Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002D929 ( Pmc/Corpus ); précédent : 002D928; suivant : 002D930 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer</title>
<author>
<name sortKey="Martinelli, Paola" sort="Martinelli, Paola" uniqKey="Martinelli P" first="Paola" last="Martinelli">Paola Martinelli</name>
<affiliation>
<nlm:aff id="A1">Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Cancer Progression and Metastasis Group, Institute for Cancer Research, Medical University Wien, Vienna, Austria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Carrillo De Santa Pau, Enrique" sort="Carrillo De Santa Pau, Enrique" uniqKey="Carrillo De Santa Pau E" first="Enrique" last="Carrillo-De Santa Pau">Enrique Carrillo-De Santa Pau</name>
<affiliation>
<nlm:aff id="A1">Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cox, Trevor" sort="Cox, Trevor" uniqKey="Cox T" first="Trevor" last="Cox">Trevor Cox</name>
<affiliation>
<nlm:aff id="A3">Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A4">NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sainz, Bruno" sort="Sainz, Bruno" uniqKey="Sainz B" first="Bruno" last="Sainz">Bruno Sainz</name>
<affiliation>
<nlm:aff id="A5">Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dusetti, Nelson" sort="Dusetti, Nelson" uniqKey="Dusetti N" first="Nelson" last="Dusetti">Nelson Dusetti</name>
<affiliation>
<nlm:aff id="A6">Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Greenhalf, William" sort="Greenhalf, William" uniqKey="Greenhalf W" first="William" last="Greenhalf">William Greenhalf</name>
<affiliation>
<nlm:aff id="A4">NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rinaldi, Lorenzo" sort="Rinaldi, Lorenzo" uniqKey="Rinaldi L" first="Lorenzo" last="Rinaldi">Lorenzo Rinaldi</name>
<affiliation>
<nlm:aff id="A1">Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A7">Institute for Research in Biomedicine (IRB), Barcelona, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Costello, Eithne" sort="Costello, Eithne" uniqKey="Costello E" first="Eithne" last="Costello">Eithne Costello</name>
<affiliation>
<nlm:aff id="A3">Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ghaneh, Paula" sort="Ghaneh, Paula" uniqKey="Ghaneh P" first="Paula" last="Ghaneh">Paula Ghaneh</name>
<affiliation>
<nlm:aff id="A3">Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A4">NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Malats, Nuria" sort="Malats, Nuria" uniqKey="Malats N" first="Núria" last="Malats">Núria Malats</name>
<affiliation>
<nlm:aff id="A8">Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Buchler, Markus" sort="Buchler, Markus" uniqKey="Buchler M" first="Markus" last="Büchler">Markus Büchler</name>
<affiliation>
<nlm:aff id="A9">Department for General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pajic, Marina" sort="Pajic, Marina" uniqKey="Pajic M" first="Marina" last="Pajic">Marina Pajic</name>
<affiliation>
<nlm:aff id="A10">Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Biankin, Andrew V" sort="Biankin, Andrew V" uniqKey="Biankin A" first="Andrew V" last="Biankin">Andrew V. Biankin</name>
<affiliation>
<nlm:aff id="A10">Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A11">Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A12">West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A13">South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Iovanna, Juan" sort="Iovanna, Juan" uniqKey="Iovanna J" first="Juan" last="Iovanna">Juan Iovanna</name>
<affiliation>
<nlm:aff id="A6">Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Neoptolemos, John" sort="Neoptolemos, John" uniqKey="Neoptolemos J" first="John" last="Neoptolemos">John Neoptolemos</name>
<affiliation>
<nlm:aff id="A3">Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A4">NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Real, Francisco X" sort="Real, Francisco X" uniqKey="Real F" first="Francisco X" last="Real">Francisco X. Real</name>
<affiliation>
<nlm:aff id="A1">Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A14">Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27325420</idno>
<idno type="pmc">5070637</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070637</idno>
<idno type="RBID">PMC:5070637</idno>
<idno type="doi">10.1136/gutjnl-2015-311256</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">002D92</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002D92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer</title>
<author>
<name sortKey="Martinelli, Paola" sort="Martinelli, Paola" uniqKey="Martinelli P" first="Paola" last="Martinelli">Paola Martinelli</name>
<affiliation>
<nlm:aff id="A1">Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Cancer Progression and Metastasis Group, Institute for Cancer Research, Medical University Wien, Vienna, Austria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Carrillo De Santa Pau, Enrique" sort="Carrillo De Santa Pau, Enrique" uniqKey="Carrillo De Santa Pau E" first="Enrique" last="Carrillo-De Santa Pau">Enrique Carrillo-De Santa Pau</name>
<affiliation>
<nlm:aff id="A1">Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cox, Trevor" sort="Cox, Trevor" uniqKey="Cox T" first="Trevor" last="Cox">Trevor Cox</name>
<affiliation>
<nlm:aff id="A3">Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A4">NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sainz, Bruno" sort="Sainz, Bruno" uniqKey="Sainz B" first="Bruno" last="Sainz">Bruno Sainz</name>
<affiliation>
<nlm:aff id="A5">Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dusetti, Nelson" sort="Dusetti, Nelson" uniqKey="Dusetti N" first="Nelson" last="Dusetti">Nelson Dusetti</name>
<affiliation>
<nlm:aff id="A6">Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Greenhalf, William" sort="Greenhalf, William" uniqKey="Greenhalf W" first="William" last="Greenhalf">William Greenhalf</name>
<affiliation>
<nlm:aff id="A4">NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rinaldi, Lorenzo" sort="Rinaldi, Lorenzo" uniqKey="Rinaldi L" first="Lorenzo" last="Rinaldi">Lorenzo Rinaldi</name>
<affiliation>
<nlm:aff id="A1">Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A7">Institute for Research in Biomedicine (IRB), Barcelona, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Costello, Eithne" sort="Costello, Eithne" uniqKey="Costello E" first="Eithne" last="Costello">Eithne Costello</name>
<affiliation>
<nlm:aff id="A3">Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ghaneh, Paula" sort="Ghaneh, Paula" uniqKey="Ghaneh P" first="Paula" last="Ghaneh">Paula Ghaneh</name>
<affiliation>
<nlm:aff id="A3">Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A4">NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Malats, Nuria" sort="Malats, Nuria" uniqKey="Malats N" first="Núria" last="Malats">Núria Malats</name>
<affiliation>
<nlm:aff id="A8">Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Buchler, Markus" sort="Buchler, Markus" uniqKey="Buchler M" first="Markus" last="Büchler">Markus Büchler</name>
<affiliation>
<nlm:aff id="A9">Department for General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pajic, Marina" sort="Pajic, Marina" uniqKey="Pajic M" first="Marina" last="Pajic">Marina Pajic</name>
<affiliation>
<nlm:aff id="A10">Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Biankin, Andrew V" sort="Biankin, Andrew V" uniqKey="Biankin A" first="Andrew V" last="Biankin">Andrew V. Biankin</name>
<affiliation>
<nlm:aff id="A10">Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A11">Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A12">West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A13">South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Iovanna, Juan" sort="Iovanna, Juan" uniqKey="Iovanna J" first="Juan" last="Iovanna">Juan Iovanna</name>
<affiliation>
<nlm:aff id="A6">Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Neoptolemos, John" sort="Neoptolemos, John" uniqKey="Neoptolemos J" first="John" last="Neoptolemos">John Neoptolemos</name>
<affiliation>
<nlm:aff id="A3">Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A4">NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Real, Francisco X" sort="Real, Francisco X" uniqKey="Real F" first="Francisco X" last="Real">Francisco X. Real</name>
<affiliation>
<nlm:aff id="A1">Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A14">Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Gut</title>
<idno type="ISSN">0017-5749</idno>
<idno type="eISSN">1468-3288</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="S1">
<title>Background and aims</title>
<p id="P1">The role of GATA factors in cancer has gained increasing attention recently, but the function of GATA6 in pancreatic ductal adenocarcinoma (PDAC) is controversial. GATA6 is amplified in a subset of tumours and was proposed to be oncogenic, but high GATA6 levels are found in well-differentiated tumours and are associated with better patient outcome. By contrast, a tumour-suppressive function of GATA6 was demonstrated using genetic mouse models. We aimed at clarifying GATA6 function in PDAC.</p>
</sec>
<sec id="S2">
<title>Design</title>
<p id="P2">We combined GATA6 silencing and overexpression in PDAC cell lines with GATA6 ChIP-Seq and RNA-Seq data, in order to understand the mechanism of GATA6 functions. We then confirmed some of our observations in primary patient samples, some of which were included in the ESPAC-3 randomised clinical trial for adjuvant therapy.</p>
</sec>
<sec id="S3">
<title>Results</title>
<p id="P3">GATA6 inhibits the epithelial–mesenchymal transition (EMT) in vitro and cell dissemination in vivo. GATA6 has a unique proepithelial and antimesenchymal function, and its transcriptional regulation is direct and implies, indirectly, the regulation of other transcription factors involved in EMT. GATA6 is lost in tumours, in association with altered differentiation and the acquisition of a basal-like molecular phenotype, consistent with an epithelial-to-epithelial (ET
<sup>2</sup>
) transition. Patients with basal-like GATA6
<sup>low</sup>
tumours have a shorter survival and have a distinctly poor response to adjuvant 5-fluorouracil (5-FU)/leucovorin. However, modulation of GATA6 expression in cultured cells does not directly regulate response to 5-FU.</p>
</sec>
<sec id="S4">
<title>Conclusions</title>
<p id="P4">We provide mechanistic insight into GATA6 tumour-suppressive function, its role as a regulator of canonical epithelial differentiation, and propose that loss of GATA6 expression is both prognostic and predictive of response to adjuvant therapy.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegel, Rl" uniqKey="Siegel R">RL Siegel</name>
</author>
<author>
<name sortKey="Miller, Kd" uniqKey="Miller K">KD Miller</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferlay, J" uniqKey="Ferlay J">J Ferlay</name>
</author>
<author>
<name sortKey="Steliarova Foucher, E" uniqKey="Steliarova Foucher E">E Steliarova-Foucher</name>
</author>
<author>
<name sortKey="Lortet Tieulent, J" uniqKey="Lortet Tieulent J">J Lortet-Tieulent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oettle, H" uniqKey="Oettle H">H Oettle</name>
</author>
<author>
<name sortKey="Post, S" uniqKey="Post S">S Post</name>
</author>
<author>
<name sortKey="Neuhaus, P" uniqKey="Neuhaus P">P Neuhaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neoptolemos, Jp" uniqKey="Neoptolemos J">JP Neoptolemos</name>
</author>
<author>
<name sortKey="Dunn, Ja" uniqKey="Dunn J">JA Dunn</name>
</author>
<author>
<name sortKey="Stocken, Dd" uniqKey="Stocken D">DD Stocken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neoptolemos, Jp" uniqKey="Neoptolemos J">JP Neoptolemos</name>
</author>
<author>
<name sortKey="Stocken, Dd" uniqKey="Stocken D">DD Stocken</name>
</author>
<author>
<name sortKey="Friess, H" uniqKey="Friess H">H Friess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neoptolemos, Jp" uniqKey="Neoptolemos J">JP Neoptolemos</name>
</author>
<author>
<name sortKey="Stocken, Dd" uniqKey="Stocken D">DD Stocken</name>
</author>
<author>
<name sortKey="Tudur Smith, C" uniqKey="Tudur Smith C">C Tudur Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neoptolemos, Jp" uniqKey="Neoptolemos J">JP Neoptolemos</name>
</author>
<author>
<name sortKey="Stocken, Dd" uniqKey="Stocken D">DD Stocken</name>
</author>
<author>
<name sortKey="Bassi, C" uniqKey="Bassi C">C Bassi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conroy, T" uniqKey="Conroy T">T Conroy</name>
</author>
<author>
<name sortKey="Desseigne, F" uniqKey="Desseigne F">F Desseigne</name>
</author>
<author>
<name sortKey="Ychou, M" uniqKey="Ychou M">M Ychou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Hoff, Dd" uniqKey="Von Hoff D">DD Von Hoff</name>
</author>
<author>
<name sortKey="Ervin, T" uniqKey="Ervin T">T Ervin</name>
</author>
<author>
<name sortKey="Arena, Fp" uniqKey="Arena F">FP Arena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, S" uniqKey="Jones S">S Jones</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Parsons, Dw" uniqKey="Parsons D">DW Parsons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greenhalf, W" uniqKey="Greenhalf W">W Greenhalf</name>
</author>
<author>
<name sortKey="Ghaneh, P" uniqKey="Ghaneh P">P Ghaneh</name>
</author>
<author>
<name sortKey="Neoptolemos, Jp" uniqKey="Neoptolemos J">JP Neoptolemos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collisson, Ea" uniqKey="Collisson E">EA Collisson</name>
</author>
<author>
<name sortKey="Sadanandam, A" uniqKey="Sadanandam A">A Sadanandam</name>
</author>
<author>
<name sortKey="Olson, P" uniqKey="Olson P">P Olson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maeda, M" uniqKey="Maeda M">M Maeda</name>
</author>
<author>
<name sortKey="Ohashi, K" uniqKey="Ohashi K">K Ohashi</name>
</author>
<author>
<name sortKey="Ohashi Kobayashi, A" uniqKey="Ohashi Kobayashi A">A Ohashi-Kobayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinelli, P" uniqKey="Martinelli P">P Martinelli</name>
</author>
<author>
<name sortKey="Canamero, M" uniqKey="Canamero M">M Canamero</name>
</author>
<author>
<name sortKey="Del Pozo, N" uniqKey="Del Pozo N">N del Pozo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwei, Ka" uniqKey="Kwei K">KA Kwei</name>
</author>
<author>
<name sortKey="Bashyam, Md" uniqKey="Bashyam M">MD Bashyam</name>
</author>
<author>
<name sortKey="Kao, J" uniqKey="Kao J">J Kao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, B" uniqKey="Fu B">B Fu</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Lakkur, S" uniqKey="Lakkur S">S Lakkur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhong, Y" uniqKey="Zhong Y">Y Zhong</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Fu, B" uniqKey="Fu B">B Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinelli, P" uniqKey="Martinelli P">P Martinelli</name>
</author>
<author>
<name sortKey="Madriles, F" uniqKey="Madriles F">F Madriles</name>
</author>
<author>
<name sortKey="Ca Amero, M" uniqKey="Ca Amero M">M Cañamero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hermann, Pc" uniqKey="Hermann P">PC Hermann</name>
</author>
<author>
<name sortKey="Sancho, P" uniqKey="Sancho P">P Sancho</name>
</author>
<author>
<name sortKey="Ca Amero, M" uniqKey="Ca Amero M">M Cañamero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thiery, Jp" uniqKey="Thiery J">JP Thiery</name>
</author>
<author>
<name sortKey="Acloque, H" uniqKey="Acloque H">H Acloque</name>
</author>
<author>
<name sortKey="Huang, Ry" uniqKey="Huang R">RY Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmalhofer, O" uniqKey="Schmalhofer O">O Schmalhofer</name>
</author>
<author>
<name sortKey="Brabletz, S" uniqKey="Brabletz S">S Brabletz</name>
</author>
<author>
<name sortKey="Brabletz, T" uniqKey="Brabletz T">T Brabletz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, Sm" uniqKey="Hong S">SM Hong</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A Li</name>
</author>
<author>
<name sortKey="Olino, K" uniqKey="Olino K">K Olino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moffitt, Ra" uniqKey="Moffitt R">RA Moffitt</name>
</author>
<author>
<name sortKey="Marayati, R" uniqKey="Marayati R">R Marayati</name>
</author>
<author>
<name sortKey="Flate, El" uniqKey="Flate E">EL Flate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, W" uniqKey="Yan W">W Yan</name>
</author>
<author>
<name sortKey="Cao, Qj" uniqKey="Cao Q">QJ Cao</name>
</author>
<author>
<name sortKey="Arenas, Rb" uniqKey="Arenas R">RB Arenas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang Da, W" uniqKey="Huang Da W">W Huang da</name>
</author>
<author>
<name sortKey="Sherman, Bt" uniqKey="Sherman B">BT Sherman</name>
</author>
<author>
<name sortKey="Lempicki, Ra" uniqKey="Lempicki R">RA Lempicki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, Y" uniqKey="Song Y">Y Song</name>
</author>
<author>
<name sortKey="Washington, Mk" uniqKey="Washington M">MK Washington</name>
</author>
<author>
<name sortKey="Crawford, Hc" uniqKey="Crawford H">HC Crawford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, N" uniqKey="Gao N">N Gao</name>
</author>
<author>
<name sortKey="Lelay, J" uniqKey="Lelay J">J LeLay</name>
</author>
<author>
<name sortKey="Vatamaniuk, Mz" uniqKey="Vatamaniuk M">MZ Vatamaniuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badea, L" uniqKey="Badea L">L Badea</name>
</author>
<author>
<name sortKey="Herlea, V" uniqKey="Herlea V">V Herlea</name>
</author>
<author>
<name sortKey="Dima, So" uniqKey="Dima S">SO Dima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balasenthil, S" uniqKey="Balasenthil S">S Balasenthil</name>
</author>
<author>
<name sortKey="Chen, N" uniqKey="Chen N">N Chen</name>
</author>
<author>
<name sortKey="Lott, St" uniqKey="Lott S">ST Lott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pei, H" uniqKey="Pei H">H Pei</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Fridley, Bl" uniqKey="Fridley B">BL Fridley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donahue, Tr" uniqKey="Donahue T">TR Donahue</name>
</author>
<author>
<name sortKey="Tran, Lm" uniqKey="Tran L">LM Tran</name>
</author>
<author>
<name sortKey="Hill, R" uniqKey="Hill R">R Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Birnbaum, Dj" uniqKey="Birnbaum D">DJ Birnbaum</name>
</author>
<author>
<name sortKey="Adelaide, J" uniqKey="Adelaide J">J Adélaïde</name>
</author>
<author>
<name sortKey="Mamessier, E" uniqKey="Mamessier E">E Mamessier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shain, Ah" uniqKey="Shain A">AH Shain</name>
</author>
<author>
<name sortKey="Giacomini, Cp" uniqKey="Giacomini C">CP Giacomini</name>
</author>
<author>
<name sortKey="Matsukuma, K" uniqKey="Matsukuma K">K Matsukuma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maser, Rs" uniqKey="Maser R">RS Maser</name>
</author>
<author>
<name sortKey="Choudhury, B" uniqKey="Choudhury B">B Choudhury</name>
</author>
<author>
<name sortKey="Campbell, Pj" uniqKey="Campbell P">PJ Campbell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waddell, N" uniqKey="Waddell N">N Waddell</name>
</author>
<author>
<name sortKey="Pajic, M" uniqKey="Pajic M">M Pajic</name>
</author>
<author>
<name sortKey="Patch, Am" uniqKey="Patch A">AM Patch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Damrauer, Js" uniqKey="Damrauer J">JS Damrauer</name>
</author>
<author>
<name sortKey="Hoadley, Ka" uniqKey="Hoadley K">KA Hoadley</name>
</author>
<author>
<name sortKey="Chism, Dd" uniqKey="Chism D">DD Chism</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Real, Fx" uniqKey="Real F">FX Real</name>
</author>
<author>
<name sortKey="Vila, Mr" uniqKey="Vila M">MR Vila</name>
</author>
<author>
<name sortKey="Skoudy, A" uniqKey="Skoudy A">A Skoudy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, W" uniqKey="Choi W">W Choi</name>
</author>
<author>
<name sortKey="Porten, S" uniqKey="Porten S">S Porten</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="S Rlie, T" uniqKey="S Rlie T">T Sørlie</name>
</author>
<author>
<name sortKey="Perou, Cm" uniqKey="Perou C">CM Perou</name>
</author>
<author>
<name sortKey="Tibshirani, R" uniqKey="Tibshirani R">R Tibshirani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheung, Wk" uniqKey="Cheung W">WK Cheung</name>
</author>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M Zhao</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evdokimova, V" uniqKey="Evdokimova V">V Evdokimova</name>
</author>
<author>
<name sortKey="Tognon, C" uniqKey="Tognon C">C Tognon</name>
</author>
<author>
<name sortKey="Ng, T" uniqKey="Ng T">T Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perou, Cm" uniqKey="Perou C">CM Perou</name>
</author>
<author>
<name sortKey="S Rlie, T" uniqKey="S Rlie T">T Sørlie</name>
</author>
<author>
<name sortKey="Eisen, Mb" uniqKey="Eisen M">MB Eisen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lerner, Sp" uniqKey="Lerner S">SP Lerner</name>
</author>
<author>
<name sortKey="Mcconkey, Dj" uniqKey="Mcconkey D">DJ McConkey</name>
</author>
<author>
<name sortKey="Hoadley, Ka" uniqKey="Hoadley K">KA Hoadley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masui, T" uniqKey="Masui T">T Masui</name>
</author>
<author>
<name sortKey="Swift, Gh" uniqKey="Swift G">GH Swift</name>
</author>
<author>
<name sortKey="Deering, T" uniqKey="Deering T">T Deering</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oca A, Oh" uniqKey="Oca A O">OH Ocaña</name>
</author>
<author>
<name sortKey="C Rcoles, R" uniqKey="C Rcoles R">R Córcoles</name>
</author>
<author>
<name sortKey="Fabra, A" uniqKey="Fabra A">A Fabra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsai, Jh" uniqKey="Tsai J">JH Tsai</name>
</author>
<author>
<name sortKey="Donaher, Jl" uniqKey="Donaher J">JL Donaher</name>
</author>
<author>
<name sortKey="Murphy, Da" uniqKey="Murphy D">DA Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campbell, K" uniqKey="Campbell K">K Campbell</name>
</author>
<author>
<name sortKey="Whissell, G" uniqKey="Whissell G">G Whissell</name>
</author>
<author>
<name sortKey="Franch Marro, X" uniqKey="Franch Marro X">X Franch-Marro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whissell, G" uniqKey="Whissell G">G Whissell</name>
</author>
<author>
<name sortKey="Montagni, E" uniqKey="Montagni E">E Montagni</name>
</author>
<author>
<name sortKey="Martinelli, P" uniqKey="Martinelli P">P Martinelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lund, K" uniqKey="Lund K">K Lund</name>
</author>
<author>
<name sortKey="Dembinski, Jl" uniqKey="Dembinski J">JL Dembinski</name>
</author>
<author>
<name sortKey="Solberg, N" uniqKey="Solberg N">N Solberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Feng, M" uniqKey="Feng M">M Feng</name>
</author>
<author>
<name sortKey="Zheng, G" uniqKey="Zheng G">G Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arumugam, T" uniqKey="Arumugam T">T Arumugam</name>
</author>
<author>
<name sortKey="Ramachandran, V" uniqKey="Ramachandran V">V Ramachandran</name>
</author>
<author>
<name sortKey="Fournier, Kf" uniqKey="Fournier K">KF Fournier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailey, P" uniqKey="Bailey P">P Bailey</name>
</author>
<author>
<name sortKey="Chang, Dk" uniqKey="Chang D">DK Chang</name>
</author>
<author>
<name sortKey="Nones, K" uniqKey="Nones K">K Nones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahmood, T" uniqKey="Mahmood T">T Mahmood</name>
</author>
<author>
<name sortKey="Yang, Pc" uniqKey="Yang P">PC Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carey, Mf" uniqKey="Carey M">MF Carey</name>
</author>
<author>
<name sortKey="Peterson, Cl" uniqKey="Peterson C">CL Peterson</name>
</author>
<author>
<name sortKey="Smale, St" uniqKey="Smale S">ST Smale</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">2985108R</journal-id>
<journal-id journal-id-type="pubmed-jr-id">3923</journal-id>
<journal-id journal-id-type="nlm-ta">Gut</journal-id>
<journal-id journal-id-type="iso-abbrev">Gut</journal-id>
<journal-title-group>
<journal-title>Gut</journal-title>
</journal-title-group>
<issn pub-type="ppub">0017-5749</issn>
<issn pub-type="epub">1468-3288</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27325420</article-id>
<article-id pub-id-type="pmc">5070637</article-id>
<article-id pub-id-type="doi">10.1136/gutjnl-2015-311256</article-id>
<article-id pub-id-type="manuscript">EMS69151</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Martinelli</surname>
<given-names>Paola</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Carrillo-de Santa Pau</surname>
<given-names>Enrique</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cox</surname>
<given-names>Trevor</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sainz</surname>
<given-names>Bruno</given-names>
<suffix>Jr</suffix>
</name>
<xref ref-type="aff" rid="A5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dusetti</surname>
<given-names>Nelson</given-names>
</name>
<xref ref-type="aff" rid="A6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Greenhalf</surname>
<given-names>William</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rinaldi</surname>
<given-names>Lorenzo</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Costello</surname>
<given-names>Eithne</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ghaneh</surname>
<given-names>Paula</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Malats</surname>
<given-names>Núria</given-names>
</name>
<xref ref-type="aff" rid="A8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Büchler</surname>
<given-names>Markus</given-names>
</name>
<xref ref-type="aff" rid="A9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pajic</surname>
<given-names>Marina</given-names>
</name>
<xref ref-type="aff" rid="A10">10</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Biankin</surname>
<given-names>Andrew V</given-names>
</name>
<xref ref-type="aff" rid="A10">10</xref>
<xref ref-type="aff" rid="A11">11</xref>
<xref ref-type="aff" rid="A12">12</xref>
<xref ref-type="aff" rid="A13">13</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Iovanna</surname>
<given-names>Juan</given-names>
</name>
<xref ref-type="aff" rid="A6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Neoptolemos</surname>
<given-names>John</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Real</surname>
<given-names>Francisco X</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A14">14</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</aff>
<aff id="A2">
<label>2</label>
Cancer Progression and Metastasis Group, Institute for Cancer Research, Medical University Wien, Vienna, Austria</aff>
<aff id="A3">
<label>3</label>
Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK</aff>
<aff id="A4">
<label>4</label>
NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK</aff>
<aff id="A5">
<label>5</label>
Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain</aff>
<aff id="A6">
<label>6</label>
Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France</aff>
<aff id="A7">
<label>7</label>
Institute for Research in Biomedicine (IRB), Barcelona, Spain</aff>
<aff id="A8">
<label>8</label>
Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain</aff>
<aff id="A9">
<label>9</label>
Department for General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany</aff>
<aff id="A10">
<label>10</label>
Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia</aff>
<aff id="A11">
<label>11</label>
Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK</aff>
<aff id="A12">
<label>12</label>
West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK</aff>
<aff id="A13">
<label>13</label>
South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, Australia</aff>
<aff id="A14">
<label>14</label>
Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain</aff>
<author-notes>
<corresp id="CR1">
<bold>Correspondence to</bold>
Dr Francisco X Real, CNIO, Melchor Fernandez Almagro, 3. Madrid 28029, Spain;
<email>freal@cnio.es</email>
and Dr Paola Martinelli, Borschkegasse 8a. 1090 Vienna, Austria;
<email>paola.martinelli@meduniwien.ac.at</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>13</day>
<month>7</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>20</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="ppub">
<month>9</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>9</month>
<year>2017</year>
</pub-date>
<volume>66</volume>
<issue>9</issue>
<fpage>1665</fpage>
<lpage>1676</lpage>
<pmc-comment>elocation-id from pubmed: 10.1136/gutjnl-2015-311256</pmc-comment>
<permissions>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See:
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<sec id="S1">
<title>Background and aims</title>
<p id="P1">The role of GATA factors in cancer has gained increasing attention recently, but the function of GATA6 in pancreatic ductal adenocarcinoma (PDAC) is controversial. GATA6 is amplified in a subset of tumours and was proposed to be oncogenic, but high GATA6 levels are found in well-differentiated tumours and are associated with better patient outcome. By contrast, a tumour-suppressive function of GATA6 was demonstrated using genetic mouse models. We aimed at clarifying GATA6 function in PDAC.</p>
</sec>
<sec id="S2">
<title>Design</title>
<p id="P2">We combined GATA6 silencing and overexpression in PDAC cell lines with GATA6 ChIP-Seq and RNA-Seq data, in order to understand the mechanism of GATA6 functions. We then confirmed some of our observations in primary patient samples, some of which were included in the ESPAC-3 randomised clinical trial for adjuvant therapy.</p>
</sec>
<sec id="S3">
<title>Results</title>
<p id="P3">GATA6 inhibits the epithelial–mesenchymal transition (EMT) in vitro and cell dissemination in vivo. GATA6 has a unique proepithelial and antimesenchymal function, and its transcriptional regulation is direct and implies, indirectly, the regulation of other transcription factors involved in EMT. GATA6 is lost in tumours, in association with altered differentiation and the acquisition of a basal-like molecular phenotype, consistent with an epithelial-to-epithelial (ET
<sup>2</sup>
) transition. Patients with basal-like GATA6
<sup>low</sup>
tumours have a shorter survival and have a distinctly poor response to adjuvant 5-fluorouracil (5-FU)/leucovorin. However, modulation of GATA6 expression in cultured cells does not directly regulate response to 5-FU.</p>
</sec>
<sec id="S4">
<title>Conclusions</title>
<p id="P4">We provide mechanistic insight into GATA6 tumour-suppressive function, its role as a regulator of canonical epithelial differentiation, and propose that loss of GATA6 expression is both prognostic and predictive of response to adjuvant therapy.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="S5">
<title>Introduction</title>
<p id="P5">Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, has a dismal prognosis
<xref rid="R1" ref-type="bibr">1</xref>
<xref rid="R2" ref-type="bibr">2</xref>
with a 5-year survival of 25%–30% after resection and adjuvant chemotherapy with either gemcitabine or 5-fluorouracil (5-FU) +leucovorin or gemcitabine.
<xref rid="R3" ref-type="bibr">3</xref>
<xref rid="R7" ref-type="bibr">7</xref>
Most patients present with advanced disease and are not eligible for surgery. Gemcitabine is the mainstay of therapy for locally advanced and metastatic disease. Recently, gemcitabine+nab-paclitaxel and FOLFIRINOX combination chemotherapies showed a modest improvement in survival of patients with advanced disease.
<xref rid="R8" ref-type="bibr">8</xref>
<xref rid="R9" ref-type="bibr">9</xref>
</p>
<p id="P6">Exome/genome sequencing of PDAC has revealed a complex pattern of genetic alterations, affecting multiple core signalling pathways.
<xref rid="R10" ref-type="bibr">10</xref>
The few frequently altered genes (
<italic>KRAS</italic>
,
<italic>CDKN2A</italic>
,
<italic>TP53</italic>
,
<italic>SMAD4</italic>
) have proven difficult to target therapeutically. The remaining alterations occur in <10% of tumours and, therefore, are not ideal targets for new therapies. Patient stratification for treatment selection is unfeasible because of the scarcity of pathological/molecular markers that can reliably predict therapeutic response. The recent report of high hENT-1 tumour protein levels being associated with response to gemcitabine is promising, but needs to be replicated in prospective studies.
<xref rid="R11" ref-type="bibr">11</xref>
The identification of new therapeutic targets and markers for patient stratification and targeted treatment are the two priorities.</p>
<p id="P7">Omics technologies provide a new molecular taxonomy of cancer. In PDAC, few studies have aimed at a molecular-based classification. Collisson
<italic>et al</italic>
<xref rid="R12" ref-type="bibr">12</xref>
identified three PDAC subtypes: classical, exocrine and mesenchymal-like. Classical tumours showed high GATA6 mRNA expression, and patients had a significantly better outcome. Cells with a classical phenotype showed distinct response to chemotherapy in vitro.
<xref rid="R12" ref-type="bibr">12</xref>
GATA6 belongs to a family of transcription factors that bind to the (A/T)GATA(A/G) consensus sequence to activate or repress gene expression.
<xref rid="R13" ref-type="bibr">13</xref>
GATA factors are important for cell differentiation, and
<italic>GATA6</italic>
is essential for the maintenance of the exocrine pancreas in adult mice.
<xref rid="R14" ref-type="bibr">14</xref>
An oncogenic role was proposed for GATA6 in PDAC based on the occurrence of
<italic>GATA6</italic>
gains/amplifications in a small proportion of tumours.
<xref rid="R15" ref-type="bibr">15</xref>
<xref rid="R16" ref-type="bibr">16</xref>
However, high
<italic>GATA6</italic>
copy number is significantly associated with a better outcome in patients with PDAC,
<xref rid="R17" ref-type="bibr">17</xref>
suggesting that its function could be more complex than originally proposed. A tumour-suppressive role of GATA6 has been recently postulated in PDAC mouse models,
<xref rid="R18" ref-type="bibr">18</xref>
<xref rid="R19" ref-type="bibr">19</xref>
where it regulates differentiation-related as well as cancer-related transcriptional programmes.</p>
<p id="P8">Here, we show that, in human PDAC cells, GATA6 inhibits de-differentiation and epithelial–mesenchymal transition (EMT), both directly and indirectly, through a unique mechanism that involves the regulation of transcription factors, including FOXA1/2. Consistently, loss of GATA6 in PDAC primary samples is associated with altered differentiation and shorter overall patient survival. Finally, the analysis of tumour samples from the ESPAC-3 randomised adjuvant chemotherapy trial
<xref rid="R7" ref-type="bibr">7</xref>
shows that low GATA6 expression can predict worse response to adjuvant 5-FU/leucovorin.</p>
</sec>
<sec sec-type="results" id="S6">
<title>Results</title>
<sec id="S7">
<title>
<italic>GATA6</italic>
maintains the canonical epithelial phenotype in PDAC cells</title>
<p id="P9">To determine the function of GATA6, we analysed its expression in a panel of PDAC cell lines to select the optimal models for loss-of-function and gain-of-function analyses (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S1</xref>
). We silenced GATA6 in three PDAC cell lines, including one with
<italic>GATA6</italic>
amplification (A13B),
<xref rid="R16" ref-type="bibr">16</xref>
using two different lentiviral-driven shRNAs (figure A, B and see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S2A–C</xref>
). PaTu8988S cells grew as compact colonies and, upon GATA6 silencing, acquired a spindle-like shape and showed increased scattering. Furthermore, E-cadherin was downregulated and vimentin was upregulated (
<xref ref-type="fig" rid="F1">figure 1A, B</xref>
), all features suggesting an EMT. Similarly, GATA6-silenced A13B cells showed lower E-cadherin levels (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S2B, S2D</xref>
) and GATA6-silenced SK-PC-1 cells showed increased vimentin levels (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S2D</xref>
). Despite the partially different cell-specific effects of GATA6 silencing (likely dependent on the extent of downregulation and the genetic background), we observed a common convergence towards EMT. Consistently, GATA6 overexpression in L3.6pl PDAC cells—displaying a looser growth pattern—resulted in the formation of compact colonies, reduced scattering, upregulated E-cadherin expression and downregulated vimentin (
<xref ref-type="fig" rid="F1">figure 1C–D</xref>
and see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S2F</xref>
). These findings support a mesenchymal–epithelial transition (MET) and demonstrate that GATA6 maintains the canonical epithelial phenotype in PDAC cells.</p>
</sec>
<sec id="S8">
<title>GATA6 inhibits invasion in vitro and cell dissemination in vivo</title>
<p id="P10">EMT plays an important role in tumour progression and spreading
<xref rid="R20" ref-type="bibr">20</xref>
<xref rid="R21" ref-type="bibr">21</xref>
and is associated with the outcome in patients with PDAC.
<xref rid="R22" ref-type="bibr">22</xref>
Consistently, GATA6-silenced PaTu8988S and SK-PC-1 cells displayed increased capacity to invade in vitro (
<xref ref-type="fig" rid="F2">figure 2A</xref>
and see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S2E</xref>
), while invasiveness was reduced in L3.6pl cells overexpressing GATA6 (
<xref ref-type="fig" rid="F2">figure 2B</xref>
). To assess the contribution of GATA6 to tumour cell dissemination, we injected GATA6-silenced PaTu8988S and GATA6-over-expressing L3.6pl cells—and the respective control cells—into the spleen of athymic
<italic>Foxn1
<sup>nu</sup>
</italic>
mice and measured human gene expression in the liver by qPCR, an estimate of dissemination. GATA6 silencing in PaTu8988S cells significantly increased their capacity to reach the liver (p=0.048), while GATA6 overexpression in L3.6pl cells had the opposite effect (p=0.032) (
<xref ref-type="fig" rid="F2">figure 2C</xref>
).</p>
<p id="P11">These data suggest that, through the regulation of EMT/MET, GATA6 might inhibit the acquisition of metastatic potential in PDAC cells. Furthermore, GATA6 was expressed at comparable levels in primary tumours (n=145) and adjacent normal pancreas (n=46) included in a recently published dataset,
<xref rid="R23" ref-type="bibr">23</xref>
while it was significantly reduced in metastases (n=61) (p<0.001, see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S3</xref>
), consistent with an antimetastatic role for GATA6 in patients.</p>
</sec>
<sec id="S9">
<title>GATA6 blocks EMT directly and indirectly</title>
<p id="P12">EMT is mainly controlled by SNAI, ZEB and TWIST transcription factors, repressing E-cadherin expression and epithelial differentiation,
<xref rid="R20" ref-type="bibr">20</xref>
while few positive regulators of the epithelial programme are known.</p>
<p id="P13">E-cadherin mRNA was reduced in all GATA6-silenced cells analysed (
<xref ref-type="fig" rid="F3">figure 3A</xref>
) and upregulated in GATA6-overexpressing L3.6pl cells (
<xref ref-type="fig" rid="F3">figure 3B</xref>
). Furthermore, mRNA levels of SNAI2, ZEB1 and TWIST1 were upregulated in GATA6-silenced PaTu8988S cells, as were the levels of the mesenchymal marker vimentin (
<xref ref-type="fig" rid="F3">figure 3C</xref>
). Accordingly, SNAI1 and vimentin mRNA levels were reduced in GATA6-overexpressing L3.6pl cells (
<xref ref-type="fig" rid="F3">figure 3B</xref>
). These data suggest that GATA6 can regulate EMT-MET through the canonical pathway involving EMT-inducing transcription factors (EMT-TFs). The GATA6-dependent changes in EMT-TFs levels varied among different cell lines, suggesting convergence in the regulation of EMT-MET.</p>
<p id="P14">To further unravel how GATA6 regulates EMT, we determined its genome-wide distribution in PaTu8988S cells using ChIP-Seq. GATA6 occupied 26 248 genomic regions (FDR<0.01, see
<xref ref-type="supplementary-material" rid="SD1">online supplementary dataset S1</xref>
). The canonical GATAA sequence was the most enriched motif in the sequenced tags (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S4A</xref>
, E-value: 3.8e-350). GATA6 peaks were preferentially found (40%) within 1 kb from the transcription start site (TSS) of coding genes (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S4B</xref>
). ChIP-qPCR confirmed the ChIP-Seq results for a subset of genes (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S4C</xref>
).</p>
<p id="P15">A manual EMT-targeted analysis revealed two GATA6 peaks in the
<italic>E-cadherin</italic>
locus (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S4D</xref>
). One of them included the TSS and contained a non-canonical GATC sequence to which GATA3 binds in breast cancer cells.
<xref rid="R24" ref-type="bibr">24</xref>
We confirmed GATA6 binding on this sequence and on the TSS (
<xref ref-type="fig" rid="F3">figure 3D</xref>
). Wild-type GATA6—but not a DNA-binding mutant
<xref rid="R17" ref-type="bibr">17</xref>
—enhanced the activity of an
<italic>E-cadherin</italic>
promoter–reporter construct including the TSS (
<xref ref-type="fig" rid="F3">figure 3E</xref>
), indicating direct transcriptional activation. Another peak is close to four canonical GATAA motifs; binding in the proximity of the first of them was confirmed by ChIP-qPCR (
<xref ref-type="fig" rid="F3">figure 3D</xref>
). GATA6 also bound the promoter of multiple epithelial genes, including protocadherins, tight junction components (
<italic>CLDN1</italic>
,
<italic>CLDN4, CLDN7</italic>
,
<italic>OCLN</italic>
,
<italic>TJP1</italic>
,
<italic>TJP2</italic>
,
<italic>TJP3</italic>
), desmosomal proteins (
<italic>DSC2, DSC3</italic>
, DSG2), integrins, and keratins. We observed GATA6 binding to the promoter of
<italic>SNAI1</italic>
and
<italic>ZEB1</italic>
, and to the second intron of
<italic>ZEB2</italic>
(confirmed by ChIP-qPCR;
<xref ref-type="fig" rid="F3">figure 3F</xref>
and see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S4D</xref>
). GATA6 was also found in the promoter of
<italic>VIM</italic>
(coding for vimentin) and other mesenchymal genes (
<xref ref-type="fig" rid="F3">figure 3F</xref>
and see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S4D</xref>
). Gene-enrichment and functional annotation analysis (DAVID suite)
<xref rid="R25" ref-type="bibr">25</xref>
on 5643 GATA6 peaks located <1 kb from a TSS and with FDR<0.1% (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S1</xref>
) revealed enrichment of ‘focal adhesion', ‘tight junction', and ‘regulation of actin cytoskeleton’ pathways. The TGFβ and ERBB pathways, involved in EMT and in PDAC,
<xref rid="R10" ref-type="bibr">10</xref>
were also enriched. These results indicate that GATA6 has a broad direct proepithelial function and concomitantly inhibits the mesenchymal programme.</p>
</sec>
<sec id="S10">
<title>GATA6 regulates the E-cadherin inducers FOXA1 and FOXA2</title>
<p id="P16">Among the few known E-cadherin transcriptional activators are FOXA1 and FOXA2,
<xref rid="R26" ref-type="bibr">26</xref>
two important regulators of pancreatic development.
<xref rid="R27" ref-type="bibr">27</xref>
Prominent GATA6 peaks in
<italic>FOXA1</italic>
and
<italic>FOXA2</italic>
suggested strong binding (
<xref ref-type="fig" rid="F4">figure 4A</xref>
), confirmed at their TSS by ChIP-qPCR (
<xref ref-type="fig" rid="F4">figure 4B</xref>
). FOXA1/2 mRNAs were upregulated in GATA6-overexpressing L3.6 cells (
<xref ref-type="fig" rid="F4">figure 4C</xref>
) and repressed in GATA6-silenced PaTu8988S and SK-PC-1 cells (
<xref ref-type="fig" rid="F4">figure 4D</xref>
); FOXA1/2 proteins were reduced in GATA6-silenced PaTu8988S cells (
<xref ref-type="fig" rid="F4">figure 4E</xref>
). Furthermore, wild-type GATA6—but not the mutant—activated
<italic>FOXA1</italic>
and
<italic>FOXA2</italic>
promoter–reporter constructs (
<xref ref-type="fig" rid="F4">figure 4F</xref>
). Interestingly, the FOXA DNA binding sequence was the second most enriched motif in the GATA6 ChIP-Seq (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S4A</xref>
), and we confirmed FOXA2 binding to a subset of GATA6 targets including both activated and repressed genes (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S4E</xref>
). Altogether, these data indicate that GATA6 activates transcription of E-cadherin, and possibly other targets, also indirectly through the induction of FOXA1 and FOXA2. GATA6 and FOXA1/2 thus cooperate in their proepithelial function. To assess the contribution of FOXA1/2 to GATA6-dependent functions, we silenced them individually in GATA6-overexpressing L3.6pl cells, but massive cell death precluded further analyses (not shown).</p>
</sec>
<sec id="S11">
<title>GATA6 is lost in human PDAC, in association with loss of epithelial differentiation</title>
<p id="P17">We analysed GATA6, E-cadherin and FOXA2 by IHC in tumours (n=25) using 4 mm core tissue microarrays (TMA), allowing for detection of intratumour heterogeneity. GATA6 was lost broadly or focally in 4 (16%) and 12 cases (48%), respectively. E-cadherin was consistently low/mislocalised in all the GATA6
<sup>neg</sup>
tumours and in areas of focal GATA6 loss. Likewise, FOXA2 was low in the GATA6
<sup>neg</sup>
regions, supporting the relevance of the GATA6–FOXA2–E-cadherin axis in primary PDAC (
<xref ref-type="fig" rid="F5">figure 5A</xref>
). In a meta-dataset of four published PDAC gene expression studies (META, n = 108),
<xref rid="R28" ref-type="bibr">28</xref>
<xref rid="R31" ref-type="bibr">31</xref>
we confirmed a positive correlation of GATA6, FOXA2 and E-cadherin mRNA levels (p<0.001 for all comparisons;
<xref ref-type="fig" rid="F5">figure 5B</xref>
). Similar correlations were observed in an independent series (Moffitt, see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S5</xref>
).
<xref rid="R23" ref-type="bibr">23</xref>
FOXA1 expression did not correlate with GATA6, FOXA2 or E-cadherin (data not shown), suggesting that FOXA2 is the main GATA6 partner in PDAC.</p>
<p id="P18">Our observations suggest a tumour-suppressive role of GATA6 in human PDAC, concordant with our findings for mouse PDAC.
<xref rid="R18" ref-type="bibr">18</xref>
This notion is at odds with the occurrence of
<italic>GATA6</italic>
amplifications in 10%–20% of PDACs,
<xref rid="R15" ref-type="bibr">15</xref>
<xref rid="R16" ref-type="bibr">16</xref>
<xref rid="R32" ref-type="bibr">32</xref>
which led to the proposal that it is a PDAC oncogene. To solve this conundrum, we reanalysed
<italic>GATA6</italic>
gene copy number changes in three PDAC series (CNV, see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S2</xref>
):
<xref rid="R32" ref-type="bibr">32</xref>
<xref rid="R33" ref-type="bibr">33</xref>
<xref rid="R34" ref-type="bibr">34</xref>
13/117 (11%) tumours showed amplifications, but losses occurred at a similar rate (17/117, 14.5%) (
<xref ref-type="fig" rid="F5">figure 5C</xref>
and see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S2</xref>
).
<italic>GATA6</italic>
is on 18q11, 28.7 Mb from
<italic>SMAD4</italic>
, which is frequently deleted in PDAC.
<italic>GATA6</italic>
and
<italic>SMAD4</italic>
were lost concomitantly in 11/17 cases and separately in 6/17 cases, suggesting that an independent selective pressure acts against
<italic>GATA6</italic>
in some PDACs (
<xref ref-type="fig" rid="F5">figure 5C</xref>
and see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S2</xref>
).
<italic>GATA6</italic>
losses were confirmed in a subset (9/100) of PDAC recently reported by the Australian Pancreas Cancer Initiative.
<xref rid="R35" ref-type="bibr">35</xref>
</p>
</sec>
<sec id="S12">
<title>Low GATA6 identifies a PDAC subtype with basal-like features</title>
<p id="P19">To gain insight into GATA6 function in PDACs, we compared the transcriptome of tumours belonging to the highest and lowest GATA6 expression quartiles in the PDAC meta-dataset (GATA6
<sup>high</sup>
and GATA6
<sup>low</sup>
, n = 27 for each group) and identified 495 genes upregulated or downregulated in GATA6
<sup>low</sup>
versus GATA6
<sup>high</sup>
with FDR<0.01 (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary dataset S2</xref>
). Gene sets induced in basal-like (BAS-L) and suppressed in luminal-like breast cancers were enriched among genes upregulated in GATA6
<sup>low</sup>
tumours (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S3 and figure S6</xref>
).</p>
<p id="P20">Recently, a BAS-L subtype of bladder cancer was described carrying similarities with the corresponding breast cancer subtype, suggesting that poorly differentiated carcinomas of distinct origin might converge to a similar molecular phenotype. Hierarchical clustering of the meta-dataset samples according to a bladder cancer-defined 47-gene signature (BASE47)
<xref rid="R36" ref-type="bibr">36</xref>
identified a BAS-L subgroup of PDAC (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S7A</xref>
).</p>
<p id="P21">Basal keratins are expressed in a subset of PDACs but are undetectable in normal pancreas.
<xref rid="R12" ref-type="bibr">12</xref>
<xref rid="R37" ref-type="bibr">37</xref>
Using the TMAs described earlier, KRT14 was found in the GATA6
<sup>neg</sup>
regions of 7/16 PDACs, while it was absent from GATA6
<sup>high</sup>
regions (
<xref ref-type="fig" rid="F5">figure 5A</xref>
). Consistently, GATA6 was significantly lower in BAS-L tumours (p<0.001, see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S7B</xref>
), and GATA6-silenced PaTu8988S cells ectopically expressed the basal keratins KRT5 and KRT14 (
<xref ref-type="fig" rid="F1">figure 1B</xref>
). Furthermore, ChIP-Seq data showed GATA6 binding to the promoter of genes belonging to multiple published basal-related signatures,
<xref rid="R36" ref-type="bibr">36</xref>
<xref rid="R38" ref-type="bibr">38</xref>
<xref rid="R39" ref-type="bibr">39</xref>
some of which were also regulated in the RNA-Seq experiment (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary dataset S3</xref>
). Altogether, these data suggest that GATA6 participates in the regulation of the BAS-L transcriptional programme and that basal-like PDACs are GATA6
<sup>low</sup>
.</p>
</sec>
<sec id="S13">
<title>Low GATA6 expression predicts poor survival and distinct response to adjuvant chemotherapy in patients with PDAC</title>
<p id="P22">Patients with BAS-L bladder and breast tumours have worse outcome and a distinct response to therapy.
<xref rid="R36" ref-type="bibr">36</xref>
<xref rid="R38" ref-type="bibr">38</xref>
<xref rid="R39" ref-type="bibr">39</xref>
To assess the impact of GATA6 loss on patient survival, we analysed a series of 58 patients from whom xenografts were established and transcriptome data were available. Patients were categorised based on GATA6 expression values in three groups (<500, 500–1000, >1000). In this exploratory series, GATA6 levels were not significantly associated with the clinical–pathological variables considered (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S4</xref>
). The survival of patients with GATA6
<sup>medium</sup>
and GATA6
<sup>high</sup>
tumours was similar (12.7 vs 13.1 months, respectively) and significantly longer than those with GATA6
<sup>low</sup>
tumours (4.6 months, p=0.003) (
<xref ref-type="fig" rid="F6">figure 6A,B</xref>
). Low GATA6 expression was associated with significantly increased death risk both in the univariate analysis (HR=5.39, 95% CI 2.3 to 12.9; p<0.001) and in the model adjusted by age and gender (HR=3.77, 95% CI 1.74 to 8.17; p=0.001) (
<xref ref-type="table" rid="T1">table 1</xref>
).</p>
<p id="P23">To further explore the relationship between GATA6 expression and patient outcome, and its predictive value, we analysed TMAs from patients included in the ESPAC-3 trial.
<xref rid="R7" ref-type="bibr">7</xref>
Using a histoscore based on the proportion of reactive cells and staining intensity, GATA6 expression was low/undetectable in 37/313 (11.8%) tumours. GATA6 levels were associated with tumour grade (p=0.005) but not with other clinical–pathological variables (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S5</xref>
). Both treatment arms were well balanced regarding patient demographics (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S6</xref>
). In the 5-FU/leucovorin arm, patients with GATA6
<sup>low</sup>
or GATA6
<sup>medium</sup>
tumours survived significantly less than patients with GATA6
<sup>high</sup>
tumours (p values 0.018 and 0.039, respectively) (
<xref ref-type="fig" rid="F6">figure 6C</xref>
). By contrast, GATA6 expression was not associated with survival in the gemcitabine arm (
<xref ref-type="fig" rid="F6">figure 6D</xref>
). In the univariate analysis, GATA6 levels showed a marginally significant association with outcome, exclusively among patients receiving 5-FU/leucovorin (p=0.057) (
<xref ref-type="table" rid="T2">table 2</xref>
, see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S7</xref>
). Multivariable analysis did not reveal additional correlations (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S8</xref>
). Furthermore, KRT14 expression was not predictive of outcome (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S7</xref>
). These results support the notion that patients with GATA6
<sup>low/medium</sup>
tumours might benefit less from treatment with 5-FU/leucovorin than from treatment with gemcitabine.</p>
<p id="P24">We treated a panel of 11 primary cell lines established from patient-derived xenografts (TKCC cells, see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S8A</xref>
)
<xref rid="R35" ref-type="bibr">35</xref>
with increasing doses of 5-FU, gemcitabine or paclitaxel, and monitored the cytotoxic effect of the drugs. GATA6
<sup>low</sup>
cells showed significantly lower sensitivity to 1 µM 5-FU (r=−0.61, p=0.046) and a consistent tendency to lower sensitivity to all other 5-FU concentrations (
<xref ref-type="fig" rid="F7">figure 7</xref>
and see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S8B</xref>
), while no correlation was observed with gemcitabine or paclitaxel, regardless of the concentrations used (
<xref ref-type="fig" rid="F7">figure 7</xref>
and see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S8C,D</xref>
). These findings support the selective association of GATA6 levels with 5-FU response as observed in the patients included in ESPAC-3 trial.</p>
<p id="P25">To investigate whether GATA6 has a causative role in the response to 5-FU, we knocked it down in PaTu8988S cells, as well as in the 5-FU sensitive, GATA6
<sup>high</sup>
, TKCC18 and TKCC19 cells, and we overexpressed it in L3.6pl cells and in the 5-FU resistant, GATA6
<sup>low</sup>
, TKCC9, TKCC15 and TKCC26 cells. However, we did not observe significant changes in the sensitivity of these cells to 5-FU, gemcitabine or paclitaxel (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary figure S9,S10</xref>
, and data not shown).</p>
</sec>
</sec>
<sec sec-type="discussion" id="S14">
<title>Discussion</title>
<p id="P26">An improved understanding of PDAC biology and tumour taxonomy should leverage on the exploitation of available therapies. Here, we provide important evidence in these directions. We extend prior data indicating GATA6 as a hallmark of tumour differentiation, provide strong evidence that it regulates the epithelial phenotype through novel mechanisms and show its potential as a marker for patient stratification.</p>
<p id="P27">GATA6 has a proepithelial and anti-EMT function in PDAC, and it does so through a unique mechanism, involving both the activation of epithelial genes and the concomitant repression of mesenchymal genes. Furthermore, the action of GATA6 is dual: direct—through the regulation of epithelial and mesenchymal genes—and indirect—through the regulation of proepithelial and promesenchymal transcription factors. To our knowledge, GATA6 is the first EMT regulator with such properties. GATA6 blocks dedifferentiation and the acquisition of metastatic properties in lung adenocarcinoma cells,
<xref rid="R40" ref-type="bibr">40</xref>
but the underlying mechanisms had not been elucidated. Here, we show that the same is true for PDAC cells, where GATA6 downregulation increased tumour cell dissemination. Consistently, in the ESPAC-3 patient cohort, low GATA6 expression correlated with moderate/poor tumour grade. Although no significant correlation was observed with lymph node status or local invasion, the GATA6 histoscore showed a tendency to be lower in patients that were positive for either parameter. These observations, together with our in vitro and in vivo data, further support that GATA6 plays a role in inhibiting tumour spreading, although other factors appear to be involved.</p>
<p id="P28">Of note, GATA6-silenced PDAC cells showed reduced proliferation (not shown), as previously reported,
<xref rid="R15" ref-type="bibr">15</xref>
<xref rid="R17" ref-type="bibr">17</xref>
consistent with the observation that EMT is associated with slower proliferation and reduced tumour growth.
<xref rid="R41" ref-type="bibr">41</xref>
Proliferation was likewise reduced in GATA6-overexpressing L3.6pl cells (not shown), suggesting a more complex function for GATA6. Distinct genetic (ie, SMAD4 status, see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S9</xref>
) and epigenetic landscapes might account for the discrepancy with the previous reports.
<xref rid="R17" ref-type="bibr">17</xref>
</p>
<p id="P29">GATA6 also represses a basal-like transcriptional programme similar to the one described in breast and bladder
<xref rid="R36" ref-type="bibr">36</xref>
<xref rid="R38" ref-type="bibr">38</xref>
<xref rid="R42" ref-type="bibr">42</xref>
<xref rid="R43" ref-type="bibr">43</xref>
and, more recently, in PDAC.
<xref rid="R23" ref-type="bibr">23</xref>
Loss of canonical differentiation was previously associated with low GATA6, both in PDAC
<xref rid="R12" ref-type="bibr">12</xref>
and in lung cancer.
<xref rid="R40" ref-type="bibr">40</xref>
Furthermore, a GATA6-overexpression signature was enriched in the classical PDAC subtype described recently.
<xref rid="R23" ref-type="bibr">23</xref>
However, a mechanistic explanation was completely missing. Our work supports a causal role for GATA6 in repressing this BAS-L programme in PDAC. Interestingly, a cell population with a BAS-L phenotype is present in normal multilayered epithelia, such as breast, bladder and lung, but not in the single-layered pancreatic epithelium. Therefore, the emergence of a basal-related programme does not necessarily reflect the cell of origin of the tumour, as it was proposed, but it might represent a common ‘low-energy’ state for multiple tumour epithelial cell types. Alternatively, the BAS-L phenotype in PDAC might represent a transition to an ectopic differentiation programme, which could be defined as an ‘epithelial-to-epithelial transition’ (ET
<sup>2</sup>
). ET
<sup>2</sup>
differs from the activation of lineage-preserved ectopic differentiation programmes, such as the gastric phenotype observed in PDAC precursors,
<xref rid="R44" ref-type="bibr">44</xref>
also repressed by GATA6 in mice.
<xref rid="R18" ref-type="bibr">18</xref>
In the pancreas, the basal programme defined by the ET
<sup>2</sup>
concept does not represent a developmental feature. While ET
<sup>2</sup>
may herald a full-blown EMT during tumour progression, these processes seem to be independent in lung adenocarcinoma, where GATA6
<sup>low</sup>
BAS-L tumours lack EMT features.
<xref rid="R40" ref-type="bibr">40</xref>
More investigations are required to assess the putative sequence from ET
<sup>2</sup>
to EMT in other tumour types and a more general role of the GATA and FOXA protein families.</p>
<p id="P30">Concertedly, these findings contribute to explain the conundrum generated by observations supporting that GATA6 acts as oncogene in PDAC; yet, patients with GATA6-low tumours have worse outcome.</p>
<p id="P31">Sequentially regulated EMT and MET are required for efficient tumour spreading.
<xref rid="R45" ref-type="bibr">45</xref>
<xref rid="R46" ref-type="bibr">46</xref>
GATA6 regulates both processes; therefore, we hypothesise that the genetic context, as well as the microenvironment, might select for loss versus gain of GATA6 expression. Multiple evidences point to context-dependent functions: GATA6 favours EMT in vivo in
<italic>Drosophila melanogaster</italic>
and in vitro in MDCK cells
<xref rid="R47" ref-type="bibr">47</xref>
and is required for the tumourigenic activity of
<italic>Apc</italic>
loss in the mouse colon.
<xref rid="R48" ref-type="bibr">48</xref>
The different outputs might depend on the levels/localisation of other transcriptional regulators and coactivators/repressors and the epigenetic landscape. We propose that
<italic>GATA6</italic>
belongs to a new type of cancer genes whose effect can be oncogenic or tumour-suppressive depending on the cellular/genomic context.</p>
<p id="P32">GATA6 loss leads to EGFR pathway activation in PDAC cells and in mouse PDAC,
<xref rid="R18" ref-type="bibr">18</xref>
suggesting a predictive, or causal, role for GATA6 in treatment response in patients. To explore this notion, we analysed samples from patients included in ESPAC-3, a randomised adjuvant trial comparing 5-FU/leucovorin and gemcitabine.
<xref rid="R7" ref-type="bibr">7</xref>
The ESPAC-3 trial showed that both treatments had comparable effects on overall survival. We show that patients with GATA6
<sup>low</sup>
tumours do not benefit from adjuvant 5-FU/leucovorin and have a significantly lower survival than similarly treated patients with GATA6
<sup>high</sup>
tumours. By contrast, GATA6 expression was not associated with the response to gemcitabine. Altogether, these results point to GATA6 as a predictive marker for patient stratification. Given the antitumour activity of FOLFIRINOX in patients with PDAC, it will be important to determine whether GATA6 also predicts response to this drug combination. In addition, the joint analysis of hENT and GATA6 expression may show enhanced predictive ability.</p>
<p id="P33">The mechanism underlying the lack of response to 5-FU/leucovorin observed in GATA6
<sup>low</sup>
tumours is still to be elucidated. The appearance of EMT features in 5-FU-resistant cells in vitro has been reported in various solid tumours, including PDAC,
<xref rid="R49" ref-type="bibr">49</xref>
<xref rid="R50" ref-type="bibr">50</xref>
<xref rid="R51" ref-type="bibr">51</xref>
but a cause–effect relationship is lacking. Modulation of GATA6 levels in TKCC cells did not change their sensitivity to chemotherapeutic drugs, suggesting that GATA6 is part of a molecular phenotype involved in drug response, but it is not its major driver.</p>
<p id="P34">In conclusion, we provide here a thorough mechanistic analysis of GATA6 function in PDAC cells, where it inhibits EMT, basality and dissemination, supporting its role as a PDAC tumour suppressor, further strengthened by the genomic losses that we and others observed, and by the hypermethylation of
<italic>GATA6</italic>
promoter described recently.
<xref rid="R52" ref-type="bibr">52</xref>
Finally, we propose GATA6 as a valuable marker to guide patient treatment.</p>
</sec>
<sec sec-type="methods" id="S15">
<title>Methods</title>
<sec id="S16">
<title>Cell lines</title>
<p id="P35">HEK293T and PDAC cells were cultured in DMEM supplemented with 10% FBS and NaPyr, in standard conditions (37°C, 20% O
<sub>2</sub>
, 5% CO
<sub>2</sub>
), except for L3.6pl cells, which were cultured in RPMI with 10% serum. Mutational profile of the cells used is available in
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S9</xref>
. We obtained HEK293T cells from ATCC, A13B from C. Iacobuzio-Donahue (Memorial Sloan Kettering, New York, USA), L3.6pl cells from C. Heeschen (CNIO, Madrid, Spain) and PaTu8988 S from M. Buchholz (University of Marburg, Germany). TKCC primary cell lines were established as described.
<xref rid="R35" ref-type="bibr">35</xref>
All remaining PDAC cells were previously available in the laboratory.</p>
</sec>
<sec id="S17">
<title>Cytotoxicity assays</title>
<p id="P36">Cells were seeded at low density (5000 cells/well) in 96-well plates and treated with either DMSO or increasing concentrations of 5-FU (1 nM–100 µM, SIGMA-Aldrich), gemcitabine (1 nM–100 µM, SIGMA-Aldrich) or paclitaxel (100 pM–10 µM, SIGMA-Aldrich). After 72 hours, cells were fixed with methanol and stained with crystal violet. Crystal violet was extracted with 1% SDS, and absorbance was measured at 595 nm.</p>
</sec>
<sec id="S18">
<title>Plasmids, transfection and infection</title>
<p id="P37">Lentiviral vectors expressing non-targeting and GATA6-targeting shRNAs were purchased from SIGMA-Aldrich (MISSION shRNA). pcDNA3 plasmids containing human wild-type and mutated GATA6 cDNA were described earlier.
<xref rid="R17" ref-type="bibr">17</xref>
GATA6 cDNA was cloned into the GFP-expressing FG12 lentiviral vector for overexpression in PDAC cells. Reporter plasmids containing Foxa1 and Foxa2 promoters were a generous gift of Dr RJ Matusik (Vanderbilt University, Tennessee, USA). Reporter plasmid containing the E-cadherin promoter was a generous gift of Dr A Nieto (Institute for Neurosciences, Alicante, Spain). Virus-packaging HEK293T cells were transfected with standard calcium phosphate protocol, supernatant was collected 48 hours after transfection, filtered and used to infect PDAC cells. Successfully infected cells were selected either with puromycin or by FACS-sorting.</p>
</sec>
<sec id="S19">
<title>IHC and immunofluorescence</title>
<p id="P38">Sections were incubated with primary antibodies (see
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S10</xref>
). HRP-conjugated secondary antibodies were from DAKO. DAB+ (3,3-diaminobenzidine tetrahydrochloride plus) was used as chromogen and nuclei were counterstained with haematoxylin. For immunofluorescence (IF) staining, Alexa-conjugated secondary antibodies from Invitrogen were used and nuclei were counterstained with 4′-6-diamidino-2-phenylindole (DAPI). Images were pseudocoloured using LEICA Application Suite.</p>
</sec>
<sec id="S20">
<title>Gene expression analyses</title>
<p id="P39">Total RNA was extracted from cells using Trizol (SIGMA-Aldrich) according to manufacturer’s instructions, treated with DNase I (Ambion DNA-free kit, Invitrogen) and converted to cDNA using TaqMan reverse transcription reagents (Applied Biosystems). Quantitative PCR was performed using SYBR-green mastermix (Applied Biosystems and Promega) and run in a Prism 7900 HT instrument (Applied Biosystems). Primers were designed using Primer3Plus, and reactions were done in triplicate. All quantifications were normalised to endogenous HPRT, using the standard ΔΔCt method. Primer sequences are provided in
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S11</xref>
.</p>
</sec>
<sec id="S21">
<title>Protein analysis</title>
<p id="P40">Protein extracts were prepared in Laemmli buffer and sonicated. SDS–PAGE–western blotting was done using standard protocols.
<xref rid="R53" ref-type="bibr">53</xref>
Primary antibody information is provided in
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S11</xref>
.</p>
</sec>
<sec id="S22">
<title>Matrigel invasion assay</title>
<p id="P41">Transwells (BD Falcon, 0.8 µm) were coated with BD Matrigel. Cells (10
<sup>5</sup>
) were seeded onto Matrigel in serum-free DMEM and were allowed to invade towards DMEM with 10% FBS. Invading cells were fixed with PFA after 24 hours (L3.6pl) or 72 hours (PaTu8988S), nuclei were stained with DAPI and counted on a fluorescent microscope. The number of invading cells/field was normalised by the number of cells seeded in parallel in a separate well.</p>
</sec>
<sec id="S23">
<title>Luciferase assay</title>
<p id="P42">HEK293T cells were transfected with E-cadherin, Foxa1 or Foxa2 reporter plasmids, together with a GFP-expressing plasmid. At the same time, empty pcDNA3 (Invitrogen), or pcDNA3 containing either wild-type or mutant GATA6 cDNA were introduced. Luciferase activity was measured with a luminometer, using a commercial luciferin solution (Promega) as a substrate. Values were normalised for transfection efficiency by checking GFP levels using western blotting.</p>
</sec>
<sec id="S24">
<title>ChIP</title>
<p id="P43">Cells were cross-linked with 1% formaldehyde for 15 min at room temperature, harvested in lysis buffer (2×10
<sup>7</sup>
cells/mL) and sonicated in a Covaris instrument (shearing time 30 min, 20% duty cycle, intensity 10, 200 cycles per burst, 30 s per cycle) in 2 mL. ChIP was performed using anti-GATA6 R&D AF1700 antibody, following a standard protocol.
<xref rid="R54" ref-type="bibr">54</xref>
Independent chromatin immunoprecipitates were used for sequencing and for ChIP-Seq validation, using qPCR (primers are listed in
<xref ref-type="supplementary-material" rid="SD1">online supplementary table S7</xref>
).</p>
</sec>
<sec id="S25">
<title>In vivo dissemination assay</title>
<p id="P44">Xenografts were performed as described.
<xref rid="R19" ref-type="bibr">19</xref>
Briefly, 5×10
<sup>4</sup>
cells were resuspended in 50 µL of PBS and injected into the spleen of athymic
<italic>Foxn1
<sup>nu</sup>
</italic>
mice; 10 weeks later, livers were explanted and homogenised in Trizol for RNA extraction. Human-specific
<italic>HPRT</italic>
primers were used to quantify the presence of human cells. Mice were purchased from Charles River Laboratories and maintained at CNIO under standard conditions. All experiments were approved by the Animal Ethical Committee of Instituto de Salud Carlos III (Madrid, Spain) and performed in accordance with the guidelines for Ethical Conduct in the Care and Use of Animals as stated in The International Guiding Principles for Biomedical Research involving Animals, developed by the Council for International Organizations of Medical Sciences (CIOMS).</p>
</sec>
<sec id="S26">
<title>Microarray data and GSEA analyses</title>
<p id="P45">Hierarchical clustering of the PDAC meta-dataset was performed with Genepattern (
<ext-link ext-link-type="uri" xlink:href="http://www.genepattern.broadinstitute.org">http://www.genepattern.broadinstitute.org</ext-link>
). The dataset was row-centred and column-centred, and row-normalised and column-normalised. Differential gene expression and GSEA were performed with the corresponding module from the same online suite.</p>
</sec>
<sec id="S27">
<title>Patients and samples</title>
<p id="P46">Detailed information is provided in the
<xref ref-type="supplementary-material" rid="SD1">online supplementary material</xref>
.</p>
</sec>
<sec id="S28">
<title>Statistical analyses</title>
<p id="P47">Data are provided as mean±SEM. Statistical analysis was performed using two-tailed Student’s t test or one-tailed Fisher’s test, and significance was considered for p<0.05. All statistical analyses were performed using VassarStat.net and R. Detailed information on the statistical tests used for the analysis of clinical data is provided as
<xref ref-type="supplementary-material" rid="SD1">online supplementary material</xref>
.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="SM">
<title>Supplementary Material</title>
<p id="P48">Additional material is published online only. To view please visit the journal online (
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1136/gutjnl-2015-311256">http://dx.doi.org/10.1136/gutjnl-2015-311256</ext-link>
).</p>
<supplementary-material content-type="local-data" id="SD1">
<label>suppl. mat.</label>
<media xlink:href="NIHMS69151-supplement-suppl__mat_.pdf" mimetype="application" mime-subtype="pdf" orientation="portrait" xlink:type="simple" id="d36e1234" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="S29">
<title>Acknowledgements</title>
<p>We thank the investigators mentioned in the text for providing reagents. E. Batlle, A. Cano, O. Domínguez, M. Hidalgo, R. Martínez, D. Rico, V. Sebastian, M. Serrano and E. Wagner for valuable contributions; N. del Pozo for technical support; the CNIO core facilities for continued support; the Department of Pathology, Hospital del Mar (Barcelona) and the Australian Pancreatic Cancer Genome Initiative (APGI;
<ext-link ext-link-type="uri" xlink:href="http://www.pancreaticcancer.net.au">http://www.pancreaticcancer.net.au</ext-link>
). Professor John Neoptolemos is the Owen and Ellen Evans Chair of Surgery and is a Senior Investigator at the National Institutes of Health (NIHR).</p>
<p>
<bold>Funding</bold>
This work was supported, in part, by grants SAF2007-60860, SAF2011-29530 and ONCOBIO Consolider from Ministerio de Economía y Competitividad (Madrid, Spain), RTICC from Instituto de Salud Carlos III, grants 256974 and 289737 from European Union Seventh Framework Program to FXR and by grant P27361-B23 from the Austrian Science Fund (FWF) to PM. AB receives support from the Wellcome Trust, Cancer Research UK, the Medical Research Council (MRC), The Engineering and Physical Sciences Research Council (EPSRC), Pancreatic Cancer UK, the Chief Scientists Office (Scottish Government) and Pancreatic Cancer Action Network (USA). The Cancer Research UK Liverpool Clinical Trials Unit, the ESPAC trials, and the ESPAC tissue collections, storage and analyses are all funded by Cancer Research UK. PM was recipient of a Juan de la Cierva grant from Spanish Ministry of Science and Innovation. BSJr is recipient of a Ramón y Cajal Merit Award from the Spanish Ministry of Science and Innovation and a Clinic and Laboratory Integration Program (CLIP) grant from the Cancer Research Institute, NY.</p>
</ack>
<fn-group>
<fn fn-type="con" id="FN1">
<p id="P49">
<bold>Contributors</bold>
PM: performed most of the experiments, designed experiments, analysed data, wrote the first draft of the manuscript and co-led the work; EC-dSP, TC and NM: analysed data; BSJr: performed experiments, analysed data; ND, WG and EC: generated and analysed data; LR: performed experiments and analysed data; PG: generated data; MB: responsible for clinical trial and associated information; MP and AVB: generated reagents and analysed data; JI: generated and analysed data; JN: responsible for clinical trial, generated material for the study and associated information; FXR: designed the study, analysed data, was responsible for the overall conduct of the study, wrote the manuscript and co-led the work. All authors discussed data, read the manuscript, made comments and agreed with its content.</p>
</fn>
<fn fn-type="COI-statement" id="FN2">
<p id="P50">
<bold>Competing interests</bold>
None declared.</p>
</fn>
<fn id="FN3">
<p id="P51">
<bold>Ethics approval</bold>
Patients from the French series were included in the Paoli-Calmettes Institute clinical trial number 2011-A01439-32. The translational ESPAC-T studies received ethical committee approval for characterisation of tumour markers for chemotherapy from the Liverpool (Adult) Research Ethics Committee (07/H1005/87).</p>
</fn>
<fn id="FN4">
<p id="P52">
<bold>Provenance and peer review</bold>
Not commissioned; externally peer reviewed.</p>
</fn>
<fn id="FN5">
<p id="P53">
<bold>Data sharing statement</bold>
We are willing to share the data related to any of the work reported.</p>
</fn>
</fn-group>
<ref-list>
<ref id="R1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegel</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cancer statistics, 2015</article-title>
<source>CA Cancer J Clin</source>
<year>2015</year>
<volume>65</volume>
<fpage>5</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="pmid">25559415</pub-id>
</element-citation>
</ref>
<ref id="R2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferlay</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Steliarova-Foucher</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lortet-Tieulent</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012</article-title>
<source>Eur J Cancer</source>
<year>2013</year>
<volume>49</volume>
<fpage>1374</fpage>
<lpage>403</lpage>
<pub-id pub-id-type="pmid">23485231</pub-id>
</element-citation>
</ref>
<ref id="R3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oettle</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Post</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Neuhaus</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial</article-title>
<source>JAMA</source>
<year>2007</year>
<volume>297</volume>
<fpage>267</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="pmid">17227978</pub-id>
</element-citation>
</ref>
<ref id="R4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neoptolemos</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Dunn</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Stocken</surname>
<given-names>DD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial</article-title>
<source>Lancet</source>
<year>2001</year>
<volume>358</volume>
<fpage>1576</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="pmid">11716884</pub-id>
</element-citation>
</ref>
<ref id="R5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neoptolemos</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Stocken</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Friess</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer</article-title>
<source>N Engl J Med</source>
<year>2004</year>
<volume>350</volume>
<fpage>1200</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">15028824</pub-id>
</element-citation>
</ref>
<ref id="R6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neoptolemos</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Stocken</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Tudur Smith</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adjuvant 5-fluorouracil and folinic acid vs observation for pancreatic cancer: composite data from the ESPAC-1 and -3(v1) trials</article-title>
<source>Br J Cancer</source>
<year>2009</year>
<volume>100</volume>
<fpage>246</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">19127260</pub-id>
</element-citation>
</ref>
<ref id="R7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neoptolemos</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Stocken</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Bassi</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial</article-title>
<source>JAMA</source>
<year>2010</year>
<volume>304</volume>
<fpage>1073</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">20823433</pub-id>
</element-citation>
</ref>
<ref id="R8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conroy</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Desseigne</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ychou</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer</article-title>
<source>N Engl J Med</source>
<year>2011</year>
<volume>364</volume>
<fpage>1817</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">21561347</pub-id>
</element-citation>
</ref>
<ref id="R9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Von Hoff</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Ervin</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Arena</surname>
<given-names>FP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine</article-title>
<source>N Engl J Med</source>
<year>2013</year>
<volume>369</volume>
<fpage>1691</fpage>
<lpage>703</lpage>
<pub-id pub-id-type="pmid">24131140</pub-id>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Parsons</surname>
<given-names>DW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Core signaling pathways in human pancreatic cancers revealed by global genomic analyses</article-title>
<source>Science</source>
<year>2008</year>
<volume>321</volume>
<fpage>1801</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">18772397</pub-id>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greenhalf</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Ghaneh</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Neoptolemos</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial</article-title>
<source>J Natl Cancer Inst</source>
<year>2014</year>
<volume>106</volume>
<fpage>djt347</fpage>
<pub-id pub-id-type="pmid">24301456</pub-id>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Collisson</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Sadanandam</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Olson</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy</article-title>
<source>Nat Med</source>
<year>2011</year>
<volume>17</volume>
<fpage>500</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="pmid">21460848</pub-id>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maeda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ohashi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ohashi-Kobayashi</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Further extension of mammalian GATA-6</article-title>
<source>Dev Growth Differ</source>
<year>2005</year>
<volume>47</volume>
<fpage>591</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="pmid">16316404</pub-id>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinelli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Canamero</surname>
<given-names>M</given-names>
</name>
<name>
<surname>del Pozo</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gata6 is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice</article-title>
<source>Gut</source>
<year>2013</year>
<volume>62</volume>
<fpage>1481</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">23002247</pub-id>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwei</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Bashyam</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer</article-title>
<source>PLoS Genet</source>
<year>2008</year>
<volume>4</volume>
<fpage>e1000081</fpage>
<pub-id pub-id-type="pmid">18535672</pub-id>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lakkur</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Frequent genomic copy number gain and overexpression of GATA-6 in pancreatic carcinoma</article-title>
<source>Cancer Biol Ther</source>
<year>2008</year>
<volume>7</volume>
<fpage>1593</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="pmid">18769116</pub-id>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>GATA6 activates Wnt signaling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1</article-title>
<source>PLoS ONE</source>
<year>2011</year>
<volume>6</volume>
<fpage>e22129</fpage>
<pub-id pub-id-type="pmid">21811562</pub-id>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinelli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Madriles</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cañamero</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice</article-title>
<source>Gut</source>
<year>2016</year>
<volume>65</volume>
<fpage>476</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="pmid">25596178</pub-id>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hermann</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Sancho</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cañamero</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice</article-title>
<source>Gastroenterology</source>
<year>2014</year>
<volume>147</volume>
<fpage>1119</fpage>
<lpage>33.e4</lpage>
<pub-id pub-id-type="pmid">25127677</pub-id>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thiery</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Acloque</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>RY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epithelial-mesenchymal transitions in development and disease</article-title>
<source>Cell</source>
<year>2009</year>
<volume>139</volume>
<fpage>871</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="pmid">19945376</pub-id>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmalhofer</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Brabletz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brabletz</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer</article-title>
<source>Cancer Metastasis Rev</source>
<year>2009</year>
<volume>28</volume>
<fpage>151</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">19153669</pub-id>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hong</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Olino</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Loss of E-cadherin expression and outcome among patients with resectable pancreatic adenocarcinomas</article-title>
<source>Mod Pathol</source>
<year>2011</year>
<volume>24</volume>
<fpage>1237</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="pmid">21552209</pub-id>
</element-citation>
</ref>
<ref id="R23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moffitt</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Marayati</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Flate</surname>
<given-names>EL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma</article-title>
<source>Nat Genet</source>
<year>2015</year>
<volume>47</volume>
<fpage>1168</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">26343385</pub-id>
</element-citation>
</ref>
<ref id="R24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>QJ</given-names>
</name>
<name>
<surname>Arenas</surname>
<given-names>RB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition</article-title>
<source>J Biol Chem</source>
<year>2010</year>
<volume>285</volume>
<fpage>14042</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">20189993</pub-id>
</element-citation>
</ref>
<ref id="R25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang da</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Lempicki</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources</article-title>
<source>Nat Protoc</source>
<year>2009</year>
<volume>4</volume>
<fpage>44</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">19131956</pub-id>
</element-citation>
</ref>
<ref id="R26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Washington</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Crawford</surname>
<given-names>HC</given-names>
</name>
</person-group>
<article-title>Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer</article-title>
<source>Cancer Res</source>
<year>2010</year>
<volume>70</volume>
<fpage>2115</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">20160041</pub-id>
</element-citation>
</ref>
<ref id="R27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>N</given-names>
</name>
<name>
<surname>LeLay</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vatamaniuk</surname>
<given-names>MZ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development</article-title>
<source>Genes Dev</source>
<year>2008</year>
<volume>22</volume>
<fpage>3435</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="pmid">19141476</pub-id>
</element-citation>
</ref>
<ref id="R28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Badea</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Herlea</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dima</surname>
<given-names>SO</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia</article-title>
<source>Hepatogastroenterology</source>
<year>2008</year>
<volume>55</volume>
<fpage>2016</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">19260470</pub-id>
</element-citation>
</ref>
<ref id="R29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balasenthil</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lott</surname>
<given-names>ST</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A migration signature and plasma biomarker panel for pancreatic adenocarcinoma</article-title>
<source>Cancer Prev Res (Phila)</source>
<year>2011</year>
<volume>4</volume>
<fpage>137</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="pmid">21071578</pub-id>
</element-citation>
</ref>
<ref id="R30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pei</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fridley</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt</article-title>
<source>Cancer Cell</source>
<year>2009</year>
<volume>16</volume>
<fpage>259</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">19732725</pub-id>
</element-citation>
</ref>
<ref id="R31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Donahue</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Tran</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Integrative survival-based molecular profiling of human pancreatic cancer</article-title>
<source>Clin Cancer Res</source>
<year>2012</year>
<volume>18</volume>
<fpage>1352</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">22261810</pub-id>
</element-citation>
</ref>
<ref id="R32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Birnbaum</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Adélaïde</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mamessier</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome profiling of pancreatic adenocarcinoma</article-title>
<source>Genes Chromosomes Cancer</source>
<year>2011</year>
<volume>50</volume>
<fpage>456</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">21412932</pub-id>
</element-citation>
</ref>
<ref id="R33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shain</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Giacomini</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Matsukuma</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2012</year>
<volume>109</volume>
<fpage>E252</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">22233809</pub-id>
</element-citation>
</ref>
<ref id="R34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maser</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Choudhury</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>PJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers</article-title>
<source>Nature</source>
<year>2007</year>
<volume>447</volume>
<fpage>966</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">17515920</pub-id>
</element-citation>
</ref>
<ref id="R35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waddell</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pajic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Patch</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Whole genomes redefine the mutational landscape of pancreatic cancer</article-title>
<source>Nature</source>
<year>2015</year>
<volume>518</volume>
<fpage>495</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="pmid">25719666</pub-id>
</element-citation>
</ref>
<ref id="R36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Damrauer</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Hoadley</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Chism</surname>
<given-names>DD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2014</year>
<volume>111</volume>
<fpage>3110</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">24520177</pub-id>
</element-citation>
</ref>
<ref id="R37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Real</surname>
<given-names>FX</given-names>
</name>
<name>
<surname>Vila</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Skoudy</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intermediate filaments as differentiation markers of exocrine pancreas. II. Expression of cytokeratins of complex and stratified epithelia in normal pancreas and in pancreas cancer</article-title>
<source>Int J Cancer</source>
<year>1993</year>
<volume>54</volume>
<fpage>720</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">7686885</pub-id>
</element-citation>
</ref>
<ref id="R38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Porten</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy</article-title>
<source>Cancer Cell</source>
<year>2014</year>
<volume>25</volume>
<fpage>152</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">24525232</pub-id>
</element-citation>
</ref>
<ref id="R39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sørlie</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Perou</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Tibshirani</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2001</year>
<volume>98</volume>
<fpage>10869</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">11553815</pub-id>
</element-citation>
</ref>
<ref id="R40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheung</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis</article-title>
<source>Cancer Cell</source>
<year>2013</year>
<volume>23</volume>
<fpage>725</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="pmid">23707782</pub-id>
</element-citation>
</ref>
<ref id="R41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evdokimova</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Tognon</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition</article-title>
<source>Cancer Cell</source>
<year>2009</year>
<volume>15</volume>
<fpage>402</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">19411069</pub-id>
</element-citation>
</ref>
<ref id="R42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perou</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Sørlie</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Eisen</surname>
<given-names>MB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular portraits of human breast tumours</article-title>
<source>Nature</source>
<year>2000</year>
<volume>406</volume>
<fpage>747</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">10963602</pub-id>
</element-citation>
</ref>
<ref id="R43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lerner</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>McConkey</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Hoadley</surname>
<given-names>KA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bladder Cancer Molecular Taxonomy: Summary from a Consensus Meeting</article-title>
<source>Bladder Cancer</source>
<year>2016</year>
<volume>2</volume>
<fpage>37</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="pmid">27376123</pub-id>
</element-citation>
</ref>
<ref id="R44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masui</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Swift</surname>
<given-names>GH</given-names>
</name>
<name>
<surname>Deering</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Replacement of Rbpj with Rbpjl in the PTF1 complex controls the final maturation of pancreatic acinar cells</article-title>
<source>Gastroenterology</source>
<year>2010</year>
<volume>139</volume>
<fpage>270</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">20398665</pub-id>
</element-citation>
</ref>
<ref id="R45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ocaña</surname>
<given-names>OH</given-names>
</name>
<name>
<surname>Córcoles</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Fabra</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1</article-title>
<source>Cancer Cell</source>
<year>2012</year>
<volume>22</volume>
<fpage>709</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">23201163</pub-id>
</element-citation>
</ref>
<ref id="R46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsai</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Donaher</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis</article-title>
<source>Cancer Cell</source>
<year>2012</year>
<volume>22</volume>
<fpage>725</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="pmid">23201165</pub-id>
</element-citation>
</ref>
<ref id="R47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campbell</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Whissell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Franch-Marro</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Specific GATA factors act as conserved inducers of an endodermal-EMT</article-title>
<source>Dev Cell</source>
<year>2011</year>
<volume>21</volume>
<fpage>1051</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="pmid">22172671</pub-id>
</element-citation>
</ref>
<ref id="R48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whissell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Montagni</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Martinelli</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression</article-title>
<source>Nat Cell Biol</source>
<year>2014</year>
<volume>16</volume>
<fpage>695</fpage>
<lpage>707</lpage>
<pub-id pub-id-type="pmid">24952462</pub-id>
</element-citation>
</ref>
<ref id="R49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lund</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dembinski</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Solberg</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Slug-dependent upregulation of L1CAM is responsible for the increased invasion potential of pancreatic cancer cells following long-term 5-FU treatment</article-title>
<source>PLoS ONE</source>
<year>2015</year>
<volume>10</volume>
<fpage>e0123684</fpage>
<pub-id pub-id-type="pmid">25860483</pub-id>
</element-citation>
</ref>
<ref id="R50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemoresistance to 5-fluorouracil induces epithelial-mesenchymal transition via up-regulation of Snail in MCF7 human breast cancer cells</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2012</year>
<volume>417</volume>
<fpage>679</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="pmid">22166209</pub-id>
</element-citation>
</ref>
<ref id="R51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arumugam</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ramachandran</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Fournier</surname>
<given-names>KF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer</article-title>
<source>Cancer Res</source>
<year>2009</year>
<volume>69</volume>
<fpage>5820</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">19584296</pub-id>
</element-citation>
</ref>
<ref id="R52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bailey</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Nones</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genomic analyses identify molecular subtypes of pancreatic cancer</article-title>
<source>Nature</source>
<year>2016</year>
<volume>531</volume>
<fpage>47</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">26909576</pub-id>
</element-citation>
</ref>
<ref id="R53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahmood</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>PC</given-names>
</name>
</person-group>
<article-title>Western blot: technique, theory, and trouble shooting</article-title>
<source>N Am J Med Sci</source>
<year>2012</year>
<volume>4</volume>
<fpage>429</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">23050259</pub-id>
</element-citation>
</ref>
<ref id="R54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carey</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Smale</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>Chromatin immunoprecipitation (ChIP)</article-title>
<source>Cold Spring Harb Protoc</source>
<year>2009</year>
<volume>2009</volume>
<comment>pdb prot5279</comment>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<boxed-text id="BX1" position="float" orientation="portrait">
<caption>
<title>Significance of this study</title>
</caption>
<p>
<bold>What is already known on this subject?</bold>
</p>
<list list-type="simple" id="L1">
<list-item>
<label></label>
<p>GATA6 maintains the epithelial differentiation in the mouse pancreas and suppresses mutant KRas-driven tumourigenesis in the mouse.</p>
</list-item>
<list-item>
<label></label>
<p>Pancreatic tumours of the classical subtype, characterised by better outcome, have high GATA6 expression.</p>
</list-item>
<list-item>
<label></label>
<p>
<italic>GATA6</italic>
is amplified in a subset of pancreatic tumours, and its overexpression increases proliferation of pancreatic cancer cells in vitro.</p>
</list-item>
<list-item>
<label></label>
<p>Patients with tumours carrying
<italic>GATA6</italic>
amplifications/copy number gains survive longer.</p>
</list-item>
</list>
<p>
<bold>What are the new findings?</bold>
</p>
<list list-type="simple" id="L2">
<list-item>
<label></label>
<p>GATA6 regulates epithelial–mesenchymal transition (EMT) in pancreatic cancer cells through a unique mechanism, both direct and indirect, controlling both the epithelial and the mesenchymal transcriptional programmes.</p>
</list-item>
<list-item>
<label></label>
<p>GATA6 suppresses the ectopic expression of a basal-like molecular phenotype, similar to the one described in breast and bladder cancer, which is activated in a subset of GATA6
<sup>low</sup>
tumours.</p>
</list-item>
<list-item>
<label></label>
<p>Patients with basal-like GATA6
<sup>low</sup>
tumours show a worse survival than those with GATA6
<sup>medium</sup>
or GATA6
<sup>high</sup>
tumours.</p>
</list-item>
<list-item>
<label></label>
<p>Patients with GATA6
<sup>low</sup>
tumours have a worse outcome when treated with 5-fluorouracil (5-FU)/leucovorin adjuvant therapy, compared with patients with GATA6
<sup>high</sup>
tumours, while treatment with gemcitabine has the same effect on both groups</p>
</list-item>
</list>
<p>
<bold>How might it impact on clinical practice in the foreseeable future?</bold>
</p>
<list list-type="simple" id="L3">
<list-item>
<label></label>
<p>We finally provide an explanation to the conundrum derived from the observation that GATA6 is amplified in a subset of tumours; yet, patients with high GATA6 survive longer.</p>
</list-item>
<list-item>
<label></label>
<p>GATA6 expression could be a marker for patients’ prognosis.</p>
</list-item>
<list-item>
<label></label>
<p>If confirmed in an independent study, our observation that patients with GATA6
<sup>low</sup>
tumours have a worse outcome when treated with 5-FU/leucovorin adjuvant therapy could guide the choice of treatment for patients with pancreatic cancer.</p>
</list-item>
</list>
</boxed-text>
<fig id="F1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>GATA6 is required for the maintenance of the epithelial phenotype of pancreatic ductal adenocarcinoma (PDAC) cells. (A) Top: phase contrast microphotographs of PaTu8988S cells infected with either shCtrl or two different GATA6-targeting shRNAs (shG6-1 and shG6-2). Higher magnification of the highlighted region is shown in the inset. Bottom: expression of E-cadherin and vimentin detected by immunofluorescence. Nuclear counterstaining with diamidino-2-phenylindole (DAPI) is shown separately. Scale bars: 50 µm. (B) Expression of GATA6, KRT5, KRT14, E-cadherin and vimentin, detected by western blotting, in total lysates from PaTu8988S cells infected with the indicated constructs. Vinculin was used as a loading control. (C) Left: L3.6pl cells infected with either an empty vector (Ctrl) or a GATA6-overexpressing vector (G6). Right: expression of E-cadherin, and vimentin detected by immunofluorescence. Nuclear counterstain with DAPI is shown separately. Scale bars: 50 µm. (D) Expression of GATA6, E-cadherin and vimentin detected by western blotting in total lysates from L3.6pl cells infected with the indicated constructs. Vinculin was used as a loading control.</p>
</caption>
<graphic xlink:href="emss-69151-f001"></graphic>
</fig>
<fig id="F2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>GATA6 inhibits invasion in vitro and cell dissemination in vivo. (A) Quantification of the in vitro invasiveness of PaTu8988S cells infected with the indicated constructs, measured as number of invading cells per microscopic field (×20 magnification). Data are mean±SEM of at least three independent experiments; **p<0.01. (B) Quantification of the in vitro invasiveness of L3.6pl cells infected with the indicated constructs. Data are mean±SEM of at least three independent experiments; **p<0.01. (C) Quantification of the metastatic burden in the liver of nude mice after intrasplenic injection of the indicated cells, measured by qPCR with human-specific primers detecting
<italic>HPRT</italic>
; *p<0.05.</p>
</caption>
<graphic xlink:href="emss-69151-f002"></graphic>
</fig>
<fig id="F3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>GATA6-dependent direct and indirect transcriptional regulation of epithelial–mesenchymal transition (EMT). (A) Expression of E-cadherin in PaTu8988S, A13B and SK-PC-1 cells infected with the indicated shRNA constructs, detected by RT-qPCR. (B) Expression of E-cadherin, SNAI1 and VIM (vimentin) in L3.6pl cells infected with the indicated constructs, measured by RT-qPCR. (C) Expression of SNAI2, ZEB1, TWIST1 and VIM in PaTu8988S cells infected with the indicated constructs, measured by RT-qPCR. (D) GATA6 binding to the indicated regions of the E-cadherin promoter detected by ChIP-qPCR in PaTu8988S cells. (E) Luciferase-based reporter assay showing the activity of an
<italic>E-cadherin</italic>
reporter in HEK293 cells transfected with empty vector (blue) or with vectors expressing either wild-type (light green) or mutated (dark green) GATA6. (F) GATA6 binding to the promoters of the indicated genes, detected by ChIP-qPCR in PaTu8988S cells. Data are presented as mean±SEM of at least three independent experiments. *p<0.05, **p<0.01 in all panels. ChIP-qPCR data are represented as % of input normalised against a negative control sequence, compared with binding of non-specific IgG; statistical significance is calculated for the enrichment of GATA6 binding to the region of interest, compared with the negative sequence.</p>
</caption>
<graphic xlink:href="emss-69151-f003"></graphic>
</fig>
<fig id="F4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>GATA6 directly activates the proepithelial transcription factors
<italic>FOXA1</italic>
and
<italic>FOXA2</italic>
. (A) Representation of ChIP-Seq peaks on
<italic>FOXA1</italic>
and
<italic>FOXA2</italic>
promoters. (B) GATA6 binding to the promoters of
<italic>FOXA1</italic>
and
<italic>FOXA2</italic>
detected by ChIP-qPCR in PaTu8988S cells. (C–D) Expression of FOXA1 and FOXA2 in L3.6 (C), PaTu8988S and SK-PC-1 (D) cells infected with the indicated constructs, measured by RT-qPCR. (E) Expression of FOXA1 and FOXA2 proteins in GATA6-silenced PaTu8988S cells. Vinculin was used as loading control. (F) Luciferase-based reporter assay showing the activity of
<italic>FOXA1</italic>
and
<italic>FOXA2</italic>
promoter reporters in HEK293 cells transfected with empty vector (blue) or with vectors expressing either wild-type (light green) or mutated (dark green) GATA6. In all the panels, data are presented as mean ±SEM of at least three independent experiments; *p<0.05, **p<0.01. ChIP-qPCR data are represented as % of input normalised against a negative control sequence, compared with binding of non-specific IgG; statistical significance is calculated for the enrichment of GATA6 binding to the region of interest, compared with the negative sequence.</p>
</caption>
<graphic xlink:href="emss-69151-f004"></graphic>
</fig>
<fig id="F5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>GATA6 loss in human pancreatic ductal adenocarcinoma (PDAC) is associated with altered differentiation. (A) Expression of GATA6, FOXA2, E-cadherin and KRT14 in two PDAC samples, detected by immunohistochemistry. Top: cells retaining GATA6 expression are FOXA2
<sup>high</sup>
, E-cadherin
<sup>high</sup>
and KRT14
<sup>neg</sup>
; bottom: GATA6
<sup>neg</sup>
cells are FOXA2
<sup>low</sup>
, E-cadherin
<sup>low</sup>
and KRT14
<sup>pos</sup>
. Scale bar: 50 µm. (B) Scatter plots showing correlated expression of GATA6, FOXA2 and E-cadherin mRNA in the PDAC meta-dataset. (C) Proportion of tumours showing
<italic>GATA6</italic>
amplification (blue) or genomic loss (red) in the combined analysis of three PDAC gene copy number variation datasets. The percentage of
<italic>GATA6</italic>
losses that were independent from loss of
<italic>SMAD4</italic>
is represented in dark red.</p>
</caption>
<graphic xlink:href="emss-69151-f005"></graphic>
</fig>
<fig id="F6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>GATA6 expression is associated with outcome and with response to adjuvant therapy. (A) Kaplan–Meier plot of the overall survival for patients included in the French series. (B) Median survival of patients included in the French series, classified according to GATA6 level. The value of p=0.003 calculated with Mann–Whitney U test. (C) Kaplan–Meier plot of the overall survival for patients included in the 5-fluorouracil (5-FU)/leucovorin arm of the ESPAC-3 trial. (D) Kaplan–Meier plot of the overall survival for patients included in the gemcitabine arm of the ESPAC-3 trial.</p>
</caption>
<graphic xlink:href="emss-69151-f006"></graphic>
</fig>
<fig id="F7" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>GATA6 expression negatively correlates with sensitivity to 5-fluorouracil (5-FU) in pancreatic ductal adenocarcinoma (PDAC) cells. Scatter plots showing cell survival upon treatment with the indicated doses of 5-FU (top), gemcitabine (middle) and paclitaxel (bottom), plotted against GATA6 protein level. Red square indicates significant correlation. Survival was normalised against DMSO-treated cells. Data are presented as the average value of at least three independent experiments.</p>
</caption>
<graphic xlink:href="emss-69151-f007"></graphic>
</fig>
<table-wrap id="T1" position="float" orientation="portrait">
<label>Table 1</label>
<caption>
<p>Results of the univariate analysis of survival at 3, 6, 12 and 24 months (French series)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="bottom" align="left" rowspan="3" colspan="1">Variable</th>
<th valign="top" align="center" colspan="4" rowspan="1">Survival (months)
<hr></hr>
</th>
<th valign="top" align="center" colspan="6" rowspan="1">Risk of mortality
<hr></hr>
</th>
</tr>
<tr>
<th valign="middle" align="left" rowspan="1" colspan="1">3</th>
<th valign="middle" align="left" rowspan="1" colspan="1">6</th>
<th valign="middle" align="left" rowspan="1" colspan="1">12</th>
<th valign="middle" align="left" rowspan="1" colspan="1">24</th>
<th colspan="6" rowspan="1"></th>
</tr>
<tr>
<th valign="bottom" align="left" rowspan="1" colspan="1">n</th>
<th valign="bottom" align="left" rowspan="1" colspan="1">n</th>
<th valign="bottom" align="left" rowspan="1" colspan="1">n</th>
<th valign="bottom" align="left" rowspan="1" colspan="1">n</th>
<th valign="bottom" align="left" rowspan="1" colspan="1">HR crude</th>
<th valign="bottom" align="left" rowspan="1" colspan="1">95% CI</th>
<th valign="bottom" align="left" rowspan="1" colspan="1">p Value</th>
<th valign="bottom" align="left" rowspan="1" colspan="1">HR adjusted</th>
<th valign="bottom" align="left" rowspan="1" colspan="1">95%CI</th>
<th valign="bottom" align="left" rowspan="1" colspan="1">p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" colspan="11" rowspan="1">GATA 6 (low/medium/high)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">     High (N=25)</td>
<td valign="top" align="left" rowspan="1" colspan="1">25</td>
<td valign="top" align="left" rowspan="1" colspan="1">24</td>
<td valign="top" align="left" rowspan="1" colspan="1">16</td>
<td valign="top" align="left" rowspan="1" colspan="1">  4</td>
<td valign="top" align="left" rowspan="1" colspan="1">1.00</td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">1.00</td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">     Medium (N=21)</td>
<td valign="top" align="left" rowspan="1" colspan="1">20</td>
<td valign="top" align="left" rowspan="1" colspan="1">20</td>
<td valign="top" align="left" rowspan="1" colspan="1">12</td>
<td valign="top" align="left" rowspan="1" colspan="1">12</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.97</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.4 to2.6</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.943</td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">     Low (N=12)</td>
<td valign="top" align="left" rowspan="1" colspan="1">  7</td>
<td valign="top" align="left" rowspan="1" colspan="1">  5</td>
<td valign="top" align="left" rowspan="1" colspan="1">  3</td>
<td valign="top" align="left" rowspan="1" colspan="1">  3</td>
<td valign="top" align="left" rowspan="1" colspan="1">5.39</td>
<td valign="top" align="left" rowspan="1" colspan="1">2.3 to 12.9</td>
<td valign="top" align="left" rowspan="1" colspan="1"><0.001</td>
<td valign="top" align="left" rowspan="1" colspan="1">3.77</td>
<td valign="top" align="left" rowspan="1" colspan="1">1.74 to 8.17</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.001</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="T2" position="float" orientation="portrait">
<label>Table 2</label>
<caption>
<p>Results of the univariate analysis of survival (ESPAC-3)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" rowspan="2" colspan="1"></th>
<th valign="top" align="left" colspan="3" rowspan="1">Risk of mortality
<hr></hr>
</th>
</tr>
<tr>
<th valign="middle" align="left" rowspan="1" colspan="1">5-FU/leucovorin</th>
<th valign="middle" align="left" rowspan="1" colspan="1">Gemcitabine</th>
<th valign="middle" align="left" rowspan="1" colspan="1">Total</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">GATA 6</td>
<td valign="middle" align="left" rowspan="1" colspan="1">N=150</td>
<td valign="middle" align="left" rowspan="1" colspan="1">N=163</td>
<td valign="middle" align="left" rowspan="1" colspan="1">N=313</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">High</td>
<td valign="middle" align="left" rowspan="1" colspan="1">1.00</td>
<td valign="middle" align="left" rowspan="1" colspan="1">1.00</td>
<td valign="middle" align="left" rowspan="1" colspan="1">1.00</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">Medium</td>
<td valign="middle" align="left" rowspan="1" colspan="1">1.49 (1.01–2.20)</td>
<td valign="middle" align="left" rowspan="1" colspan="1">0.97 (0.67–1.39)</td>
<td valign="middle" align="left" rowspan="1" colspan="1">1.19 (0.91–1.55)</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">Low</td>
<td valign="middle" align="left" rowspan="1" colspan="1">1.73 (0.99–3.03)</td>
<td valign="middle" align="left" rowspan="1" colspan="1">0.99 (0.56–1.72)</td>
<td valign="middle" align="left" rowspan="1" colspan="1">1.27 (0.86–1.89)</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1"></td>
<td valign="middle" align="left" rowspan="1" colspan="1">Wald χ
<sup>2</sup>
=5.72,</td>
<td valign="middle" align="left" rowspan="1" colspan="1">Wald χ
<sup>2</sup>
=0.04,</td>
<td valign="middle" align="left" rowspan="1" colspan="1">Wald χ
<sup>2</sup>
=2.38,</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1"></td>
<td valign="middle" align="left" rowspan="1" colspan="1">p=0.057</td>
<td valign="middle" align="left" rowspan="1" colspan="1">p=0.982</td>
<td valign="middle" align="left" rowspan="1" colspan="1">p=0.304</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TFN1">
<p id="P54">5-FU, 5-fluorouracil.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D929 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002D929 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024