Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Real-Time Whole-Body Visualization of Chikungunya Virus Infection and Host Interferon Response in Zebrafish

Identifieur interne : 002C62 ( Pmc/Corpus ); précédent : 002C61; suivant : 002C63

Real-Time Whole-Body Visualization of Chikungunya Virus Infection and Host Interferon Response in Zebrafish

Auteurs : Nuno Palha ; Florence Guivel-Benhassine ; Valérie Briolat ; Georges Lutfalla ; Marion Sourisseau ; Felix Ellett ; Chieh-Huei Wang ; Graham J. Lieschke ; Philippe Herbomel ; Olivier Schwartz ; Jean-Pierre Levraud

Source :

RBID : PMC:3764224

Abstract

Chikungunya Virus (CHIKV), a re-emerging arbovirus that may cause severe disease, constitutes an important public health problem. Herein we describe a novel CHIKV infection model in zebrafish, where viral spread was live-imaged in the whole body up to cellular resolution. Infected cells emerged in various organs in one principal wave with a median appearance time of ∼14 hours post infection. Timing of infected cell death was organ dependent, leading to a shift of CHIKV localization towards the brain. As in mammals, CHIKV infection triggered a strong type-I interferon (IFN) response, critical for survival. IFN was mainly expressed by neutrophils and hepatocytes. Cell type specific ablation experiments further demonstrated that neutrophils play a crucial, unexpected role in CHIKV containment. Altogether, our results show that the zebrafish represents a novel valuable model to dynamically visualize replication, pathogenesis and host responses to a human virus.


Url:
DOI: 10.1371/journal.ppat.1003619
PubMed: 24039582
PubMed Central: 3764224

Links to Exploration step

PMC:3764224

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Real-Time Whole-Body Visualization of Chikungunya Virus Infection and Host Interferon Response in Zebrafish</title>
<author>
<name sortKey="Palha, Nuno" sort="Palha, Nuno" uniqKey="Palha N" first="Nuno" last="Palha">Nuno Palha</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut Pasteur, Macrophages et Développement de l'Immunité, Department of Developmental and Stem Cells Biology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>CNRS URA2578, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Université Pierre et Marie Curie, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guivel Benhassine, Florence" sort="Guivel Benhassine, Florence" uniqKey="Guivel Benhassine F" first="Florence" last="Guivel-Benhassine">Florence Guivel-Benhassine</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Virus et Immunité, Department of Virology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>CNRS URA3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Briolat, Valerie" sort="Briolat, Valerie" uniqKey="Briolat V" first="Valérie" last="Briolat">Valérie Briolat</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut Pasteur, Macrophages et Développement de l'Immunité, Department of Developmental and Stem Cells Biology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>CNRS URA2578, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lutfalla, Georges" sort="Lutfalla, Georges" uniqKey="Lutfalla G" first="Georges" last="Lutfalla">Georges Lutfalla</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>CNRS UMR5235, Dynamiques des Interactions Membranaires et Pathologiques, Montpellier, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Université Montpellier II, Montpellier, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sourisseau, Marion" sort="Sourisseau, Marion" uniqKey="Sourisseau M" first="Marion" last="Sourisseau">Marion Sourisseau</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Virus et Immunité, Department of Virology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>CNRS URA3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ellett, Felix" sort="Ellett, Felix" uniqKey="Ellett F" first="Felix" last="Ellett">Felix Ellett</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chieh Huei" sort="Wang, Chieh Huei" uniqKey="Wang C" first="Chieh-Huei" last="Wang">Chieh-Huei Wang</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lieschke, Graham J" sort="Lieschke, Graham J" uniqKey="Lieschke G" first="Graham J." last="Lieschke">Graham J. Lieschke</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Herbomel, Philippe" sort="Herbomel, Philippe" uniqKey="Herbomel P" first="Philippe" last="Herbomel">Philippe Herbomel</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut Pasteur, Macrophages et Développement de l'Immunité, Department of Developmental and Stem Cells Biology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>CNRS URA2578, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, Olivier" sort="Schwartz, Olivier" uniqKey="Schwartz O" first="Olivier" last="Schwartz">Olivier Schwartz</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Virus et Immunité, Department of Virology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>CNRS URA3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Levraud, Jean Pierre" sort="Levraud, Jean Pierre" uniqKey="Levraud J" first="Jean-Pierre" last="Levraud">Jean-Pierre Levraud</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut Pasteur, Macrophages et Développement de l'Immunité, Department of Developmental and Stem Cells Biology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>CNRS URA2578, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24039582</idno>
<idno type="pmc">3764224</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764224</idno>
<idno type="RBID">PMC:3764224</idno>
<idno type="doi">10.1371/journal.ppat.1003619</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002C62</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002C62</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Real-Time Whole-Body Visualization of Chikungunya Virus Infection and Host Interferon Response in Zebrafish</title>
<author>
<name sortKey="Palha, Nuno" sort="Palha, Nuno" uniqKey="Palha N" first="Nuno" last="Palha">Nuno Palha</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut Pasteur, Macrophages et Développement de l'Immunité, Department of Developmental and Stem Cells Biology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>CNRS URA2578, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Université Pierre et Marie Curie, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guivel Benhassine, Florence" sort="Guivel Benhassine, Florence" uniqKey="Guivel Benhassine F" first="Florence" last="Guivel-Benhassine">Florence Guivel-Benhassine</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Virus et Immunité, Department of Virology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>CNRS URA3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Briolat, Valerie" sort="Briolat, Valerie" uniqKey="Briolat V" first="Valérie" last="Briolat">Valérie Briolat</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut Pasteur, Macrophages et Développement de l'Immunité, Department of Developmental and Stem Cells Biology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>CNRS URA2578, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lutfalla, Georges" sort="Lutfalla, Georges" uniqKey="Lutfalla G" first="Georges" last="Lutfalla">Georges Lutfalla</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>CNRS UMR5235, Dynamiques des Interactions Membranaires et Pathologiques, Montpellier, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Université Montpellier II, Montpellier, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sourisseau, Marion" sort="Sourisseau, Marion" uniqKey="Sourisseau M" first="Marion" last="Sourisseau">Marion Sourisseau</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Virus et Immunité, Department of Virology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>CNRS URA3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ellett, Felix" sort="Ellett, Felix" uniqKey="Ellett F" first="Felix" last="Ellett">Felix Ellett</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chieh Huei" sort="Wang, Chieh Huei" uniqKey="Wang C" first="Chieh-Huei" last="Wang">Chieh-Huei Wang</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lieschke, Graham J" sort="Lieschke, Graham J" uniqKey="Lieschke G" first="Graham J." last="Lieschke">Graham J. Lieschke</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Herbomel, Philippe" sort="Herbomel, Philippe" uniqKey="Herbomel P" first="Philippe" last="Herbomel">Philippe Herbomel</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut Pasteur, Macrophages et Développement de l'Immunité, Department of Developmental and Stem Cells Biology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>CNRS URA2578, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, Olivier" sort="Schwartz, Olivier" uniqKey="Schwartz O" first="Olivier" last="Schwartz">Olivier Schwartz</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Virus et Immunité, Department of Virology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>CNRS URA3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Levraud, Jean Pierre" sort="Levraud, Jean Pierre" uniqKey="Levraud J" first="Jean-Pierre" last="Levraud">Jean-Pierre Levraud</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut Pasteur, Macrophages et Développement de l'Immunité, Department of Developmental and Stem Cells Biology, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>CNRS URA2578, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Pathogens</title>
<idno type="ISSN">1553-7366</idno>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Chikungunya Virus (CHIKV), a re-emerging arbovirus that may cause severe disease, constitutes an important public health problem. Herein we describe a novel CHIKV infection model in zebrafish, where viral spread was live-imaged in the whole body up to cellular resolution. Infected cells emerged in various organs in one principal wave with a median appearance time of ∼14 hours post infection. Timing of infected cell death was organ dependent, leading to a shift of CHIKV localization towards the brain. As in mammals, CHIKV infection triggered a strong type-I interferon (IFN) response, critical for survival. IFN was mainly expressed by neutrophils and hepatocytes. Cell type specific ablation experiments further demonstrated that neutrophils play a crucial, unexpected role in CHIKV containment. Altogether, our results show that the zebrafish represents a novel valuable model to dynamically visualize replication, pathogenesis and host responses to a human virus.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Burt, Fj" uniqKey="Burt F">FJ Burt</name>
</author>
<author>
<name sortKey="Rolph, Ms" uniqKey="Rolph M">MS Rolph</name>
</author>
<author>
<name sortKey="Rulli, Ne" uniqKey="Rulli N">NE Rulli</name>
</author>
<author>
<name sortKey="Mahalingam, S" uniqKey="Mahalingam S">S Mahalingam</name>
</author>
<author>
<name sortKey="Heise, Mt" uniqKey="Heise M">MT Heise</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schuffenecker, I" uniqKey="Schuffenecker I">I Schuffenecker</name>
</author>
<author>
<name sortKey="Iteman, I" uniqKey="Iteman I">I Iteman</name>
</author>
<author>
<name sortKey="Michault, A" uniqKey="Michault A">A Michault</name>
</author>
<author>
<name sortKey="Murri, S" uniqKey="Murri S">S Murri</name>
</author>
<author>
<name sortKey="Frangeul, L" uniqKey="Frangeul L">L Frangeul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsetsarkin, K" uniqKey="Tsetsarkin K">K Tsetsarkin</name>
</author>
<author>
<name sortKey="Higgs, S" uniqKey="Higgs S">S Higgs</name>
</author>
<author>
<name sortKey="Mcgee, Ce" uniqKey="Mcgee C">CE McGee</name>
</author>
<author>
<name sortKey="De Lamballerie, X" uniqKey="De Lamballerie X">X De Lamballerie</name>
</author>
<author>
<name sortKey="Charrel, Rn" uniqKey="Charrel R">RN Charrel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Lamballerie, X" uniqKey="De Lamballerie X">X de Lamballerie</name>
</author>
<author>
<name sortKey="Leroy, E" uniqKey="Leroy E">E Leroy</name>
</author>
<author>
<name sortKey="Charrel, Rn" uniqKey="Charrel R">RN Charrel</name>
</author>
<author>
<name sortKey="Ttsetsarkin, K" uniqKey="Ttsetsarkin K">K Ttsetsarkin</name>
</author>
<author>
<name sortKey="Higgs, S" uniqKey="Higgs S">S Higgs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsetsarkin, Ka" uniqKey="Tsetsarkin K">KA Tsetsarkin</name>
</author>
<author>
<name sortKey="Weaver, Sc" uniqKey="Weaver S">SC Weaver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medlock, Jm" uniqKey="Medlock J">JM Medlock</name>
</author>
<author>
<name sortKey="Hansford, Km" uniqKey="Hansford K">KM Hansford</name>
</author>
<author>
<name sortKey="Schaffner, F" uniqKey="Schaffner F">F Schaffner</name>
</author>
<author>
<name sortKey="Versteirt, V" uniqKey="Versteirt V">V Versteirt</name>
</author>
<author>
<name sortKey="Hendrickx, G" uniqKey="Hendrickx G">G Hendrickx</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vega Rua, A" uniqKey="Vega Rua A">A Vega-Rua</name>
</author>
<author>
<name sortKey="Zouache, K" uniqKey="Zouache K">K Zouache</name>
</author>
<author>
<name sortKey="Caro, V" uniqKey="Caro V">V Caro</name>
</author>
<author>
<name sortKey="Diancourt, L" uniqKey="Diancourt L">L Diancourt</name>
</author>
<author>
<name sortKey="Delaunay, P" uniqKey="Delaunay P">P Delaunay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwartz, O" uniqKey="Schwartz O">O Schwartz</name>
</author>
<author>
<name sortKey="Albert, Ml" uniqKey="Albert M">ML Albert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dupuis Maguiraga, L" uniqKey="Dupuis Maguiraga L">L Dupuis-Maguiraga</name>
</author>
<author>
<name sortKey="Noret, M" uniqKey="Noret M">M Noret</name>
</author>
<author>
<name sortKey="Brun, S" uniqKey="Brun S">S Brun</name>
</author>
<author>
<name sortKey="Le Grand, R" uniqKey="Le Grand R">R Le Grand</name>
</author>
<author>
<name sortKey="Gras, G" uniqKey="Gras G">G Gras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suhrbier, A" uniqKey="Suhrbier A">A Suhrbier</name>
</author>
<author>
<name sortKey="Jaffar Bandjee, Mc" uniqKey="Jaffar Bandjee M">MC Jaffar-Bandjee</name>
</author>
<author>
<name sortKey="Gasque, P" uniqKey="Gasque P">P Gasque</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lum, Fm" uniqKey="Lum F">FM Lum</name>
</author>
<author>
<name sortKey="Teo, Th" uniqKey="Teo T">TH Teo</name>
</author>
<author>
<name sortKey="Lee, Ww" uniqKey="Lee W">WW Lee</name>
</author>
<author>
<name sortKey="Kam, Yw" uniqKey="Kam Y">YW Kam</name>
</author>
<author>
<name sortKey="Renia, L" uniqKey="Renia L">L Renia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozden, S" uniqKey="Ozden S">S Ozden</name>
</author>
<author>
<name sortKey="Huerre, M" uniqKey="Huerre M">M Huerre</name>
</author>
<author>
<name sortKey="Riviere, Jp" uniqKey="Riviere J">JP Riviere</name>
</author>
<author>
<name sortKey="Coffey, Ll" uniqKey="Coffey L">LL Coffey</name>
</author>
<author>
<name sortKey="Afonso, Pv" uniqKey="Afonso P">PV Afonso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sourisseau, M" uniqKey="Sourisseau M">M Sourisseau</name>
</author>
<author>
<name sortKey="Schilte, C" uniqKey="Schilte C">C Schilte</name>
</author>
<author>
<name sortKey="Casartelli, N" uniqKey="Casartelli N">N Casartelli</name>
</author>
<author>
<name sortKey="Trouillet, C" uniqKey="Trouillet C">C Trouillet</name>
</author>
<author>
<name sortKey="Guivel Benhassine, F" uniqKey="Guivel Benhassine F">F Guivel-Benhassine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerardin, P" uniqKey="Gerardin P">P Gerardin</name>
</author>
<author>
<name sortKey="Barau, G" uniqKey="Barau G">G Barau</name>
</author>
<author>
<name sortKey="Michault, A" uniqKey="Michault A">A Michault</name>
</author>
<author>
<name sortKey="Bintner, M" uniqKey="Bintner M">M Bintner</name>
</author>
<author>
<name sortKey="Randrianaivo, H" uniqKey="Randrianaivo H">H Randrianaivo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Economopoulou, A" uniqKey="Economopoulou A">A Economopoulou</name>
</author>
<author>
<name sortKey="Dominguez, M" uniqKey="Dominguez M">M Dominguez</name>
</author>
<author>
<name sortKey="Helynck, B" uniqKey="Helynck B">B Helynck</name>
</author>
<author>
<name sortKey="Sissoko, D" uniqKey="Sissoko D">D Sissoko</name>
</author>
<author>
<name sortKey="Wichmann, O" uniqKey="Wichmann O">O Wichmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arpino, C" uniqKey="Arpino C">C Arpino</name>
</author>
<author>
<name sortKey="Curatolo, P" uniqKey="Curatolo P">P Curatolo</name>
</author>
<author>
<name sortKey="Rezza, G" uniqKey="Rezza G">G Rezza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, T" uniqKey="Das T">T Das</name>
</author>
<author>
<name sortKey="Jaffar Bandjee, Mc" uniqKey="Jaffar Bandjee M">MC Jaffar-Bandjee</name>
</author>
<author>
<name sortKey="Hoarau, Jj" uniqKey="Hoarau J">JJ Hoarau</name>
</author>
<author>
<name sortKey="Krejbich Trotot, P" uniqKey="Krejbich Trotot P">P Krejbich Trotot</name>
</author>
<author>
<name sortKey="Denizot, M" uniqKey="Denizot M">M Denizot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Couderc, T" uniqKey="Couderc T">T Couderc</name>
</author>
<author>
<name sortKey="Chretien, F" uniqKey="Chretien F">F Chretien</name>
</author>
<author>
<name sortKey="Schilte, C" uniqKey="Schilte C">C Schilte</name>
</author>
<author>
<name sortKey="Disson, O" uniqKey="Disson O">O Disson</name>
</author>
<author>
<name sortKey="Brigitte, M" uniqKey="Brigitte M">M Brigitte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Labadie, K" uniqKey="Labadie K">K Labadie</name>
</author>
<author>
<name sortKey="Larcher, T" uniqKey="Larcher T">T Larcher</name>
</author>
<author>
<name sortKey="Joubert, C" uniqKey="Joubert C">C Joubert</name>
</author>
<author>
<name sortKey="Mannioui, A" uniqKey="Mannioui A">A Mannioui</name>
</author>
<author>
<name sortKey="Delache, B" uniqKey="Delache B">B Delache</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schilte, C" uniqKey="Schilte C">C Schilte</name>
</author>
<author>
<name sortKey="Couderc, T" uniqKey="Couderc T">T Couderc</name>
</author>
<author>
<name sortKey="Chretien, F" uniqKey="Chretien F">F Chretien</name>
</author>
<author>
<name sortKey="Sourisseau, M" uniqKey="Sourisseau M">M Sourisseau</name>
</author>
<author>
<name sortKey="Gangneux, N" uniqKey="Gangneux N">N Gangneux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gardner, J" uniqKey="Gardner J">J Gardner</name>
</author>
<author>
<name sortKey="Anraku, I" uniqKey="Anraku I">I Anraku</name>
</author>
<author>
<name sortKey="Le, Tt" uniqKey="Le T">TT Le</name>
</author>
<author>
<name sortKey="Larcher, T" uniqKey="Larcher T">T Larcher</name>
</author>
<author>
<name sortKey="Major, L" uniqKey="Major L">L Major</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tobin, Dm" uniqKey="Tobin D">DM Tobin</name>
</author>
<author>
<name sortKey="May, Rc" uniqKey="May R">RC May</name>
</author>
<author>
<name sortKey="Wheeler, Rt" uniqKey="Wheeler R">RT Wheeler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lieschke, Gj" uniqKey="Lieschke G">GJ Lieschke</name>
</author>
<author>
<name sortKey="Oates, Ac" uniqKey="Oates A">AC Oates</name>
</author>
<author>
<name sortKey="Crowhurst, Mo" uniqKey="Crowhurst M">MO Crowhurst</name>
</author>
<author>
<name sortKey="Ward, Ac" uniqKey="Ward A">AC Ward</name>
</author>
<author>
<name sortKey="Layton, Je" uniqKey="Layton J">JE Layton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Guyader, D" uniqKey="Le Guyader D">D Le Guyader</name>
</author>
<author>
<name sortKey="Redd, Mj" uniqKey="Redd M">MJ Redd</name>
</author>
<author>
<name sortKey="Colucci Guyon, E" uniqKey="Colucci Guyon E">E Colucci-Guyon</name>
</author>
<author>
<name sortKey="Murayama, E" uniqKey="Murayama E">E Murayama</name>
</author>
<author>
<name sortKey="Kissa, K" uniqKey="Kissa K">K Kissa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zou, J" uniqKey="Zou J">J Zou</name>
</author>
<author>
<name sortKey="Tafalla, C" uniqKey="Tafalla C">C Tafalla</name>
</author>
<author>
<name sortKey="Truckle, J" uniqKey="Truckle J">J Truckle</name>
</author>
<author>
<name sortKey="Secombes, Cj" uniqKey="Secombes C">CJ Secombes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aggad, D" uniqKey="Aggad D">D Aggad</name>
</author>
<author>
<name sortKey="Mazel, M" uniqKey="Mazel M">M Mazel</name>
</author>
<author>
<name sortKey="Boudinot, P" uniqKey="Boudinot P">P Boudinot</name>
</author>
<author>
<name sortKey="Mogensen, Ke" uniqKey="Mogensen K">KE Mogensen</name>
</author>
<author>
<name sortKey="Hamming, Oj" uniqKey="Hamming O">OJ Hamming</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamming, Oj" uniqKey="Hamming O">OJ Hamming</name>
</author>
<author>
<name sortKey="Lutfalla, G" uniqKey="Lutfalla G">G Lutfalla</name>
</author>
<author>
<name sortKey="Levraud, Jp" uniqKey="Levraud J">JP Levraud</name>
</author>
<author>
<name sortKey="Hartmann, R" uniqKey="Hartmann R">R Hartmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levraud, Jp" uniqKey="Levraud J">JP Levraud</name>
</author>
<author>
<name sortKey="Boudinot, P" uniqKey="Boudinot P">P Boudinot</name>
</author>
<author>
<name sortKey="Colin, I" uniqKey="Colin I">I Colin</name>
</author>
<author>
<name sortKey="Benmansour, A" uniqKey="Benmansour A">A Benmansour</name>
</author>
<author>
<name sortKey="Peyrieras, N" uniqKey="Peyrieras N">N Peyrieras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weston, J" uniqKey="Weston J">J Weston</name>
</author>
<author>
<name sortKey="Villoing, S" uniqKey="Villoing S">S Villoing</name>
</author>
<author>
<name sortKey="Bremont, M" uniqKey="Bremont M">M Bremont</name>
</author>
<author>
<name sortKey="Castric, J" uniqKey="Castric J">J Castric</name>
</author>
<author>
<name sortKey="Pfeffer, M" uniqKey="Pfeffer M">M Pfeffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forrester, Nl" uniqKey="Forrester N">NL Forrester</name>
</author>
<author>
<name sortKey="Palacios, G" uniqKey="Palacios G">G Palacios</name>
</author>
<author>
<name sortKey="Tesh, Rb" uniqKey="Tesh R">RB Tesh</name>
</author>
<author>
<name sortKey="Savji, N" uniqKey="Savji N">N Savji</name>
</author>
<author>
<name sortKey="Guzman, H" uniqKey="Guzman H">H Guzman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durbin, R" uniqKey="Durbin R">R Durbin</name>
</author>
<author>
<name sortKey="Kane, A" uniqKey="Kane A">A Kane</name>
</author>
<author>
<name sortKey="Stollar, V" uniqKey="Stollar V">V Stollar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phelan, Pe" uniqKey="Phelan P">PE Phelan</name>
</author>
<author>
<name sortKey="Pressley, Me" uniqKey="Pressley M">ME Pressley</name>
</author>
<author>
<name sortKey="Witten, Pe" uniqKey="Witten P">PE Witten</name>
</author>
<author>
<name sortKey="Mellon, Mt" uniqKey="Mellon M">MT Mellon</name>
</author>
<author>
<name sortKey="Blake, S" uniqKey="Blake S">S Blake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lopez Munoz, A" uniqKey="Lopez Munoz A">A Lopez-Munoz</name>
</author>
<author>
<name sortKey="Roca, Fj" uniqKey="Roca F">FJ Roca</name>
</author>
<author>
<name sortKey="Sepulcre, Mp" uniqKey="Sepulcre M">MP Sepulcre</name>
</author>
<author>
<name sortKey="Meseguer, J" uniqKey="Meseguer J">J Meseguer</name>
</author>
<author>
<name sortKey="Mulero, V" uniqKey="Mulero V">V Mulero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ludwig, M" uniqKey="Ludwig M">M Ludwig</name>
</author>
<author>
<name sortKey="Palha, N" uniqKey="Palha N">N Palha</name>
</author>
<author>
<name sortKey="Torhy, C" uniqKey="Torhy C">C Torhy</name>
</author>
<author>
<name sortKey="Briolat, V" uniqKey="Briolat V">V Briolat</name>
</author>
<author>
<name sortKey="Colucci Guyon, E" uniqKey="Colucci Guyon E">E Colucci-Guyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rudd, Pa" uniqKey="Rudd P">PA Rudd</name>
</author>
<author>
<name sortKey="Wilson, J" uniqKey="Wilson J">J Wilson</name>
</author>
<author>
<name sortKey="Gardner, J" uniqKey="Gardner J">J Gardner</name>
</author>
<author>
<name sortKey="Larcher, T" uniqKey="Larcher T">T Larcher</name>
</author>
<author>
<name sortKey="Babarit, C" uniqKey="Babarit C">C Babarit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schilte, C" uniqKey="Schilte C">C Schilte</name>
</author>
<author>
<name sortKey="Buckwalter, Mr" uniqKey="Buckwalter M">MR Buckwalter</name>
</author>
<author>
<name sortKey="Laird, Me" uniqKey="Laird M">ME Laird</name>
</author>
<author>
<name sortKey="Diamond, Ms" uniqKey="Diamond M">MS Diamond</name>
</author>
<author>
<name sortKey="Schwartz, O" uniqKey="Schwartz O">O Schwartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brannon, Mk" uniqKey="Brannon M">MK Brannon</name>
</author>
<author>
<name sortKey="Davis, Jm" uniqKey="Davis J">JM Davis</name>
</author>
<author>
<name sortKey="Mathias, Jr" uniqKey="Mathias J">JR Mathias</name>
</author>
<author>
<name sortKey="Hall, Cj" uniqKey="Hall C">CJ Hall</name>
</author>
<author>
<name sortKey="Emerson, Jc" uniqKey="Emerson J">JC Emerson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davison, Jm" uniqKey="Davison J">JM Davison</name>
</author>
<author>
<name sortKey="Akitake, Cm" uniqKey="Akitake C">CM Akitake</name>
</author>
<author>
<name sortKey="Goll, Mg" uniqKey="Goll M">MG Goll</name>
</author>
<author>
<name sortKey="Rhee, Jm" uniqKey="Rhee J">JM Rhee</name>
</author>
<author>
<name sortKey="Gosse, N" uniqKey="Gosse N">N Gosse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liongue, C" uniqKey="Liongue C">C Liongue</name>
</author>
<author>
<name sortKey="Hall, Cj" uniqKey="Hall C">CJ Hall</name>
</author>
<author>
<name sortKey="O Connell, Ba" uniqKey="O Connell B">BA O'Connell</name>
</author>
<author>
<name sortKey="Crosier, P" uniqKey="Crosier P">P Crosier</name>
</author>
<author>
<name sortKey="Ward, Ac" uniqKey="Ward A">AC Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, Cj" uniqKey="Hall C">CJ Hall</name>
</author>
<author>
<name sortKey="Flores, Mv" uniqKey="Flores M">MV Flores</name>
</author>
<author>
<name sortKey="Oehlers, Sh" uniqKey="Oehlers S">SH Oehlers</name>
</author>
<author>
<name sortKey="Sanderson, Le" uniqKey="Sanderson L">LE Sanderson</name>
</author>
<author>
<name sortKey="Lam, Ey" uniqKey="Lam E">EY Lam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Curado, S" uniqKey="Curado S">S Curado</name>
</author>
<author>
<name sortKey="Ober, Ea" uniqKey="Ober E">EA Ober</name>
</author>
<author>
<name sortKey="Walsh, S" uniqKey="Walsh S">S Walsh</name>
</author>
<author>
<name sortKey="Cortes Hernandez, P" uniqKey="Cortes Hernandez P">P Cortes-Hernandez</name>
</author>
<author>
<name sortKey="Verkade, H" uniqKey="Verkade H">H Verkade</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ziegler, Sa" uniqKey="Ziegler S">SA Ziegler</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L Lu</name>
</author>
<author>
<name sortKey="Da Rosa, Ap" uniqKey="Da Rosa A">AP da Rosa</name>
</author>
<author>
<name sortKey="Xiao, Sy" uniqKey="Xiao S">SY Xiao</name>
</author>
<author>
<name sortKey="Tesh, Rb" uniqKey="Tesh R">RB Tesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, E" uniqKey="Wang E">E Wang</name>
</author>
<author>
<name sortKey="Volkova, E" uniqKey="Volkova E">E Volkova</name>
</author>
<author>
<name sortKey="Adams, Ap" uniqKey="Adams A">AP Adams</name>
</author>
<author>
<name sortKey="Forrester, N" uniqKey="Forrester N">N Forrester</name>
</author>
<author>
<name sortKey="Xiao, Sy" uniqKey="Xiao S">SY Xiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, F" uniqKey="Sun F">F Sun</name>
</author>
<author>
<name sortKey="Zhang, Yb" uniqKey="Zhang Y">YB Zhang</name>
</author>
<author>
<name sortKey="Liu, Tk" uniqKey="Liu T">TK Liu</name>
</author>
<author>
<name sortKey="Gan, L" uniqKey="Gan L">L Gan</name>
</author>
<author>
<name sortKey="Yu, Ff" uniqKey="Yu F">FF Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takauji, R" uniqKey="Takauji R">R Takauji</name>
</author>
<author>
<name sortKey="Iho, S" uniqKey="Iho S">S Iho</name>
</author>
<author>
<name sortKey="Takatsuka, H" uniqKey="Takatsuka H">H Takatsuka</name>
</author>
<author>
<name sortKey="Yamamoto, S" uniqKey="Yamamoto S">S Yamamoto</name>
</author>
<author>
<name sortKey="Takahashi, T" uniqKey="Takahashi T">T Takahashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pulverer, Je" uniqKey="Pulverer J">JE Pulverer</name>
</author>
<author>
<name sortKey="Rand, U" uniqKey="Rand U">U Rand</name>
</author>
<author>
<name sortKey="Lienenklaus, S" uniqKey="Lienenklaus S">S Lienenklaus</name>
</author>
<author>
<name sortKey="Kugel, D" uniqKey="Kugel D">D Kugel</name>
</author>
<author>
<name sortKey="Zietara, N" uniqKey="Zietara N">N Zietara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayashi, F" uniqKey="Hayashi F">F Hayashi</name>
</author>
<author>
<name sortKey="Means, Tk" uniqKey="Means T">TK Means</name>
</author>
<author>
<name sortKey="Luster, Ad" uniqKey="Luster A">AD Luster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamassia, N" uniqKey="Tamassia N">N Tamassia</name>
</author>
<author>
<name sortKey="Le Moigne, V" uniqKey="Le Moigne V">V Le Moigne</name>
</author>
<author>
<name sortKey="Rossato, M" uniqKey="Rossato M">M Rossato</name>
</author>
<author>
<name sortKey="Donini, M" uniqKey="Donini M">M Donini</name>
</author>
<author>
<name sortKey="Mccartney, S" uniqKey="Mccartney S">S McCartney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drescher, B" uniqKey="Drescher B">B Drescher</name>
</author>
<author>
<name sortKey="Bai, F" uniqKey="Bai F">F Bai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jenne, Cn" uniqKey="Jenne C">CN Jenne</name>
</author>
<author>
<name sortKey="Wong, Chy" uniqKey="Wong C">CHY Wong</name>
</author>
<author>
<name sortKey="Zemp, Fj" uniqKey="Zemp F">FJ Zemp</name>
</author>
<author>
<name sortKey="Mcdonald, B" uniqKey="Mcdonald B">B McDonald</name>
</author>
<author>
<name sortKey="Rahman, Mm" uniqKey="Rahman M">MM Rahman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T Saitoh</name>
</author>
<author>
<name sortKey="Komano, J" uniqKey="Komano J">J Komano</name>
</author>
<author>
<name sortKey="Saitoh, Y" uniqKey="Saitoh Y">Y Saitoh</name>
</author>
<author>
<name sortKey="Misawa, T" uniqKey="Misawa T">T Misawa</name>
</author>
<author>
<name sortKey="Takahama, M" uniqKey="Takahama M">M Takahama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palic, D" uniqKey="Palic D">D Palic</name>
</author>
<author>
<name sortKey="Andreasen, Cb" uniqKey="Andreasen C">CB Andreasen</name>
</author>
<author>
<name sortKey="Ostojic, J" uniqKey="Ostojic J">J Ostojic</name>
</author>
<author>
<name sortKey="Tell, Rm" uniqKey="Tell R">RM Tell</name>
</author>
<author>
<name sortKey="Roth, Ja" uniqKey="Roth J">JA Roth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colucci Guyon, E" uniqKey="Colucci Guyon E">E Colucci-Guyon</name>
</author>
<author>
<name sortKey="Tinevez, Jy" uniqKey="Tinevez J">JY Tinevez</name>
</author>
<author>
<name sortKey="Renshaw, Sa" uniqKey="Renshaw S">SA Renshaw</name>
</author>
<author>
<name sortKey="Herbomel, P" uniqKey="Herbomel P">P Herbomel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Ct" uniqKey="Yang C">CT Yang</name>
</author>
<author>
<name sortKey="Cambier, Cj" uniqKey="Cambier C">CJ Cambier</name>
</author>
<author>
<name sortKey="Davis, Jm" uniqKey="Davis J">JM Davis</name>
</author>
<author>
<name sortKey="Hall, Cj" uniqKey="Hall C">CJ Hall</name>
</author>
<author>
<name sortKey="Crosier, Ps" uniqKey="Crosier P">PS Crosier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Navarini, Aa" uniqKey="Navarini A">AA Navarini</name>
</author>
<author>
<name sortKey="Recher, M" uniqKey="Recher M">M Recher</name>
</author>
<author>
<name sortKey="Lang, Ks" uniqKey="Lang K">KS Lang</name>
</author>
<author>
<name sortKey="Georgiev, P" uniqKey="Georgiev P">P Georgiev</name>
</author>
<author>
<name sortKey="Meury, S" uniqKey="Meury S">S Meury</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronneseth, A" uniqKey="Ronneseth A">A Ronneseth</name>
</author>
<author>
<name sortKey="Pettersen, Ef" uniqKey="Pettersen E">EF Pettersen</name>
</author>
<author>
<name sortKey="Wergeland, Hi" uniqKey="Wergeland H">HI Wergeland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chow, A" uniqKey="Chow A">A Chow</name>
</author>
<author>
<name sortKey="Her, Z" uniqKey="Her Z">Z Her</name>
</author>
<author>
<name sortKey="Ong, Ek" uniqKey="Ong E">EK Ong</name>
</author>
<author>
<name sortKey="Chen, Jm" uniqKey="Chen J">JM Chen</name>
</author>
<author>
<name sortKey="Dimatatac, F" uniqKey="Dimatatac F">F Dimatatac</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cuzzocrea, S" uniqKey="Cuzzocrea S">S Cuzzocrea</name>
</author>
<author>
<name sortKey="Chatterjee, Pk" uniqKey="Chatterjee P">PK Chatterjee</name>
</author>
<author>
<name sortKey="Mazzon, E" uniqKey="Mazzon E">E Mazzon</name>
</author>
<author>
<name sortKey="Dugo, L" uniqKey="Dugo L">L Dugo</name>
</author>
<author>
<name sortKey="De Sarro, A" uniqKey="De Sarro A">A De Sarro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Genovese, T" uniqKey="Genovese T">T Genovese</name>
</author>
<author>
<name sortKey="Cuzzocrea, S" uniqKey="Cuzzocrea S">S Cuzzocrea</name>
</author>
<author>
<name sortKey="Di Paola, R" uniqKey="Di Paola R">R Di Paola</name>
</author>
<author>
<name sortKey="Failla, M" uniqKey="Failla M">M Failla</name>
</author>
<author>
<name sortKey="Mazzon, E" uniqKey="Mazzon E">E Mazzon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeidler, Pc" uniqKey="Zeidler P">PC Zeidler</name>
</author>
<author>
<name sortKey="Millecchia, Lm" uniqKey="Millecchia L">LM Millecchia</name>
</author>
<author>
<name sortKey="Castranova, V" uniqKey="Castranova V">V Castranova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orvedahl, A" uniqKey="Orvedahl A">A Orvedahl</name>
</author>
<author>
<name sortKey="Macpherson, S" uniqKey="Macpherson S">S MacPherson</name>
</author>
<author>
<name sortKey="Sumpter, R" uniqKey="Sumpter R">R Sumpter</name>
</author>
<author>
<name sortKey="Talloczy, Z" uniqKey="Talloczy Z">Z Talloczy</name>
</author>
<author>
<name sortKey="Zou, Z" uniqKey="Zou Z">Z Zou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stetson, Db" uniqKey="Stetson D">DB Stetson</name>
</author>
<author>
<name sortKey="Medzhitov, R" uniqKey="Medzhitov R">R Medzhitov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeong, Jy" uniqKey="Jeong J">JY Jeong</name>
</author>
<author>
<name sortKey="Kwon, Hb" uniqKey="Kwon H">HB Kwon</name>
</author>
<author>
<name sortKey="Ahn, Jc" uniqKey="Ahn J">JC Ahn</name>
</author>
<author>
<name sortKey="Kang, D" uniqKey="Kang D">D Kang</name>
</author>
<author>
<name sortKey="Kwon, Sh" uniqKey="Kwon S">SH Kwon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murooka, Tt" uniqKey="Murooka T">TT Murooka</name>
</author>
<author>
<name sortKey="Deruaz, M" uniqKey="Deruaz M">M Deruaz</name>
</author>
<author>
<name sortKey="Marangoni, F" uniqKey="Marangoni F">F Marangoni</name>
</author>
<author>
<name sortKey="Vrbanac, Vd" uniqKey="Vrbanac V">VD Vrbanac</name>
</author>
<author>
<name sortKey="Seung, E" uniqKey="Seung E">E Seung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sewald, X" uniqKey="Sewald X">X Sewald</name>
</author>
<author>
<name sortKey="Gonzalez, Dg" uniqKey="Gonzalez D">DG Gonzalez</name>
</author>
<author>
<name sortKey="Haberman, Am" uniqKey="Haberman A">AM Haberman</name>
</author>
<author>
<name sortKey="Mothes, W" uniqKey="Mothes W">W Mothes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hickman, Hd" uniqKey="Hickman H">HD Hickman</name>
</author>
<author>
<name sortKey="Reynoso, Gv" uniqKey="Reynoso G">GV Reynoso</name>
</author>
<author>
<name sortKey="Ngudiankama, Bf" uniqKey="Ngudiankama B">BF Ngudiankama</name>
</author>
<author>
<name sortKey="Rubin, Ej" uniqKey="Rubin E">EJ Rubin</name>
</author>
<author>
<name sortKey="Magadan, Jg" uniqKey="Magadan J">JG Magadán</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levraud, Jp" uniqKey="Levraud J">JP Levraud</name>
</author>
<author>
<name sortKey="Colucci Guyon, E" uniqKey="Colucci Guyon E">E Colucci-Guyon</name>
</author>
<author>
<name sortKey="Redd, Mj" uniqKey="Redd M">MJ Redd</name>
</author>
<author>
<name sortKey="Lutfalla, G" uniqKey="Lutfalla G">G Lutfalla</name>
</author>
<author>
<name sortKey="Herbomel, P" uniqKey="Herbomel P">P Herbomel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Traver, D" uniqKey="Traver D">D Traver</name>
</author>
<author>
<name sortKey="Paw, Bh" uniqKey="Paw B">BH Paw</name>
</author>
<author>
<name sortKey="Poss, Kd" uniqKey="Poss K">KD Poss</name>
</author>
<author>
<name sortKey="Penberthy, Wt" uniqKey="Penberthy W">WT Penberthy</name>
</author>
<author>
<name sortKey="Lin, S" uniqKey="Lin S">S Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Hc" uniqKey="Park H">HC Park</name>
</author>
<author>
<name sortKey="Kim, Ch" uniqKey="Kim C">CH Kim</name>
</author>
<author>
<name sortKey="Bae, Yk" uniqKey="Bae Y">YK Bae</name>
</author>
<author>
<name sortKey="Yeo, Sy" uniqKey="Yeo S">SY Yeo</name>
</author>
<author>
<name sortKey="Kim, Sh" uniqKey="Kim S">SH Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernardos, Rl" uniqKey="Bernardos R">RL Bernardos</name>
</author>
<author>
<name sortKey="Raymond, Pa" uniqKey="Raymond P">PA Raymond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, Pd" uniqKey="Dong P">PD Dong</name>
</author>
<author>
<name sortKey="Munson, Ca" uniqKey="Munson C">CA Munson</name>
</author>
<author>
<name sortKey="Norton, W" uniqKey="Norton W">W Norton</name>
</author>
<author>
<name sortKey="Crosnier, C" uniqKey="Crosnier C">C Crosnier</name>
</author>
<author>
<name sortKey="Pan, X" uniqKey="Pan X">X Pan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Renshaw, Sa" uniqKey="Renshaw S">SA Renshaw</name>
</author>
<author>
<name sortKey="Loynes, Ca" uniqKey="Loynes C">CA Loynes</name>
</author>
<author>
<name sortKey="Trushell, Dm" uniqKey="Trushell D">DM Trushell</name>
</author>
<author>
<name sortKey="Elworthy, S" uniqKey="Elworthy S">S Elworthy</name>
</author>
<author>
<name sortKey="Ingham, Pw" uniqKey="Ingham P">PW Ingham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellett, F" uniqKey="Ellett F">F Ellett</name>
</author>
<author>
<name sortKey="Pase, L" uniqKey="Pase L">L Pase</name>
</author>
<author>
<name sortKey="Hayman, Jw" uniqKey="Hayman J">JW Hayman</name>
</author>
<author>
<name sortKey="Andrianopoulos, A" uniqKey="Andrianopoulos A">A Andrianopoulos</name>
</author>
<author>
<name sortKey="Lieschke, Gj" uniqKey="Lieschke G">GJ Lieschke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suster, Ml" uniqKey="Suster M">ML Suster</name>
</author>
<author>
<name sortKey="Kikuta, H" uniqKey="Kikuta H">H Kikuta</name>
</author>
<author>
<name sortKey="Urasaki, A" uniqKey="Urasaki A">A Urasaki</name>
</author>
<author>
<name sortKey="Asakawa, K" uniqKey="Asakawa K">K Asakawa</name>
</author>
<author>
<name sortKey="Kawakami, K" uniqKey="Kawakami K">K Kawakami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellett, F" uniqKey="Ellett F">F Ellett</name>
</author>
<author>
<name sortKey="Lieschke, Gj" uniqKey="Lieschke G">GJ Lieschke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Svoboda, Kr" uniqKey="Svoboda K">KR Svoboda</name>
</author>
<author>
<name sortKey="Linares, Ae" uniqKey="Linares A">AE Linares</name>
</author>
<author>
<name sortKey="Ribera, Ab" uniqKey="Ribera A">AB Ribera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greiser Wilke, I" uniqKey="Greiser Wilke I">I Greiser-Wilke</name>
</author>
<author>
<name sortKey="Moenning, V" uniqKey="Moenning V">V Moenning</name>
</author>
<author>
<name sortKey="Kaaden, Or" uniqKey="Kaaden O">OR Kaaden</name>
</author>
<author>
<name sortKey="Figueiredo, Lt" uniqKey="Figueiredo L">LT Figueiredo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Covassin, L" uniqKey="Covassin L">L Covassin</name>
</author>
<author>
<name sortKey="Amigo, Jd" uniqKey="Amigo J">JD Amigo</name>
</author>
<author>
<name sortKey="Suzuki, K" uniqKey="Suzuki K">K Suzuki</name>
</author>
<author>
<name sortKey="Teplyuk, V" uniqKey="Teplyuk V">V Teplyuk</name>
</author>
<author>
<name sortKey="Straubhaar, J" uniqKey="Straubhaar J">J Straubhaar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thisse, C" uniqKey="Thisse C">C Thisse</name>
</author>
<author>
<name sortKey="Thisse, B" uniqKey="Thisse B">B Thisse</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Pathog</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Pathog</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plospath</journal-id>
<journal-title-group>
<journal-title>PLoS Pathogens</journal-title>
</journal-title-group>
<issn pub-type="ppub">1553-7366</issn>
<issn pub-type="epub">1553-7374</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24039582</article-id>
<article-id pub-id-type="pmc">3764224</article-id>
<article-id pub-id-type="publisher-id">PPATHOGENS-D-13-00510</article-id>
<article-id pub-id-type="doi">10.1371/journal.ppat.1003619</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immunity</subject>
<subj-group>
<subject>Immunity to Infections</subject>
<subject>Innate Immunity</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Immune Response</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Microbiology</subject>
<subj-group>
<subject>Virology</subject>
<subj-group>
<subject>Viral Transmission and Infection</subject>
<subj-group>
<subject>Host Cells</subject>
<subject>Neuroinvasiveness</subject>
<subject>Viral Clearance</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Animal Models of Infection</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Host-Pathogen Interaction</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Model Organisms</subject>
<subj-group>
<subject>Animal Models</subject>
<subj-group>
<subject>Zebrafish</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Real-Time Whole-Body Visualization of Chikungunya Virus Infection and Host Interferon Response in Zebrafish</article-title>
<alt-title alt-title-type="running-head">Whole-Body Visualization of CHIKV Infection</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Palha</surname>
<given-names>Nuno</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guivel-Benhassine</surname>
<given-names>Florence</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Briolat</surname>
<given-names>Valérie</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lutfalla</surname>
<given-names>Georges</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sourisseau</surname>
<given-names>Marion</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">
<sup>¤a</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ellett</surname>
<given-names>Felix</given-names>
</name>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
<xref ref-type="author-notes" rid="fn2">
<sup>¤b</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Chieh-Huei</given-names>
</name>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lieschke</surname>
<given-names>Graham J.</given-names>
</name>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Herbomel</surname>
<given-names>Philippe</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schwartz</surname>
<given-names>Olivier</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Levraud</surname>
<given-names>Jean-Pierre</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Institut Pasteur, Macrophages et Développement de l'Immunité, Department of Developmental and Stem Cells Biology, Paris, France</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>CNRS URA2578, Paris, France</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Université Pierre et Marie Curie, Paris, France</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Institut Pasteur, Virus et Immunité, Department of Virology, Paris, France</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>CNRS URA3015, Paris, France</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<addr-line>CNRS UMR5235, Dynamiques des Interactions Membranaires et Pathologiques, Montpellier, France</addr-line>
</aff>
<aff id="aff7">
<label>7</label>
<addr-line>Université Montpellier II, Montpellier, France</addr-line>
</aff>
<aff id="aff8">
<label>8</label>
<addr-line>Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Heise</surname>
<given-names>Mark T.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of North Carolina at Chapel Hill, United States of America</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>jean-pierre.levraud@pasteur.fr</email>
</corresp>
<fn fn-type="COI-statement">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: JPL OS NP. Performed the experiments: NP JPL FGB MS GL VB CHW. Analyzed the data: NP JPL OS PH. Contributed reagents/materials/analysis tools: FE GJL. Wrote the paper: NP JPL OS.</p>
</fn>
<fn id="fn1" fn-type="current-aff">
<label>¤a</label>
<p>Current address: Mount Sinai School of Medicine, New York, New York, United States of America.</p>
</fn>
<fn id="fn2" fn-type="current-aff">
<label>¤b</label>
<p>Current address: MRC Centre for Developmental and Biomedical Genetics, Sheffield, United Kingdom.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>9</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>5</day>
<month>9</month>
<year>2013</year>
</pub-date>
<volume>9</volume>
<issue>9</issue>
<elocation-id>e1003619</elocation-id>
<history>
<date date-type="received">
<day>22</day>
<month>2</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>29</day>
<month>7</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>© 2013 Palha et al</copyright-statement>
<copyright-year>2013</copyright-year>
<copyright-holder>Palha et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<abstract>
<p>Chikungunya Virus (CHIKV), a re-emerging arbovirus that may cause severe disease, constitutes an important public health problem. Herein we describe a novel CHIKV infection model in zebrafish, where viral spread was live-imaged in the whole body up to cellular resolution. Infected cells emerged in various organs in one principal wave with a median appearance time of ∼14 hours post infection. Timing of infected cell death was organ dependent, leading to a shift of CHIKV localization towards the brain. As in mammals, CHIKV infection triggered a strong type-I interferon (IFN) response, critical for survival. IFN was mainly expressed by neutrophils and hepatocytes. Cell type specific ablation experiments further demonstrated that neutrophils play a crucial, unexpected role in CHIKV containment. Altogether, our results show that the zebrafish represents a novel valuable model to dynamically visualize replication, pathogenesis and host responses to a human virus.</p>
</abstract>
<abstract abstract-type="summary">
<title>Author Summary</title>
<p>Chikungunya, a re-emerging disease caused by a mosquito-transmitted virus, is an important public health problem. We developed a zebrafish model for chikungunya virus infection. For the first time, rise and death of virus-infected cells could be live imaged in the entire body of a vertebrate. We observed a widespread wave of apparition of newly infected cells during the first day after inoculation of the virus. We then found that infected cells died at a strongly organ-dependent rate, accounting for the progressive shift of virus localization. Notably, the virus persisted in the brain despite apparent recovery of infected zebrafish. We found this recovery to be critically dependent on the host type I interferon response. Surprisingly, we identified neutrophils as a major cell population expressing interferon and controlling chikungunya virus.</p>
</abstract>
<funding-group>
<funding-statement>This work was financed by the Agence Nationale de la Recherche (Zebraflam grant ANR-10-MIDI-009, and CHIK-HOST-PATH2 grant), Region Ile-de-France (DIM-Malinf), and institutional grants from the Institut Pasteur and CNRS. NP is endowed with a fellowship from Fundação para a Ciência e a Tecnologia (SFRH/BD/60678/2009). GJL is supported by the National Health and Medical Research Council (grants 461208 and 637394). The Australian Regenerative Medicine Institute is supported by grants from the State Government of Victoria and the Australian Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="15"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Chikungunya virus (CHIKV) is a mosquito-transmitted virus that causes serious illness and has reemerged in Africa and Asia since 2000, causing outbreaks with millions of cases after decades of near-absence
<xref rid="ppat.1003619-Burt1" ref-type="bibr">[1]</xref>
. The epidemic spread to previously CHIKV-free areas, such as La Reunion Island in the Indian Ocean, probably as a consequence of the adaptive mutation of the virus to a new vector species,
<italic>Aedes albopictus</italic>
, the tiger mosquito
<xref rid="ppat.1003619-Schuffenecker1" ref-type="bibr">[2]</xref>
,
<xref rid="ppat.1003619-Tsetsarkin1" ref-type="bibr">[3]</xref>
,
<xref rid="ppat.1003619-deLamballerie1" ref-type="bibr">[4]</xref>
,
<xref rid="ppat.1003619-Tsetsarkin2" ref-type="bibr">[5]</xref>
. Unlike traditional CHIKV vectors such as
<italic>A. aegypti</italic>
,
<italic>A. albopictus</italic>
can produce cold-resistant eggs and is a major invasive species of temperate countries
<xref rid="ppat.1003619-Medlock1" ref-type="bibr">[6]</xref>
, and as it also seems to better transmit the virus
<xref rid="ppat.1003619-VegaRua1" ref-type="bibr">[7]</xref>
, CHIKV is now threatening to invade many new territories including the Caribbean, southeast USA and southern Europe. There is currently no commercial vaccine or efficient treatment available for this disease
<xref rid="ppat.1003619-Burt1" ref-type="bibr">[1]</xref>
.</p>
<p>CHIKV infection is often debilitating and may last from weeks to months; its symptoms in humans include acute fever, rash, joint and muscle pain, chronic arthralgia and, more rarely, severe complications with a fatality rate of about 1 in 1000
<xref rid="ppat.1003619-Burt1" ref-type="bibr">[1]</xref>
,
<xref rid="ppat.1003619-Schwartz1" ref-type="bibr">[8]</xref>
,
<xref rid="ppat.1003619-DupuisMaguiraga1" ref-type="bibr">[9]</xref>
,
<xref rid="ppat.1003619-Suhrbier1" ref-type="bibr">[10]</xref>
. However, CHIKV infection in humans is generally self-limiting, with a short but intense viremia lasting about one week, controlled by type-I interferons (IFNs)
<xref rid="ppat.1003619-Schwartz1" ref-type="bibr">[8]</xref>
. Specific antibodies become detectable shortly after and contribute to virus clearance
<xref rid="ppat.1003619-Lum1" ref-type="bibr">[11]</xref>
.</p>
<p>CHIKV tropism
<italic>in vivo</italic>
, and host innate immune responses are only starting to be characterized
<xref rid="ppat.1003619-Schwartz1" ref-type="bibr">[8]</xref>
,
<xref rid="ppat.1003619-DupuisMaguiraga1" ref-type="bibr">[9]</xref>
. In humans, the virus displays a wide cellular tropism
<italic>in vitro</italic>
, infecting fibroblasts, endothelial, epithelial, muscle cells, and to a lower extent, myeloid cells like macrophages
<xref rid="ppat.1003619-Ozden1" ref-type="bibr">[12]</xref>
,
<xref rid="ppat.1003619-Sourisseau1" ref-type="bibr">[13]</xref>
. Severe encephalopathies have been reported in CHIKV-infected humans, mostly in infants - more than half infected newborns
<xref rid="ppat.1003619-Gerardin1" ref-type="bibr">[14]</xref>
, compared with ∼0.1% in adults
<xref rid="ppat.1003619-Economopoulou1" ref-type="bibr">[15]</xref>
- yet CHIKV neurotropism remains controversial
<xref rid="ppat.1003619-Arpino1" ref-type="bibr">[16]</xref>
,
<xref rid="ppat.1003619-Das1" ref-type="bibr">[17]</xref>
. It is still debated whether CHIKV may persist in some cellular reservoirs after the early viremic phase and be responsible for painful relapses that may persist for months.</p>
<p>Murine and macaque models that recapitulate to some extent the human disease have been developed
<xref rid="ppat.1003619-Couderc1" ref-type="bibr">[18]</xref>
,
<xref rid="ppat.1003619-Labadie1" ref-type="bibr">[19]</xref>
,
<xref rid="ppat.1003619-Schilte1" ref-type="bibr">[20]</xref>
,
<xref rid="ppat.1003619-Gardner1" ref-type="bibr">[21]</xref>
. These models have greatly improved our understanding of the disease, but they do not allow the visualization of infection dynamics and host antiviral and inflammatory responses at the whole body level.</p>
<p>Recently, the zebrafish
<italic>Danio rerio</italic>
has emerged as a new model for host-pathogen interactions, largely because their small, transparent larvae are highly suited to
<italic>in vivo</italic>
imaging. Zebrafish possess an innate and adaptive immune system akin to that of mammals, but its free-swimming larva relies solely on innate immunity for the first month of its life, allowing the specific dissection of innate immune responses
<xref rid="ppat.1003619-Tobin1" ref-type="bibr">[22]</xref>
. At the larval stage, cellular immunity consists of myeloid cells only, with neutrophils and macrophages being the main effector cells
<xref rid="ppat.1003619-Lieschke1" ref-type="bibr">[23]</xref>
,
<xref rid="ppat.1003619-LeGuyader1" ref-type="bibr">[24]</xref>
. As in mammals, antiviral immunity is orchestrated by virus-induced IFNs, of which the zebrafish possess four (IFNφ1-4)
<xref rid="ppat.1003619-Zou1" ref-type="bibr">[25]</xref>
,
<xref rid="ppat.1003619-Aggad1" ref-type="bibr">[26]</xref>
, structurally similar to mammalian type I IFNs
<xref rid="ppat.1003619-Hamming1" ref-type="bibr">[27]</xref>
. Zebrafish type I IFNs have been divided into two groups: I (IFNφ1 and φ4) and II (IFNφ2 and φ3), that signal via two different heterodimeric receptors, CRFB1/CRFB5 and CRFB2/CRFB5, respectively. As IFNφ2 is expressed only in adults and IFNφ4 has little activity, the IFN response is mediated by IFNφ1 and IFNφ3 in zebrafish larvae
<xref rid="ppat.1003619-Aggad1" ref-type="bibr">[26]</xref>
,
<xref rid="ppat.1003619-Levraud1" ref-type="bibr">[28]</xref>
.</p>
<p>Since CHIKV infects both mammals and insects, and since other members of the alphavirus genus naturally infect salmonids
<xref rid="ppat.1003619-Weston1" ref-type="bibr">[29]</xref>
,
<xref rid="ppat.1003619-Forrester1" ref-type="bibr">[30]</xref>
, we hypothesized that the zebrafish free-swimming larva might be sensitive to CHIKV, allowing live imaging of infected cells and dynamics of host-virus relationship in the entire animal. Here we describe a new CHIKV infection model in zebrafish larvae and analyze the dynamics of infection, cell death and host responses. Type I IFNs were critical for survival of CHIKV-infected zebrafish and we identified an unexpected role for neutrophils in both the production of type I IFNs and control of CHIKV infection.</p>
</sec>
<sec id="s2">
<title>Results</title>
<sec id="s2a">
<title>CHIKV infects zebrafish larvae</title>
<p>We first asked whether zebrafish were sensitive to CHIKV infection. Larvae aged 3 days post-fertilization (dpf) were injected intravenously (
<xref ref-type="fig" rid="ppat-1003619-g001">Figure 1A</xref>
) with ∼10
<sup>2</sup>
TCID50 CHIKV, using a strain from the 2005–2006 Reunion Island outbreak (CHIKV-115)
<xref rid="ppat.1003619-Sourisseau1" ref-type="bibr">[13]</xref>
or a closely related strain engineered to express GFP (CHIKV-GFP)
<xref rid="ppat.1003619-Tsetsarkin1" ref-type="bibr">[3]</xref>
. Both CHIKV-115 and CHIKV-GFP established infection and replicated
<italic>in vivo</italic>
, with production of infectious virions peaking at 24–48 hours post-infection (hpi) (>10
<sup>5</sup>
TCID50/larva; i.e., >10
<sup>8</sup>
TCID50/gram of tissue) (
<xref ref-type="fig" rid="ppat-1003619-g001">Figure 1B</xref>
). Using qRT-PCR with E1-specific primers, we found similar kinetics (
<xref ref-type="fig" rid="ppat-1003619-g001">Figure 1C</xref>
). These primers amplify both the genomic and subgenomic transcripts, hence mainly reflect the level of the latter, which is more abundant in alphavirus-infected cells
<xref rid="ppat.1003619-Durbin1" ref-type="bibr">[31]</xref>
, although the ratio of genomic to subgenomic transcripts may vary widely among alphaviruses. Predictably, similar kinetics were obtained for virus-encoded, subgenomic promoter-driven
<italic>GFP</italic>
transcripts (
<xref ref-type="fig" rid="ppat-1003619-g001">Figure 1C</xref>
). Symptoms, most obvious at 3 days post-infection (dpi), were mild compared to other zebrafish viral infection models
<xref rid="ppat.1003619-Levraud1" ref-type="bibr">[28]</xref>
,
<xref rid="ppat.1003619-Phelan1" ref-type="bibr">[32]</xref>
,
<xref rid="ppat.1003619-LopezMunoz1" ref-type="bibr">[33]</xref>
,
<xref rid="ppat.1003619-Ludwig1" ref-type="bibr">[34]</xref>
, the most consistent one being opacification of the yolk (Figure S1A in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
). Other less frequent signs included delay in swim bladder inflation, slowing of blood flow, irregular heartbeat, edema, loss of equilibrium and sluggish response to touch (Table S1 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
). These signs were generally transient and by 5 dpi, >90% of infected larvae had apparently recovered, surviving until at least 7 dpi
<italic>(not shown)</italic>
.</p>
<fig id="ppat-1003619-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003619.g001</object-id>
<label>Figure 1</label>
<caption>
<title>CHIKV replicates in zebrafish and disseminates to various organs.</title>
<p>(A) Scheme of a 72 hours post-fertilization (hpf) larva, showing the site of injection in the dorsal aorta (DA) or caudal vein (CV), the caudal hematopoietic tissues (CHT) and the yolk syncitial cell (y). (B) Virus titers in zebrafish larvae infected with wild-type CHIKV-115 or with CHIKV-GFP. Data represent mean ± s.e.m of 2–5 pools of 4 larvae from 5 independent experiments. (C) qRT-PCR of viral
<italic>E1</italic>
and
<italic>GFP</italic>
transcripts after CHIKV-GFP infection. Mean ± s.e.m of 3 pools of 10 larvae from 3 independent experiments. (D) Overlay of transmission and green fluorescence stereomicroscope images of a single representative wild-type CHIKV-GFP-infected larva, live imaged at different hours post infection (hpi). CHIKV infection is shown in the brain, liver, head mesenchyme, muscle, swim bladder and yolk (red, green, yellow, blue, white and magenta arrowheads, respectively). (E) Assessment using fluorescence stereomicroscopy of penetrance (% of infected larvae displaying infection) and severity (number of cells) of infection in specific organs at different time-points after CHIKV-GFP infection, following immunohistochemistry (IHC) with an anti-capsid antibody. Data pooled from 2 independent experiments,
<italic>N</italic>
 = 20 larvae for each time-point.</p>
</caption>
<graphic xlink:href="ppat.1003619.g001"></graphic>
</fig>
</sec>
<sec id="s2b">
<title>CHIKV infection is cleared in most tissues but infection persists in brain parenchyma</title>
<p>We monitored organs and cells of live CHIKV-GFP infected zebrafish. GFP patterns varied through time (
<xref ref-type="fig" rid="ppat-1003619-g001">Figure 1D</xref>
) and between individuals (Figure S1B in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
). GFP was detected in liver, jaw, gills, vascular endothelium, eyes, fins, blood cells, muscle fibers, brain, spinal cord, swim bladder and the yolk syncytial layer. Similar patterns were observed in CHIKV-115 infected zebrafish after fixation and immunohistochemistry (IHC) with a capsid-specific antibody
<italic>(not shown)</italic>
. We quantified the distribution of infected cells in the entire organism over time to establish the kinetics of viral dissemination (
<xref ref-type="fig" rid="ppat-1003619-g001">Figure 1E</xref>
). The amount of infected cells peaked by 1–2 dpi in most organs (jaw, fins, liver, vessels, musculature). This peak was followed by a sharp decrease both in the frequency of larvae showing infection in a given organ, and the number of infected cells per organ. By 4 dpi, CHIKV was cleared from most organs. In contrast, infection in the brain parenchyma became visible at 2 dpi in most animals and persisted at least until 5 dpi (
<xref ref-type="fig" rid="ppat-1003619-g001">Figures 1D and 1E</xref>
), suggesting that the brain may represent a viral reservoir in zebrafish. At 7 dpi, the latest time point testable, infection in the brain was still strong (Figure S1C in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
); in addition, double staining of CHIKV-GFP infected larvae with anti-GFP and anti-capsid antibodies showed that almost all capsid-positive cells also expressed GFP, indicating that GFP expression was a reliable indicator of the infection, even into late stages.</p>
<p>Confocal imaging of IHC-labeled CHIKV-infected larvae showed infection in various cell types (
<xref ref-type="fig" rid="ppat-1003619-g002">Figure 2A</xref>
), namely fibroblasts in fins (
<xref ref-type="fig" rid="ppat-1003619-g002">Figure 2B</xref>
) and jaw (
<italic>not shown</italic>
), endothelial cells (
<xref ref-type="fig" rid="ppat-1003619-g002">Figure 2C</xref>
), muscle fibers (
<xref ref-type="fig" rid="ppat-1003619-g002">Figure 2D</xref>
) and hepatocytes (
<xref ref-type="fig" rid="ppat-1003619-g002">Figure 2E</xref>
, and Figure S2 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
). Infection also occurred occasionally in red blood cells (Figure S2 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
) but not in macrophages or neutrophils (
<italic>not shown</italic>
). In zebrafish brain, CHIKV was detected in both neurons and glial cells (
<xref ref-type="fig" rid="ppat-1003619-g002">Figure 2F</xref>
, and Figure S2 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
).</p>
<fig id="ppat-1003619-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003619.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Cellular tropism of CHIKV.</title>
<p>(A) Scheme of imaged regions in (B–F). (B–F) Confocal images of IHC-processed zebrafish at 24 hpi with CHIKV-GFP (B–E) or at 72 hpi with CHIKV-115 (F). As for all images, anterior to left, dorsal to top; scale bars, 50 µm. GFP staining in green in (B, F) DsRed staining in red in (E), capsid staining in red (B, F) or green (C–E); nuclei counterstained in blue. The
<italic>fabp10:dsRed</italic>
transgene labels hepatocytes, and
<italic>HuC:GFP</italic>
, post-mitotic neurons. Arrows show infection in fin fibroblasts (B), endothelial cells (C), a muscle fiber (D), hepatocytes (E) and neurons (F).</p>
</caption>
<graphic xlink:href="ppat.1003619.g002"></graphic>
</fig>
</sec>
<sec id="s2c">
<title>Differential infected cell survival accounts for viral persistence in brain</title>
<p>To assess the dynamics of CHIKV infection and its cytopathic effects, we performed time-lapse imaging of CHIKV-GFP infected larvae (
<xref ref-type="fig" rid="ppat-1003619-g003">Figures 3A and 3B</xref>
) and compiled the appearance and death of GFP
<sup>+</sup>
cells (
<xref ref-type="fig" rid="ppat-1003619-g003">Figures 3C–E</xref>
). 88% of newly infected cells appeared before 24 hpi in one major wave (
<xref ref-type="fig" rid="ppat-1003619-g003">Figure 3C</xref>
). The median time of appearance of new GFP
<sup>+</sup>
cells was 14±2 hpi with similar kinetics in all cell types (
<xref ref-type="fig" rid="ppat-1003619-g003">Figure 3D</xref>
). Death of GFP
<sup>+</sup>
infected cells presented apoptosis features such as membrane blebbing and cellular fragmentation (
<xref ref-type="fig" rid="ppat-1003619-g003">Figure 3B</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1003619.s001">Movies S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1003619.s002">S2</xref>
). It was frequent from 24 hpi onwards (
<xref ref-type="fig" rid="ppat-1003619-g003">Figure 3C</xref>
), with an overall median death time of 67±4 hpi, but dependent on cell type (
<xref ref-type="fig" rid="ppat-1003619-g003">Figure 3E</xref>
). For instance, liver cells were highly susceptible to CHIKV cytopathic effects, with a median occurrence of death at 41±5 hpi, implying that hepatocytes survive for ∼27 h following GFP detection, compared to a ∼53 h survival period for the general cell population. In contrast, almost all infected brain parenchyma cells survived at least until 72 hpi. These results demonstrate that the apparent shifting tropism of infection towards brain (
<xref ref-type="fig" rid="ppat-1003619-g001">Figure 1E</xref>
) is largely due to differential cell survival.</p>
<fig id="ppat-1003619-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003619.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Kinetics of appearance and death of infected cells, from
<italic>in vivo</italic>
time-lapse imaging of CHIKV-GFP infection.</title>
<p>(A, B) Movie frames showing emergence of infected cells (GFP
<sup>+</sup>
) in the liver and death of one cell during the first day of infection. Time post-infection (in hours and minutes) overlaid on images. (A) Entire field, overlay of transmission and GFP fluorescence (green), scale bar 100 µm. Liver delineated in yellow; arrows point to an hepatocyte becoming infected and dying. (B) Detail from the same movie, GFP fluorescence only, scale bar 20 µm, showing the rise and death of this infected hepatocyte. (C) Timings of appearance (green bars) and death (red bars) of immobile CHIKV-GFP infected cells, all organs pooled; (D, E) sub-analysis of the same dataset, showing kinetics of appearance (D) and death (E) of GFP
<sup>+</sup>
cells per organ, displayed as Kaplan-Meier plots.
<italic>N</italic>
 = Number of cells followed in each organ. In (C–E) data pooled from five independent experiments, with a total 24 fish imaged for 6–24 hours each, 4–8 animals per time-point.</p>
</caption>
<graphic xlink:href="ppat.1003619.g003"></graphic>
</fig>
</sec>
<sec id="s2d">
<title>A protective type I IFN response is induced upon CHIKV infection</title>
<p>Type I IFN signaling is critical for control of CHIKV in mammals
<xref rid="ppat.1003619-Couderc1" ref-type="bibr">[18]</xref>
,
<xref rid="ppat.1003619-Schilte1" ref-type="bibr">[20]</xref>
. In zebrafish larvae, CHIKV triggered high mRNA levels of
<italic>ifnφ1</italic>
(NM_207640, secreted isoform transcript) and
<italic>ifnφ3</italic>
(NM_001111083), and of various IFN-induced genes including
<italic>viperin/vig-1/rsad2</italic>
(NM_001025556) (
<xref ref-type="fig" rid="ppat-1003619-g004">Figures 4A–C</xref>
and
<italic>not shown</italic>
).
<italic>Ifnφ1</italic>
and
<italic>viperin</italic>
levels, peaking at 17–24 hpi, remained high for at least 4 days, correlating with viral burden. These levels were higher than previously observed with fish viruses in zebrafish
<xref rid="ppat.1003619-Levraud1" ref-type="bibr">[28]</xref>
,
<xref rid="ppat.1003619-Phelan1" ref-type="bibr">[32]</xref>
,
<xref rid="ppat.1003619-Ludwig1" ref-type="bibr">[34]</xref>
.
<italic>Ifnφ3</italic>
induction was less prominent in breadth and duration. To assess the role of the IFN response, we knocked down receptors for all IFNφs with antisense morpholino oligonucleotides (MO) directed to the CRFB1 (NM_001079681) and CRFB2 (NM_001077626) subunits
<xref rid="ppat.1003619-Aggad1" ref-type="bibr">[26]</xref>
. When IFN receptor expression was impaired (CRFB1+2 MO), the disease was particularly severe (Table S1 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
), as measured by a disease score (
<italic>defined in</italic>
Table S2 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
) (
<xref ref-type="fig" rid="ppat-1003619-g004">Figure 4D</xref>
). Among CRFB1+2 morphant fish, >90% died from infection (
<xref ref-type="fig" rid="ppat-1003619-g004">Figure 4E</xref>
), while virus burden was increased up to 100-fold when compared to infected control morphants (
<xref ref-type="fig" rid="ppat-1003619-g004">Figure 4F</xref>
). Upstream of IFN signaling, sensing of CHIKV through the cytosolic pathway was important as knockdown of MAVS (IPS-1/CARDIF/VISA) (NM_001080584) (Figure S3 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
) also led to an increase in disease severity and mortality, as well as in virus burden (
<xref ref-type="fig" rid="ppat-1003619-g004">Figures 4D–F</xref>
), consistent with results obtained in mice
<xref rid="ppat.1003619-Rudd1" ref-type="bibr">[35]</xref>
,
<xref rid="ppat.1003619-Schilte2" ref-type="bibr">[36]</xref>
. As expected, knockdown of CRFB1 and CFRB2 did not affect
<italic>ifnφ1</italic>
production but blocked
<italic>viperin</italic>
expression, whereas in MAVS morphants, both
<italic>ifnφ1</italic>
and
<italic>viperin</italic>
levels were significantly reduced (Figure S3 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
). Altogether, these results show that the type I IFN pathway controls CHIKV replication and pathogenesis in zebrafish.</p>
<fig id="ppat-1003619-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003619.g004</object-id>
<label>Figure 4</label>
<caption>
<title>A protective interferon response is induced upon CHIKV infection.</title>
<p>(A–C) Expression of zebrafish type I IFNs
<italic>ifnφ1</italic>
(A) and
<italic>ifnφ3</italic>
(B) and the IFN-stimulated gene
<italic>viperin</italic>
(C), upon CHIKV-GFP infection. qRT-PCR, mean ± s.e.m of 3 pools of 10 larvae from 3 independent experiments. (D–F) Effect of morpholino-mediated knockdown of IFN receptor subunits (
<italic>CRFB1+2</italic>
MO) and of MAVS (
<italic>MAVS</italic>
MO) on CHIKV-GFP infection. No MO, not injected with a morpholino; No V, uninfected controls; Control MO, injected with a unspecific morpholino oligonucleotide. (D) Disease score at 3 days post-infection; (E) survival of infected zebrafish; (F) quantification of viral
<italic>E1</italic>
transcripts over time. qRT-PCR, mean ± s.e.m of 3 pools of 3–5 larvae, except for the CRFB morphants at 72 hpi (one single pool of 5 larvae). Hatched bars represent groups where a fraction of the fish had already died, implying selection of survivors for the analysis. ND, not determined. (G) Pattern of
<italic>ifnφ1</italic>
expression, whole-mount
<italic>in situ</italic>
hybridization in uninfected larva (top) or CHIKV-GFP infected larva (bottom) at 24 hpi, representative out of 7 fish. Arrows indicate some
<italic>ifnφ1
<sup>+</sup>
</italic>
leukocytes, arrowhead point to an
<italic>ifnφ1
<sup>+</sup>
</italic>
hepatocyte; L = liver. (***
<italic>P</italic>
 < 0.001; **
<italic>P</italic>
 < 0.01; *
<italic>P</italic>
 < 0.05; ns - not significant).</p>
</caption>
<graphic xlink:href="ppat.1003619.g004"></graphic>
</fig>
</sec>
<sec id="s2e">
<title>Zebrafish
<italic>ifnφ1:mCherry</italic>
transgene labels IFN-producing cells</title>
<p>To identify the source of IFN, we first performed whole-mount in situ hybridization (WISH) using an antisense probe for
<italic>ifnφ1</italic>
at the peak of the response. In CHIKV-infected larvae,
<italic>ifnφ1</italic>
expression was detected in the liver and in scattered cells with a morphology and distribution evoking leukocytes (
<xref ref-type="fig" rid="ppat-1003619-g004">Figure 4G</xref>
). To better visualize the spatiotemporal dynamics of IFN production, we designed a transgenic IFNφ1 reporter zebrafish, in which the
<italic>ifnφ1</italic>
promoter drives expression of the mCherry red fluorescent protein. In uninfected 3–6 dpf transgenic larvae, mCherry was detected in very few (10–30) cells, all with leukocyte morphology and mostly residing in the caudal hematopoietic tissue (CHT), but upon CHIKV infection, the number of mCherry
<sup>+</sup>
cells dramatically increased (
<xref ref-type="fig" rid="ppat-1003619-g005">Figure 5A</xref>
). Starting from 2 dpi, two main populations of mCherry
<sup>+</sup>
cells were detected: hepatocytes and motile leukocytes (
<xref ref-type="fig" rid="ppat-1003619-g005">Figure 5A</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1003619.s003">Movie S3</xref>
). The mCherry
<sup>+</sup>
leukocytes were dispersed throughout the body except the CNS, mostly in the anterior region and the CHT, and persisted until at least 4 dpi. This pattern of expression of the reporter transgene was similar to that of the endogenous
<italic>ifnφ1</italic>
gene (
<xref ref-type="fig" rid="ppat-1003619-g004">Figure 4G</xref>
), but appearing later, a delay apparently due to the time required for protein expression and maturation, since at 24 hpi mCherry fluorescence was still low despite
<italic>mCherry</italic>
mRNA expression (
<xref ref-type="fig" rid="ppat-1003619-g005">Figure 5B</xref>
). Thus, the reporter transgene is faithful but somewhat delayed compared to endogenous
<italic>ifnφ1</italic>
. Notably though, viral GFP and mCherry were not detected in the same cells, suggesting that IFN release occurs mostly in uninfected or non-productively infected cells.</p>
<fig id="ppat-1003619-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003619.g005</object-id>
<label>Figure 5</label>
<caption>
<title>
<italic>Ifnφ1</italic>
-expressing cells are leukocytes and hepatocytes.</title>
<p>(A) Distribution of
<italic>ifnφ1</italic>
-expressing cells revealed by the
<italic>ifnφ1:mCherry</italic>
reporter transgene. IHC, mCherry stained in red, GFP in green, nuclei in blue. Confocal imaging, reconstructed composite images of maximal projections to cover the whole body. Representative examples of CHIKV-GFP-infected fish at different time points after infection. Below is an uninfected control at the equivalent of 72 hpi. Arrows indicate some mCherry
<sup>+</sup>
leukocytes, L = liver. Scale bar, 100 µm. (B) qRT-PCR of
<italic>mCherry</italic>
(normalized to
<italic>ef1α</italic>
) upon CHIKV-GFP infection in
<italic>ifnφ1:mCherry</italic>
fish. Fold induction to uninfected fish at 12 hpi; data for one pool of 10 larvae per time point. (C) Expression profile of FACS-sorted cells from CHIKV-infected
<italic>ifnφ1:mCherry</italic>
fish (3 dpi). qRT-PCR, fold induction compared to entire uninfected fish (No Virus). Data representative of 2 independent experiments.</p>
</caption>
<graphic xlink:href="ppat.1003619.g005"></graphic>
</fig>
</sec>
<sec id="s2f">
<title>Neutrophils are the main IFN-producing leukocyte population upon CHIKV infection</title>
<p>We further characterized IFN-producing cells. We FACS-sorted mCherry
<sup>+</sup>
cells from infected
<italic>ifnφ1:mCherry</italic>
zebrafish at 3 dpi and analyzed their mRNA expression profile (
<xref ref-type="fig" rid="ppat-1003619-g005">Figure 5C</xref>
). As expected, expression of
<italic>ifnφ1</italic>
was highest in sorted mCherry
<sup>+</sup>
cells. These cells did not notably co-express
<italic>ifnφ3</italic>
. Among leukocyte genes, the macrophage marker
<italic>c-fms/csf1r</italic>
(NM_131672) was increased in mCherry
<sup>+</sup>
cells, but the strongest enrichment was for myeloperoxydase (
<italic>mpx</italic>
, NM_212779), a specific neutrophil marker in zebrafish
<xref rid="ppat.1003619-Lieschke1" ref-type="bibr">[23]</xref>
,
<xref rid="ppat.1003619-LeGuyader1" ref-type="bibr">[24]</xref>
. The hepatocyte marker
<italic>fabp1a</italic>
(NM_001044712) was also expressed, consistent with some hepatocytes producing IFN. Sorted mCherry
<sup></sup>
cells expressed lower but significant
<italic>ifnφ1</italic>
levels – especially if compared to naïve larvae, which express it to an extremely low level -, likely due to the aforementioned delay. Both mCherry
<sup>+</sup>
and mCherry
<sup></sup>
expressed the IFN-inducing transcription factors
<italic>irf3</italic>
(NM_001111083) and
<italic>irf7</italic>
(NM_200677), with the latter being enriched among mCherry
<sup>+</sup>
cells.</p>
<p>To confirm the involvement of neutrophils, we crossed neutrophil reporter
<italic>mpx:GFP</italic>
with
<italic>ifnφ1:mCherry</italic>
zebrafish. In double transgenic CHIKV-infected zebrafish, either uninfected or CHIKV-infected, more than 80% of mCherry
<sup>+</sup>
leukocytes expressed GFP (
<xref ref-type="fig" rid="ppat-1003619-g006">Figures 6A–C</xref>
). Their morphology, distribution, speed, and presence of refractile moving granules, as assessed by live Nomarski microscopy, were also consistent with neutrophil identity
<xref rid="ppat.1003619-LeGuyader1" ref-type="bibr">[24]</xref>
<italic>(not shown)</italic>
.</p>
<fig id="ppat-1003619-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003619.g006</object-id>
<label>Figure 6</label>
<caption>
<title>
<italic>Ifnφ1</italic>
-expressing leukocytes are mostly neutrophils, which increase in an IFN-dependent manner.</title>
<p>(A–E) IHC of anterior region of
<italic>mpx:GFP/ifnφ1:mCherry</italic>
double transgenic fish. (A–B) Confocal imaging of an uninfected (A) and CHIKV-115-infected (B) larva at 48 hpi, maximal projection, scale bar 50 µm, mCherry staining in red, GFP staining in green, nuclei in blue (e: eye; L: liver; h: heart); on the right, single color and merged images of the detailed square. (C) Percentage of neutrophils (GFP
<sup>+</sup>
) among mCherry
<sup>+</sup>
leukocytes, per field. (D) Number of mCherry
<sup>+</sup>
neutrophils (GFP
<sup>+</sup>
) per field. (E) Number of other mCherry
<sup>+</sup>
leukocytes (GFP
<sup></sup>
) per field. For (C–E),
<italic>N</italic>
 = 3 (No Virus) or
<italic>N</italic>
 = 5–7 (CHIKV). (F, G) Uninfected or CHIKV-GFP-infected larvae were stained with Sudan Black B to reveal myeloperoxidase granules. Total neutrophil numbers per individual zebrafish were quantified using a stereomicroscope. (F) Neutrophil numbers over time in standard (no morpholino treatment) animals; (G) Neutrophils numbers in interferon receptor knockdown fish (
<italic>CRFB1+2</italic>
MO) compared to control morphants.
<italic>N</italic>
 = 5 fish per group (***
<italic>P</italic>
 < 0.001; **
<italic>P</italic>
 < 0.01; *
<italic>P</italic>
 < 0.05; ns - not significant).</p>
</caption>
<graphic xlink:href="ppat.1003619.g006"></graphic>
</fig>
<p>The number of mCherry
<sup>+</sup>
neutrophils strongly increased by 48 hpi and remained high until at least 96 hpi (
<xref ref-type="fig" rid="ppat-1003619-g006">Figure 6D</xref>
, and Figure S4A in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
). Other mCherry
<sup>+</sup>
leukocytes (mostly
<italic>mpeg1</italic>
<sup>+</sup>
macrophages,
<italic>not shown</italic>
) were also increased at 48 hpi, but in lower numbers, and notably in the CHT where they transiently made up about half the mCherry
<sup>+</sup>
population (
<xref ref-type="fig" rid="ppat-1003619-g006">Figure 6E</xref>
, and Figures S4B and S4C in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
). Neutrophil numbers, quantified by Sudan Black staining, peaked at 72 hpi (2001±312 cells/larva compared to 945±234 cells/larva in uninfected controls) (
<xref ref-type="fig" rid="ppat-1003619-g006">Figure 6F</xref>
); both mCherry
<sup>+</sup>
and mCherry
<sup></sup>
neutrophils increased (
<xref ref-type="fig" rid="ppat-1003619-g006">Figure 6D</xref>
and
<italic>not shown</italic>
). Nevertheless, neutrophil distribution was not obviously perturbed: they did not accumulate at infection foci and were absent from the CNS, like in uninfected fish
<xref rid="ppat.1003619-LeGuyader1" ref-type="bibr">[24]</xref>
. Interestingly, knockdown of IFN receptors blocked neutrophil increase, indicating that it is dependent on the IFN response (
<xref ref-type="fig" rid="ppat-1003619-g006">Figure 6G</xref>
).</p>
</sec>
<sec id="s2g">
<title>Zebrafish neutrophils play a key role in the control of CHIKV infection</title>
<p>We next addressed the role of neutrophils, macrophages and hepatocytes in the control of CHIKV infection by cell depletion strategies.</p>
<p>First, we blocked myelopoiesis by knocking down PU.1/spi1 (AF321099), resulting in reduced neutrophil and, even more deeply, macrophage populations
<xref rid="ppat.1003619-Brannon1" ref-type="bibr">[37]</xref>
(Figures S5A and S5B in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
; note that head images reflect the impact on mature cells, while tail images include the hematopoietic region to assess depletion of precursors). PU.1 knockdown dramatically increased disease severity (disease score of 10.8±3.4 compared to 2.3±1.6 in control morphants) and mortality (
<xref ref-type="fig" rid="ppat-1003619-g007">Figures 7A and 7B</xref>
), and correlated with an increase in viral transcripts (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7C</xref>
). Therefore, myeloid cells largely control CHIKV in zebrafish.</p>
<fig id="ppat-1003619-g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003619.g007</object-id>
<label>Figure 7</label>
<caption>
<title>Neutrophils are key ifnφ1-producing cells.</title>
<p>(A–C) Effect of myeloid cell depletion (
<italic>PU.1</italic>
MO, 3 independent experiments), (D–F) of macrophage depletion (metronidazole treatment of
<italic>mpeg1:Gal4/UAS:NfsB-mCherry</italic>
fish, 2 independent experiments), (G–I) of neutrophil-biased depletion (
<italic>csf3r</italic>
MO, 2 independent experiments), (J–L) of impairment of emergency granulopoiesis (
<italic>nos2a</italic>
MO, 2 independent experiments) and (M–O) of hepatocyte depletion (
<italic>Tomm22</italic>
MO, 2 independent experiments) on CHIKV infection. (A, D, G, J and M) Disease score at 3 dpi. (B, E, H, K and N) Survival of infected zebrafish. Data pooled from the independent experiments. (C, F, I, L and O) qRT-PCR of viral
<italic>E1</italic>
transcripts at 24 hpi. Mean ± s.e.m of 6 pools of 5 larvae from 2 (C, F, L) or 1 (I, O) independent experiments. (***
<italic>P</italic>
 < 0.001; **
<italic>P</italic>
 < 0.01; *
<italic>P</italic>
 < 0.05; ns - not significant).</p>
</caption>
<graphic xlink:href="ppat.1003619.g007"></graphic>
</fig>
<p>To distinguish the roles of these two leukocyte types, we first selectively depleted macrophages with a transgenic drug-inducible cell ablation system
<xref rid="ppat.1003619-Davison1" ref-type="bibr">[38]</xref>
(Figures S5C and S5D in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
). Macrophage-depleted CHIKV-infected larvae exhibited a small increase in disease severity (disease score of 4.8±2.6 compared to 2.3±1.5 in control transgenics) (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7D</xref>
) but almost no mortality (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7E</xref>
), despite modestly increased virus amounts (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7F</xref>
). This suggests that macrophage depletion plays a minor role in the phenotype of PU.1 morphants.</p>
<p>Comparable specific depletion of neutrophils was not available, however
<italic>csf3r</italic>
/
<italic>gcsfr</italic>
(NM_001113377) knockdown has been shown to affect neutrophil populations more than macrophages
<xref rid="ppat.1003619-Liongue1" ref-type="bibr">[39]</xref>
. Indeed, at 3 dpf, our
<italic>csf3r</italic>
morphants displayed no significant reduction of
<italic>mpeg1</italic>
<sup>+</sup>
macrophage numbers, while
<italic>mpx</italic>
<sup>+</sup>
neutrophils were severely depleted (Figures S6A and S6B in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
); neutrophil depletion lasted until 6 dpf (Figure S6C in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
). In infected animals too,
<italic>csf3r</italic>
knockdown led to a stronger reduction of neutrophils than macrophages, in contrast to PU.1 (Figure S6D in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
).
<italic>Csf3r</italic>
morphants were highly susceptible to CHIKV, with a high disease score (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7G</xref>
), mortality starting 3 days after infection (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7H</xref>
), and strongly increased virus transcripts (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7I</xref>
).</p>
<p>In addition, we attempted to block the increase in neutrophil numbers by knocking down
<italic>nos2a</italic>
(zebrafish iNOS) (NM_001104937), a strategy recently described to block infection-induced granulopoiesis in a bacterial infection system
<xref rid="ppat.1003619-Hall1" ref-type="bibr">[40]</xref>
. The neutrophil population was not reduced in
<italic>nos2a</italic>
morphants before the infection (
<italic>not shown</italic>
), but its increase was effectively prevented (Figure S6E in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
), and this was associated with increased disease scores (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7J</xref>
), mortality starting at 4 dpi (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7K</xref>
), and an increase in viral transcripts (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7L</xref>
).</p>
<p>Altogether, these experiments provide independent and convergent evidence consistent with neutrophils being the major population controlling CHIKV, in agreement with their predominance among
<italic>ifnφ1</italic>
-expressing leukocytes (
<xref ref-type="fig" rid="ppat-1003619-g006">Figure 6C</xref>
).</p>
<p>Finally, transient hepatocyte depletion using a
<italic>Tomm22</italic>
(NM_001001724) MO
<xref rid="ppat.1003619-Curado1" ref-type="bibr">[41]</xref>
(Figure S7 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
) also led to higher disease severity and more virus production (
<xref ref-type="fig" rid="ppat-1003619-g007">Figures 7M and 7O</xref>
) but no increased mortality (
<xref ref-type="fig" rid="ppat-1003619-g007">Figure 7N</xref>
), indicating that hepatocytes do not play a role as important as leukocytes in controlling CHIKV.</p>
</sec>
</sec>
<sec id="s3">
<title>Discussion</title>
<p>In this study, we establish zebrafish as a new model for the study of the pathogenesis of CHIKV. The overall course of viral spread in zebrafish larvae was close to that observed in mammals, with an early peak of viremia followed by a decline, similar targeted cell types, and a critical dependence on the host IFN response for the control of the virus. In addition, the powerful
<italic>in vivo</italic>
imaging techniques available in zebrafish revealed new features of the infection.</p>
<p>We could image the onset of infection in individual cells throughout the body. Almost all new infected cells appeared during one major wave during the first 24 hours following injection of the virus, with relatively little difference between the various targeted organs. Because we could not detect cells with strong GFP expression before the rise of this first wave of infected cells, we presume it reflects the initial set of cells infected by the inoculated virions. The significant inter-individual variation that we observe may be a consequence of a larger number of susceptible cells than of inoculated virions, resulting in a stochastic initial pattern of infection. The decline of appearance of newly infected cells shortly followed the onset of the host IFN response, suggesting that by the time the initial wave of infected cells produce new infectious virions, the host response has made most other cells refractory to the virus. We also observed and quantified infected cell death events, which typically presented apoptosis characteristics. The timing of death of CHIKV
<sup>+</sup>
cells was strongly organ-dependent. The differential survival of infected cells accounted for the apparent shift of tropism towards the brain parenchyma, where infection persisted even after clearance from the rest of the body.</p>
<p>The longer persistence of CHIKV in brains of zebrafish suggests that neurons may constitute a previously overlooked reservoir for the virus. However, this is likely to be mostly the case in infant humans, since encephalitis is a feature of chikungunya disease in newborns rather than in adults. CHIKV potential reservoirs are a matter of conjecture because many patients display chronic arthralgia in the months following CHIKV infection despite resolution of viremia, and it is unclear whether this is due to long-lasting auto-inflammation triggered by the initial infection or to stimulation by persistent virus
<xref rid="ppat.1003619-Schwartz1" ref-type="bibr">[8]</xref>
,
<xref rid="ppat.1003619-DupuisMaguiraga1" ref-type="bibr">[9]</xref>
,
<xref rid="ppat.1003619-Suhrbier1" ref-type="bibr">[10]</xref>
. In adult macaques, CHIKV was suggested to persist in macrophages, not CNS
<xref rid="ppat.1003619-Labadie1" ref-type="bibr">[19]</xref>
. In infected neonate mice, CHIKV was not found to persist in the brain
<xref rid="ppat.1003619-Couderc1" ref-type="bibr">[18]</xref>
,
<xref rid="ppat.1003619-Ziegler1" ref-type="bibr">[42]</xref>
. Moreover, in this model, CHIKV was found to infect leptomeningeal and choroid plexus cells, but not brain parenchyme. Yet, mouse brain parenchymal cells may be infected by CHIKV, as shown after intranasal infection
<xref rid="ppat.1003619-Wang1" ref-type="bibr">[43]</xref>
or on primary cell cultures
<xref rid="ppat.1003619-Das1" ref-type="bibr">[17]</xref>
.</p>
<p>The zebrafish model also allowed us to dynamically image and FACS-sort the cells that are responding to the virus by expressing the
<italic>ifnφ1</italic>
gene. Based on gene expression profile, morphology, and co-expression of the
<italic>mpx:GFP</italic>
transgene, two main populations were shown to express the
<italic>ifnφ1:mCherry</italic>
transgene: neutrophils and hepatocytes. Interestingly, while both
<italic>irf7</italic>
and
<italic>irf3</italic>
are ISGs in fish
<xref rid="ppat.1003619-Sun1" ref-type="bibr">[44]</xref>
, and therefore expected to be induced in all cells of infected fish,
<italic>irf7</italic>
was expressed at a higher level in sorted mCherry
<sup>+</sup>
than mCherry
<sup></sup>
cells. This would be consistent with constitutively higher expression of
<italic>irf7</italic>
by cells specialized in
<italic>ifnφ1</italic>
expression in zebrafish – mirroring key properties of plasmacytoid dendritic cells of mammals
<xref rid="ppat.1003619-Takauji1" ref-type="bibr">[45]</xref>
. The cell types, however, were different. Although not viewed as a specialized source of IFN, hepatocytes have been found to be prominent producers in some cases, for example during Thogoto virus infection of a mouse IFNβ reporter cell line
<italic>in vitro</italic>
<xref rid="ppat.1003619-Pulverer1" ref-type="bibr">[46]</xref>
. By contrast, neutrophils are so far not considered to represent an important source of IFN
<xref rid="ppat.1003619-Hayashi1" ref-type="bibr">[47]</xref>
,
<xref rid="ppat.1003619-Tamassia1" ref-type="bibr">[48]</xref>
. Nevertheless, in zebrafish larvae, neutrophils were found to represent 80% of
<italic>ifnφ1</italic>
-expressing leukocytes. In this respect, it should be stressed that our main marker,
<italic>mpx</italic>
, not entirely neutrophil-specific in mammals, has been shown to be strictly neutrophil-specific in zebrafish
<xref rid="ppat.1003619-Lieschke1" ref-type="bibr">[23]</xref>
,
<xref rid="ppat.1003619-LeGuyader1" ref-type="bibr">[24]</xref>
. In addition, our depletion experiments were consistent with neutrophils being a key population controlling CHIKV infection in zebrafish, whereas macrophages and hepatocytes made a minor contribution to this control. Macrophage depletion having little consequences, no synergy of macrophages and neutrophils seems required to control CHIKV. However, until a truly neutrophil-specific depletion method becomes available in zebrafish, we cannot rule out the possibility of a significant additive contribution of a minor
<italic>csf3r</italic>
-dependent macrophage subpopulation to that of neutrophils; compensation mechanisms following depletion are also an important caveat to consider.</p>
<p>Besides IFN production, other mechanisms may be responsible for the observed protective role of myeloid cells, especially neutrophils, against CHIKV pathogenesis. The role of neutrophils in protecting against viral infections is not fully deciphered
<xref rid="ppat.1003619-Drescher1" ref-type="bibr">[49]</xref>
. Neutrophil extracellular traps (NETs) were recently shown to protect host cells from myxoma virus infection in mice
<xref rid="ppat.1003619-Jenne1" ref-type="bibr">[50]</xref>
and to capture HIV-1 and promote its elimination through the action of myeloperoxidase and α-defensin in humans
<xref rid="ppat.1003619-Saitoh1" ref-type="bibr">[51]</xref>
. Zebrafish neutrophils, which share many functional characteristics with their human counterparts, including the production of NETs
<xref rid="ppat.1003619-Palic1" ref-type="bibr">[52]</xref>
, avidly engulf bacteria on surfaces
<xref rid="ppat.1003619-ColucciGuyon1" ref-type="bibr">[53]</xref>
and scavenge dying infected cells in mycobacterial disease
<xref rid="ppat.1003619-Yang1" ref-type="bibr">[54]</xref>
, but their function during viral infection was so far unknown. It will be worth further studying the role of zebrafish (and human) neutrophils in sensing of CHIKV-infected cells and the mechanisms mediating viral clearance.</p>
<p>Neutrophil numbers were increased with CHIKV infection, a response we found to be dependent on the IFN response. This was contrary to our expectations, as acute IFN induction by viral infection is known to cause granulocytopenia
<xref rid="ppat.1003619-Navarini1" ref-type="bibr">[55]</xref>
, and even in fish, granulocyte numbers were found to be reduced during a viral infection
<xref rid="ppat.1003619-Ronneseth1" ref-type="bibr">[56]</xref>
. Interestingly, neutrophilia has been reported in CHIKV-infected humans with a high viral load
<xref rid="ppat.1003619-Chow1" ref-type="bibr">[57]</xref>
, suggesting that CHIKV may stimulate neutrophils in an unusual manner. Remarkably, this increase was found to depend on
<italic>nos2a</italic>
(zebrafish iNOS), as had been observed in a
<italic>Salmonella</italic>
infection model in zebrafish
<xref rid="ppat.1003619-Hall1" ref-type="bibr">[40]</xref>
. Depending on the experiment settings, iNOS has been found to favor
<xref rid="ppat.1003619-Cuzzocrea1" ref-type="bibr">[58]</xref>
,
<xref rid="ppat.1003619-Genovese1" ref-type="bibr">[59]</xref>
or counteract
<xref rid="ppat.1003619-Zeidler1" ref-type="bibr">[60]</xref>
neutrophil infiltration in inflamed organs in mice. It would be worth investigating the contribution of iNOS to the inflammatory response induced by CHIKV in mammals.</p>
<p>Comparing patterns of infection and of IFN response, it may be significant that virus persistence - dictated by survival of infected cells - was inversely correlated with local production of IFN. The organ where infected cells died fastest was the liver, which was also a major local source of IFN. Conversely, infected cells persisted much longer in the brain, an organ from which neutrophils are excluded, whereas they patrol other tissues in zebrafish
<xref rid="ppat.1003619-LeGuyader1" ref-type="bibr">[24]</xref>
. Assessing the relative contribution of the cell autonomous – such as autophagy
<xref rid="ppat.1003619-Orvedahl1" ref-type="bibr">[61]</xref>
– and non-cell autonomous (mostly, IFN-driven) events underlying sensitivity of the cells to the cytopathic effect of CHIKV
<italic>in vivo</italic>
will be one of our future goals. IFNs have been shown to induce apoptosis of virus-infected cells
<xref rid="ppat.1003619-Stetson1" ref-type="bibr">[62]</xref>
. It is possible that infected brain neurons and glial cells persist due to the blood brain barrier (BBB) blocking IFN access to this organ. Zebrafish brain endothelial cells express BBB markers Claudin 5 and ZO-1 as early as 3 dpf and brain parenchymal vessels are impermeable to horseradish peroxidase (44 kDa) and rhodamine-dextran (10 kDa) at this stage
<xref rid="ppat.1003619-Jeong1" ref-type="bibr">[63]</xref>
. It is therefore likely that zebrafish IFNφs (∼20 kDa) cannot reach the brain parenchyma, which would prevent brain-infected cells from undergoing apoptosis. It has also been suggested that less “renewable” tissues and cells, such as post-mitotic neurons, respond to type I IFNs differently from other cell types
<xref rid="ppat.1003619-Stetson1" ref-type="bibr">[62]</xref>
.</p>
<p>Imaging studies detailing the dynamics of single virus-infected cells
<italic>in vivo</italic>
are very recent and remain scarce
<xref rid="ppat.1003619-Murooka1" ref-type="bibr">[64]</xref>
,
<xref rid="ppat.1003619-Sewald1" ref-type="bibr">[65]</xref>
,
<xref rid="ppat.1003619-Hickman1" ref-type="bibr">[66]</xref>
. The zebrafish model offers the unique opportunity to visualize and characterize in real time the rise and death of infected cells, throughout the body. To our knowledge, this study represents the first analysis of the fate of single virus-infected cells in a whole organism. Combined with the ability to image IFN-producing cells and to perform host gene silencing, mutagenesis or drug screening, our work establishes the zebrafish as a new valuable host for the study of human pathogenic viruses.</p>
</sec>
<sec sec-type="materials|methods" id="s4">
<title>Materials and Methods</title>
<sec id="s4a">
<title>Ethics statement</title>
<p>All animal experiments described in the present study were conducted at the Institut Pasteur according to European Union guidelines for handling of laboratory animals (
<ext-link ext-link-type="uri" xlink:href="http://ec.europa.eu/environment/chemicals/lab_animals/home_en.htm">http://ec.europa.eu/environment/chemicals/lab_animals/home_en.htm</ext-link>
) and were approved by the
<italic>Direction Sanitaire et Vétérinaire de Paris</italic>
under permit #B-75-1061.</p>
</sec>
<sec id="s4b">
<title>Fish lines and husbandry</title>
<p>Zebrafish embryos were raised as previously described
<xref rid="ppat.1003619-Westerfield1" ref-type="bibr">[67]</xref>
,
<xref rid="ppat.1003619-Levraud2" ref-type="bibr">[68]</xref>
. Wild-type AB fish were initially obtained from ZIRC (Eugene, OR, USA). The following transgenic lines were used:
<italic>Tg(gata1a:DsRed)
<sup>sd2</sup>
</italic>
<xref rid="ppat.1003619-Traver1" ref-type="bibr">[69]</xref>
,
<italic>Tg(elavl3:EGFP)
<sup>knu3</sup>
</italic>
<xref rid="ppat.1003619-Park1" ref-type="bibr">[70]</xref>
referred to as
<italic>HuC:GFP</italic>
in the text,
<italic>Tg(gfap:EGFP)
<sup>mi2001</sup>
</italic>
<xref rid="ppat.1003619-Bernardos1" ref-type="bibr">[71]</xref>
,
<italic>Tg(fabp10:dsRed)
<sup>gz4</sup>
</italic>
<xref rid="ppat.1003619-Dong1" ref-type="bibr">[72]</xref>
,
<italic>Tg(mpx:EGFP)
<sup>i114</sup>
</italic>
<xref rid="ppat.1003619-Renshaw1" ref-type="bibr">[73]</xref>
,
<italic>Tg(mpeg1:mCherry)
<sup>gl23</sup>
</italic>
and
<italic>Tg(mpeg1:Gal4FF)
<sup>gl25</sup>
</italic>
<xref rid="ppat.1003619-Ellett1" ref-type="bibr">[74]</xref>
, and
<italic>Tg(UAS-E1b:Eco.NfsB-mCherry)
<sup>c26</sup>
</italic>
<xref rid="ppat.1003619-Davison1" ref-type="bibr">[38]</xref>
referred to as
<italic>UAS:NfsB-mCherry</italic>
in the text. For imaging purposes, embryos were generally raised in 0.003% 1-phenyl-2-thiourea (PTU) from 24 hpf onwards to prevent melanin pigment formation.</p>
</sec>
<sec id="s4c">
<title>Virus</title>
<p>CHIKV was produced on BHK cells. CHIKV-115 is a clinical strain isolated in 2005 from a young adult in La Réunion
<xref rid="ppat.1003619-Schuffenecker1" ref-type="bibr">[2]</xref>
and its entire genome sequence is available (#AM258990). This virus has been passaged three times since cloning. CHIKV-GFP corresponds to the CHIKV-LR 5′GFP virus generated by insertion of a GFP-encoding sequence controlled by the CHIKV subgenomic promoter between the two main genes of the CHIKV genome, using the LR backbone (#EU224268) derived from the OPY1 strain, a 2006 clinical isolate from La Réunion; GFP expression has been found to be retained in >80% infected cells for up to 8 serial passages in mammalian or mosquito cells
<xref rid="ppat.1003619-Tsetsarkin1" ref-type="bibr">[3]</xref>
. The CHIKV-GFP virus we used previously went through two to three passages.</p>
</sec>
<sec id="s4d">
<title>Generation of Ifnφ1 reporter transgenics</title>
<p>We generated two independent lines of ifnφ1 reporter transgenics,
<italic>Tg(ifnphi1:mCherry)
<sup>ip1</sup>
</italic>
and
<italic>Tg(ifnphi1:mCherry)
<sup>ip2</sup>
</italic>
with indistinguishable transgene expression (
<italic>not shown</italic>
), and both are referred here as
<italic>ifnφ1:mCherry</italic>
fish. The 6.5 kb SpeI-PstI fragment from PAC clone BUSMP706A0151Q01 (IMAGENE) covering the
<italic>ifnφ1</italic>
promoter was cloned ahead of the ORF for a farnesylated version of mCherry in a Tol2 derivative vector to yield vector pTol2pIFNL1mC-F. The fragment includes exon 1 including the first codons of the zebrafish
<italic>ifnφ1</italic>
ORF. This construct was co-injected with
<italic>tol2</italic>
mRNA into 1-cell stage eggs of AB origin
<xref rid="ppat.1003619-Suster1" ref-type="bibr">[75]</xref>
.</p>
</sec>
<sec id="s4e">
<title>CHIKV infection and disease score</title>
<p>Injections and handling of larvae were performed as described
<xref rid="ppat.1003619-Levraud2" ref-type="bibr">[68]</xref>
. Briefly, zebrafish larvae aged 70–72 hpf were inoculated by microfinjection of ∼10
<sup>2</sup>
TCID50 CHIKV (∼1 nl of supernatant from infected BHK cells, diluted to 10
<sup>8</sup>
TCID50/ml) in the caudal vein or aorta. Larvae were then distributed in individual wells of 24-well culture plates, kept at 28°C and regularly inspected with a stereomicroscope. Clinical signs of infection were assessed first on aware animals, which were then anesthetized for better observation. Quantitative assessment of the clinical status was based on a precise list of criteria (
<italic>see</italic>
Table S2 in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
) assessed blindly, yielding a disease score ranging from 0 (no disease sign) to 15 (dead or terminally ill).</p>
</sec>
<sec id="s4f">
<title>CHIKV titration</title>
<p>Infected larvae were snap-frozen and kept at −80°C before homogenization in ∼100 µl of medium; samples were then titrated as TCID50/larva on Vero cells
<xref rid="ppat.1003619-Sourisseau1" ref-type="bibr">[13]</xref>
.</p>
</sec>
<sec id="s4g">
<title>qRT-PCR</title>
<p>RNA extraction, cDNA synthesis and quantitative PCR were performed as previously described
<xref rid="ppat.1003619-Ludwig1" ref-type="bibr">[34]</xref>
; externally quantified standards were included to provide absolute transcript amounts. The following pairs of primers (sense and antisense) were used:
<italic>GFP</italic>
:
<named-content content-type="gene">CCATCTTCTTCAAGGACGAC</named-content>
and
<named-content content-type="gene">CGTTGTGGCTGTTGTAGTTG</named-content>
;
<italic>ef1α</italic>
:
<named-content content-type="gene">GCTGATCGTTGGAGTCAACA</named-content>
and
<named-content content-type="gene">ACAGACTTGACCTCAGTGGT</named-content>
;
<italic>ifnφ1</italic>
(secreted isoform):
<named-content content-type="gene">TGAGAACTCAAATGTGGACCT</named-content>
and
<named-content content-type="gene">GTCCTCCACCTTTGACTTGT</named-content>
;
<italic>ifnφ3</italic>
:
<named-content content-type="gene">GAGGATCAGGTTACTGGTGT</named-content>
and
<named-content content-type="gene">GTTCATGATGCATGTGCTGTA</named-content>
;
<italic>viperin</italic>
:
<named-content content-type="gene">GCTGAAAGAAGCAGGAATGG</named-content>
and
<named-content content-type="gene">AAACACTGGAAGACCTTCCAA</named-content>
;
<italic>E1-CHIKV</italic>
:
<named-content content-type="gene">AARTGYGCNGTNCAVTCNATG</named-content>
and
<named-content content-type="gene">CCNCCNGTDATYTTYTGNACCCA</named-content>
(these primers match positions 10921–10943 and 11167–11189, respectively, of the CHIKV genome acc#AM258990, and include degenerate bases, labeled according to the IUPAC convention, making them indifferent to silent mutations);
<italic>irf3</italic>
:
<named-content content-type="gene">GAGCCAAATCTGGCGACATT</named-content>
and
<named-content content-type="gene">GGCCTGACTCATCCATGTT</named-content>
;
<italic>irf7</italic>
:
<named-content content-type="gene">TCTGCATGCAGTTTCCCAGT</named-content>
and
<named-content content-type="gene">TGGTCCACTGTAGTGTGTGA</named-content>
;
<italic>mpx</italic>
:
<named-content content-type="gene">ATGGAGGGTGATCTTTGA</named-content>
and
<named-content content-type="gene">AAGCTATGTGGGATGTGA</named-content>
;
<italic>mpeg1</italic>
:
<named-content content-type="gene">CCCACCAAGTGAAAGAGG</named-content>
and
<named-content content-type="gene">GTGTTTGATTGTTTTCAATGG</named-content>
;
<italic>fabp1a</italic>
:
<named-content content-type="gene">AGACAGAGCTAAAACTGTGGT</named-content>
and
<named-content content-type="gene">AGCTGAGAGTGTTACTGATAG</named-content>
;
<italic>mCherry</italic>
:
<named-content content-type="gene">CCCGCCGACATCCCCGACTA</named-content>
and
<named-content content-type="gene">GGGTCACGGTCACCACGCC</named-content>
. To normalize cDNA amounts, we used the housekeeping gene
<italic>ef1α</italic>
transcripts, except in specified cases where results were normalized to viral burden using
<italic>E1-CHIKV</italic>
.</p>
</sec>
<sec id="s4h">
<title>Whole-body
<italic>in vivo</italic>
imaging</title>
<p>Larvae were anesthetized and laid on the bottom of an agarose-coated, sealed Petri dish, and imaged as described
<xref rid="ppat.1003619-Ludwig1" ref-type="bibr">[34]</xref>
. To assess efficiency of depletion strategies,
<italic>Z</italic>
-stacks with 22 µm steps of anesthetized larvae were taken with a Leica Z16 APO A macroscope and quantification performed using ImageJ software. For Figures S6A and S6B in
<xref ref-type="supplementary-material" rid="ppat.1003619.s004">Text S1</xref>
quantification was performed as described before
<xref rid="ppat.1003619-Ellett2" ref-type="bibr">[76]</xref>
.</p>
</sec>
<sec id="s4i">
<title>Time-lapse
<italic>in vivo</italic>
imaging</title>
<p>For
<italic>in vivo</italic>
time-lapse imaging, 4–6 larvae, anaesthetized with 112 µg /ml tricaine, were laterally positioned and immobilized in ∼1% low melting point agarose in the center of a 54-mm plastic bottom Petri dish, then covered with 2 ml water containing tricaine. Multiple field transmission and fluorescence imaging was performed using a Nikon Biostation IMQ, using a 10× objective (NA 0.5) and a DSQi camera. Imaging was typically performed at 26°C and
<italic>Z</italic>
-stacks with 10 µm steps were acquired at least every 30 minutes. Imaging sessions typically lasted 6–24 hours; control uninfected larvae were always included. Cell emergence and death data were concatenated from multiple imaging sessions covering the 0 to 72 hpi time frame.</p>
</sec>
<sec id="s4j">
<title>Whole-mount immunohistochemistry</title>
<p>IHC was performed as described
<xref rid="ppat.1003619-Svoboda1" ref-type="bibr">[77]</xref>
. Primary antibodies used were: mouse mAb to alphavirus capsid (1∶200)
<xref rid="ppat.1003619-GreiserWilke1" ref-type="bibr">[78]</xref>
, rabbit polyclonal to DsRed (1∶300, Clontech) which also labels the mCherry protein, mouse monoclonal to GFP (1∶500, Invitrogen), chicken polyclonal to GFP (1∶500, Abcam), mouse monoclonal (FIS 2F11/2) to gut secretory cell epitopes (1∶400, Abcam). Secondary antibodies used were: Cy3-labeled goat anti-rabbit or anti-mouse IgG (1∶300, Jackson Immunoresearch), Alexa 488-labeled goat anti-mouse or anti-chicken (1∶500, Invitrogen). Nuclei were stained for 30 min at room temperature with Hoechst 33342 at 2 µg/ml (Invitrogen).</p>
</sec>
<sec id="s4k">
<title>Imaging of fixed embryos</title>
<p>Fixed embryos were progressively transferred into 80% glycerol before imaging. Confocal images of IHC-processed fish were taken with a Leica SPE inverted confocal microscope equipped with a 16× (NA 0.5), 63× (NA 1.30) oil immersion objectives and a 10× (NA 0.30) dry objective. Images of larvae stained by WISH or Sudan Black B were taken with a Leica MZ16 stereomicroscope using illumination from above. Whole-body images of IHC-treated larvae were taken with a Leica Z16 APO A macroscope. Images were processed with the LAS-AF (Leica), ImageJ and Adobe Photoshop softwares. Cells with amoeboid morphology were scored as “leukocytes”.</p>
</sec>
<sec id="s4l">
<title>Morpholino injections</title>
<p>Morpholino antisense oligonucleotides (Gene Tools) were injected into 1–4-cell stage embryos as previously described
<xref rid="ppat.1003619-Levraud2" ref-type="bibr">[68]</xref>
.
<italic>crfb1</italic>
splice morpholino (
<named-content content-type="gene">CGCCAAGATCATACCTGTAAAGTAA</named-content>
) (2 ng) was injected together with
<italic>crfb2</italic>
splice morpholino (
<named-content content-type="gene">CTATGAATCCTCACCTAGGGTAAAC</named-content>
) (2 ng), knocking down all type I IFN receptors
<xref rid="ppat.1003619-Aggad1" ref-type="bibr">[26]</xref>
. Other morpholinos:
<italic>mavs</italic>
splice morpholino (
<named-content content-type="gene">ATTTGAATCCACTTACCCGATCAGA</named-content>
) (4 ng);
<italic>tomm22</italic>
translation morpholino
<xref rid="ppat.1003619-Curado1" ref-type="bibr">[41]</xref>
(
<named-content content-type="gene">GAGAAAGCTCCTGGATCGTAGCCAT</named-content>
) (2 ng);
<italic>pu.1</italic>
translation morpholino (
<named-content content-type="gene">GATATACTGATACTCCATTGGTGGT</named-content>
)
<xref rid="ppat.1003619-Brannon1" ref-type="bibr">[37]</xref>
(20 ng in 2 nl);
<italic>csf3r</italic>
translation morpholino (
<named-content content-type="gene">GAAGCACAAGCGAGACGGATGCCAT</named-content>
)
<xref rid="ppat.1003619-Ellett1" ref-type="bibr">[74]</xref>
(4 ng);
<italic>nos2a</italic>
splice morpholino (
<named-content content-type="gene">ACAGTTTAAAAGTACCTTAGCCGCT</named-content>
)
<xref rid="ppat.1003619-Hall1" ref-type="bibr">[40]</xref>
(6 ng). Control morpholinos with no target: #1 (
<named-content content-type="gene">GAAAGCATGGCATCTGGATCATCGA</named-content>
) (2–6 ng); #2 (
<named-content content-type="gene">TACCAAAAGCTCTCTTATCGAGGGA</named-content>
) (20 ng); #3 (
<named-content content-type="gene">CCTCTTACCTCAGTTACAATTTATA</named-content>
) (4 ng).</p>
</sec>
<sec id="s4m">
<title>Embryo dissociation and FACS sorting</title>
<p>Embryo dissociation was performed as described elsewhere
<xref rid="ppat.1003619-Covassin1" ref-type="bibr">[79]</xref>
. Sorted cells were collected in lysis buffer and RNA was extracted using a RNAqueous Micro kit (Ambion). Cell preparations were performed in a BL3 facility; the cell sorter, located under a plastic tent within a BL2 facility, was flushed for several hours with diluted bleach following the sorting.</p>
</sec>
<sec id="s4n">
<title>Whole-mount
<italic>in situ</italic>
hybridization</title>
<p>WISH was performed as described before
<xref rid="ppat.1003619-Thisse1" ref-type="bibr">[80]</xref>
, with a hybridization temperature of 55°C. To generate the
<italic>ifnφ1</italic>
antisense probe, we RT-PCR amplified a 503 bp fragment of zebrafish
<italic>ifnφ1</italic>
cDNA from CHIKV-infected larvae using a T3-modified antisense primer (
<named-content content-type="gene">GAATTCATTAACCCTCACTAAAGGGAGATTGACCCTTGCGTTGCTT</named-content>
) and a normal sense (
<named-content content-type="gene">TCTGCAGAGTCAAAGCTCTG</named-content>
). PCR products were purified with QIAquick PCR purification kit (Qiagen) and the probe was transcribed
<italic>in vitro</italic>
with T3 polymerase (Promega). Unincorporated nucleotides were removed by purification on NucAway spin columns (Ambion).</p>
</sec>
<sec id="s4o">
<title>Sudan Black B staining</title>
<p>Neutrophil granules were stained as in
<xref rid="ppat.1003619-LeGuyader1" ref-type="bibr">[24]</xref>
, allowing neutrophils to be counted easily with a dissecting scope.</p>
</sec>
<sec id="s4p">
<title>Macrophage depletion</title>
<p>Metronidazole-mediated depletion was performed as described in
<xref rid="ppat.1003619-Davison1" ref-type="bibr">[38]</xref>
. Briefly
<italic>Tg(mpeg1:Gal4FF)
<sup>gl25/−</sup>
</italic>
<xref rid="ppat.1003619-Ellett1" ref-type="bibr">[74]</xref>
were crossed to
<italic>Tg(UAS-E1b:NfsB-mCherry)
<sup>c264/c264</sup>
</italic>
<xref rid="ppat.1003619-Davison1" ref-type="bibr">[38]</xref>
to generate double-positive transgenics and single-positive sibling controls. Embryos were placed, from 48 hpf to 70 hpf, in a 10 mM Metronidazole, 0,1% DMSO solution to induce specific depletion of NfsB-mCherry-expressing macrophages. Embryos were then rinsed 3× with embryo water.</p>
</sec>
<sec id="s4q">
<title>Statistical analysis</title>
<p>To evaluate difference between means, a two-tailed unpaired
<italic>t</italic>
-test or an analysis of variance (ANOVA) followed by Bonferroni's multiple comparison test was used, when appropriate. Normal distributions were analyzed with the Kolmogorov-Smirnov test. Non-Gaussian data were analyzed with a Kruskal-Wallis test followed by Dunn's multiple comparison test.
<italic>P</italic>
<0.05 was considered statistically significant (symbols: ***
<italic>P</italic>
<0.001; **
<italic>P</italic>
<0.01; *
<italic>P</italic>
<0.05). Survival data were plotted using the Kaplan-Meier estimator and log-rank tests were performed to assess differences between groups. Statistical analyses were performed using Prism software.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="ppat.1003619.s001">
<label>Movie S1</label>
<caption>
<p>
<bold>Emergence of new CHIKV-GFP infected cells.</bold>
Time-lapse imaging of a CHIKV-GFP-infected larva with time post-infection (pi) shown on top left corner. Overlay of transmitted light and wide-field GFP fluorescence; 10× objective; anterior to left, dorsal to top, lateral orientation with some dorsal tilt. The emergence of new infected cells, detected by the onset of GFP fluorescence, is indicated by arrows; only cells in the focal plane are shown. Green arrows point to liver cells, yellow arrows to head mesenchyme or gill cells, and magenta arrows forother cells. The death of a liver cell is shown with a red arrow.</p>
<p>(MOV)</p>
</caption>
<media xlink:href="ppat.1003619.s001.mov">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="ppat.1003619.s002">
<label>Movie S2</label>
<caption>
<p>
<bold>Death of CHIKV-GFP infected cells.</bold>
Time-lapse imaging of CHIKV-GFP infected larvae; time post-infection (pi) shown on top left corner. Overlay of transmitted light and wide-field GFP fluorescence; 10× objective; anterior to left, dorsal to top. Death of GFP
<sup>+</sup>
cells shown with red arrows. First sequence (seconds 1–4): head view, death of epidermal cells over the eye and head mesenchymal cells; second sequence (seconds 4–8): liver region, death of hepatocytes; third sequence (seconds 8-3): tail tip region, death of fin fibroblasts; in this sequence a black arrowhead follows a leukocyte that likely engulfs a dying cell.</p>
<p>(MOV)</p>
</caption>
<media xlink:href="ppat.1003619.s002.mov">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="ppat.1003619.s003">
<label>Movie S3</label>
<caption>
<p>
<bold>Increase of Ifnφ1-expressing leukocytes during the first days of infection.</bold>
Time-lapse imaging of a CHIKV-GFP infected
<italic>ifnφ1:mCherry
<sup>+</sup>
</italic>
larva; time post-infection (pi) shown on top left corner. Overlay of GFP (in green) and mCherry (in red) spinning-disk confocal fluorescence images; 10× objective; anterior to left, dorsal to top. This region has been chosen for imaging because it is rich in leukocytes, since the main hematopoietic region at this stage lays immediately caudal to the urogenital opening. Note that the growth of the larva causes some movement of the imaged region towards the right and bottom of the field.</p>
<p>(MOV)</p>
</caption>
<media xlink:href="ppat.1003619.s003.mov">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="ppat.1003619.s004">
<label>Text S1</label>
<caption>
<p>
<bold>File containing Figures S1–S7 and Tables S1–S2, with legends.</bold>
</p>
<p>(PDF)</p>
</caption>
<media xlink:href="ppat.1003619.s004.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We thank Maxence Frétaud for technical assistance, Pierre Boudinot and Matthew Albert for critical reading of the manuscript, Stephen Higgs for providing the CHIKV-GFP strain, Cathy Gonzalez and Nadine Peyrieras for helping to generate the
<italic>ifnφ1:mCherry</italic>
transgene, Annemarie Meijer for trans-shipping
<italic>mpeg1:Gal4</italic>
fish, Marie Nguyen and Emmanuelle Perret of the Flow Cytometry and Dynamic Imaging platforms of the Institut Pasteur, respectively, for assistance.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ppat.1003619-Burt1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Burt</surname>
<given-names>FJ</given-names>
</name>
,
<name>
<surname>Rolph</surname>
<given-names>MS</given-names>
</name>
,
<name>
<surname>Rulli</surname>
<given-names>NE</given-names>
</name>
,
<name>
<surname>Mahalingam</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Heise</surname>
<given-names>MT</given-names>
</name>
(
<year>2012</year>
)
<article-title>Chikungunya: a re-emerging virus</article-title>
.
<source>Lancet</source>
<volume>379</volume>
:
<fpage>662</fpage>
<lpage>671</lpage>
.
<pub-id pub-id-type="pmid">22100854</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Schuffenecker1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schuffenecker</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Iteman</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Michault</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Murri</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Frangeul</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak</article-title>
.
<source>PLoS Med</source>
<volume>3</volume>
:
<fpage>e263</fpage>
.
<pub-id pub-id-type="pmid">16700631</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Tsetsarkin1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tsetsarkin</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Higgs</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>McGee</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>De Lamballerie</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Charrel</surname>
<given-names>RN</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Infectious clones of Chikungunya virus (La Reunion isolate) for vector competence studies</article-title>
.
<source>Vector Borne Zoonotic Dis</source>
<volume>6</volume>
:
<fpage>325</fpage>
<lpage>337</lpage>
.
<pub-id pub-id-type="pmid">17187566</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-deLamballerie1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>de Lamballerie</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Leroy</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Charrel</surname>
<given-names>RN</given-names>
</name>
,
<name>
<surname>Ttsetsarkin</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Higgs</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come?</article-title>
<source>Virol J</source>
<volume>5</volume>
:
<fpage>33</fpage>
.
<pub-id pub-id-type="pmid">18304328</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Tsetsarkin2">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tsetsarkin</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Weaver</surname>
<given-names>SC</given-names>
</name>
(
<year>2011</year>
)
<article-title>Sequential adaptive mutations enhance efficient vector switching by Chikungunya virus and its epidemic emergence</article-title>
.
<source>PLoS Pathog</source>
<volume>7</volume>
:
<fpage>e1002412</fpage>
.
<pub-id pub-id-type="pmid">22174678</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Medlock1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Medlock</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Hansford</surname>
<given-names>KM</given-names>
</name>
,
<name>
<surname>Schaffner</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Versteirt</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Hendrickx</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options</article-title>
.
<source>Vector Borne Zoonotic Dis</source>
<volume>12</volume>
:
<fpage>435</fpage>
<lpage>447</lpage>
.
<pub-id pub-id-type="pmid">22448724</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-VegaRua1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vega-Rua</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Zouache</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Caro</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Diancourt</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Delaunay</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the Southeast of France</article-title>
.
<source>PLoS One</source>
<volume>8</volume>
:
<fpage>e59716</fpage>
.
<pub-id pub-id-type="pmid">23527259</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Schwartz1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schwartz</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Albert</surname>
<given-names>ML</given-names>
</name>
(
<year>2010</year>
)
<article-title>Biology and pathogenesis of chikungunya virus</article-title>
.
<source>Nat Rev Microbiol</source>
<volume>8</volume>
:
<fpage>491</fpage>
<lpage>500</lpage>
.
<pub-id pub-id-type="pmid">20551973</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-DupuisMaguiraga1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dupuis-Maguiraga</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Noret</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Brun</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Le Grand</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Gras</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Chikungunya disease: infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia</article-title>
.
<source>PLoS Negl Trop Dis</source>
<volume>6</volume>
:
<fpage>e1446</fpage>
.
<pub-id pub-id-type="pmid">22479654</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Suhrbier1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Suhrbier</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Jaffar-Bandjee</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Gasque</surname>
<given-names>P</given-names>
</name>
(
<year>2012</year>
)
<article-title>Arthritogenic alphaviruses–an overview</article-title>
.
<source>Nat Rev Rheumatol</source>
<volume>8</volume>
:
<fpage>420</fpage>
<lpage>429</lpage>
.
<pub-id pub-id-type="pmid">22565316</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Lum1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lum</surname>
<given-names>FM</given-names>
</name>
,
<name>
<surname>Teo</surname>
<given-names>TH</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>WW</given-names>
</name>
,
<name>
<surname>Kam</surname>
<given-names>YW</given-names>
</name>
,
<name>
<surname>Renia</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>An Essential Role of Antibodies in the Control of Chikungunya Virus Infection</article-title>
.
<source>J Immunol</source>
<volume>190</volume>
:
<fpage>6295</fpage>
<lpage>6302</lpage>
.
<pub-id pub-id-type="pmid">23670192</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Ozden1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ozden</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Huerre</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Riviere</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Coffey</surname>
<given-names>LL</given-names>
</name>
,
<name>
<surname>Afonso</surname>
<given-names>PV</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Human muscle satellite cells as targets of Chikungunya virus infection</article-title>
.
<source>PLoS One</source>
<volume>2</volume>
:
<fpage>e527</fpage>
.
<pub-id pub-id-type="pmid">17565380</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Sourisseau1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sourisseau</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Schilte</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Casartelli</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Trouillet</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Guivel-Benhassine</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Characterization of reemerging chikungunya virus</article-title>
.
<source>PLoS Pathog</source>
<volume>3</volume>
:
<fpage>e89</fpage>
.
<pub-id pub-id-type="pmid">17604450</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Gerardin1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gerardin</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Barau</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Michault</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Bintner</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Randrianaivo</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Reunion</article-title>
.
<source>PLoS Med</source>
<volume>5</volume>
:
<fpage>e60</fpage>
.
<pub-id pub-id-type="pmid">18351797</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Economopoulou1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Economopoulou</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Dominguez</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Helynck</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Sissoko</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Wichmann</surname>
<given-names>O</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005–2006 outbreak on Reunion</article-title>
.
<source>Epidemiol Infect</source>
<volume>137</volume>
:
<fpage>534</fpage>
<lpage>541</lpage>
.
<pub-id pub-id-type="pmid">18694529</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Arpino1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Arpino</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Curatolo</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Rezza</surname>
<given-names>G</given-names>
</name>
(
<year>2009</year>
)
<article-title>Chikungunya and the nervous system: what we do and do not know</article-title>
.
<source>Rev Med Virol</source>
<volume>19</volume>
:
<fpage>121</fpage>
<lpage>129</lpage>
.
<pub-id pub-id-type="pmid">19274635</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Das1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Das</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Jaffar-Bandjee</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Hoarau</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Krejbich Trotot</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Denizot</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus</article-title>
.
<source>Prog Neurobiol</source>
<volume>91</volume>
:
<fpage>121</fpage>
<lpage>129</lpage>
.
<pub-id pub-id-type="pmid">20026374</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Couderc1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Couderc</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Chretien</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Schilte</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Disson</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Brigitte</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease</article-title>
.
<source>PLoS Pathog</source>
<volume>4</volume>
:
<fpage>e29</fpage>
.
<pub-id pub-id-type="pmid">18282093</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Labadie1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Labadie</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Larcher</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Joubert</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Mannioui</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Delache</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages</article-title>
.
<source>J Clin Invest</source>
<volume>120</volume>
:
<fpage>894</fpage>
<lpage>906</lpage>
.
<pub-id pub-id-type="pmid">20179353</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Schilte1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schilte</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Couderc</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Chretien</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Sourisseau</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Gangneux</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Type I IFN controls chikungunya virus via its action on nonhematopoietic cells</article-title>
.
<source>J Exp Med</source>
<volume>207</volume>
:
<fpage>429</fpage>
<lpage>442</lpage>
.
<pub-id pub-id-type="pmid">20123960</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Gardner1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gardner</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Anraku</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Le</surname>
<given-names>TT</given-names>
</name>
,
<name>
<surname>Larcher</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Major</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
<article-title>Chikungunya virus arthritis in adult wild-type mice</article-title>
.
<source>J Virol</source>
<volume>84</volume>
:
<fpage>8021</fpage>
<lpage>8032</lpage>
.
<pub-id pub-id-type="pmid">20519386</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Tobin1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tobin</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>May</surname>
<given-names>RC</given-names>
</name>
,
<name>
<surname>Wheeler</surname>
<given-names>RT</given-names>
</name>
(
<year>2012</year>
)
<article-title>Zebrafish: a see-through host and a fluorescent toolbox to probe host-pathogen interaction</article-title>
.
<source>PLoS Pathog</source>
<volume>8</volume>
:
<fpage>e1002349</fpage>
.
<pub-id pub-id-type="pmid">22241986</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Lieschke1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lieschke</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Oates</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Crowhurst</surname>
<given-names>MO</given-names>
</name>
,
<name>
<surname>Ward</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Layton</surname>
<given-names>JE</given-names>
</name>
(
<year>2001</year>
)
<article-title>Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish</article-title>
.
<source>Blood</source>
<volume>98</volume>
:
<fpage>3087</fpage>
<lpage>3096</lpage>
.
<pub-id pub-id-type="pmid">11698295</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-LeGuyader1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Le Guyader</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Redd</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Colucci-Guyon</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Murayama</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Kissa</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Origins and unconventional behavior of neutrophils in developing zebrafish</article-title>
.
<source>Blood</source>
<volume>111</volume>
:
<fpage>132</fpage>
<lpage>141</lpage>
.
<pub-id pub-id-type="pmid">17875807</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Zou1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zou</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Tafalla</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Truckle</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Secombes</surname>
<given-names>CJ</given-names>
</name>
(
<year>2007</year>
)
<article-title>Identification of a second group of type I IFNs in fish sheds light on IFN evolution in vertebrates</article-title>
.
<source>J Immunol</source>
<volume>179</volume>
:
<fpage>3859</fpage>
<lpage>3871</lpage>
.
<pub-id pub-id-type="pmid">17785823</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Aggad1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aggad</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Mazel</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Boudinot</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Mogensen</surname>
<given-names>KE</given-names>
</name>
,
<name>
<surname>Hamming</surname>
<given-names>OJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>The two groups of zebrafish virus-induced interferons signal via distinct receptors with specific and shared chains</article-title>
.
<source>J Immunol</source>
<volume>183</volume>
:
<fpage>3924</fpage>
<lpage>3931</lpage>
.
<pub-id pub-id-type="pmid">19717522</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Hamming1">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hamming</surname>
<given-names>OJ</given-names>
</name>
,
<name>
<surname>Lutfalla</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Levraud</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Hartmann</surname>
<given-names>R</given-names>
</name>
(
<year>2011</year>
)
<article-title>Crystal structure of Zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates</article-title>
.
<source>J Virol</source>
<volume>85</volume>
:
<fpage>8181</fpage>
<lpage>8187</lpage>
.
<pub-id pub-id-type="pmid">21653665</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Levraud1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Levraud</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Boudinot</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Colin</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Benmansour</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Peyrieras</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system</article-title>
.
<source>J Immunol</source>
<volume>178</volume>
:
<fpage>4385</fpage>
<lpage>4394</lpage>
.
<pub-id pub-id-type="pmid">17371995</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Weston1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Weston</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Villoing</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bremont</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Castric</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Pfeffer</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>Comparison of two aquatic alphaviruses, salmon pancreas disease virus and sleeping disease virus, by using genome sequence analysis, monoclonal reactivity, and cross-infection</article-title>
.
<source>J Virol</source>
<volume>76</volume>
:
<fpage>6155</fpage>
<lpage>6163</lpage>
.
<pub-id pub-id-type="pmid">12021349</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Forrester1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Forrester</surname>
<given-names>NL</given-names>
</name>
,
<name>
<surname>Palacios</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Tesh</surname>
<given-names>RB</given-names>
</name>
,
<name>
<surname>Savji</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Guzman</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Genome-scale phylogeny of the alphavirus genus suggests a marine origin</article-title>
.
<source>J Virol</source>
<volume>86</volume>
:
<fpage>2729</fpage>
<lpage>2738</lpage>
.
<pub-id pub-id-type="pmid">22190718</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Durbin1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Durbin</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Kane</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Stollar</surname>
<given-names>V</given-names>
</name>
(
<year>1991</year>
)
<article-title>A mutant of Sindbis virus with altered plaque morphology and a decreased ratio of 26 S:49 S RNA synthesis in mosquito cells</article-title>
.
<source>Virology</source>
<volume>183</volume>
:
<fpage>306</fpage>
<lpage>312</lpage>
.
<pub-id pub-id-type="pmid">2053283</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Phelan1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Phelan</surname>
<given-names>PE</given-names>
</name>
,
<name>
<surname>Pressley</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Witten</surname>
<given-names>PE</given-names>
</name>
,
<name>
<surname>Mellon</surname>
<given-names>MT</given-names>
</name>
,
<name>
<surname>Blake</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio)</article-title>
.
<source>J Virol</source>
<volume>79</volume>
:
<fpage>1842</fpage>
<lpage>1852</lpage>
.
<pub-id pub-id-type="pmid">15650208</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-LopezMunoz1">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lopez-Munoz</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Roca</surname>
<given-names>FJ</given-names>
</name>
,
<name>
<surname>Sepulcre</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Meseguer</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Mulero</surname>
<given-names>V</given-names>
</name>
(
<year>2010</year>
)
<article-title>Zebrafish larvae are unable to mount a protective antiviral response against waterborne infection by spring viremia of carp virus</article-title>
.
<source>Dev Comp Immunol</source>
<volume>34</volume>
:
<fpage>546</fpage>
<lpage>552</lpage>
.
<pub-id pub-id-type="pmid">20045026</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Ludwig1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ludwig</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Palha</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Torhy</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Briolat</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Colucci-Guyon</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Whole-body analysis of a viral infection: vascular endothelium is a primary target of infectious hematopoietic necrosis virus in zebrafish larvae</article-title>
.
<source>PLoS Pathog</source>
<volume>7</volume>
:
<fpage>e1001269</fpage>
.
<pub-id pub-id-type="pmid">21304884</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Rudd1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rudd</surname>
<given-names>PA</given-names>
</name>
,
<name>
<surname>Wilson</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Gardner</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Larcher</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Babarit</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock</article-title>
.
<source>J Virol</source>
<volume>86</volume>
:
<fpage>9888</fpage>
<lpage>9898</lpage>
.
<pub-id pub-id-type="pmid">22761364</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Schilte2">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schilte</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Buckwalter</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Laird</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Diamond</surname>
<given-names>MS</given-names>
</name>
,
<name>
<surname>Schwartz</surname>
<given-names>O</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Cutting edge: independent roles for IRF-3 and IRF-7 in hematopoietic and nonhematopoietic cells during host response to Chikungunya infection</article-title>
.
<source>J Immunol</source>
<volume>188</volume>
:
<fpage>2967</fpage>
<lpage>2971</lpage>
.
<pub-id pub-id-type="pmid">22371392</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Brannon1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brannon</surname>
<given-names>MK</given-names>
</name>
,
<name>
<surname>Davis</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Mathias</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Hall</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Emerson</surname>
<given-names>JC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos</article-title>
.
<source>Cell Microbiol</source>
<volume>11</volume>
:
<fpage>755</fpage>
<lpage>768</lpage>
.
<pub-id pub-id-type="pmid">19207728</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Davison1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Davison</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Akitake</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Goll</surname>
<given-names>MG</given-names>
</name>
,
<name>
<surname>Rhee</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Gosse</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish</article-title>
.
<source>Dev Biol</source>
<volume>304</volume>
:
<fpage>811</fpage>
<lpage>824</lpage>
.
<pub-id pub-id-type="pmid">17335798</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Liongue1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liongue</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Hall</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>O'Connell</surname>
<given-names>BA</given-names>
</name>
,
<name>
<surname>Crosier</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Ward</surname>
<given-names>AC</given-names>
</name>
(
<year>2009</year>
)
<article-title>Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration</article-title>
.
<source>Blood</source>
<volume>113</volume>
:
<fpage>2535</fpage>
<lpage>2546</lpage>
.
<pub-id pub-id-type="pmid">19139076</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Hall1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hall</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Flores</surname>
<given-names>MV</given-names>
</name>
,
<name>
<surname>Oehlers</surname>
<given-names>SH</given-names>
</name>
,
<name>
<surname>Sanderson</surname>
<given-names>LE</given-names>
</name>
,
<name>
<surname>Lam</surname>
<given-names>EY</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Infection-responsive expansion of the hematopoietic stem and progenitor cell compartment in zebrafish is dependent upon inducible nitric oxide</article-title>
.
<source>Cell Stem Cell</source>
<volume>10</volume>
:
<fpage>198</fpage>
<lpage>209</lpage>
.
<pub-id pub-id-type="pmid">22305569</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Curado1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Curado</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ober</surname>
<given-names>EA</given-names>
</name>
,
<name>
<surname>Walsh</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cortes-Hernandez</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Verkade</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>The mitochondrial import gene tomm22 is specifically required for hepatocyte survival and provides a liver regeneration model</article-title>
.
<source>Dis Model Mech</source>
<volume>3</volume>
:
<fpage>486</fpage>
<lpage>495</lpage>
.
<pub-id pub-id-type="pmid">20483998</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Ziegler1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ziegler</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>da Rosa</surname>
<given-names>AP</given-names>
</name>
,
<name>
<surname>Xiao</surname>
<given-names>SY</given-names>
</name>
,
<name>
<surname>Tesh</surname>
<given-names>RB</given-names>
</name>
(
<year>2008</year>
)
<article-title>An animal model for studying the pathogenesis of chikungunya virus infection</article-title>
.
<source>Am J Trop Med Hyg</source>
<volume>79</volume>
:
<fpage>133</fpage>
<lpage>139</lpage>
.
<pub-id pub-id-type="pmid">18606777</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Wang1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Volkova</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Adams</surname>
<given-names>AP</given-names>
</name>
,
<name>
<surname>Forrester</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Xiao</surname>
<given-names>SY</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Chimeric alphavirus vaccine candidates for chikungunya</article-title>
.
<source>Vaccine</source>
<volume>26</volume>
:
<fpage>5030</fpage>
<lpage>5039</lpage>
.
<pub-id pub-id-type="pmid">18692107</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Sun1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sun</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>YB</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>TK</given-names>
</name>
,
<name>
<surname>Gan</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>FF</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Characterization of fish IRF3 as an IFN-inducible protein reveals evolving regulation of IFN response in vertebrates</article-title>
.
<source>J Immunol</source>
<volume>185</volume>
:
<fpage>7573</fpage>
<lpage>7582</lpage>
.
<pub-id pub-id-type="pmid">21084665</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Takauji1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Takauji</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Iho</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Takatsuka</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Yamamoto</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Takahashi</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>CpG-DNA-induced IFN-alpha production involves p38 MAPK-dependent STAT1 phosphorylation in human plasmacytoid dendritic cell precursors</article-title>
.
<source>J Leukoc Biol</source>
<volume>72</volume>
:
<fpage>1011</fpage>
<lpage>1019</lpage>
.
<pub-id pub-id-type="pmid">12429724</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Pulverer1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pulverer</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Rand</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Lienenklaus</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Kugel</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Zietara</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Temporal and spatial resolution of type I and III interferon responses in vivo</article-title>
.
<source>J Virol</source>
<volume>84</volume>
:
<fpage>8626</fpage>
<lpage>8638</lpage>
.
<pub-id pub-id-type="pmid">20573823</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Hayashi1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hayashi</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Means</surname>
<given-names>TK</given-names>
</name>
,
<name>
<surname>Luster</surname>
<given-names>AD</given-names>
</name>
(
<year>2003</year>
)
<article-title>Toll-like receptors stimulate human neutrophil function</article-title>
.
<source>Blood</source>
<volume>102</volume>
:
<fpage>2660</fpage>
<lpage>2669</lpage>
.
<pub-id pub-id-type="pmid">12829592</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Tamassia1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tamassia</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Le Moigne</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Rossato</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Donini</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>McCartney</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-transfected human neutrophils</article-title>
.
<source>J Immunol</source>
<volume>181</volume>
:
<fpage>6563</fpage>
<lpage>6573</lpage>
.
<pub-id pub-id-type="pmid">18941247</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Drescher1">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Drescher</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Bai</surname>
<given-names>F</given-names>
</name>
(
<year>2013</year>
)
<article-title>Neutrophil in viral infections, friend or foe?</article-title>
<source>Virus Res</source>
<volume>171</volume>
:
<fpage>1</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="pmid">23178588</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Jenne1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jenne</surname>
<given-names>CN</given-names>
</name>
,
<name>
<surname>Wong</surname>
<given-names>CHY</given-names>
</name>
,
<name>
<surname>Zemp</surname>
<given-names>FJ</given-names>
</name>
,
<name>
<surname>McDonald</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Rahman</surname>
<given-names>MM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps</article-title>
.
<source>Cell Host Microbe</source>
<volume>13</volume>
:
<fpage>169</fpage>
<lpage>180</lpage>
.
<pub-id pub-id-type="pmid">23414757</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Saitoh1">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Saitoh</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Komano</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Saitoh</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Misawa</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Takahama</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1</article-title>
.
<source>Cell Host Microbe</source>
<volume>12</volume>
:
<fpage>109</fpage>
<lpage>116</lpage>
.
<pub-id pub-id-type="pmid">22817992</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Palic1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Palic</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Andreasen</surname>
<given-names>CB</given-names>
</name>
,
<name>
<surname>Ostojic</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Tell</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>Roth</surname>
<given-names>JA</given-names>
</name>
(
<year>2007</year>
)
<article-title>Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules</article-title>
.
<source>J Immunol Methods</source>
<volume>319</volume>
:
<fpage>87</fpage>
<lpage>97</lpage>
.
<pub-id pub-id-type="pmid">17208252</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-ColucciGuyon1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Colucci-Guyon</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Tinevez</surname>
<given-names>JY</given-names>
</name>
,
<name>
<surname>Renshaw</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Herbomel</surname>
<given-names>P</given-names>
</name>
(
<year>2011</year>
)
<article-title>Strategies of professional phagocytes in vivo: unlike macrophages, neutrophils engulf only surface-associated microbes</article-title>
.
<source>J Cell Sci</source>
<volume>124</volume>
:
<fpage>3053</fpage>
<lpage>3059</lpage>
.
<pub-id pub-id-type="pmid">21868367</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Yang1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>Cambier</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Davis</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Hall</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Crosier</surname>
<given-names>PS</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages</article-title>
.
<source>Cell Host Microbe</source>
<volume>12</volume>
:
<fpage>301</fpage>
<lpage>312</lpage>
.
<pub-id pub-id-type="pmid">22980327</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Navarini1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Navarini</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Recher</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Lang</surname>
<given-names>KS</given-names>
</name>
,
<name>
<surname>Georgiev</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Meury</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>103</volume>
:
<fpage>15535</fpage>
<lpage>15539</lpage>
.
<pub-id pub-id-type="pmid">17030789</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Ronneseth1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ronneseth</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Pettersen</surname>
<given-names>EF</given-names>
</name>
,
<name>
<surname>Wergeland</surname>
<given-names>HI</given-names>
</name>
(
<year>2006</year>
)
<article-title>Neutrophils and B-cells in blood and head kidney of Atlantic salmon (Salmo salar L.) challenged with infectious pancreatic necrosis virus (IPNV)</article-title>
.
<source>Fish Shellfish Immunol</source>
<volume>20</volume>
:
<fpage>610</fpage>
<lpage>620</lpage>
.
<pub-id pub-id-type="pmid">16242964</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Chow1">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chow</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Her</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Ong</surname>
<given-names>EK</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Dimatatac</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor</article-title>
.
<source>J Infect Dis</source>
<volume>203</volume>
:
<fpage>149</fpage>
<lpage>157</lpage>
.
<pub-id pub-id-type="pmid">21288813</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Cuzzocrea1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cuzzocrea</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Chatterjee</surname>
<given-names>PK</given-names>
</name>
,
<name>
<surname>Mazzon</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Dugo</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>De Sarro</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury</article-title>
.
<source>Shock</source>
<volume>18</volume>
:
<fpage>169</fpage>
<lpage>176</lpage>
.
<pub-id pub-id-type="pmid">12166782</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Genovese1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Genovese</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Cuzzocrea</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Di Paola</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Failla</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Mazzon</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Inhibition or knock out of inducible nitric oxide synthase result in resistance to bleomycin-induced lung injury</article-title>
.
<source>Respir Res</source>
<volume>6</volume>
:
<fpage>58</fpage>
.
<pub-id pub-id-type="pmid">15955252</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Zeidler1">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zeidler</surname>
<given-names>PC</given-names>
</name>
,
<name>
<surname>Millecchia</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>Castranova</surname>
<given-names>V</given-names>
</name>
(
<year>2004</year>
)
<article-title>Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-gamma-induced pulmonary inflammation</article-title>
.
<source>Toxicol Appl Pharmacol</source>
<volume>195</volume>
:
<fpage>45</fpage>
<lpage>54</lpage>
.
<pub-id pub-id-type="pmid">14962504</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Orvedahl1">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Orvedahl</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>MacPherson</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Sumpter</surname>
<given-names>R</given-names>
<suffix>Jr</suffix>
</name>
,
<name>
<surname>Talloczy</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Zou</surname>
<given-names>Z</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Autophagy protects against Sindbis virus infection of the central nervous system</article-title>
.
<source>Cell Host Microbe</source>
<volume>7</volume>
:
<fpage>115</fpage>
<lpage>127</lpage>
.
<pub-id pub-id-type="pmid">20159618</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Stetson1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Stetson</surname>
<given-names>DB</given-names>
</name>
,
<name>
<surname>Medzhitov</surname>
<given-names>R</given-names>
</name>
(
<year>2006</year>
)
<article-title>Type I interferons in host defense</article-title>
.
<source>Immunity</source>
<volume>25</volume>
:
<fpage>373</fpage>
<lpage>381</lpage>
.
<pub-id pub-id-type="pmid">16979569</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Jeong1">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jeong</surname>
<given-names>JY</given-names>
</name>
,
<name>
<surname>Kwon</surname>
<given-names>HB</given-names>
</name>
,
<name>
<surname>Ahn</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Kang</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Kwon</surname>
<given-names>SH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Functional and developmental analysis of the blood-brain barrier in zebrafish</article-title>
.
<source>Brain Res Bull</source>
<volume>75</volume>
:
<fpage>619</fpage>
<lpage>628</lpage>
.
<pub-id pub-id-type="pmid">18355638</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Murooka1">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Murooka</surname>
<given-names>TT</given-names>
</name>
,
<name>
<surname>Deruaz</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Marangoni</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Vrbanac</surname>
<given-names>VD</given-names>
</name>
,
<name>
<surname>Seung</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>HIV-infected T cells are migratory vehicles for viral dissemination</article-title>
.
<source>Nature</source>
<volume>490</volume>
:
<fpage>283</fpage>
<lpage>287</lpage>
.
<pub-id pub-id-type="pmid">22854780</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Sewald1">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sewald</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Gonzalez</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Haberman</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Mothes</surname>
<given-names>W</given-names>
</name>
(
<year>2012</year>
)
<article-title>In vivo imaging of virological synapses</article-title>
.
<source>Nat Commun</source>
<volume>3</volume>
:
<fpage>1320</fpage>
.
<pub-id pub-id-type="pmid">23271654</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Hickman1">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hickman</surname>
<given-names>HD</given-names>
</name>
,
<name>
<surname>Reynoso</surname>
<given-names>GV</given-names>
</name>
,
<name>
<surname>Ngudiankama</surname>
<given-names>BF</given-names>
</name>
,
<name>
<surname>Rubin</surname>
<given-names>EJ</given-names>
</name>
,
<name>
<surname>Magadán</surname>
<given-names>JG</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin</article-title>
.
<source>Cell Host Microbe</source>
<volume>13</volume>
:
<fpage>155</fpage>
<lpage>168</lpage>
.
<pub-id pub-id-type="pmid">23414756</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Westerfield1">
<label>67</label>
<mixed-citation publication-type="other">Westerfield M (2000) The Zebrafish Book: A guide for the laboratory use of zebrafish (
<italic>Danio rerio</italic>
). Corvallis: University of Oregon Press.</mixed-citation>
</ref>
<ref id="ppat.1003619-Levraud2">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>Levraud</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Colucci-Guyon</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Redd</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Lutfalla</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Herbomel</surname>
<given-names>P</given-names>
</name>
(
<year>2008</year>
)
<article-title>In vivo analysis of zebrafish innate immunity</article-title>
.
<source>Methods Mol Biol</source>
<volume>415</volume>
:
<fpage>337</fpage>
<lpage>363</lpage>
.
<pub-id pub-id-type="pmid">18370164</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Traver1">
<label>69</label>
<mixed-citation publication-type="journal">
<name>
<surname>Traver</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Paw</surname>
<given-names>BH</given-names>
</name>
,
<name>
<surname>Poss</surname>
<given-names>KD</given-names>
</name>
,
<name>
<surname>Penberthy</surname>
<given-names>WT</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants</article-title>
.
<source>Nat Immunol</source>
<volume>4</volume>
:
<fpage>1238</fpage>
<lpage>1246</lpage>
.
<pub-id pub-id-type="pmid">14608381</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Park1">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Park</surname>
<given-names>HC</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>CH</given-names>
</name>
,
<name>
<surname>Bae</surname>
<given-names>YK</given-names>
</name>
,
<name>
<surname>Yeo</surname>
<given-names>SY</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>SH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons</article-title>
.
<source>Dev Biol</source>
<volume>227</volume>
:
<fpage>279</fpage>
<lpage>293</lpage>
.
<pub-id pub-id-type="pmid">11071755</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Bernardos1">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bernardos</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Raymond</surname>
<given-names>PA</given-names>
</name>
(
<year>2006</year>
)
<article-title>GFAP transgenic zebrafish</article-title>
.
<source>Gene Expr Patterns</source>
<volume>6</volume>
:
<fpage>1007</fpage>
<lpage>1013</lpage>
.
<pub-id pub-id-type="pmid">16765104</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Dong1">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dong</surname>
<given-names>PD</given-names>
</name>
,
<name>
<surname>Munson</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Norton</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Crosnier</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Pan</surname>
<given-names>X</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Fgf10 regulates hepatopancreatic ductal system patterning and differentiation</article-title>
.
<source>Nat Genet</source>
<volume>39</volume>
:
<fpage>397</fpage>
<lpage>402</lpage>
.
<pub-id pub-id-type="pmid">17259985</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Renshaw1">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Renshaw</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Loynes</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Trushell</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Elworthy</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ingham</surname>
<given-names>PW</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>A transgenic zebrafish model of neutrophilic inflammation</article-title>
.
<source>Blood</source>
<volume>108</volume>
:
<fpage>3976</fpage>
<lpage>3978</lpage>
.
<pub-id pub-id-type="pmid">16926288</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Ellett1">
<label>74</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ellett</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Pase</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Hayman</surname>
<given-names>JW</given-names>
</name>
,
<name>
<surname>Andrianopoulos</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Lieschke</surname>
<given-names>GJ</given-names>
</name>
(
<year>2011</year>
)
<article-title>mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish</article-title>
.
<source>Blood</source>
<volume>117</volume>
:
<fpage>e49</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="pmid">21084707</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Suster1">
<label>75</label>
<mixed-citation publication-type="journal">
<name>
<surname>Suster</surname>
<given-names>ML</given-names>
</name>
,
<name>
<surname>Kikuta</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Urasaki</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Asakawa</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Kawakami</surname>
<given-names>K</given-names>
</name>
(
<year>2009</year>
)
<article-title>Transgenesis in zebrafish with the tol2 transposon system</article-title>
.
<source>Methods Mol Biol</source>
<volume>561</volume>
:
<fpage>41</fpage>
<lpage>63</lpage>
.
<pub-id pub-id-type="pmid">19504063</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Ellett2">
<label>76</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ellett</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Lieschke</surname>
<given-names>GJ</given-names>
</name>
(
<year>2012</year>
)
<article-title>Computational quantification of fluorescent leukocyte numbers in zebrafish embryos</article-title>
.
<source>Methods Enzymol</source>
<volume>506</volume>
:
<fpage>425</fpage>
<lpage>435</lpage>
.
<pub-id pub-id-type="pmid">22341237</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Svoboda1">
<label>77</label>
<mixed-citation publication-type="journal">
<name>
<surname>Svoboda</surname>
<given-names>KR</given-names>
</name>
,
<name>
<surname>Linares</surname>
<given-names>AE</given-names>
</name>
,
<name>
<surname>Ribera</surname>
<given-names>AB</given-names>
</name>
(
<year>2001</year>
)
<article-title>Activity regulates programmed cell death of zebrafish Rohon-Beard neurons</article-title>
.
<source>Development</source>
<volume>128</volume>
:
<fpage>3511</fpage>
<lpage>3520</lpage>
.
<pub-id pub-id-type="pmid">11566856</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-GreiserWilke1">
<label>78</label>
<mixed-citation publication-type="journal">
<name>
<surname>Greiser-Wilke</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Moenning</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Kaaden</surname>
<given-names>OR</given-names>
</name>
,
<name>
<surname>Figueiredo</surname>
<given-names>LT</given-names>
</name>
(
<year>1989</year>
)
<article-title>Most alphaviruses share a conserved epitopic region on their nucleocapsid protein</article-title>
.
<source>J Gen Virol</source>
<volume>70</volume>
(
<issue>Pt 3</issue>
)
<fpage>743</fpage>
<lpage>748</lpage>
.
<pub-id pub-id-type="pmid">2471798</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Covassin1">
<label>79</label>
<mixed-citation publication-type="journal">
<name>
<surname>Covassin</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Amigo</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Suzuki</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Teplyuk</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Straubhaar</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish</article-title>
.
<source>Dev Biol</source>
<volume>299</volume>
:
<fpage>551</fpage>
<lpage>562</lpage>
.
<pub-id pub-id-type="pmid">16999953</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003619-Thisse1">
<label>80</label>
<mixed-citation publication-type="journal">
<name>
<surname>Thisse</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Thisse</surname>
<given-names>B</given-names>
</name>
(
<year>2008</year>
)
<article-title>High-resolution in situ hybridization to whole-mount zebrafish embryos</article-title>
.
<source>Nat Protoc</source>
<volume>3</volume>
:
<fpage>59</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="pmid">18193022</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C62 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002C62 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3764224
   |texte=   Real-Time Whole-Body Visualization of Chikungunya Virus Infection and Host Interferon Response in Zebrafish
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24039582" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024