
</italic>
= 7.1 × 10
<sup>–11</sup>
; I
<sup>2</sup>
= 0.00;
<xref ref-type="fig" rid="F2">Figure 2</xref>
) are intergenic. The nearest genes are
<italic>TMEM38B, ZNF462</italic>
and the nucleotide excision repair gene
<italic>RAD23B</italic>
<sup>
<xref rid="R61" ref-type="bibr">61</xref>
</sup>
. While bioinformatic annotation did not reveal any putative functional SNPs, based on the importance of DNA repair in melanoma,
<italic>RAD23B</italic>
is of particular interest. rs10739221 is 635 Kb from the leukemia-associated
<italic>TAL2
<sup>
<xref rid="R62" ref-type="bibr">62</xref>
</sup>
</italic>
, and 1.2 Mb from
<italic>KLF4</italic>
, which regulates both telomerase activity
<sup>
<xref rid="R63" ref-type="bibr">63</xref>
</sup>
and the melanoma-associated
<italic>TERT</italic>
<sup>
<xref rid="R64" ref-type="bibr">64</xref>
</sup>
.</p>
</sec>
<sec id="S6">
<title>10q24.33</title>
<p id="P19">While not genome-wide significant in Stage one, rs2995264 in 10q24.33 is strongly associated with telomere length
<sup>
<xref rid="R28" ref-type="bibr">28</xref>
,
<xref rid="R35" ref-type="bibr">35</xref>
</sup>
and was genotyped in Stage two. rs2995264 was significantly associated with CMM in the Cambridge study (
<italic>P</italic>
= 0.046) and strong in the Breakthrough dataset (
<italic>P</italic>
= 8.0 × 10
<sup>–4</sup>
); in the Overall meta-analysis this SNP reached genome-wide significance (
<italic>P
<sub>fixed</sub>
</italic>
= 2.2 × 10
<sup>–9</sup>
; I
<sup>2</sup>
= 27.14). The melanoma association signal at 10q24.33 (
<xref ref-type="fig" rid="F2">Figure 2</xref>
) spans the
<italic>OBFC1</italic>
gene and the promotor of
<italic>SH3PXD2A.</italic>
Given the strong telomere length association at this locus the most promising candidate is
<italic>OBFC1,</italic>
a component of the telomere maintenance complex
<sup>
<xref rid="R31" ref-type="bibr">31</xref>
</sup>
.</p>
<p id="P20">HaploReg reports that SNPs within two orders of magnitude of rs2995264 in 10q24.33 are significantly more likely to fall in putative enhancers in keratinocytes than would be expected by chance (
<italic>P</italic>
< 0.001). Promising candidate functional SNPs include the conserved rs11594668 and rs11191827 which lie in putative melanocyte and keratinocyte enhancers, and bind transcription factors
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
-
<xref rid="R40" ref-type="bibr">40</xref>
</sup>
. The association observed at rs2995264/10q24.33 is independent of a recent report of a melanoma association at 10q25.1
<sup>
<xref rid="R65" ref-type="bibr">65</xref>
</sup>
. Our peak SNP for 10q24.33, rs2995264, and the 10q25.1 SNPs rs17119434, rs17119461, and rs17119490 reported in Teerlink et al., (2012)
<sup>
<xref rid="R65" ref-type="bibr">65</xref>
</sup>
are in linkage equilibrium (LD r
<sup>2</sup>
<0.01) and in turn these SNPs are not associated with CMM in our meta-analysis (
<italic>P</italic>
> 0.2).</p>
</sec>
<sec id="S7">
<title>11q13.3</title>
<p id="P21">The CMM-associated variants at 11q13.3 peak at rs498136 (Overall
<italic>P
<sub>fixed</sub>
</italic>
= 1.5 × 10
<sup>–12</sup>
, OR = 1.13, I
<sup>2</sup>
= 0.00;
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figure 6</xref>
) 5’ to the promotor of
<italic>CCND1</italic>
. In the initial report of
<italic>CCND1</italic>
<sup>
<xref rid="R11" ref-type="bibr">11</xref>
</sup>
rs11263498 was borderline in its association with melanoma (
<italic>P</italic>
= 3.2 × 10
<sup>–7</sup>
) and while supported (
<italic>P</italic>
= 0.017) by the two replication studies exhibited significant heterogeneity and did not reach genome-wide significance (overall
<italic>P
<sub>random</sub>
</italic>
= 4.6 × 10
<sup>–4</sup>
, I
<sup>2</sup>
= 45.00). The previously-reported rs11263498 and the meta-analysis peak of rs498136/11q13.3 are in strong linkage disequilibrium (LD) (r
<sup>2</sup>
= 0.95).</p>
<p id="P22">Bioinformatic assessment of the
<italic>CCND1</italic>
region indicated the peak SNP rs498136/11q13.3 is in a putative enhancer in keratinocytes in both ENCODE and Roadmap data
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
-
<xref rid="R40" ref-type="bibr">40</xref>
</sup>
. Considering other SNPs strongly associated with CMM, both the previously-reported
<sup>
<xref rid="R11" ref-type="bibr">11</xref>
</sup>
rs11263498 (Stage one
<italic>P
<sub>fixed</sub>
</italic>
= 1.8 × 10
<sup>–9</sup>
, OR = 1.12, I
<sup>2</sup>
= 0.00) and rs868089 (Stage one
<italic>P
<sub>fixed</sub>
</italic>
= 2.0 × 10
<sup>–9</sup>
, OR = 1.12, I
<sup>2</sup>
= 0.00) lie in putative melanocyte enhancers.</p>
<p id="P23">Somatic
<italic>CCND1</italic>
amplification in CMM tumors positively correlates with markers of reduced overall survival, including Breslow thickness and ulceration
<sup>
<xref rid="R66" ref-type="bibr">66</xref>
,
<xref rid="R67" ref-type="bibr">67</xref>
</sup>
. The
<italic>CCND1</italic>
association with breast cancer has been extensively fine-mapped, revealing three independent association signals
<sup>
<xref rid="R68" ref-type="bibr">68</xref>
</sup>
. rs554219 and rs75915166 tag the two strongest functional associations with breast cancer
<sup>
<xref rid="R68" ref-type="bibr">68</xref>
</sup>
but are not themselves associated with CMM risk (Stage one
<italic>P
<sub>fixed</sub>
</italic>
> 0.1, I
<italic>
<sup>2</sup>
</italic>
= 0.00). While the third signal in breast cancer was not functionally characterized
<sup>
<xref rid="R68" ref-type="bibr">68</xref>
</sup>
, its tag SNP rs494406 is modestly associated with CMM (Stage one
<italic>P
<sub>fixed</sub>
</italic>
> 0.0002, I
<italic>
<sup>2</sup>
</italic>
= 0.00, LD r
<sup>2</sup>
=0.47 with rs498136/11q13.3). rs494406 is no longer significant after adjustment by rs498136 (
<italic>P</italic>
= 0.53;
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 6</xref>
), suggesting that SNPs that are in LD in this region are associated with risk of both melanoma and breast cancer.</p>
</sec>
<sec id="S8">
<title>15q13.1</title>
<p id="P24">Both
<italic>OCA2</italic>
and nearby
<italic>HERC2</italic>
at the 15q13.1 locus have long been associated with pigmentation traits
<sup>
<xref rid="R51" ref-type="bibr">51</xref>
</sup>
. rs12913832 in
<italic>HERC2</italic>
, also known as rs11855019, is the major determinant of eye color in Europeans
<sup>
<xref rid="R69" ref-type="bibr">69</xref>
</sup>
, making this region a strong candidate for CMM risk. One of the studies contributing to this meta-analysis previously reported a genome-wide significant association between melanoma and rs1129038 and rs12913832 in
<italic>HERC2</italic>
(in strong LD
<sup>
<xref rid="R10" ref-type="bibr">10</xref>
</sup>
reported as r
<sup>2</sup>
= 0.985), but this was not supported (
<italic>P</italic>
> 0.05) by any of the three replication GWAS (final
<italic>P</italic>
= 2.5 × 10
<sup>–4</sup>
)
<sup>
<xref rid="R10" ref-type="bibr">10</xref>
</sup>
. Stratification might be an issue for this locus as eye color frequencies vary markedly across European populations. Indeed, in our meta-analysis, which includes all four of these GWAS, both rs1129038 and rs12913832 showed highly heterogeneous effects in the CMM risk meta-analysis (
<italic>P
<sub>random</sub>
</italic>
= 0.037 and 0.075 respectively, I
<sup>2</sup>
> 77.00).</p>
<p id="P25">Amos et al., (2011) found that rs4778138 in
<italic>OCA2</italic>
, which is only in weak LD with rs12913832 (r
<sup>2</sup>
= 0.12), exhibited a more consistent association across studies, albeit not genome-wide significantly. In our Overall meta-analysis we confirm rs4778138 in 15q13.1 is associated with CMM risk (
<italic>P
<sub>fixed</sub>
</italic>
= 2.2 × 10
<sup>–11</sup>
, OR = 0.84, I
<sup>2</sup>
= 0.00;
<xref ref-type="fig" rid="F2">Figure 2</xref>
). Following adjustment of the 15q13.1 signal by rs4778138 the effect size for the eye color SNP rs12913832 is reduced from beta = 0.12 to beta = 0.064. Conversely adjustment for rs12913832 reduces rs4778138's association with CMM (beta reduced from −0.178 to −0.114, corrected
<italic>P</italic>
= 1.6 × 10
<sup>–4</sup>
). rs12913832 is poorly imputed across studies, reaching INFO > 0.8 in only 6 studies, and we are unable to conclusively exclude a role for rs12913832 at this locus. HaploReg indicates rs4778138 is within a putative melanocyte enhancer in Roadmap epigenetic data
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
-
<xref rid="R40" ref-type="bibr">40</xref>
</sup>
. While it is not clear which gene(s) in 15q13.1 is/are influenced by melanoma-associated SNPs, the fact that rs4778138 is associated with eye colors intermediate to blue and brown
<sup>
<xref rid="R70" ref-type="bibr">70</xref>
</sup>
supports a role for
<italic>OCA2</italic>
.</p>
</sec>
</sec>
<sec id="S9">
<title>Evidence of additional melanoma susceptibility loci</title>
<p id="P26">A further nine loci were associated with CMM risk at multiple SNPs with
<italic>P</italic>
< 10
<sup>–6</sup>
in Stage one but did not reach
<italic>P</italic>
< 5 ×10
<sup>–8</sup>
in the Overall meta-analysis (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
). Given that genome-wide significance is based on a Bonferroni correction assuming 1,000,000 independent tests, we would expect only one locus to reach
<italic>P</italic>
< 10
<sup>–6</sup>
and the probability that as many as nine loci reach this threshold is 1.1 × 10
<sup>–6</sup>
(exact binomial probability), so it is highly likely that several of these are genuine.</p>
<p id="P27">Of the 16 regions that reached
<italic>P</italic>
< 10
<sup>–6</sup>
, three were near genes involved in telomere biology 7q31.33 (rs4731207 near
<italic>POT1</italic>
), 8q13.3 (rs11779437 near
<italic>TERF1),</italic>
and 10q24.33 (rs2995264 near
<italic>OBFC1</italic>
) (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
). Given the evidence for telomere biology in melanoma
<sup>
<xref rid="R20" ref-type="bibr">20</xref>
,
<xref rid="R25" ref-type="bibr">25</xref>
-
<xref rid="R28" ref-type="bibr">28</xref>
</sup>
and that previous genome-wide significant SNPs are near the telomere maintenance genes
<italic>TERT</italic>
,
<italic>PARP1</italic>
and A
<italic>TM,</italic>
we included two further biological candidates: rs12696304, 1.1 kb from
<italic>TERC</italic>
in 3q26.2, and rs75691080 in 20q13.33 near
<italic>RTEL1</italic>
. Of these five SNPs, rs2995264 (10q24.33/
<italic>OBFC1)</italic>
attained genome-wide significance in the overall analysis while rs12696304 (3q26.2/
<italic>TERC</italic>
) was significant in Stage two (
<italic>P</italic>
= 4.0 × 10
<sup>–3</sup>
), and reached
<italic>P</italic>
= 2.8 × 10
<sup>–7</sup>
in the Overall meta-analysis (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
). While falling short of genome-wide significance this is nonetheless suggestive of an association at this locus. Neither rs4731207 (66 kb from
<italic>POT1</italic>
in 7q31.33) nor rs75691080 (19.4 kb from
<italic>RTEL1</italic>
in 20q13.33) were significantly associated with melanoma risk in Stage two, but in neither case did the estimated effect differ significantly from Stage one. In addition rs75691080 (
<italic>RTEL1</italic>
/20q13.33) is marginally associated with nevus count (
<italic>P</italic>
= 0.058;
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 1</xref>
). Of the SNPs near telomere-related genes, rs11779437 in 8q13.3 was the most distant (1.1 Mb from
<italic>TERF1</italic>
) and was the only one to show a significantly different effect in Stage two (Overall
<italic>P
<sub>random</sub>
</italic>
= 0.013, OR = 0.93, I
<sup>2</sup>
= 42.06). This is most likely due to the initial signal being a false positive, but may be due to a lack of power.</p>
</sec>
<sec sec-type="conclusions" id="S10">
<title>Conclusion</title>
<p id="P28">This two-stage meta-analysis, representing a fourfold increase in sample size compared to the previous largest single melanoma GWAS, has confirmed all thirteen previously reported loci, as well as resolving two likely associations at
<italic>CCND1</italic>
and
<italic>HERC2</italic>
/
<italic>OCA2</italic>
. The
<italic>CCND1</italic>
association with melanoma only partially overlaps the signal observed for breast cancer
<sup>
<xref rid="R68" ref-type="bibr">68</xref>
</sup>
. The
<italic>HERC2</italic>
/
<italic>OCA2</italic>
association is with rs4778138/15q13.1, which may be a subtle modifier of eye color
<sup>
<xref rid="R70" ref-type="bibr">70</xref>
</sup>
, but we cannot rule out that the association at this locus is influenced by the canonical blue/brown eye color variant rs12913832.</p>
<p id="P29">Our Stage one meta-analysis of over 12,000 melanoma cases identified three novel risk regions, with only rs10739221 formally significant (
<italic>P</italic>
< 0.05) in Stage two (
<xref ref-type="table" rid="T1">Table 1</xref>
). Two further loci (2p22.2 and 10q24.33) reached genome-wide significance with the addition of the Stage two data (
<xref ref-type="fig" rid="F2">Figure 2</xref>
;
<xref ref-type="table" rid="T1">Table 1</xref>
,
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
). In total our Overall meta-analysis identified 20 genome-wide significant loci; 13 previously replicated, two previously-reported but first confirmed here and five that are novel to this report. The new loci identified in this meta-analysis explain an additional 2.3% of the familial relative risk for CMM. Overall, 19.2% of the FRR is explained by all 20 genome-wide significant loci combined.</p>
<p id="P30">Except for the association at 9q31.2, the reported loci contain SNPs that are both strongly associated with melanoma and fall within putative regulatory elements in keratinocyte or melanocyte cells, with the nearby nucleotide excision repair gene
<italic>RAD23B</italic>
at 9q31.2 a promising candidate. eQTL datasets suggest that melanoma-associated SNPs at 7p21 regulate the expression of
<italic>AGR3</italic>
albeit in lung tissue and not sun-exposed skin.
<italic>AGR3</italic>
expression has been implicated in breast and ovarian cancer outcome. SNPs in 2p22.3 are associated with the expression of
<italic>CYP1B1</italic>
. Although this gene is better known for its role in hormone-associated cancers it may influence melanoma risk through metabolism of exogenous compounds, a process regulated by
<italic>ARNT</italic>
at the 1q21 melanoma-associated locus.</p>
<p id="P31">We have used the power of this large collection of CMM cases and controls to identify five novel loci, none of which are significantly associated with classical CMM risk factors and thus highlight novel disease pathways. Interestingly, we now have genome-wide significant evidence for association between CMM risk and a SNP in the telomere-related gene
<italic>OBFC1</italic>
in 10q24.33, in addition to the established telomere-related associations at the
<italic>TERT</italic>
/
<italic>CLPTM1L, PARP1</italic>
and
<italic>ATM</italic>
loci. We also have support, albeit not genome-wide significant, for
<italic>TERC</italic>
, the most significant predictor of leukocyte telomere length in a recent study
<sup>
<xref rid="R35" ref-type="bibr">35</xref>
</sup>
. Of the 20 loci that now reach genome-wide significance for CMM risk, five are in regions known to be related to pigmentation, three in nevus-related regions and four in regions related to telomere maintenance. This gives further evidence that the telomere pathway, with its effect on the growth and senescence of cells, may be important in understanding the development of melanoma.</p>
</sec>
<sec sec-type="methods" id="S11" specific-use="web-only">
<title>Online Methods</title>
<sec id="S12">
<title>Stage one array genotyping</title>
<p id="P32">The samples were genotyped on a variety of commercial arrays, detailed in the
<xref ref-type="supplementary-material" rid="SD1">Supplementary Note</xref>
. All samples were collected with informed consent and with ethical approval (for details see
<xref ref-type="supplementary-material" rid="SD1">Supplementary Note</xref>
).</p>
</sec>
<sec id="S13">
<title>Stage one genome-wide imputation</title>
<p id="P33">Imputation was conducted genome-wide, separately on each study, following a shared protocol. SNPs with MAF < 0.03 (MAF < 0.01 in AMFS, Q-MEGA_omni, Q-MEGA_610k, WAMHS, and HEIDELBERG), control Hardy-Weinberg equilibrium (HWE)
<italic>P</italic>
< 10
<sup>–4</sup>
or missingness > 0.03 were excluded, as were any individuals with call rates <0.97, identified as first degree relatives and/or European outliers by principal components analysis using EIGENSTRAT
<sup>
<xref rid="R71" ref-type="bibr">71</xref>
</sup>
. In addition, in each study where genotyping was conducted on more than one chip, any SNP not present on all chips was removed prior to imputation to avoid bias. IMPUTEv2.2
<sup>
<xref rid="R72" ref-type="bibr">72</xref>
,
<xref rid="R73" ref-type="bibr">73</xref>
</sup>
was used for imputation for all studies but Harvard, which used MaCH
<sup>
<xref rid="R74" ref-type="bibr">74</xref>
,
<xref rid="R75" ref-type="bibr">75</xref>
</sup>
and MDACC which used MaCH and minimac
<sup>
<xref rid="R76" ref-type="bibr">76</xref>
</sup>
. For GenoMEL, CIDRUK and MDACC samples the 1000 Genomes Feb 2012 data (build 37) was used as the reference panel, while for the AMFS, Q-MEGA_omni, Q-MEGA_610k, WAMHS, MELARISK and HEIDELBERG datasets the 1000 Genomes April 2012 data (build 37) was the reference for imputation
<sup>
<xref rid="R77" ref-type="bibr">77</xref>
</sup>
. In both cases any SNP with MAF < 0.001 in European (CEU) samples was dropped from the reference panel. The HARVARD data were imputed using MACH with the NCBI build 35 of phase II HapMap CEU data as the reference panel and only SNPs with imputation quality R
<sup>2</sup>
> 0.95 were included in the final analysis.</p>
</sec>
<sec id="S14">
<title>Stage one genome-wide association analysis</title>
<p id="P34">Imputed genotypes were analyzed as expected genotype counts based on posterior probabilities (gene dosage) using SNPTEST2
<sup>
<xref rid="R78" ref-type="bibr">78</xref>
</sup>
assuming an additive model with geographic region as a covariate (SNPTEST v2.5 for chromosome X). MDACC imputed genotypes were analyzed using best guess genotypes from MACH and PLINK was used for logistic association test adjusting by the top two principle components. Only those with an imputation quality score (INFO/MaCH R
<sup>2</sup>
) score >0.8 were analyzed. Potential stratification was dealt with in the GenoMEL samples by including geographic region as a covariate (inclusion of principal components as covariates was previously found to make little difference
<sup>
<xref rid="R9" ref-type="bibr">9</xref>
</sup>
) and elsewhere by including principal components as covariates
<sup>
<xref rid="R71" ref-type="bibr">71</xref>
</sup>
.</p>
</sec>
<sec id="S15">
<title>Meta-analysis</title>
<p id="P35">Heterogeneity of per-SNP effect sizes in studies contributing to the Stage one, Stage two and the Overall meta-analyses was assessed using the I
<sup>2</sup>
metric
<sup>
<xref rid="R79" ref-type="bibr">79</xref>
</sup>
. I
<sup>2</sup>
is commonly defined as the proportion of overall variance attributable to between-study variance, with values below 31% suggesting no more than mild heterogeneity. Where I
<sup>2</sup>
was less than 31% a fixed effects model was used, with fixed effects
<italic>P</italic>
-values indicated by
<italic>P</italic>
<sub>fixed</sub>
; otherwise random effects were applied (
<italic>P
<sub>random</sub>
</italic>
). The method of Dersimonian and Laird
<sup>
<xref rid="R80" ref-type="bibr">80</xref>
</sup>
was used to estimate the between-studies variance,
<inline-formula>
<mml:math display="inline" id="M1" overflow="scroll">
<mml:mrow>
<mml:msup>
<mml:mover accent="true">
<mml:mi>τ</mml:mi>
<mml:mo>^</mml:mo>
</mml:mover>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:math>
</inline-formula>
. An overall random effects estimate was then calculated using the weights
<inline-formula>
<mml:math display="inline" id="M2" overflow="scroll">
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>v</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mover accent="true">
<mml:mi>τ</mml:mi>
<mml:mo>^</mml:mo>
</mml:mover>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math>
</inline-formula>
where
<italic>v
<sub>i</sub>
</italic>
is the variance of the estimated effect.
<inline-formula>
<mml:math display="inline" id="M3" overflow="scroll">
<mml:mrow>
<mml:msup>
<mml:mover accent="true">
<mml:mi>τ</mml:mi>
<mml:mo>^</mml:mo>
</mml:mover>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math>
</inline-formula>
for the fixed effects analyses. We report those loci reaching significance at > one marker incorporating information from > one study. Results for rs186133190 in 2p15 were only available from four studies; all other SNPs reported here utilize data from at least eight studies (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
).</p>
<p id="P36">Per-study QQ plots of GWAS
<italic>P</italic>
-values are provided (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figure 3</xref>
) and for the Stage one meta-analysis (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figure 3A</xref>
). We also provide the Stage one QQ plot with previously reported regions removed (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figure 2B</xref>
). While there was minimal inflation remaining following PC/region of origin correction, to ensure residual genomic inflation was not biasing our results the meta-analysis was repeated using the genome-wide association meta-analysis software, GWAMA v2.1
<sup>
<xref rid="R81" ref-type="bibr">81</xref>
</sup>
. Included studies were corrected by inflating SNP variance estimates by their genomic inflation (λ). As expected, given the low level of residual inflation, corrected and uncorrected results were very similar. Genome-wide inflation factor (λ)-corrected
<italic>P-</italic>
values are provided in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
.</p>
</sec>
<sec id="S16">
<title>Stage two genotyping</title>
<p id="P37">A single SNP for each of the 16 novel region reaching
<italic>P</italic>
< 10
<sup>–6</sup>
in Stage one was subsequently genotyped in 3 additional melanoma case-control sets in Stage two (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
). Any region that only showed evidence for association with CMM at a single imputed SNP and in only one study was not followed up. Included in the Stage two genotyping were rs75691080 in 20q13.33 which, while not quite reaching
<italic>P</italic>
< 10
<sup>–6</sup>
, lies 20 kb from
<italic>RTEL1</italic>
; and rs12696304 in 3q26.2 which lies 1 kb from
<italic>TERC</italic>
. Both these genes are known to be telomere-related and have been associated with leukocyte telomere length
<sup>
<xref rid="R35" ref-type="bibr">35</xref>
</sup>
. The 16 novel regions included rs2290419 at 11q13.3 which is 450 kb away from our primary hit in the region of
<italic>CCND1</italic>
(rs498136,
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figure 5 and Supplementary Figure 6</xref>
) and is in linkage equilibrium with the genome-wide significant hit in this region (r
<sup>2</sup>
= 0.002) so may represent an independent effect.</p>
<p id="P38">The first Stage two dataset of 1,797 cases and 1,709 controls from two studies based in Cambridge, UK (see
<xref ref-type="supplementary-material" rid="SD1">Supplementary Note</xref>
for details of samples). These were genotyped using TaqMan® assays [Applied Biosystems]. 2 μl PCR reactions were performed in 384 well plates using 10 ng of DNA (dried), using 0.05 μl assay mix and 1 μl Universal Master Mix [Applied Biosystems] according to the manufacturer's instructions. End point reading of the genotypes was performed using an ABI 7900HT Real-time PCR system [Applied Biosystems].</p>
<p id="P39">The second was 711 cases and 890 controls from the Breakthrough Generations Study. These were genotyped in the same way as the Cambridge Stage two samples above.</p>
<p id="P40">The third was 800 cases and 800 controls from Athens, Greece. Genomic DNA was isolated from 200 μl peripheral blood using the QIAamp DNA blood mini kit [Qiagen]. DNA concentration was quantified in samples prior to genotyping by using Quant-iT dsDNA HS Assay kit [Invitrogen]. The concentration of the DNA was adjusted to 5 ng/μl. Selected SNPs were genotyped using the Sequenom iPLEX assay [Sequenom]. Allele detection in this assay was performed using matrix-assisted laser desorption/ionization –time-of-flight mass spectrometry
<sup>
<xref rid="R82" ref-type="bibr">82</xref>
</sup>
. Since genotyping was performed by Sequenom, specific reaction details are not available. As it is described by Gabriel et al.,
<sup>
<xref rid="R82" ref-type="bibr">82</xref>
</sup>
the assay consists of an initial locus-specific PCR reaction, followed by single base extension using mass-modified dideoxynucleotide terminators of an oligonucleotide primer which anneals immediately upstream of the polymorphic site of interest. Using MALDI-TOF mass spectrometry, the distinct mass of the extended primer identifies the SNP allele.</p>
<p id="P41">Genotyping of 18 SNPs was attempted in Stage two; the rs186133190/2p15. rs6750047/2p22.2, rs498136/11q13.3 and rs4731742/7q32.3 assays failed in one or more Stage two datasets (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
). After QC (excluding individuals missing >1 genotype call, SNPs missing in > 3% of samples, SNPs with HWE
<italic>P</italic>
< 5 × 10
<sup>–4</sup>
) there were 1,692 cases and 1,592 controls from Cambridge, 639 cases and 823 controls from Breakthrough Generations and 785 cases and 791 controls from Athens, Greece available for Stage two.</p>
</sec>
<sec id="S17">
<title>Statistical power for Stage two</title>
<p id="P42">We have estimated the power to reach
<italic>P</italic>
< 0.05 in the Stage two samples for all SNPs that reached genome-wide significance in the Stage one meta-analysis (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
). We converted ORs to genotype relative risks (as the SNPs are relatively frequent this is a reasonable assumption) and estimated power by simulating cases and controls (10,000 iterations) and conducting a Cochran-Armitage trend test (see
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 5</xref>
).</p>
</sec>
<sec id="S18">
<title>Conditional Analysis</title>
<p id="P43">Genome-wide Complex Trait Analysis (GCTA)
<sup>
<xref rid="R36" ref-type="bibr">36</xref>
</sup>
was used to perform conditional/joint GWAS analysis of newly identified or confirmed loci. GCTA allows conditional analysis of summary meta-analysis if provided with a sufficiently large reference population (2–5,000 samples) used in the meta-analysis to estimate LD. We used the QMEGA-610k set as a reference population to determine LD. QMEGA-610k imputation data for well imputed SNPs (INFO > 0.8) was converted to best guess genotypes using the GTOOL software (see URLs).</p>
<p id="P44">Following best-guess conversion (genotype probability threshold 0.5), SNPs with a Hardy-Weinberg equilibrium
<italic>P</italic>
< 1 × 10
<sup>−6</sup>
, a MAF < 0.01 and > 3% missingness were removed. As per Yang et al., (2011)
<sup>
<xref rid="R36" ref-type="bibr">36</xref>
</sup>
we further cleaned the QMEGA-610K dataset to include only completely unrelated individuals (Identity by descent score ≤ 0.025 versus the standard 0.2 used in the meta-analysis), leaving a total of 4,437 people and 7.24 million autosomal SNPs in the reference panel.</p>
<p id="P45">Within each new locus, Stage one fixed effects summary meta-analysis data for SNPs within 1 Mb either side of the top SNP were adjusted for the top SNP using the --cojo-cond option. As per Yang et al., (2011) we used the genomic control corrected GWAS-meta-analysis results. Where there remained an additional SNP with
<italic>P</italic>
< 5 × 10
<sup>–8</sup>
following adjustment for the top SNP we performed an additional round including both SNPs. If the remaining SNPs had
<italic>P</italic>
-values greater than 5 × 10
<sup>–8</sup>
no further analysis was performed. The results of this analysis are reported in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 6</xref>
.</p>
</sec>
<sec id="S19">
<title>Proportion of Familial Relative Risk</title>
<p id="P46">We have used the formula for calculating the proportion of familial relative risk (FRR) as outlined by the Cancer Oncological Gene-environment Study (see URLs). Given that CMM incidence is low, and the odds ratios reported small, we have assumed the odds ratios derived from the Stage one meta-analysis are equivalent to relative risks. With this assumption we have estimated the proportion of the FRR explained by each SNP (FRR
<sub>snp</sub>
) as FRR
<sub>snp</sub>
= (
<italic>pr</italic>
<sup>2</sup>
+
<italic>q</italic>
)/ (
<italic>pr</italic>
+
<italic>q</italic>
)
<sup>2</sup>
</p>
<p id="P47">Where risk allele and alternative allele frequency are
<italic>p</italic>
and
<italic>q</italic>
respectively, and
<italic>r</italic>
is the odds ratio for the risk allele</p>
<p id="P48">Assuming a FRR
<sub>melanoma</sub>
for CMM of 2.19
<sup>
<xref rid="R83" ref-type="bibr">83</xref>
</sup>
and using the combined effect of all SNPs (assuming a multiplicative effect and a single SNP per loci), we computed the proportion of FRR is explained by a set of SNPs as log
<italic>
<sub>e</sub>
</italic>
(product of FRR
<sub>snp</sub>
)/ log
<italic>
<sub>e</sub>
</italic>
(FRR
<sub>melanoma</sub>
).</p>
</sec>
<sec id="S20">
<title>Association with nevus count or pigmentation</title>
<p id="P49">Pigmentation and nevus phenotype data were available for 980 melanoma cases and 499 control individuals from the Leeds case-control study
<sup>
<xref rid="R84" ref-type="bibr">84</xref>
,
<xref rid="R85" ref-type="bibr">85</xref>
</sup>
. Additional individuals from the Leeds melanoma cohort study
<sup>
<xref rid="R86" ref-type="bibr">86</xref>
</sup>
had pigmentation data available, giving a total of 1,458 subjects with melanoma and 499 control subjects. For the most significant SNP in each region reaching P < 1 × 10
<sup>–6</sup>
in the initial meta-analysis, log-transformed age- and sex-adjusted total nevus count was regressed on the number of risk alleles, adjusting for case-control status. A sun-sensitivity score was calculated for all subjects based on a factor analysis of six pigmentation variables (hair color, eye color, self-reported freckling as a child, propensity to burn, ability to tan and skin color on the inside upper arm)
<sup>
<xref rid="R19" ref-type="bibr">19</xref>
</sup>
. This score was similarly regressed on number of risk alleles and adjusted for case-control status. Full results can be found in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 1</xref>
.</p>
</sec>
<sec id="S21">
<title>Bioinformatic annotation</title>
<p id="P50">As the SNP most associated with the phenotype is quite likely not the underlying functional variant
<sup>
<xref rid="R87" ref-type="bibr">87</xref>
</sup>
, we performed a comprehensive bioinformatic assessment of SNPs with
<italic>P
<sub>fixed</sub>
</italic>
(if I
<sup>2</sup>
< 31%) or
<italic>P
<sub>random</sub>
</italic>
(if I
<sup>2</sup>
≥ 31%) values within a factor of 100 of the P value for the peak SNP. To ensure we were not missing potentially interesting functional candidates, HaploReg was used to identify additional SNPs with r
<sup>2</sup>
>0.8 and no more than 200 kb away from those SNPs with P values within a factor of 100 of the peak SNP using 1000 Genomes Project pilot data. GCTA was used to confirm that SNPs carried forward for bioinformatic assessment derived from a common signal. Following adjustment for the locus’ top SNP, the SNPs selected for bioinformatic annotation at 6p22.3, 7p21.1, 10q24, 11q13.3 and 15q13.1 had CMM association
<italic>P</italic>
> 0.01. At 9q31.2 a single SNP rs1484384 retained a modest melanoma association (
<italic>P</italic>
= 0.008) following adjustment for rs10739221; the rest were
<italic>P</italic>
> 0.01. At 2p22.2 those SNPs with
<italic>P</italic>
-values within 2 orders of magnitude of the peak SNP rs6750047 included rs1800440, a non-synonymous SNP with limited LD with rs6750047 (LD r
<sup>2</sup>
= 0.04). Following adjustment for rs6750047, the significance of rs1800440 was essentially unchanged (
<italic>P</italic>
= 4.3 × 10
<sup>–4</sup>
) and a second SNP rs163092 remained weakly associated with melanoma (
<italic>P</italic>
= 0.008); all other SNPs had
<italic>P</italic>
> 0.01. Adjustment for both rs6750047 and rs1800440 removed the association between rs163092 and CMM (
<italic>P</italic>
> 0.01).</p>
<p id="P51">HaploReg
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
</sup>
and RegulomeDB
<sup>
<xref rid="R40" ref-type="bibr">40</xref>
</sup>
were crosschecked to explore data reflecting transcription factor binding, open chromatin and the presence of putative enhancers. These tools summarize and collate data from the ENCODE
<sup>
<xref rid="R39" ref-type="bibr">39</xref>
</sup>
and Roadmap Epigenomics
<sup>
<xref rid="R38" ref-type="bibr">38</xref>
</sup>
public databases and from a range. ENCODE and Roadmap have assayed a large number of different cell types including keratinocyte and melanocyte primary cells, and, for a limited number of assays, melanoma cell lines; predicted functional activity in these cell types was given priority over cell types less likely to be involved in CMM risk. The summary results reported by HaploReg and RegulomeDB assign regions a putative function based on the combined results of multiple functional experiments and their position relative to known genes
<sup>
<xref rid="R38" ref-type="bibr">38</xref>
,
<xref rid="R39" ref-type="bibr">39</xref>
</sup>
. For example, ENCODE assigns the label of predicted enhancer to areas of open chromatin that overlaps a H3K4me1 signal, and binds transcription factors
<sup>
<xref rid="R39" ref-type="bibr">39</xref>
</sup>
. The Roadmap Epigenome uses as similar ranking system to ENCODE, and is summarized in the documentation for HaploReg
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
</sup>
. For example, a weak enhancer will have only a weak H3K36me3 signal, while an active enhancer will have strong H3K36me3, H3K4me1 and H3K27ac signals. These labels are further divided into weak and strong depending on the quality of evidence. While these labels are predicted or putative, ENCODE reports that >50% of predicted enhancers are confirmed by follow up assays
<sup>
<xref rid="R39" ref-type="bibr">39</xref>
</sup>
, and these serve as a useful guide for interrogating CMM associated SNPs. Results from these tools were followed up in more detail using the UCSC genome browser
<sup>
<xref rid="R60" ref-type="bibr">60</xref>
</sup>
to explore the ENCODE
<sup>
<xref rid="R39" ref-type="bibr">39</xref>
</sup>
and the Roadmap epigenomics project
<sup>
<xref rid="R38" ref-type="bibr">38</xref>
</sup>
data.</p>
<p id="P52">In addition, HaploReg uses genome-wide SNPs to estimate the background frequency of SNPs occurring in putative enhancer regions; this was used to test for enrichment in CMM-associated SNPs with an uncorrected binomial test threshold of
<italic>P =</italic>
0.05
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
</sup>
.</p>
<p id="P53">The eQTL browser, the Genotype-Tissue Expression dataset (GTEx)
<sup>
<xref rid="R55" ref-type="bibr">55</xref>
</sup>
, and the Multiple Tissue Human Expression Resource (MuTHER
<sup>
<xref rid="R43" ref-type="bibr">43</xref>
,
<xref rid="R88" ref-type="bibr">88</xref>
</sup>
) were further interrogated to attempt to resolve potential genes influenced by disease associated SNPs. For these databases we report only
<italic>cis</italic>
results; details of cell types and definition of
<italic>cis</italic>
boundaries can be found in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Tables 7</xref>
<xref ref-type="supplementary-material" rid="SD3">9</xref>
. The peak SNP for each locus, as well as other functionally interesting SNPs identified by HaploReg and RegulomeDB, were used to search listed eQTL databases. As the SNP coverage can differ for each database, where SNPs of interest were not present in the eQTL datasets we searched using high LD (>0.95) proxies. While priority was given to cell types more likely to be involved in CMM biology (e.g. sun-exposed skin from GTEx or skin from MuTHER) we reported eQTLs from other tissue types to highlight potential functional impact for identified SNPs.</p>
<p id="P54">Regional plots of –log
<sub>10</sub>
<italic>P-</italic>
values were generated using LocusZoom
<sup>
<xref rid="R89" ref-type="bibr">89</xref>
</sup>
. Where pairwise linkage disequilibrium measures are given, these were estimated from the 379 European ancestry 1000 Genomes Phase 1 April 2012 samples using PLINK
<sup>
<xref rid="R90" ref-type="bibr">90</xref>
</sup>
or the --hap-r2 command in VCFtools
<sup>
<xref rid="R91" ref-type="bibr">91</xref>
</sup>
unless otherwise indicated.</p>
<p id="P55">To test for any overlap with published GWAS association, results reported in the NHGRI catalog for reported loci were extracted on 24/07/2014 and cross checked against the Stage one meta-analysis results.</p>
</sec>
<sec id="S22">
<title>Additional methods</title>
<p id="P56">Manhattan plots were generated in R based on scripts written by Stephen Turner (see URLs). Forest plots were generated using the R rmeta package
<sup>
<xref rid="R92" ref-type="bibr">92</xref>
</sup>
.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="SM">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="SD1">
<label>1</label>
<media xlink:href="NIHMS707176-supplement-1.docx" orientation="portrait" xlink:type="simple" id="d37e3062" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SD2">
<label>2</label>
<media xlink:href="NIHMS707176-supplement-2.xlsx" orientation="portrait" xlink:type="simple" id="d37e3066" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SD3">
<label>3</label>
<media xlink:href="NIHMS707176-supplement-3.xlsx" orientation="portrait" xlink:type="simple" id="d37e3070" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="S23">
<title>Acknowledgements</title>
<p>Please see the
<xref ref-type="supplementary-material" rid="SD1">Supplementary Note</xref>
for acknowledgements.</p>
</ack>
<fn-group>
<fn id="FN3">
<p id="P57">URLs</p>
<p id="P58">GenoMEL,
<ext-link ext-link-type="uri" xlink:href="http://www.genomel.org/">http://www.genomel.org/</ext-link>
; Wellcome Trust Case Control Consortium
<ext-link ext-link-type="uri" xlink:href="http://www.wtccc.org.uk/">http://www.wtccc.org.uk/</ext-link>
; RegulomeDB,
<ext-link ext-link-type="uri" xlink:href="http://RegulomeDB.org/">http://RegulomeDB.org/</ext-link>
; HaploReg
<ext-link ext-link-type="uri" xlink:href="http://www.broadinstitute.org/mammals/haploreg/">http://www.broadinstitute.org/mammals/haploreg/</ext-link>
; GTEx
<ext-link ext-link-type="uri" xlink:href="http://www.gtexportal.org">http://www.gtexportal.org</ext-link>
, MuTHER
<ext-link ext-link-type="uri" xlink:href="http://www.muther.ac.uk/">http://www.muther.ac.uk/</ext-link>
, eQTL data accessed via GeneVAR
<ext-link ext-link-type="uri" xlink:href="http://www.sanger.ac.uk/resources/software/genevar/">http://www.sanger.ac.uk/resources/software/genevar/</ext-link>
, eQTL Browser
<ext-link ext-link-type="uri" xlink:href="http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/">http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/</ext-link>
; NHGRI GWAS catalog:
<ext-link ext-link-type="uri" xlink:href="http://www.genome.gov/gwastudies/">http://www.genome.gov/gwastudies/</ext-link>
; Genome-wide Complex Trait Analysis (GCTA)
<ext-link ext-link-type="uri" xlink:href="http://www.complextraitgenomics.com/software/gcta/">http://www.complextraitgenomics.com/software/gcta/</ext-link>
; GTOOL
<ext-link ext-link-type="uri" xlink:href="http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html">http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html</ext-link>
; Cancer Oncological Gene-environment Study
<ext-link ext-link-type="uri" xlink:href="http://www.nature.com/icogs/primer/common-variation-and-heritability-estimates-for-breast-ovarian-and-prostate-cancers/#70">http://www.nature.com/icogs/primer/common-variation-and-heritability-estimates-for-breast-ovarian-and-prostate-cancers/#70</ext-link>
; VCFtools
<ext-link ext-link-type="uri" xlink:href="http://vcftools.sourceforge.net/">http://vcftools.sourceforge.net/</ext-link>
; R scripts for Manhattan and QQ plots
<ext-link ext-link-type="uri" xlink:href="http://gettinggeneticsdone.blogspot.com.au/2011/04/annotated-manhattan-plots-and-qq-plots.html">http://gettinggeneticsdone.blogspot.com.au/2011/04/annotated-manhattan-plots-and-qq-plots.html</ext-link>
, rmeta R package for forest plots,
<ext-link ext-link-type="uri" xlink:href="https://cran.r-project.org/web/packages/rmeta/rmeta.pdf">https://cran.r-project.org/web/packages/rmeta/rmeta.pdf</ext-link>
.</p>
</fn>
<fn id="FN4">
<p id="P59">Author Contributions</p>
<p id="P60">MMI led, designed and carried out the statistical analyses and wrote the manuscript. MHL led, designed and carried out the statistical analyses and wrote the manuscript. MH was involved in the Leeds genotyping design. JCT carried out statistical analyses. JR-M carried out genotyping and contributed to the interpretation of genotyping data. NvdS carried out genotyping and contributed to the interpretation of genotyping data. JANB led the GenoMEL consortium and contributed to study design. NAG was deputy lead of the consortium and contributed to study design. SMacG designed and led the overall study. NKH designed and led the overall study. DTB designed and led the overall study. JHB designed and led the overall study. JH supervised and carried out statistical analysis of the Harvard GWAS data. FS carried out statistical analysis of the Harvard GWAS data. AAQ carried out statistical analysis of the Harvard GWAS data. CIA led and carried out statistical analysis of the M.D. Anderson GWAS data. WVC contributed to the analysis and interpretation of the M.D. Anderson GWAS data. JEL contributed to the analysis and interpretation of the M.D. Anderson GWAS data. SF contributed to the analysis and interpretation of the M.D. Anderson GWAS data. FD led, designed and contributed to the sample collection, analysis and interpretation of the French MELARISK GWAS data and advised on the overall statistical analysis. MB contributed to the analysis and interpretation of the French MELARISK GWAS data. MFA led, designed and contributed to the sample collection of the French MELARISK GWAS data. GML led and contributed to the genotyping and interpretation of the French MELARISK GWAS data. RK led, and contributed to the sample collection and analysis for the Heidelberg dataset. DS led and contributed to the sample collection and analysis for the Heidelberg dataset. HJS contributed to the sample collection and analysis for the Heidelberg dataset. SVW led and contributed to the sample collection for the WAMHS study. EKM provided coordination and oversight for the WAMHS study. DCW led designed, and contributed to the sample collection for the SDH dataset. JEG led and designed the Glaucoma study. KPB contributed to the analysis and interpretation of the Glaucoma dataset. GLR-S led and contributed to the analysis and interpretation of the IBD dataset. LS contributed to the analysis and interpretation of the IBD dataset. GJM led and contributed to the sample collection, analysis and interpretation of the AMFS study. AEC contributed to the sample collection, analysis and interpretation of the AMFS study. DRN contributed to the sample collection and analysis of Q-MEGA, Endometriosis and QTWIN datasets. NGM led the sample collection and analysis of Q-MEGA and QTWIN datasets. GM led the sample collection and analysis of Endometriosis datasets, and contributed to the sample collection and analysis of Q-MEGA, Endometriosis and QTWIN datasets. DLD contributed to the sample collection and analysis of Q-MEGA, Endometriosis and QTWIN datasets. KMB contributed to the sample collection and analysis of Q-MEGA and QTWIN datasets. AJStratigos interpreted and contributed genotype data for the Athens Stage two dataset. KPK interpreted and contributed genotype data for the Athens Stage two dataset. AMG advised on statistical analysis. PAK advised on statistical analysis. EMG advised on statistical analysis. DEE contributed to the design of the GenoMEL GWAS. AJS interpreted and contributed genotype data for the Breakthrough Generations Study. NO interpreted and contributed genotype data for the Breakthrough Generations Study. LAA contributed to sample collection, analysis and interpretation of GenoMEL datasets. PAA contributed to collection, analysis and interpretation of GenoMEL datasets. EA contributed to collection, analysis and interpretation of GenoMEL datasets. GBS contributed to collection, analysis and interpretation of GenoMEL datasets. TD contributed to collection, analysis and interpretation of GenoMEL datasets. EF contributed to sample collection, analysis and interpretation of GenoMEL datasets. PGh contributed to sample collection, analysis and interpretation of GenoMEL datasets. JH contributed to sample collection, analysis and interpretation of GenoMEL datasets. PHe contributed to sample collection, analysis and interpretation of GenoMEL datasets. MHo contributed to collection, analysis and interpretation of GenoMEL datasets. VH contributed to collection, analysis and interpretation of GenoMEL datasets. CIn contributed to collection, analysis and interpretation of GenoMEL datasets. MTL contributed to collection, analysis and interpretation of GenoMEL datasets. JLang contributed to collection, analysis and interpretation of GenoMEL datasets. RMM contributed to collection, analysis and interpretation of GenoMEL datasets. AM contributed to collection, analysis and interpretation of GenoMEL datasets. JLub. contributed to collection, analysis and interpretation of GenoMEL datasets. SN contributed to collection, analysis and interpretation of GenoMEL datasets. HO contributed to collection, analysis and interpretation of GenoMEL datasets. SP contributed to collection, analysis and interpretation of GenoMEL datasets. JAP-B contributed to collection, analysis and interpretation of GenoMEL datasets. RvD contributed to collection, analysis and interpretation of GenoMEL datasets. KAP interpreted and contributed genotype data for the Cambridge Stage two dataset. AMD interpreted and contributed genotype data for the Cambridge Stage two dataset. PDPP interpreted and contributed genotype data for the Cambridge Stage two dataset. DFE interpreted and contributed genotype data for the Cambridge Stage two dataset. PGal. contributed to collection, analysis and interpretation of the SU.VI.Max French control dataset. All authors provided critical review of the manuscript.</p>
</fn>
<fn id="FN5">
<p id="P61">Competing financial interests</p>
<p id="P62">The authors declare no competing financial interests</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="R1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holly</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Aston</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Cress</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Kristiansen</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<article-title>Cutaneous melanoma in women. II. Phenotypic characteristics and other host-related factors.</article-title>
<source>Am J Epidemiol</source>
<year>1995</year>
<volume>141</volume>
<fpage>934</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">7741123</pub-id>
</element-citation>
</ref>
<ref id="R2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holly</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Aston</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Cress</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Kristiansen</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<article-title>Cutaneous melanoma in women. I. Exposure to sunlight, ability to tan, and other risk factors related to ultraviolet light.</article-title>
<source>Am J Epidemiol</source>
<year>1995</year>
<volume>141</volume>
<fpage>923</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">7741122</pub-id>
</element-citation>
</ref>
<ref id="R3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naldi</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cutaneous malignant melanoma in women. Phenotypic characteristics, sun exposure, and hormonal factors: a case-control study from Italy.</article-title>
<source>Ann Epidemiol</source>
<year>2005</year>
<volume>15</volume>
<fpage>545</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">16029848</pub-id>
</element-citation>
</ref>
<ref id="R4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Titus-Ernstoff</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pigmentary characteristics and moles in relation to melanoma risk.</article-title>
<source>Int J Cancer</source>
<year>2005</year>
<volume>116</volume>
<fpage>144</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">15761869</pub-id>
</element-citation>
</ref>
<ref id="R5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bataille</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Risk of cutaneous melanoma in relation to the numbers, types and sites of naevi: a case-control study.</article-title>
<source>Br J Cancer</source>
<year>1996</year>
<volume>73</volume>
<fpage>1605</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">8664138</pub-id>
</element-citation>
</ref>
<ref id="R6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>YM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A pooled analysis of melanocytic nevus phenotype and the risk of cutaneous melanoma at different latitudes.</article-title>
<source>Int J Cancer</source>
<year>2009</year>
<volume>124</volume>
<fpage>420</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">18792098</pub-id>
</element-citation>
</ref>
<ref id="R7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cannon-Albright</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Bishop</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Goldgar</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Skolnick</surname>
<given-names>MH</given-names>
</name>
</person-group>
<article-title>Genetic predisposition to cancer.</article-title>
<source>Important Adv Oncol</source>
<year>1991</year>
<fpage>39</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="pmid">1869281</pub-id>
</element-citation>
</ref>
<ref id="R8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>KM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Common sequence variants on 20q11.22 confer melanoma susceptibility.</article-title>
<source>Nat Genet</source>
<year>2008</year>
<volume>40</volume>
<fpage>838</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="pmid">18488026</pub-id>
</element-citation>
</ref>
<ref id="R9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bishop</surname>
<given-names>DT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association study identifies three loci associated with melanoma risk.</article-title>
<source>Nat Genet</source>
<year>2009</year>
<volume>41</volume>
<fpage>920</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">19578364</pub-id>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amos</surname>
<given-names>CI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association study identifies novel loci predisposing to cutaneous melanoma.</article-title>
<source>Hum Mol Genet</source>
<year>2011</year>
<volume>20</volume>
<fpage>5012</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">21926416</pub-id>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrett</surname>
<given-names>JH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association study identifies three new melanoma susceptibility loci.</article-title>
<source>Nat Genet</source>
<year>2011</year>
<volume>43</volume>
<fpage>1108</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">21983787</pub-id>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macgregor</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3.</article-title>
<source>Nat Genet</source>
<year>2011</year>
<volume>43</volume>
<fpage>1114</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">21983785</pub-id>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iles</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A variant in FTO shows association with melanoma risk not due to BMI.</article-title>
<source>Nat Genet</source>
<year>2013</year>
<volume>45</volume>
<fpage>428</fpage>
<lpage>32</lpage>
<fpage>432</fpage>
<fpage>e1</fpage>
<pub-id pub-id-type="pmid">23455637</pub-id>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gudbjartsson</surname>
<given-names>DF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma.</article-title>
<source>Nat Genet</source>
<year>2008</year>
<volume>40</volume>
<fpage>886</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="pmid">18488027</pub-id>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antonopoulou</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Updated field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma: the MelGene database.</article-title>
<source>J Invest Dermatol</source>
<year>2015</year>
<volume>135</volume>
<fpage>1074</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">25407435</pub-id>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pena-Chilet</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic variants in PARP1 (rs3219090) and IRF4 (rs12203592) genes associated with melanoma susceptibility in a Spanish population.</article-title>
<source>BMC Cancer</source>
<year>2013</year>
<volume>13</volume>
<fpage>160</fpage>
<pub-id pub-id-type="pmid">23537197</pub-id>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falchi</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi.</article-title>
<source>Nat Genet</source>
<year>2009</year>
<volume>41</volume>
<fpage>915</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">19578365</pub-id>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rafnar</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sequence variants at the TERT-CLPTM1L locus associate with many cancer types.</article-title>
<source>Nat Genet</source>
<year>2009</year>
<volume>41</volume>
<fpage>221</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">19151717</pub-id>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pooley</surname>
<given-names>KA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>No association between TERT-CLPTM1L single nucleotide polymorphism rs401681 and mean telomere length or cancer risk.</article-title>
<source>Cancer Epidemiol Biomarkers Prev</source>
<year>2010</year>
<volume>19</volume>
<fpage>1862</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">20570912</pub-id>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Qureshi</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Prescott</surname>
<given-names>J</given-names>
</name>
<name>
<surname>De Vivo</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Genetic variants in telomere-maintaining genes and skin cancer risk.</article-title>
<source>Hum Genet</source>
<year>2011</year>
<volume>129</volume>
<fpage>247</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">21116649</pub-id>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Law</surname>
<given-names>MH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Meta-analysis combining new and existing data sets confirms that the TERT-CLPTM1L locus influences melanoma risk.</article-title>
<source>J Invest Dermatol</source>
<year>2012</year>
<volume>132</volume>
<fpage>485</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">21993562</pub-id>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mocellin</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis.</article-title>
<source>J Natl Cancer Inst</source>
<year>2012</year>
<volume>104</volume>
<fpage>840</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">22523397</pub-id>
</element-citation>
</ref>
<ref id="R23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gomez</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres.</article-title>
<source>Mol Biol Cell</source>
<year>2006</year>
<volume>17</volume>
<fpage>1686</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="pmid">16436506</pub-id>
</element-citation>
</ref>
<ref id="R24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Derheimer</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Kastan</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>Multiple roles of ATM in monitoring and maintaining DNA integrity.</article-title>
<source>FEBS Lett</source>
<year>2010</year>
<volume>584</volume>
<fpage>3675</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">20580718</pub-id>
</element-citation>
</ref>
<ref id="R25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bataille</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo.</article-title>
<source>Cancer Epidemiol Biomarkers Prev</source>
<year>2007</year>
<volume>16</volume>
<fpage>1499</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="pmid">17627017</pub-id>
</element-citation>
</ref>
<ref id="R26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A prospective study of telomere length and the risk of skin cancer.</article-title>
<source>J Invest Dermatol</source>
<year>2009</year>
<volume>129</volume>
<fpage>415</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">18668136</pub-id>
</element-citation>
</ref>
<ref id="R27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burke</surname>
<given-names>LS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Telomere length and the risk of cutaneous malignant melanoma in melanoma-prone families with and without CDKN2A mutations.</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e71121</fpage>
<pub-id pub-id-type="pmid">23990928</pub-id>
</element-citation>
</ref>
<ref id="R28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iles</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The effect on melanoma risk of genes previously associated with telomere length.</article-title>
<source>J Natl Cancer Inst</source>
<year>2014</year>
<volume>106</volume>
</element-citation>
</ref>
<ref id="R29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrett</surname>
<given-names>JH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions.</article-title>
<source>Int J Cancer</source>
<year>2015</year>
<volume>136</volume>
<fpage>1351</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">25077817</pub-id>
</element-citation>
</ref>
<ref id="R30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Bakker</surname>
<given-names>PI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Practical aspects of imputation-driven meta-analysis of genome-wide association studies.</article-title>
<source>Hum Mol Genet</source>
<year>2008</year>
<volume>17</volume>
<fpage>R122</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">18852200</pub-id>
</element-citation>
</ref>
<ref id="R31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miyake</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway.</article-title>
<source>Mol Cell</source>
<year>2009</year>
<volume>36</volume>
<fpage>193</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="pmid">19854130</pub-id>
</element-citation>
</ref>
<ref id="R32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Steensel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>de Lange</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Control of telomere length by the human telomeric protein TRF1.</article-title>
<source>Nature</source>
<year>1997</year>
<volume>385</volume>
<fpage>740</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="pmid">9034193</pub-id>
</element-citation>
</ref>
<ref id="R33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robles-Espinoza</surname>
<given-names>CD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>POT1 loss-of-function variants predispose to familial melanoma.</article-title>
<source>Nat Genet</source>
<year>2014</year>
<volume>46</volume>
<fpage>478</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">24686849</pub-id>
</element-citation>
</ref>
<ref id="R34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma.</article-title>
<source>Nat Genet</source>
<year>2014</year>
<volume>46</volume>
<fpage>482</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">24686846</pub-id>
</element-citation>
</ref>
<ref id="R35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Codd</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of seven loci affecting mean telomere length and their association with disease.</article-title>
<source>Nat Genet</source>
<year>2013</year>
<volume>45</volume>
<fpage>422</fpage>
<lpage>7</lpage>
<fpage>427</fpage>
<fpage>e1</fpage>
<lpage>2</lpage>
<pub-id pub-id-type="pmid">23535734</pub-id>
</element-citation>
</ref>
<ref id="R36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits.</article-title>
<source>Nat. Genet</source>
<year>2012</year>
<volume>44</volume>
<fpage>369</fpage>
<lpage>375</lpage>
<comment>[PubMed: 22426310]</comment>
<pub-id pub-id-type="pmid">22426310</pub-id>
</element-citation>
</ref>
<ref id="R37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ward</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>Kellis</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.</article-title>
<source>Nucleic Acids Res</source>
<year>2012</year>
<volume>40</volume>
<fpage>D930</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="pmid">22064851</pub-id>
</element-citation>
</ref>
<ref id="R38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernstein</surname>
<given-names>BE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The NIH Roadmap Epigenomics Mapping Consortium.</article-title>
<source>Nat Biotechnol</source>
<year>2010</year>
<volume>28</volume>
<fpage>1045</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">20944595</pub-id>
</element-citation>
</ref>
<ref id="R39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Consortium</surname>
<given-names>EP</given-names>
</name>
</person-group>
<article-title>An integrated encyclopedia of DNA elements in the human genome.</article-title>
<source>Nature</source>
<year>2012</year>
<volume>489</volume>
<fpage>57</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">22955616</pub-id>
</element-citation>
</ref>
<ref id="R40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boyle</surname>
<given-names>AP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Annotation of functional variation in personal genomes using RegulomeDB.</article-title>
<source>Genome Res</source>
<year>2012</year>
<volume>22</volume>
<fpage>1790</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">22955989</pub-id>
</element-citation>
</ref>
<ref id="R41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schadt</surname>
<given-names>EE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mapping the genetic architecture of gene expression in human liver.</article-title>
<source>PLoS Biol</source>
<year>2008</year>
<volume>6</volume>
<fpage>e107</fpage>
<pub-id pub-id-type="pmid">18462017</pub-id>
</element-citation>
</ref>
<ref id="R42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Innocenti</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue.</article-title>
<source>PLoS Genet</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1002078</fpage>
<pub-id pub-id-type="pmid">21637794</pub-id>
</element-citation>
</ref>
<ref id="R43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grundberg</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mapping cis- and trans-regulatory effects across multiple tissues in twins.</article-title>
<source>Nat Genet</source>
<year>2012</year>
<volume>44</volume>
<fpage>1084</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">22941192</pub-id>
</element-citation>
</ref>
<ref id="R44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gajjar</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Martin-Hirsch</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>FL</given-names>
</name>
</person-group>
<article-title>CYP1B1 and hormone-induced cancer.</article-title>
<source>Cancer Lett</source>
<year>2012</year>
<volume>324</volume>
<fpage>13</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">22561558</pub-id>
</element-citation>
</ref>
<ref id="R45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muthusamy</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epigenetic silencing of novel tumor suppressors in malignant melanoma.</article-title>
<source>Cancer Res</source>
<year>2006</year>
<volume>66</volume>
<fpage>11187</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">17145863</pub-id>
</element-citation>
</ref>
<ref id="R46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Quantitative assessment of the influence of CYP1B1 polymorphisms and head and neck squamous cell carcinoma risk.</article-title>
<source>Tumour Biol</source>
<year>2014</year>
<volume>35</volume>
<fpage>3891</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">24343338</pub-id>
</element-citation>
</ref>
<ref id="R47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stoilov</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Akarsu</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Sarfarazi</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21.</article-title>
<source>Hum Mol Genet</source>
<year>1997</year>
<volume>6</volume>
<fpage>641</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">9097971</pub-id>
</element-citation>
</ref>
<ref id="R48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arragain</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA.</article-title>
<source>J Biol Chem</source>
<year>2010</year>
<volume>285</volume>
<fpage>28425</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">20584901</pub-id>
</element-citation>
</ref>
<ref id="R49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brambillasca</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1) is a tail-anchored protein in the endoplasmic reticulum (ER) of insulinoma cells.</article-title>
<source>J Biol Chem</source>
<year>2012</year>
<volume>287</volume>
<fpage>41808</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="pmid">23048041</pub-id>
</element-citation>
</ref>
<ref id="R50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Praetorius</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway.</article-title>
<source>Cell</source>
<year>2013</year>
<volume>155</volume>
<fpage>1022</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">24267888</pub-id>
</element-citation>
</ref>
<ref id="R51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sulem</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic determinants of hair, eye and skin pigmentation in Europeans.</article-title>
<source>Nat Genet</source>
<year>2007</year>
<volume>39</volume>
<fpage>1443</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">17952075</pub-id>
</element-citation>
</ref>
<ref id="R52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation.</article-title>
<source>PLoS Genet</source>
<year>2008</year>
<volume>4</volume>
<fpage>e1000074</fpage>
<pub-id pub-id-type="pmid">18483556</pub-id>
</element-citation>
</ref>
<ref id="R53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duffy</surname>
<given-names>DL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IRF4 variants have age-specific effects on nevus count and predispose to melanoma.</article-title>
<source>Am J Hum Genet</source>
<year>2010</year>
<volume>87</volume>
<fpage>6</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="pmid">20602913</pub-id>
</element-citation>
</ref>
<ref id="R54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans.</article-title>
<source>Hum Mol Genet</source>
<year>2013</year>
<volume>22</volume>
<fpage>2948</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="pmid">23548203</pub-id>
</element-citation>
</ref>
<ref id="R55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Consortium</surname>
<given-names>GT</given-names>
</name>
</person-group>
<article-title>The Genotype-Tissue Expression (GTEx) project.</article-title>
<source>Nat Genet</source>
<year>2013</year>
<volume>45</volume>
<fpage>580</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">23715323</pub-id>
</element-citation>
</ref>
<ref id="R56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Consortium</surname>
<given-names>GT</given-names>
</name>
</person-group>
<article-title>Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.</article-title>
<source>Science</source>
<year>2015</year>
<volume>348</volume>
<fpage>648</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">25954001</pub-id>
</element-citation>
</ref>
<ref id="R57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Persson</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Diversity of the protein disulfide isomerase family: identification of breast tumor induced Hag2 and Hag3 as novel members of the protein family.</article-title>
<source>Mol Phylogenet Evol</source>
<year>2005</year>
<volume>36</volume>
<fpage>734</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="pmid">15935701</pub-id>
</element-citation>
</ref>
<ref id="R58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fletcher</surname>
<given-names>GC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan.</article-title>
<source>Br J Cancer</source>
<year>2003</year>
<volume>88</volume>
<fpage>579</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="pmid">12592373</pub-id>
</element-citation>
</ref>
<ref id="R59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>King</surname>
<given-names>ER</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The anterior gradient homolog 3 (AGR3) gene is associated with differentiation and survival in ovarian cancer.</article-title>
<source>Am J Surg Pathol</source>
<year>2011</year>
<volume>35</volume>
<fpage>904</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">21451362</pub-id>
</element-citation>
</ref>
<ref id="R60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kent</surname>
<given-names>WJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The human genome browser at UCSC.</article-title>
<source>Genome Research</source>
<year>2002</year>
<volume>12</volume>
<fpage>996</fpage>
<lpage>1006</lpage>
<pub-id pub-id-type="pmid">12045153</pub-id>
</element-citation>
</ref>
<ref id="R61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masutani</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23.</article-title>
<source>EMBO J</source>
<year>1994</year>
<volume>13</volume>
<fpage>1831</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">8168482</pub-id>
</element-citation>
</ref>
<ref id="R62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia.</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1991</year>
<volume>88</volume>
<fpage>11416</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="pmid">1763056</pub-id>
</element-citation>
</ref>
<ref id="R63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>CW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells.</article-title>
<source>Stem Cells</source>
<year>2010</year>
<volume>28</volume>
<fpage>1510</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">20629177</pub-id>
</element-citation>
</ref>
<ref id="R64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoffmeyer</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells.</article-title>
<source>Science</source>
<year>2012</year>
<volume>336</volume>
<fpage>1549</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">22723415</pub-id>
</element-citation>
</ref>
<ref id="R65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teerlink</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A unique genome-wide association analysis in extended Utah high-risk pedigrees identifies a novel melanoma risk variant on chromosome arm 10q.</article-title>
<source>Hum Genet</source>
<year>2012</year>
<volume>131</volume>
<fpage>77</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="pmid">21706340</pub-id>
</element-citation>
</ref>
<ref id="R66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vizkeleti</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The role of CCND1 alterations during the progression of cutaneous malignant melanoma.</article-title>
<source>Tumour Biol</source>
<year>2012</year>
<volume>33</volume>
<fpage>2189</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">23001925</pub-id>
</element-citation>
</ref>
<ref id="R67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>RJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines.</article-title>
<source>Pigment Cell Melanoma Res</source>
<year>2014</year>
<volume>27</volume>
<fpage>590</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="pmid">24495407</pub-id>
</element-citation>
</ref>
<ref id="R68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>French</surname>
<given-names>JD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers.</article-title>
<source>Am J Hum Genet</source>
<year>2013</year>
<volume>92</volume>
<fpage>489</fpage>
<lpage>503</lpage>
<pub-id pub-id-type="pmid">23540573</pub-id>
</element-citation>
</ref>
<ref id="R69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duffy</surname>
<given-names>DL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation.</article-title>
<source>Am J Hum Genet</source>
<year>2007</year>
<volume>80</volume>
<fpage>241</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">17236130</pub-id>
</element-citation>
</ref>
<ref id="R70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruiz</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Further development of forensic eye color predictive tests.</article-title>
<source>Forensic Sci Int Genet</source>
<year>2013</year>
<volume>7</volume>
<fpage>28</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="pmid">22709892</pub-id>
</element-citation>
</ref>
<ref id="R71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Price</surname>
<given-names>AL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Principal components analysis corrects for stratification in genome-wide association studies.</article-title>
<source>Nat Genet</source>
<year>2006</year>
<volume>38</volume>
<fpage>904</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">16862161</pub-id>
</element-citation>
</ref>
<ref id="R72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Howie</surname>
<given-names>BN</given-names>
</name>
<name>
<surname>Donnelly</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Marchini</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>A flexible and accurate genotype imputation method for the next generation of genome-wide association studies.</article-title>
<source>PLoS Genet</source>
<year>2009</year>
<volume>5</volume>
<fpage>e1000529</fpage>
<pub-id pub-id-type="pmid">19543373</pub-id>
</element-citation>
</ref>
<ref id="R73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchini</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Howie</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Genotype imputation for genome-wide association studies.</article-title>
<source>Nat Rev Genet</source>
<year>2010</year>
<volume>11</volume>
<fpage>499</fpage>
<lpage>511</lpage>
<pub-id pub-id-type="pmid">20517342</pub-id>
</element-citation>
</ref>
<ref id="R74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Willer</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Scheet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Abecasis</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes.</article-title>
<source>Genet Epidemiol</source>
<year>2010</year>
<volume>34</volume>
<fpage>816</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">21058334</pub-id>
</element-citation>
</ref>
<ref id="R75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Willer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sanna</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Abecasis</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Genotype imputation.</article-title>
<source>Annu Rev Genomics Hum Genet</source>
<year>2009</year>
<volume>10</volume>
<fpage>387</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="pmid">19715440</pub-id>
</element-citation>
</ref>
<ref id="R76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Howie</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fuchsberger</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Marchini</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Abecasis</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Fast and accurate genotype imputation in genome-wide association studies through pre-phasing.</article-title>
<source>Nat Genet</source>
<year>2012</year>
<volume>44</volume>
<fpage>955</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">22820512</pub-id>
</element-citation>
</ref>
<ref id="R77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>Genomes Project, C.</collab>
<etal></etal>
</person-group>
<article-title>A map of human genome variation from population-scale sequencing.</article-title>
<source>Nature</source>
<year>2010</year>
<volume>467</volume>
<fpage>1061</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="pmid">20981092</pub-id>
</element-citation>
</ref>
<ref id="R78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchini</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Howie</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>S</given-names>
</name>
<name>
<surname>McVean</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Donnelly</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A new multipoint method for genome-wide association studies by imputation of genotypes.</article-title>
<source>Nat Genet</source>
<year>2007</year>
<volume>39</volume>
<fpage>906</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">17572673</pub-id>
</element-citation>
</ref>
<ref id="R79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Higgins</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>SG</given-names>
</name>
</person-group>
<article-title>Quantifying heterogeneity in a meta-analysis.</article-title>
<source>Stat Med</source>
<year>2002</year>
<volume>21</volume>
<fpage>1539</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="pmid">12111919</pub-id>
</element-citation>
</ref>
<ref id="R80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DerSimonian</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Laird</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Meta-analysis in clinical trials.</article-title>
<source>Control Clin Trials</source>
<year>1986</year>
<volume>7</volume>
<fpage>177</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="pmid">3802833</pub-id>
</element-citation>
</ref>
<ref id="R81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Magi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>AP</given-names>
</name>
</person-group>
<article-title>GWAMA: software for genome-wide association meta-analysis.</article-title>
<source>BMC Bioinformatics</source>
<year>2010</year>
<volume>11</volume>
<fpage>288</fpage>
<pub-id pub-id-type="pmid">20509871</pub-id>
</element-citation>
</ref>
<ref id="R82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gabriel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ziaugra</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tabbaa</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>SNP genotyping using the Sequenom MassARRAY iPLEX platform.</article-title>
<source>Curr Protoc Hum Genet</source>
<year>2009</year>
<comment>Chapter 2, Unit 2 12</comment>
</element-citation>
</ref>
<ref id="R83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cho</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rosner</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Feskanich</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Colditz</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Risk factors and individual probabilities of melanoma for whites.</article-title>
<source>J Clin Oncol</source>
<year>2005</year>
<volume>23</volume>
<fpage>2669</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="pmid">15837981</pub-id>
</element-citation>
</ref>
<ref id="R84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newton-Bishop</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Melanocytic nevi, nevus genes, and melanoma risk in a large case-control study in the United Kingdom.</article-title>
<source>Cancer Epidemiol Biomarkers Prev</source>
<year>2010</year>
<volume>19</volume>
<fpage>2043</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">20647408</pub-id>
</element-citation>
</ref>
<ref id="R85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newton-Bishop</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Relationship between sun exposure and melanoma risk for tumours in different body sites in a large case-control study in a temperate climate.</article-title>
<source>Eur J Cancer</source>
<year>2011</year>
<volume>47</volume>
<fpage>732</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">21084183</pub-id>
</element-citation>
</ref>
<ref id="R86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newton-Bishop</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Serum 25-hydroxyvitamin D3 levels are associated with breslow thickness at presentation and survival from melanoma.</article-title>
<source>J Clin Oncol</source>
<year>2009</year>
<volume>27</volume>
<fpage>5439</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="pmid">19770375</pub-id>
</element-citation>
</ref>
<ref id="R87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edwards</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Beesley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>French</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Dunning</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Beyond GWASs: illuminating the dark road from association to function.</article-title>
<source>Am J Hum Genet</source>
<year>2013</year>
<volume>93</volume>
<fpage>779</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="pmid">24210251</pub-id>
</element-citation>
</ref>
<ref id="R88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nica</surname>
<given-names>AC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.</article-title>
<source>PLoS Genet</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1002003</fpage>
<pub-id pub-id-type="pmid">21304890</pub-id>
</element-citation>
</ref>
<ref id="R89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pruim</surname>
<given-names>RJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>LocusZoom: regional visualization of genome-wide association scan results.</article-title>
<source>Bioinformatics</source>
<year>2010</year>
<volume>26</volume>
<fpage>2336</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">20634204</pub-id>
</element-citation>
</ref>
<ref id="R90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Purcell</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PLINK: a tool set for whole-genome association and population-based linkage analyses.</article-title>
<source>Am J Hum Genet</source>
<year>2007</year>
<volume>81</volume>
<fpage>559</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="pmid">17701901</pub-id>
</element-citation>
</ref>
<ref id="R91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danecek</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The variant call format and VCFtools.</article-title>
<source>Bioinformatics</source>
<year>2011</year>
<volume>27</volume>
<fpage>2156</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">21653522</pub-id>
</element-citation>
</ref>
<ref id="R92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lumley</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>rmeta: Meta-analysis.</article-title>
<source>R package version 2.16 edn</source>
<year>2012</year>
</element-citation>
</ref>
<ref id="R93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>MX</given-names>
</name>
<name>
<surname>Yeung</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Cherny</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Sham</surname>
<given-names>PC</given-names>
</name>
</person-group>
<article-title>Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets.</article-title>
<source>Hum Genet</source>
<year>2012</year>
<volume>131</volume>
<fpage>747</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">22143225</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<title>Manhattan plot of the Stage one meta-analysis of GWAS of CMM from Europe, the USA and Australia</title>
<p>The
<italic>P
<sub>fixed</sub>
</italic>
Stage one value for all SNPs present in at least two studies have been plotted using a log
<sub>10</sub>
(–log
<sub>10</sub>
) transform to truncate the strong signals at
<italic>MC1R</italic>
(
<italic>P</italic>
< 10
<sup>–92</sup>
) on chromosome 16 and
<italic>CDKN2A</italic>
(
<italic>P</italic>
< 10
<sup>–31</sup>
) on chromosome 9. The total Stage one meta-analysis included 11 CMM GWAS, totaling 12,874 cases and 23,203 controls.
<italic>P</italic>
< 5 × 10
<sup>–8</sup>
(genome-wide significance) and
<italic>P</italic>
< 1 × 10
<sup>–6</sup>
are indicated by a red and a blue line respectively. 18 loci reached genome-wide significance in Stage one. The 2 newly-confirmed loci 11q13.3 (
<italic>CCND1</italic>
) and 15q13.1 (
<italic>HERC2</italic>
/
<italic>OCA2</italic>
) are indicated by * and the 5 novel loci 2p22.2, 6p22.3, 7p21.1, 9q31.2 and 10q24.33 are highlighted by **. 2p22.2 (
<italic>RMDN2</italic>
/
<italic>CYP1B1</italic>
) and 10q24.33 (
<italic>OBFC1</italic>
) were genome-wide significant only in the Overall meta-analysis (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
).</p>
</caption>
<graphic xlink:href="nihms-707176-f0001"></graphic>
</fig>
<fig id="F2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<title>Regional association plots for novel genome-wide significant loci 2p22.2, 6p22.3, 7p21.1, 9q31.2, 10q24.33 and the newly-confirmed region, 15q13.1 (
<italic>OCA2</italic>
)</title>
<p>The negative log
<sub>10</sub>
of
<italic>P
<sub>fixed</sub>
</italic>
values for SNPs from the Stage one meta-analysis of 12,874 cases and 23,203 controls have been plotted against their genomic position (Mb) using LocusZoom
<sup>
<xref rid="R89" ref-type="bibr">89</xref>
</sup>
. The rs ID is listed for the peak SNP in each region (purple diamond). The
<italic>P-</italic>
values and effect sizes for listed SNPs can be found in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
. For the remaining SNPs the color indicates linkage disequilibrium r
<sup>2</sup>
with the peak SNP. Neither rs2995264 in 10q24.33 nor rs6750047 in 2p22.2 are genome-wide significant in Stage one, but reach this in the Overall meta-analysis. The plot for 11q13.3 (
<italic>CCND1</italic>
) can be found in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figure 4</xref>
.</p>
</caption>
<graphic xlink:href="nihms-707176-f0002"></graphic>
</fig>
<table-wrap id="T1" position="float" orientation="landscape">
<label>Table 1</label>
<caption>
<p>Genome-wide significant results from a two-stage meta-analysis of GWAS of CMM from Europe, the USA and Australia.</p>
</caption>
<table frame="void" rules="groups">
<thead>
<tr>
<th align="center" valign="top" rowspan="1" colspan="1"></th>
<th align="center" valign="top" rowspan="1" colspan="1"></th>
<th align="center" valign="top" rowspan="1" colspan="1"></th>
<th align="center" valign="top" rowspan="1" colspan="1"></th>
<th align="center" valign="top" rowspan="1" colspan="1">Stage one meta-analysis</th>
<th align="center" valign="top" rowspan="1" colspan="1">Stage two meta-analysis</th>
<th align="center" valign="top" rowspan="1" colspan="1">Overall meta-analysis</th>
</tr>
<tr>
<th align="center" valign="top" rowspan="1" colspan="1">SNP</th>
<th align="center" valign="top" rowspan="1" colspan="1">Region</th>
<th align="center" valign="top" rowspan="1" colspan="1">Gene</th>
<th align="center" valign="top" rowspan="1" colspan="1">Minor Allele:MAF (min INFO)</th>
<th align="center" valign="top" rowspan="1" colspan="1">Beta (P)</th>
<th align="center" valign="top" rowspan="1" colspan="1">Beta (P)</th>
<th align="center" valign="top" rowspan="1" colspan="1">Beta (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">rs6750047</td>
<td align="center" valign="top" rowspan="1" colspan="1">2p22.2</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>RMDN2 (CYP1B1)</italic>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">A:0.43 (0.96)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.088 (2.9 × 10
<sup>−7</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.113 (6.0 × 10
<sup>−3</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.092 (7.0 × 10
<sup>−9</sup>
)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">rs6914598</td>
<td align="center" valign="top" rowspan="1" colspan="1">6p22.3</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>CDKAL1</italic>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">C:0.32 (0.88)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.11 (2.6 × 10
<sup>−8</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.037 (0.63)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.10 (3.5 × 10
<sup>−8</sup>
)
<sup>
<xref ref-type="table-fn" rid="TFN1">*</xref>
</sup>
</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">rs1636744</td>
<td align="center" valign="top" rowspan="1" colspan="1">7p21.1</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>AGR3</italic>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">T:0.40 (0.96)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.11 (1.8 × 10
<sup>−9</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.032 (0.38)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.091 (7.1 × 10
<sup>−9</sup>
)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">rs10739221</td>
<td align="center" valign="top" rowspan="1" colspan="1">9q31.2</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>TMEM38B (RAD23B, TAL2)</italic>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">T:0.24 (0.94)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.12 (9.6 × 10
<sup>−9</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.145 (1.7 × 10
<sup>−3</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.12 (7.1 × 10
<sup>−11</sup>
)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">rs2995264</td>
<td align="center" valign="top" rowspan="1" colspan="1">10q24.33</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>OBFC1</italic>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">G:0.088 (0.94)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.14 (8.5 × 10
<sup>−7</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.206 (0.088)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.16 (2.2 × 10
<sup>−9</sup>
)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">rs498136</td>
<td align="center" valign="top" rowspan="1" colspan="1">11q13.3</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>CCND1</italic>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">A:0.32 (0.97)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.12 (1.0 × 10
<sup>−10</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.124 (4.0 × 10
<sup>−3</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.12 (1.5 × 10
<sup>−12</sup>
)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">rs4778138</td>
<td align="center" valign="top" rowspan="1" colspan="1">15q13.1</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>OCA2</italic>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">G:0.16 0.82</td>
<td align="center" valign="top" rowspan="1" colspan="1">–0.18 (3.1 × 10
<sup>−9</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">–0.156 (1.7 × 10
<sup>−3</sup>
)</td>
<td align="center" valign="top" rowspan="1" colspan="1">–0.17 (2.2 × 10
<sup>−11</sup>
)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>For each region we report the chromosomal location, nearest gene, and any other promising candidate gene in brackets for the top SNP. We also report the 1000 Genomes European population minor allele frequency (MAF) and minimum imputation quality across all studies (min INFO). The Stage one meta-analysis field reports the effect size estimate (beta) and
<italic>P</italic>
-value for the minor allele from the meta-analysis of 11 CMM GWAS, totaling 12,874 cases and 23,203 controls. Following their genotyping in three additional datasets (total 3,116 cases and 3,206 controls) we provide the Stage two meta-analysis results. Finally we provide the Overall meta-analysis of all available data. The results for the top SNP in each region that reached
<italic>P</italic>
< 1 × 10
<sup>−6</sup>
in Stage one and so was genotyped in Stage two, per study results and evidence of heterogeneity of effect estimates across studies (I
<sup>2</sup>
) can be found in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Table 3</xref>
. Where I
<sup>2</sup>
values were below 31% fixed effects meta-analysis was used, otherwise random effects, and all genome-wide significant SNPs had low heterogeneity (I
<sup>2</sup>
< 31%) in both Stage one and Overall. Regions previously confirmed as associated with melanoma (e.g.
<italic>MC1</italic>
R) are not shown.</p>
<fn id="TFN1">
<label>*</label>
<p id="P63">Not genome-wide significant after formal multiple testing correction e.g.
<italic>P</italic>
< 3.06 × 10
<sup>−8</sup>
as in Li et al, (2012)
<sup>
<xref rid="R93" ref-type="bibr">93</xref>
</sup>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E42  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002E42  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024