Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002C580 ( Pmc/Corpus ); précédent : 002C579; suivant : 002C581 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydrophobins—Unique Fungal Proteins</title>
<author>
<name sortKey="Bayry, Jagadeesh" sort="Bayry, Jagadeesh" uniqKey="Bayry J" first="Jagadeesh" last="Bayry">Jagadeesh Bayry</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut National de la Santé et de la Recherche Médicale Unité 872, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Université Pierre et Marie Curie – Paris 6, UMR S 872, Centre de Recherche des Cordeliers, Equipe 16-Immunopathology & Therapeutic Immunointervention, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Université Paris Descartes, UMR S 872, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aimanianda, Vishukumar" sort="Aimanianda, Vishukumar" uniqKey="Aimanianda V" first="Vishukumar" last="Aimanianda">Vishukumar Aimanianda</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Unité des Aspergillus, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guijarro, J I Aki" sort="Guijarro, J I Aki" uniqKey="Guijarro J" first="J. I Aki" last="Guijarro">J. I Aki Guijarro</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Institut Pasteur, Unité de RMN des Biomolécules, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<addr-line>CNRS UMR 3528, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sunde, Margaret" sort="Sunde, Margaret" uniqKey="Sunde M" first="Margaret" last="Sunde">Margaret Sunde</name>
<affiliation>
<nlm:aff id="aff7">
<addr-line>University of Sydney, Discipline of Pharmacology, New South Wales, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Latge, Jean Paul" sort="Latge, Jean Paul" uniqKey="Latge J" first="Jean-Paul" last="Latgé">Jean-Paul Latgé</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Unité des Aspergillus, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22693445</idno>
<idno type="pmc">3364958</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364958</idno>
<idno type="RBID">PMC:3364958</idno>
<idno type="doi">10.1371/journal.ppat.1002700</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">002C58</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002C58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Hydrophobins—Unique Fungal Proteins</title>
<author>
<name sortKey="Bayry, Jagadeesh" sort="Bayry, Jagadeesh" uniqKey="Bayry J" first="Jagadeesh" last="Bayry">Jagadeesh Bayry</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institut National de la Santé et de la Recherche Médicale Unité 872, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Université Pierre et Marie Curie – Paris 6, UMR S 872, Centre de Recherche des Cordeliers, Equipe 16-Immunopathology & Therapeutic Immunointervention, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Université Paris Descartes, UMR S 872, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aimanianda, Vishukumar" sort="Aimanianda, Vishukumar" uniqKey="Aimanianda V" first="Vishukumar" last="Aimanianda">Vishukumar Aimanianda</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Unité des Aspergillus, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guijarro, J I Aki" sort="Guijarro, J I Aki" uniqKey="Guijarro J" first="J. I Aki" last="Guijarro">J. I Aki Guijarro</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Institut Pasteur, Unité de RMN des Biomolécules, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<addr-line>CNRS UMR 3528, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sunde, Margaret" sort="Sunde, Margaret" uniqKey="Sunde M" first="Margaret" last="Sunde">Margaret Sunde</name>
<affiliation>
<nlm:aff id="aff7">
<addr-line>University of Sydney, Discipline of Pharmacology, New South Wales, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Latge, Jean Paul" sort="Latge, Jean Paul" uniqKey="Latge J" first="Jean-Paul" last="Latgé">Jean-Paul Latgé</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut Pasteur, Unité des Aspergillus, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Pathogens</title>
<idno type="ISSN">1553-7366</idno>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wessels, J" uniqKey="Wessels J">J Wessels</name>
</author>
<author>
<name sortKey="De Vries, O" uniqKey="De Vries O">O De Vries</name>
</author>
<author>
<name sortKey="Asgeirsdottir, Sa" uniqKey="Asgeirsdottir S">SA Asgeirsdottir</name>
</author>
<author>
<name sortKey="Schuren, F" uniqKey="Schuren F">F Schuren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kodani, S" uniqKey="Kodani S">S Kodani</name>
</author>
<author>
<name sortKey="Lodato, Ma" uniqKey="Lodato M">MA Lodato</name>
</author>
<author>
<name sortKey="Durrant, Mc" uniqKey="Durrant M">MC Durrant</name>
</author>
<author>
<name sortKey="Picart, F" uniqKey="Picart F">F Picart</name>
</author>
<author>
<name sortKey="Willey, Jm" uniqKey="Willey J">JM Willey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunde, M" uniqKey="Sunde M">M Sunde</name>
</author>
<author>
<name sortKey="Kwan, Ah" uniqKey="Kwan A">AH Kwan</name>
</author>
<author>
<name sortKey="Templeton, Md" uniqKey="Templeton M">MD Templeton</name>
</author>
<author>
<name sortKey="Beever, Re" uniqKey="Beever R">RE Beever</name>
</author>
<author>
<name sortKey="Mackay, Jp" uniqKey="Mackay J">JP Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Littlejohna, Ka" uniqKey="Littlejohna K">KA Littlejohna</name>
</author>
<author>
<name sortKey="Hooleyb, P" uniqKey="Hooleyb P">P Hooleyb</name>
</author>
<author>
<name sortKey="Cox, Pw" uniqKey="Cox P">PW Cox</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwan, Ah" uniqKey="Kwan A">AH Kwan</name>
</author>
<author>
<name sortKey="Winefield, Rd" uniqKey="Winefield R">RD Winefield</name>
</author>
<author>
<name sortKey="Sunde, M" uniqKey="Sunde M">M Sunde</name>
</author>
<author>
<name sortKey="Matthews, Jm" uniqKey="Matthews J">JM Matthews</name>
</author>
<author>
<name sortKey="Haverkamp, Rg" uniqKey="Haverkamp R">RG Haverkamp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wessels, Jg" uniqKey="Wessels J">JG Wessels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jensen, Bg" uniqKey="Jensen B">BG Jensen</name>
</author>
<author>
<name sortKey="Andersen, Mr" uniqKey="Andersen M">MR Andersen</name>
</author>
<author>
<name sortKey="Pedersen, Mh" uniqKey="Pedersen M">MH Pedersen</name>
</author>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
<author>
<name sortKey="Sondergaard, I" uniqKey="Sondergaard I">I Sondergaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kershaw, Mj" uniqKey="Kershaw M">MJ Kershaw</name>
</author>
<author>
<name sortKey="Wakley, G" uniqKey="Wakley G">G Wakley</name>
</author>
<author>
<name sortKey="Talbot, Nj" uniqKey="Talbot N">NJ Talbot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Shi, F" uniqKey="Shi F">F Shi</name>
</author>
<author>
<name sortKey="Wosten, Ha" uniqKey="Wosten H">HA Wosten</name>
</author>
<author>
<name sortKey="Hektor, H" uniqKey="Hektor H">H Hektor</name>
</author>
<author>
<name sortKey="Poolman, B" uniqKey="Poolman B">B Poolman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Latge, Jp" uniqKey="Latge J">JP Latgé</name>
</author>
<author>
<name sortKey="Cole, Gt" uniqKey="Cole G">GT Cole</name>
</author>
<author>
<name sortKey="Horis Berger, M" uniqKey="Horis Berger M">M Horis berger</name>
</author>
<author>
<name sortKey="Prevost, Mc" uniqKey="Prevost M">MC Prévost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Groot, Pw" uniqKey="De Groot P">PW De Groot</name>
</author>
<author>
<name sortKey="Schaap, Pj" uniqKey="Schaap P">PJ Schaap</name>
</author>
<author>
<name sortKey="Sonnenberg, As" uniqKey="Sonnenberg A">AS Sonnenberg</name>
</author>
<author>
<name sortKey="Visser, J" uniqKey="Visser J">J Visser</name>
</author>
<author>
<name sortKey="Van Griensven, Lj" uniqKey="Van Griensven L">LJ Van Griensven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kazmierczak, P" uniqKey="Kazmierczak P">P Kazmierczak</name>
</author>
<author>
<name sortKey="Kim, Dh" uniqKey="Kim D">DH Kim</name>
</author>
<author>
<name sortKey="Turina, M" uniqKey="Turina M">M Turina</name>
</author>
<author>
<name sortKey="Van Alfen, Nk" uniqKey="Van Alfen N">NK Van Alfen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talbot, Nj" uniqKey="Talbot N">NJ Talbot</name>
</author>
<author>
<name sortKey="Kershaw, Mj" uniqKey="Kershaw M">MJ Kershaw</name>
</author>
<author>
<name sortKey="Wakley, Ge" uniqKey="Wakley G">GE Wakley</name>
</author>
<author>
<name sortKey="De Vries, O" uniqKey="De Vries O">O De Vries</name>
</author>
<author>
<name sortKey="Wessels, J" uniqKey="Wessels J">J Wessels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scherrer, S" uniqKey="Scherrer S">S Scherrer</name>
</author>
<author>
<name sortKey="De Vries, Om" uniqKey="De Vries O">OM De Vries</name>
</author>
<author>
<name sortKey="Dudler, R" uniqKey="Dudler R">R Dudler</name>
</author>
<author>
<name sortKey="Wessels, Jg" uniqKey="Wessels J">JG Wessels</name>
</author>
<author>
<name sortKey="Honegger, R" uniqKey="Honegger R">R Honegger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hakanpaa, J" uniqKey="Hakanpaa J">J Hakanpaa</name>
</author>
<author>
<name sortKey="Paananen, A" uniqKey="Paananen A">A Paananen</name>
</author>
<author>
<name sortKey="Askolin, S" uniqKey="Askolin S">S Askolin</name>
</author>
<author>
<name sortKey="Nakari Setala, T" uniqKey="Nakari Setala T">T Nakari-Setala</name>
</author>
<author>
<name sortKey="Parkkinen, T" uniqKey="Parkkinen T">T Parkkinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hakanpaa, J" uniqKey="Hakanpaa J">J Hakanpaa</name>
</author>
<author>
<name sortKey="Szilvay, Gr" uniqKey="Szilvay G">GR Szilvay</name>
</author>
<author>
<name sortKey="Kaljunen, H" uniqKey="Kaljunen H">H Kaljunen</name>
</author>
<author>
<name sortKey="Maksimainen, M" uniqKey="Maksimainen M">M Maksimainen</name>
</author>
<author>
<name sortKey="Linder, M" uniqKey="Linder M">M Linder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Vocht, Ml" uniqKey="De Vocht M">ML de Vocht</name>
</author>
<author>
<name sortKey="Reviakine, I" uniqKey="Reviakine I">I Reviakine</name>
</author>
<author>
<name sortKey="Ulrich, Wp" uniqKey="Ulrich W">WP Ulrich</name>
</author>
<author>
<name sortKey="Bergsma Schutter, W" uniqKey="Bergsma Schutter W">W Bergsma-Schutter</name>
</author>
<author>
<name sortKey="Wosten, Ha" uniqKey="Wosten H">HA Wosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Permentier, Hp" uniqKey="Permentier H">HP Permentier</name>
</author>
<author>
<name sortKey="Rink, R" uniqKey="Rink R">R Rink</name>
</author>
<author>
<name sortKey="Kruijtzer, Ja" uniqKey="Kruijtzer J">JA Kruijtzer</name>
</author>
<author>
<name sortKey="Liskamp, Rm" uniqKey="Liskamp R">RM Liskamp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwan, Ah" uniqKey="Kwan A">AH Kwan</name>
</author>
<author>
<name sortKey="Macindoe, I" uniqKey="Macindoe I">I Macindoe</name>
</author>
<author>
<name sortKey="Vukasin, Pv" uniqKey="Vukasin P">PV Vukasin</name>
</author>
<author>
<name sortKey="Morris, Vk" uniqKey="Morris V">VK Morris</name>
</author>
<author>
<name sortKey="Kass, I" uniqKey="Kass I">I Kass</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macindoe, I" uniqKey="Macindoe I">I Macindoe</name>
</author>
<author>
<name sortKey="Kwan, Ah" uniqKey="Kwan A">AH Kwan</name>
</author>
<author>
<name sortKey="Ren, Q" uniqKey="Ren Q">Q Ren</name>
</author>
<author>
<name sortKey="Morris, Vk" uniqKey="Morris V">VK Morris</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morris, Vk" uniqKey="Morris V">VK Morris</name>
</author>
<author>
<name sortKey="Ren, Q" uniqKey="Ren Q">Q Ren</name>
</author>
<author>
<name sortKey="Macindoe, I" uniqKey="Macindoe I">I Macindoe</name>
</author>
<author>
<name sortKey="Kwan, Ah" uniqKey="Kwan A">AH Kwan</name>
</author>
<author>
<name sortKey="Byrne, N" uniqKey="Byrne N">N Byrne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aimanianda, V" uniqKey="Aimanianda V">V Aimanianda</name>
</author>
<author>
<name sortKey="Bayry, J" uniqKey="Bayry J">J Bayry</name>
</author>
<author>
<name sortKey="Bozza, S" uniqKey="Bozza S">S Bozza</name>
</author>
<author>
<name sortKey="Kniemeyer, O" uniqKey="Kniemeyer O">O Kniemeyer</name>
</author>
<author>
<name sortKey="Perruccio, K" uniqKey="Perruccio K">K Perruccio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruns, S" uniqKey="Bruns S">S Bruns</name>
</author>
<author>
<name sortKey="Kniemeyer, O" uniqKey="Kniemeyer O">O Kniemeyer</name>
</author>
<author>
<name sortKey="Hasenberg, M" uniqKey="Hasenberg M">M Hasenberg</name>
</author>
<author>
<name sortKey="Aimanianda, V" uniqKey="Aimanianda V">V Aimanianda</name>
</author>
<author>
<name sortKey="Nietzsche, S" uniqKey="Nietzsche S">S Nietzsche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hohl, Tm" uniqKey="Hohl T">TM Hohl</name>
</author>
<author>
<name sortKey="Van Epps, Hl" uniqKey="Van Epps H">HL Van Epps</name>
</author>
<author>
<name sortKey="Rivera, A" uniqKey="Rivera A">A Rivera</name>
</author>
<author>
<name sortKey="Morgan, La" uniqKey="Morgan L">LA Morgan</name>
</author>
<author>
<name sortKey="Chen, Pl" uniqKey="Chen P">PL Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dagenais, Tr" uniqKey="Dagenais T">TR Dagenais</name>
</author>
<author>
<name sortKey="Giles, Ss" uniqKey="Giles S">SS Giles</name>
</author>
<author>
<name sortKey="Aimanianda, V" uniqKey="Aimanianda V">V Aimanianda</name>
</author>
<author>
<name sortKey="Latge, Jp" uniqKey="Latge J">JP Latge</name>
</author>
<author>
<name sortKey="Hull, Cm" uniqKey="Hull C">CM Hull</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paris, S" uniqKey="Paris S">S Paris</name>
</author>
<author>
<name sortKey="Debeaupuis, Jp" uniqKey="Debeaupuis J">JP Debeaupuis</name>
</author>
<author>
<name sortKey="Crameri, R" uniqKey="Crameri R">R Crameri</name>
</author>
<author>
<name sortKey="Carey, M" uniqKey="Carey M">M Carey</name>
</author>
<author>
<name sortKey="Charles, F" uniqKey="Charles F">F Charles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S Kim</name>
</author>
<author>
<name sortKey="Ahn, Ip" uniqKey="Ahn I">IP Ahn</name>
</author>
<author>
<name sortKey="Rho, Hs" uniqKey="Rho H">HS Rho</name>
</author>
<author>
<name sortKey="Lee, Yh" uniqKey="Lee Y">YH Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S Zhang</name>
</author>
<author>
<name sortKey="Xia, Yx" uniqKey="Xia Y">YX Xia</name>
</author>
<author>
<name sortKey="Kim, B" uniqKey="Kim B">B Kim</name>
</author>
<author>
<name sortKey="Keyhani, No" uniqKey="Keyhani N">NO Keyhani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Linder, Mb" uniqKey="Linder M">MB Linder</name>
</author>
<author>
<name sortKey="Szilvay, Gr" uniqKey="Szilvay G">GR Szilvay</name>
</author>
<author>
<name sortKey="Nakari Setala, T" uniqKey="Nakari Setala T">T Nakari-Setala</name>
</author>
<author>
<name sortKey="Penttila, Me" uniqKey="Penttila M">ME Penttila</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valo, Hk" uniqKey="Valo H">HK Valo</name>
</author>
<author>
<name sortKey="Laaksonen, Ph" uniqKey="Laaksonen P">PH Laaksonen</name>
</author>
<author>
<name sortKey="Peltonen, Lj" uniqKey="Peltonen L">LJ Peltonen</name>
</author>
<author>
<name sortKey="Linder, Mb" uniqKey="Linder M">MB Linder</name>
</author>
<author>
<name sortKey="Hirvonen, Jt" uniqKey="Hirvonen J">JT Hirvonen</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Pathog</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Pathog</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plospath</journal-id>
<journal-title-group>
<journal-title>PLoS Pathogens</journal-title>
</journal-title-group>
<issn pub-type="ppub">1553-7366</issn>
<issn pub-type="epub">1553-7374</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22693445</article-id>
<article-id pub-id-type="pmc">3364958</article-id>
<article-id pub-id-type="publisher-id">PPATHOGENS-D-12-00347</article-id>
<article-id pub-id-type="doi">10.1371/journal.ppat.1002700</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Pearls</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteins</subject>
<subj-group>
<subject>Protein Chemistry</subject>
<subject>Protein Structure</subject>
<subject>Protein Synthesis</subject>
<subject>Recombinant Proteins</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Biotechnology</subject>
</subj-group>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immune Cells</subject>
<subj-group>
<subject>Antigen-Presenting Cells</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Immunity</subject>
<subj-group>
<subject>Immune Activation</subject>
<subject>Immune Defense</subject>
<subject>Immunity to Infections</subject>
<subject>Inflammation</subject>
<subject>Innate Immunity</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Microbiology</subject>
<subj-group>
<subject>Immunity</subject>
<subj-group>
<subject>Immune Activation</subject>
<subject>Immune Defense</subject>
<subject>Inflammation</subject>
<subject>Innate Immunity</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Mycology</subject>
<subj-group>
<subject>Fungal Biochemistry</subject>
<subject>Fungal Structure</subject>
<subject>Fungi</subject>
<subject>Spores</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Host-Pathogen Interaction</subject>
<subject>Pathogenesis</subject>
<subject>Plant Microbiology</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Hydrophobins—Unique Fungal Proteins</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Bayry</surname>
<given-names>Jagadeesh</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Aimanianda</surname>
<given-names>Vishukumar</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guijarro</surname>
<given-names>J. Iñaki</given-names>
</name>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sunde</surname>
<given-names>Margaret</given-names>
</name>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Latgé</surname>
<given-names>Jean-Paul</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Institut National de la Santé et de la Recherche Médicale Unité 872, Paris, France</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Université Pierre et Marie Curie – Paris 6, UMR S 872, Centre de Recherche des Cordeliers, Equipe 16-Immunopathology & Therapeutic Immunointervention, Paris, France</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Université Paris Descartes, UMR S 872, Paris, France</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Institut Pasteur, Unité des Aspergillus, Paris, France</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>Institut Pasteur, Unité de RMN des Biomolécules, Paris, France</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<addr-line>CNRS UMR 3528, Paris, France</addr-line>
</aff>
<aff id="aff7">
<label>7</label>
<addr-line>University of Sydney, Discipline of Pharmacology, New South Wales, Australia</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Heitman</surname>
<given-names>Joseph</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">Duke University Medical Center, United States of America</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>jagadeesh.bayry@crc.jussieu.fr</email>
(JB);
<email>jean-paul.latge@pasteur.fr</email>
(J-PL)</corresp>
</author-notes>
<pub-date pub-type="collection">
<month>5</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>31</day>
<month>5</month>
<year>2012</year>
</pub-date>
<volume>8</volume>
<issue>5</issue>
<elocation-id>e1002700</elocation-id>
<permissions>
<copyright-statement>Bayry et al.</copyright-statement>
<copyright-year>2012</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<counts>
<page-count count="4"></page-count>
</counts>
</article-meta>
</front>
<body>
<p>Microorganisms are often covered by a proteinaceous surface layer that serves as a sieve for external molecular influx, as a shield to protect microbes from external aggression, or as an aid to help microbial dispersion. In bacteria, the latter is called the S-layer, in Actinomycetes, the rod-like fibrillar layer, and in fungi, the rodlet layer
<xref rid="ppat.1002700-Wessels1" ref-type="bibr">[1]</xref>
. The self-assembly properties and remarkable structural and physicochemical characteristics of hydrophobin proteins underlie the multiple roles played by these unique proteins in fungal biology.</p>
<sec id="s2">
<title>What Are Hydrophobins?</title>
<p>Hydrophobins, low molecular mass (≤20 kDa) secreted proteins of fungi, are characterized by moderate to high levels of hydrophobicity and the presence of eight conserved cysteine (Cys) residues. These proteins are able to assemble spontaneously into amphipathic monolayers at hydrophobic–hydrophilic interfaces. Although functional homologues are reported in
<italic>Streptomyces</italic>
(chaplins, SapB, and SapT for aerial morphogenesis;
<xref rid="ppat.1002700-Kodani1" ref-type="bibr">[2]</xref>
), hydrophobins are unique to the fungal kingdom. Fungal genome analyses have indicated that hydrophobins generally exist as small gene families with two to ten members, although certain species contain more members (e.g.,
<italic>Coprinus cinereus</italic>
displays 33 members;
<ext-link ext-link-type="uri" xlink:href="http://www.broadinstitute.org">http://www.broadinstitute.org</ext-link>
)
<xref rid="ppat.1002700-Sunde1" ref-type="bibr">[3]</xref>
,
<xref rid="ppat.1002700-Littlejohna1" ref-type="bibr">[4]</xref>
. Hydrophobins show very little sequence conservation in general, apart from the idiosyncratic pattern of eight Cys residues implicated in the formation of four disulfide bridges (Cys1–Cys6, Cys2–Cys5, Cys3–Cys4, Cys7–Cys8)
<xref rid="ppat.1002700-Kwan1" ref-type="bibr">[5]</xref>
(
<xref ref-type="fig" rid="ppat-1002700-g001">Figure 1</xref>
). Based on hydropathy plots, solubility and the type of layer they form, hydrophobins are divided into two classes [6, Reference S1 in
<xref ref-type="supplementary-material" rid="ppat.1002700.s001">Text S1</xref>
], although recent bioinformatics studies suggest that intermediate/different forms can also exist and that many hydrophobins with distinct physicochemical characteristics may have been overlooked in the past
<xref rid="ppat.1002700-Littlejohna1" ref-type="bibr">[4]</xref>
,
<xref rid="ppat.1002700-Jensen1" ref-type="bibr">[7]</xref>
. In class I, considerable variation is seen in the inter-Cys-spacing; these hydrophobins assemble into highly insoluble polymeric monolayers composed of fibrillar structures known as rodlets. The rodlets are extremely stable, can only be solubilized with harsh acid treatments, and the soluble forms can polymerize back into rodlets under appropriate conditions. Despite the low sequence similarity, class I hydrophobins from different fungal species could partially complement a
<italic>Magnaporthe grisea</italic>
class I hydrophobin gene (
<italic>MPG1</italic>
) deletion mutant, suggesting that hydrophobins constitute a closely related group of morphogenetic proteins
<xref rid="ppat.1002700-Kershaw1" ref-type="bibr">[8]</xref>
. The sequence and the inter-Cys spacing are more conserved in class II; the monolayers formed by class II hydrophobins lack the fibrillar rodlet morphology and can be solubilized with organic solvents and detergents.</p>
<fig id="ppat-1002700-g001" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1002700.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Fungal hydrophobins.</title>
<p>Fungal hydrophobins are unique amphipathic proteins with multiple roles in the fungal life cycle and in mediating interactions between fungus and host. There is diversity in the primary sequences of hydrophobins but they share a similar core three-dimensional structure and a pattern of four disulfide bonds (shown in amber) that stabilize the structures. Increasingly, these proteins show potential for modification of hydrophobic nanomaterials and in solubilizing lipophilic drugs.</p>
</caption>
<graphic xlink:href="ppat.1002700.g001"></graphic>
</fig>
</sec>
<sec id="s3">
<title>Hydrophobins at the Interface in the Fungal Life Cycle</title>
<p>Fungi are heterotrophic terrestrial eukaryotes, showing two types of growth morphologies: unicellular yeast and multicellular filamentous forms. Yeasts are hydrophilic and they lack hydrophobins. The vegetative hyphae of filamentous fungi growing on moist environments are also hydrophilic and do not show the presence of rodlets on their surface. In contrast, the aerial hyphae and the asexual spores (conidia) are hydrophobic, due to the presence of hydrophobins. The functions of hydrophobins are related to their high surfactant activity, which results from their self-assembly at hydrophilic–hydrophobic interfaces to form an amphipathic monolayer. The hydrophobin layer reduces the surface tension of the medium or the substratum in/on which fungi grow, allowing them to breach the air–water interface or preventing water-logging while maintaining permeability to gaseous exchange
<xref rid="ppat.1002700-Wang1" ref-type="bibr">[9]</xref>
. Spores produced on the aerial structures of filamentous fungi are covered by a hydrophobin rodlet layer that renders the conidial surface hydrophobic and wet-resistant, thus facilitating spore-dispersal in the air. The rodlet-forming hydrophobins are essential for these fungi to complete their biological cycle. In many “wet” fungi (e.g.,
<italic>Conidiobolus obscurus</italic>
), the rodlet-layer is covered by a mucilaginous extracellular matrix that helps the conidia to bind to the substrate, and once the spores are bound to the host, the rodlet-layer is unmasked for better resistance to the environment
<xref rid="ppat.1002700-Latg1" ref-type="bibr">[10]</xref>
. In the basidiomycete
<italic>Agaricus bisporus</italic>
, the hydrophobin HypA, found in the peel tissue of the mushroom cap, is suggested to form a protective layer during fruiting body development
<xref rid="ppat.1002700-DeGroot1" ref-type="bibr">[11]</xref>
. In
<italic>Cryphonectria parasitica</italic>
, the deletion of the gene coding the class II hydrophobin cryparin generated a mutant incapable of erupting through the bark of the tree
<xref rid="ppat.1002700-Kazmierczak1" ref-type="bibr">[12]</xref>
. Hydrophobins are also reported to play a role in the surface interaction during infection-related development of
<italic>M. grisea</italic>
[13, Reference S2 in
<xref ref-type="supplementary-material" rid="ppat.1002700.s001">Text S1</xref>
]. In the symbiotic phenotypes of lichen-forming ascomycetes
<italic>Xanthoria</italic>
spp., the continuous rodlet-layer seals the apoplast continuum
<xref rid="ppat.1002700-Scherrer1" ref-type="bibr">[14]</xref>
.</p>
</sec>
<sec id="s4">
<title>Structure of Hydrophobins</title>
<p>Hydrophobins from both classes have been studied
<italic>in vitro</italic>
and have been shown to be highly surface active and to form amphipathic monolayers on hydrophobic/hydrophilic surfaces. The crystal structures of the class II hydrophobins HFBI and HFBII from
<italic>Trichoderma reesei</italic>
have been solved
<xref rid="ppat.1002700-Hakanpaa1" ref-type="bibr">[15]</xref>
,
<xref rid="ppat.1002700-Hakanpaa2" ref-type="bibr">[16]</xref>
. In addition, the structure of the class I EAS protein from
<italic>Neurospora crassa</italic>
has been determined by NMR
<xref rid="ppat.1002700-Kwan1" ref-type="bibr">[5]</xref>
. These studies indicate that all hydrophobins share a similar small β-structured core that is dictated by the presence of the four disulfide bonds and that the proteins have large exposed hydrophobic surface regions that give rise to their high surface activity. The structures of the class I hydrophobins DewA (
<italic>Aspergillus nidulans</italic>
) and Mpg1 (
<italic>M. grisea</italic>
) and the class II hydrophobin from
<italic>N. crassa</italic>
, as well as the secondary structure of the class I hydrophobins RodA and RodB from
<italic>Aspergillus fumigatus</italic>
obtained through the analysis of their backbone NMR chemical shifts, are consistent with this (J. I. Guijarro and M. Sunde, unpublished data). Monolayer formation by class II hydrophobins does not appear to be associated with major conformational changes. In contrast, biophysical analysis of SC3 from
<italic>S. commune</italic>
and EAS indicate that rodlet formation is associated with significant structural rearrangements, in some cases involving helical intermediates, but always to a final rodlet form with high β-sheet content and amyloid characteristics
<xref rid="ppat.1002700-Kwan1" ref-type="bibr">[5]</xref>
, [17, Reference S3 in
<xref ref-type="supplementary-material" rid="ppat.1002700.s001">Text S1</xref>
]. Digestion and hydrogen-deuterium exchange experiments with SC3
<xref rid="ppat.1002700-Wang2" ref-type="bibr">[18]</xref>
indicated that the Cys3–Cys4 loop is important for adhesion to hydrophobic surfaces and may directly participate in the formation of rodlets. However, truncation
<xref rid="ppat.1002700-Kwan2" ref-type="bibr">[19]</xref>
and systematic site-directed mutagenesis
<xref rid="ppat.1002700-Macindoe1" ref-type="bibr">[20]</xref>
experiments with EAS have shown that the Cys3–Cys4 loop is not involved in rodlet formation and that the Cys7–Cys8 loop region is crucial for auto-assembly, suggesting that the variability of the sequences of class I hydrophobins may translate into different mechanisms of rodlet formation
<xref rid="ppat.1002700-Wang2" ref-type="bibr">[18]</xref>
. Nevertheless, the surface tension seems to be the driving force to recruit class I hydrophobins to the air–water interface where the structural changes from the soluble form to the rodlet conformation take place
<xref rid="ppat.1002700-Morris1" ref-type="bibr">[21]</xref>
.</p>
</sec>
<sec id="s5">
<title>Hydrophobins and Fungus–Host Interactions</title>
<p>The surface rodlet-layer has a critical role in masking the immunogenicity of airborne fungal spores
<xref rid="ppat.1002700-Aimanianda1" ref-type="bibr">[22]</xref>
. By covering the spore surface, the rodlet-layer imparts immunological inertness to the spores and ensures that pathogen-associated molecular patterns (PAMPs) are not recognized by innate and adaptive immune cells, thus preventing the activation of host immune system, inflammation, and tissue damage
<xref rid="ppat.1002700-Aimanianda1" ref-type="bibr">[22]</xref>
,
<xref rid="ppat.1002700-Bruns1" ref-type="bibr">[23]</xref>
,
<xref rid="ppat.1002700-Hohl1" ref-type="bibr">[24]</xref>
, [25, Reference S4 in
<xref ref-type="supplementary-material" rid="ppat.1002700.s001">Text S1</xref>
]. Several lines of evidence suggest that the rodlet-layer, which covers the spores of both pathogenic and non-pathogenic fungal species, prevents immune recognition
<xref rid="ppat.1002700-Aimanianda1" ref-type="bibr">[22]</xref>
,
<xref rid="ppat.1002700-Bruns1" ref-type="bibr">[23]</xref>
,
<xref rid="ppat.1002700-Dagenais1" ref-type="bibr">[25]</xref>
(
<xref ref-type="fig" rid="ppat-1002700-g001">Figure 1</xref>
). In opportunistic pathogen
<italic>A. fumigatus</italic>
, the rodlet-layer made up of RodA imparts resistance to NETosis (a process associated with disruption of neutrophil-membranes and release of a mixture of nuclear DNA with a granular content that acts as a neutrophil extracellular trap [NET]) and killing by alveolar macrophages
<xref rid="ppat.1002700-Bruns1" ref-type="bibr">[23]</xref>
,
<xref rid="ppat.1002700-Paris1" ref-type="bibr">[26]</xref>
. However, removal of
<italic>RODA</italic>
and
<italic>RODB</italic>
did not affect pathogenicity of
<italic>A. fumigatus</italic>
[Reference S5 in
<xref ref-type="supplementary-material" rid="ppat.1002700.s001">Text S1</xref>
].</p>
<p>In plant-/entomo-pathogenic fungi, hydrophobins are also described as pathogenicity factors, but their precise role in fungal virulence remains to be understood. In the rice blast fungus
<italic>M. grisea</italic>
, the hydrophobin Mpg1 is suggested to function as a developmental sensor for appresorium formation, since it is involved in the interaction with hydrophobic leaf surfaces necessary for establishing the pathogenicity
<xref rid="ppat.1002700-Talbot1" ref-type="bibr">[13]</xref>
. Deletion of the
<italic>MPG1</italic>
gene resulted in a mutant of
<italic>M. grisea</italic>
with reduced virulence; the deletion of another hydrophobin gene in
<italic>M. grisea</italic>
,
<italic>MHP1</italic>
, led also to a loss of viability and a reduced capacity to infect and colonize a susceptible rice cultivar
<xref rid="ppat.1002700-Kim1" ref-type="bibr">[27]</xref>
. In
<italic>Beauveria bassiana</italic>
, the non-specific hydrophobic interaction between the fungal spore coat hydrophobin and the insect epicuticle is involved in establishing the pathogenicity of the fungus
<xref rid="ppat.1002700-Zhang1" ref-type="bibr">[28]</xref>
.</p>
</sec>
<sec id="s6">
<title>Prospective Applications of Hydrophobins</title>
<p>The potential applications of hydrophobins rely on their ability to reverse the hydrophilic-hydrophobic character of a surface and/or their surfactant capacity. Several biotechnological applications of hydrophobins have been proposed [29, Reference S6–S12 in
<xref ref-type="supplementary-material" rid="ppat.1002700.s001">Text S1</xref>
]. However, the large-scale applications of hydrophobins might be difficult to implement due to the production cost of recombinant proteins and/or the large-scale requirements of the proteins. In contrast, in the pharmaceutical or in the nanotechnology industry, where the returns of investment are high, it is possible to envisage a potential development for these proteins. For example, the foam and air-/oil-filled emulsion-forming capacity of hydrophobins has been exploited in protecting nanoparticles and drug formulations [30, Reference S13–S16 in
<xref ref-type="supplementary-material" rid="ppat.1002700.s001">Text S1</xref>
] (
<xref ref-type="fig" rid="ppat-1002700-g001">Figure 1</xref>
). From a therapeutic point of view, the degradation-resistance and immunologically inert properties of hydrophobins could be used to generate hydrophobin-based nanoparticles with embedded therapeutic proteins and molecules that have to be slowly released within the host or transported to a specific body location without being recognized by the host immune system.</p>
<p>Many questions, however, remain unsolved in the study of hydrophobins: for instance, how is the 3D rodlet-structure organized? How are hydrophobins transported to the cell surface? How is the rodlet-layer attached to the spore surface? What are the signals that trigger germination of the spores covered by a rodlet layer? Addressing these questions will reveal the mechanism by which hydrophobins accomplish their multiple roles in the fungal life cycle.</p>
</sec>
<sec sec-type="supplementary-material" id="s7">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="ppat.1002700.s001">
<label>Text S1</label>
<caption>
<p>Supplementary references S1–S16.</p>
<p>(DOC)</p>
</caption>
<media xlink:href="ppat.1002700.s001.doc">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="COI-statement">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="financial-disclosure">
<p>This work was supported by ANR-10-Blanc SVSE 3-009 HYDROPHOBIN; European Community's Seventh Framework Programme [FP7/2007-2013] under Grant Agreement No: 260338 ALLFUN; and the Commonwealth of Australia under the International Science Linkages program (French-Australian Science & Technology Program 2011). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="ppat.1002700-Wessels1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wessels</surname>
<given-names>J</given-names>
</name>
<name>
<surname>De Vries</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Asgeirsdottir</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Schuren</surname>
<given-names>F</given-names>
</name>
</person-group>
<year>1991</year>
<article-title>Hydrophobin Genes Involved in Formation of Aerial Hyphae and Fruit Bodies in Schizophyllum.</article-title>
<source>Plant Cell</source>
<volume>3</volume>
<fpage>793</fpage>
<lpage>799</lpage>
<pub-id pub-id-type="pmid">12324614</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Kodani1">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kodani</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lodato</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Durrant</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Picart</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Willey</surname>
<given-names>JM</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes.</article-title>
<source>Mol Microbiol</source>
<volume>58</volume>
<fpage>1368</fpage>
<lpage>1380</lpage>
<pub-id pub-id-type="pmid">16313622</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Sunde1">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sunde</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kwan</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Beever</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Mackay</surname>
<given-names>JP</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Structural analysis of hydrophobins.</article-title>
<source>Micron</source>
<volume>39</volume>
<fpage>773</fpage>
<lpage>784</lpage>
<pub-id pub-id-type="pmid">17875392</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Littlejohna1">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Littlejohna</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Hooleyb</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>PW</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Bioinformatics predicts diverse Aspergillus hydrophobins with novel properties.</article-title>
<source>Food Hydrocolloids</source>
<volume>27</volume>
<fpage>503</fpage>
<lpage>516</lpage>
</element-citation>
</ref>
<ref id="ppat.1002700-Kwan1">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwan</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Winefield</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Sunde</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matthews</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Haverkamp</surname>
<given-names>RG</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<article-title>Structural basis for rodlet assembly in fungal hydrophobins.</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>103</volume>
<fpage>3621</fpage>
<lpage>3626</lpage>
<pub-id pub-id-type="pmid">16537446</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Wessels2">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wessels</surname>
<given-names>JG</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>Hydrophobins: proteins that change the nature of the fungal surface.</article-title>
<source>Adv Microb Physiol</source>
<volume>38</volume>
<fpage>1</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">8922117</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Jensen1">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jensen</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Sondergaard</surname>
<given-names>I</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Hydrophobins from Aspergillus species cannot be clearly divided into two classes.</article-title>
<source>BMC Res Notes</source>
<volume>3</volume>
<fpage>344</fpage>
<pub-id pub-id-type="pmid">21182770</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Kershaw1">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kershaw</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Wakley</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Talbot</surname>
<given-names>NJ</given-names>
</name>
</person-group>
<year>1998</year>
<article-title>Complementation of the mpg1 mutant phenotype in
<italic>Magnaporthe grisea</italic>
reveals functional relationships between fungal hydrophobins.</article-title>
<source>EMBO J</source>
<volume>17</volume>
<fpage>3838</fpage>
<lpage>3849</lpage>
<pub-id pub-id-type="pmid">9670001</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Wang1">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wosten</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Hektor</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Poolman</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties.</article-title>
<source>Biophys J</source>
<volume>88</volume>
<fpage>3434</fpage>
<lpage>3443</lpage>
<pub-id pub-id-type="pmid">15749774</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Latg1">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Latgé</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>GT</given-names>
</name>
<name>
<surname>Horis berger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Prévost</surname>
<given-names>MC</given-names>
</name>
</person-group>
<year>1986</year>
<article-title>Ultrastructure and chemical composition of the ballistospore wall of
<italic>Conidiobolus obscurus</italic>
.</article-title>
<source>Exp Mycol</source>
<volume>10</volume>
<fpage>99</fpage>
<lpage>113</lpage>
</element-citation>
</ref>
<ref id="ppat.1002700-DeGroot1">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Groot</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Schaap</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Sonnenberg</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Visser</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Van Griensven</surname>
<given-names>LJ</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>The Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development.</article-title>
<source>J Mol Biol</source>
<volume>257</volume>
<fpage>1008</fpage>
<lpage>1018</lpage>
<pub-id pub-id-type="pmid">8632464</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Kazmierczak1">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kazmierczak</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Turina</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Van Alfen</surname>
<given-names>NK</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>A hydrophobin of the chestnut blight fungus,
<italic>Cryphonectria parasitica</italic>
, is required for stromal pustule eruption.</article-title>
<source>Eukaryot Cell</source>
<volume>4</volume>
<fpage>931</fpage>
<lpage>936</lpage>
<pub-id pub-id-type="pmid">15879527</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Talbot1">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talbot</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Kershaw</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Wakley</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>De Vries</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Wessels</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<year>1996</year>
<article-title>MPG1 Encodes a fungal hydrophobin involved in surface interactions during infection-related development of
<italic>Magnaporthe grisea</italic>
.</article-title>
<source>Plant Cell</source>
<volume>8</volume>
<fpage>985</fpage>
<lpage>999</lpage>
<pub-id pub-id-type="pmid">12239409</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Scherrer1">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scherrer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>De Vries</surname>
<given-names>OM</given-names>
</name>
<name>
<surname>Dudler</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wessels</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Honegger</surname>
<given-names>R</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Interfacial self-assembly of fungal hydrophobins of the lichen-forming ascomycetes
<italic>Xanthoria parietina</italic>
and
<italic>X. ectaneoides</italic>
.</article-title>
<source>Fungal Genet Biol</source>
<volume>30</volume>
<fpage>81</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">10955910</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Hakanpaa1">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hakanpaa</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Paananen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Askolin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nakari-Setala</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Parkkinen</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<year>2004</year>
<article-title>Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile.</article-title>
<source>J Biol Chem</source>
<volume>279</volume>
<fpage>534</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="pmid">14555650</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Hakanpaa2">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hakanpaa</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Szilvay</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Kaljunen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Maksimainen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Linder</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<article-title>Two crystal structures of Trichoderma reesei hydrophobin HFBI–the structure of a protein amphiphile with and without detergent interaction.</article-title>
<source>Protein Sci</source>
<volume>15</volume>
<fpage>2129</fpage>
<lpage>2140</lpage>
<pub-id pub-id-type="pmid">16882996</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-deVocht1">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Vocht</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Reviakine</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ulrich</surname>
<given-names>WP</given-names>
</name>
<name>
<surname>Bergsma-Schutter</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wosten</surname>
<given-names>HA</given-names>
</name>
<etal></etal>
</person-group>
<year>2002</year>
<article-title>Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates.</article-title>
<source>Protein Sci</source>
<volume>11</volume>
<fpage>1199</fpage>
<lpage>1205</lpage>
<pub-id pub-id-type="pmid">11967376</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Wang2">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Permentier</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Rink</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kruijtzer</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Liskamp</surname>
<given-names>RM</given-names>
</name>
<etal></etal>
</person-group>
<year>2004</year>
<article-title>Probing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry.</article-title>
<source>Biophys J</source>
<volume>87</volume>
<fpage>1919</fpage>
<lpage>1928</lpage>
<pub-id pub-id-type="pmid">15345568</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Kwan2">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwan</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Macindoe</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Vukasin</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Kass</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>The Cys3–Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity.</article-title>
<source>J Mol Biol</source>
<volume>382</volume>
<fpage>708</fpage>
<lpage>720</lpage>
<pub-id pub-id-type="pmid">18674544</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Macindoe1">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macindoe</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kwan</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<year>2012</year>
<article-title>Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS.</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>109</volume>
<fpage>E804</fpage>
<lpage>E811</lpage>
<pub-id pub-id-type="pmid">22308366</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Morris1">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morris</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Macindoe</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kwan</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Byrne</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<article-title>Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation.</article-title>
<source>J Biol Chem</source>
<volume>286</volume>
<fpage>15955</fpage>
<lpage>15963</lpage>
<pub-id pub-id-type="pmid">21454575</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Aimanianda1">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aimanianda</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bayry</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bozza</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kniemeyer</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Perruccio</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<year>2009</year>
<article-title>Surface hydrophobin prevents immune recognition of airborne fungal spores.</article-title>
<source>Nature</source>
<volume>460</volume>
<fpage>1117</fpage>
<lpage>1121</lpage>
<pub-id pub-id-type="pmid">19713928</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Bruns1">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruns</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kniemeyer</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Hasenberg</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aimanianda</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Nietzsche</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<year>2010</year>
<article-title>Production of extracellular traps against
<italic>Aspergillus fumigatus</italic>
in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.</article-title>
<source>PLoS Pathog</source>
<volume>6</volume>
<fpage>e1000873</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.ppat.1000873">10.1371/journal.ppat.1000873</ext-link>
</comment>
<pub-id pub-id-type="pmid">20442864</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Hohl1">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hohl</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Van Epps</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Rivera</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>PL</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>
<italic>Aspergillus fumigatus</italic>
triggers inflammatory responses by stage-specific beta-glucan display.</article-title>
<source>PLoS Pathog</source>
<volume>1</volume>
<fpage>e30</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.ppat.0010030">10.1371/journal.ppat.0010030</ext-link>
</comment>
<pub-id pub-id-type="pmid">16304610</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Dagenais1">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dagenais</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Giles</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Aimanianda</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Latge</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Hull</surname>
<given-names>CM</given-names>
</name>
<etal></etal>
</person-group>
<year>2010</year>
<article-title>Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer.</article-title>
<source>Infect Immun</source>
<volume>78</volume>
<fpage>823</fpage>
<lpage>829</lpage>
<pub-id pub-id-type="pmid">19917717</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Paris1">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paris</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Debeaupuis</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Crameri</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Carey</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Charles</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>Conidial hydrophobins of
<italic>Aspergillus fumigatus</italic>
.</article-title>
<source>Appl Environ Microbiol</source>
<volume>69</volume>
<fpage>1581</fpage>
<lpage>1588</lpage>
<pub-id pub-id-type="pmid">12620846</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Kim1">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>IP</given-names>
</name>
<name>
<surname>Rho</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>YH</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.</article-title>
<source>Mol Microbiol</source>
<volume>57</volume>
<fpage>1224</fpage>
<lpage>1237</lpage>
<pub-id pub-id-type="pmid">16101997</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Zhang1">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>YX</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Keyhani</surname>
<given-names>NO</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus,
<italic>Beauveria bassiana</italic>
.</article-title>
<source>Mol Microbiol</source>
<volume>80</volume>
<fpage>811</fpage>
<lpage>826</lpage>
<pub-id pub-id-type="pmid">21375591</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Linder1">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Linder</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Szilvay</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Nakari-Setala</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Penttila</surname>
<given-names>ME</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Hydrophobins: the protein-amphiphiles of filamentous fungi.</article-title>
<source>FEMS Microbiol Rev</source>
<volume>29</volume>
<fpage>877</fpage>
<lpage>896</lpage>
<pub-id pub-id-type="pmid">16219510</pub-id>
</element-citation>
</ref>
<ref id="ppat.1002700-Valo1">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valo</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Laaksonen</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Peltonen</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Linder</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Hirvonen</surname>
<given-names>JT</given-names>
</name>
<etal></etal>
</person-group>
<year>2010</year>
<article-title>Multifunctional hydrophobin: toward functional coatings for drug nanoparticles.</article-title>
<source>ACS Nano</source>
<volume>4</volume>
<fpage>1750</fpage>
<lpage>1758</lpage>
<pub-id pub-id-type="pmid">20210303</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C580 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002C580 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024