Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002A93 ( Pmc/Corpus ); précédent : 002A929; suivant : 002A940 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy</title>
<author>
<name sortKey="Ali, Idrish" sort="Ali, Idrish" uniqKey="Ali I" first="Idrish" last="Ali">Idrish Ali</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="O Brien, Patrick" sort="O Brien, Patrick" uniqKey="O Brien P" first="Patrick" last="O'Brien">Patrick O'Brien</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Gaurav" sort="Kumar, Gaurav" uniqKey="Kumar G" first="Gaurav" last="Kumar">Gaurav Kumar</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Thomas" sort="Zheng, Thomas" uniqKey="Zheng T" first="Thomas" last="Zheng">Thomas Zheng</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jones, Nigel C" sort="Jones, Nigel C" uniqKey="Jones N" first="Nigel C." last="Jones">Nigel C. Jones</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinault, Didier" sort="Pinault, Didier" uniqKey="Pinault D" first="Didier" last="Pinault">Didier Pinault</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>INSERM U1114, Physiopathologie et psychopathologie de la schizophrénie, Strasbourg, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="French, Chris" sort="French, Chris" uniqKey="French C" first="Chris" last="French">Chris French</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morris, Margaret J" sort="Morris, Margaret J" uniqKey="Morris M" first="Margaret J." last="Morris">Margaret J. Morris</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Department of Pharmacology, School of Medical Sciences, University of New South Wales, New South Wales, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salzberg, Michael R" sort="Salzberg, Michael R" uniqKey="Salzberg M" first="Michael R." last="Salzberg">Michael R. Salzberg</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="O Brien, Terence J" sort="O Brien, Terence J" uniqKey="O Brien T" first="Terence J." last="O'Brien">Terence J. O'Brien</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Department of Neurology, the Royal Melbourne Hospital, Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23825595</idno>
<idno type="pmc">3688984</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688984</idno>
<idno type="RBID">PMC:3688984</idno>
<idno type="doi">10.1371/journal.pone.0066962</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002A93</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002A93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy</title>
<author>
<name sortKey="Ali, Idrish" sort="Ali, Idrish" uniqKey="Ali I" first="Idrish" last="Ali">Idrish Ali</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="O Brien, Patrick" sort="O Brien, Patrick" uniqKey="O Brien P" first="Patrick" last="O'Brien">Patrick O'Brien</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Gaurav" sort="Kumar, Gaurav" uniqKey="Kumar G" first="Gaurav" last="Kumar">Gaurav Kumar</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Thomas" sort="Zheng, Thomas" uniqKey="Zheng T" first="Thomas" last="Zheng">Thomas Zheng</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jones, Nigel C" sort="Jones, Nigel C" uniqKey="Jones N" first="Nigel C." last="Jones">Nigel C. Jones</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinault, Didier" sort="Pinault, Didier" uniqKey="Pinault D" first="Didier" last="Pinault">Didier Pinault</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>INSERM U1114, Physiopathologie et psychopathologie de la schizophrénie, Strasbourg, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="French, Chris" sort="French, Chris" uniqKey="French C" first="Chris" last="French">Chris French</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morris, Margaret J" sort="Morris, Margaret J" uniqKey="Morris M" first="Margaret J." last="Morris">Margaret J. Morris</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Department of Pharmacology, School of Medical Sciences, University of New South Wales, New South Wales, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salzberg, Michael R" sort="Salzberg, Michael R" uniqKey="Salzberg M" first="Michael R." last="Salzberg">Michael R. Salzberg</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="O Brien, Terence J" sort="O Brien, Terence J" uniqKey="O Brien T" first="Terence J." last="O'Brien">Terence J. O'Brien</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Department of Neurology, the Royal Melbourne Hospital, Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Early life stress results in an enduring vulnerability to kindling-induced epileptogenesis in rats, but the underlying mechanisms are not well understood. Recent studies indicate the involvement of thalamocortical neuronal circuits in the progression of kindling epileptogenesis. Therefore, we sought to determine
<italic>in vivo</italic>
the effects of early life stress and amygdala kindling on the firing pattern of hippocampus as well as thalamic and cortical neurons. Eight week old male Wistar rats, previously exposed to maternal separation (MS) early life stress or early handling (EH), underwent amygdala kindling (or sham kindling). Once fully kindled,
<italic>in vivo</italic>
juxtacellular recordings in hippocampal, thalamic and cortical regions were performed under neuroleptic analgesia. In the thalamic reticular nucleus cells both kindling and MS independently lowered firing frequency and enhanced burst firing. Further, burst firing in the thalamic reticular nucleus was significantly increased in kindled MS rats compared to kindled EH rats (p<0.05). In addition, MS enhanced burst firing of hippocampal pyramidal neurons. Following a stimulation-induced seizure, somatosensory cortical neurons exhibited a more pronounced increase in burst firing in MS rats than in EH rats. These data demonstrate changes in firing patterns in thalamocortical and hippocampal regions resulting from both MS and amygdala kindling, which may reflect cellular changes underlying the enhanced vulnerability to kindling in rats that have been exposed to early life stress.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Engel, J" uniqKey="Engel J">J Engel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jouny, Cc" uniqKey="Jouny C">CC Jouny</name>
</author>
<author>
<name sortKey="Adamolekun, B" uniqKey="Adamolekun B">B Adamolekun</name>
</author>
<author>
<name sortKey="Franaszczuk, Pj" uniqKey="Franaszczuk P">PJ Franaszczuk</name>
</author>
<author>
<name sortKey="Bergey, Gk" uniqKey="Bergey G">GK Bergey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ali, I" uniqKey="Ali I">I Ali</name>
</author>
<author>
<name sortKey="Salzberg, Mr" uniqKey="Salzberg M">MR Salzberg</name>
</author>
<author>
<name sortKey="French, C" uniqKey="French C">C French</name>
</author>
<author>
<name sortKey="Jones, Nc" uniqKey="Jones N">NC Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koe, As" uniqKey="Koe A">AS Koe</name>
</author>
<author>
<name sortKey="Jones, Nc" uniqKey="Jones N">NC Jones</name>
</author>
<author>
<name sortKey="Salzberg, Mr" uniqKey="Salzberg M">MR Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taher, Tr" uniqKey="Taher T">TR Taher</name>
</author>
<author>
<name sortKey="Salzberg, M" uniqKey="Salzberg M">M Salzberg</name>
</author>
<author>
<name sortKey="Morris, Mj" uniqKey="Morris M">MJ Morris</name>
</author>
<author>
<name sortKey="Rees, S" uniqKey="Rees S">S Rees</name>
</author>
<author>
<name sortKey="O Brien, Tj" uniqKey="O Brien T">TJ O'Brien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, G" uniqKey="Kumar G">G Kumar</name>
</author>
<author>
<name sortKey="Couper, A" uniqKey="Couper A">A Couper</name>
</author>
<author>
<name sortKey="O Brien, Tj" uniqKey="O Brien T">TJ O'Brien</name>
</author>
<author>
<name sortKey="Salzberg, Mr" uniqKey="Salzberg M">MR Salzberg</name>
</author>
<author>
<name sortKey="Jones, Nc" uniqKey="Jones N">NC Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karst, H" uniqKey="Karst H">H Karst</name>
</author>
<author>
<name sortKey="De Kloet, Er" uniqKey="De Kloet E">ER de Kloet</name>
</author>
<author>
<name sortKey="Joels, M" uniqKey="Joels M">M Joels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez, Mm" uniqKey="Sanchez M">MM Sanchez</name>
</author>
<author>
<name sortKey="Ladd, Co" uniqKey="Ladd C">CO Ladd</name>
</author>
<author>
<name sortKey="Plotsky, Pm" uniqKey="Plotsky P">PM Plotsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, G" uniqKey="Kumar G">G Kumar</name>
</author>
<author>
<name sortKey="Jones, Nc" uniqKey="Jones N">NC Jones</name>
</author>
<author>
<name sortKey="Morris, Mj" uniqKey="Morris M">MJ Morris</name>
</author>
<author>
<name sortKey="Rees, S" uniqKey="Rees S">S Rees</name>
</author>
<author>
<name sortKey="O Brien, Tj" uniqKey="O Brien T">TJ O'Brien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salzberg, M" uniqKey="Salzberg M">M Salzberg</name>
</author>
<author>
<name sortKey="Kumar, G" uniqKey="Kumar G">G Kumar</name>
</author>
<author>
<name sortKey="Supit, L" uniqKey="Supit L">L Supit</name>
</author>
<author>
<name sortKey="Jones, Nc" uniqKey="Jones N">NC Jones</name>
</author>
<author>
<name sortKey="Morris, Mj" uniqKey="Morris M">MJ Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Nc" uniqKey="Jones N">NC Jones</name>
</author>
<author>
<name sortKey="Kumar, G" uniqKey="Kumar G">G Kumar</name>
</author>
<author>
<name sortKey="O Brien, Tj" uniqKey="O Brien T">TJ O'Brien</name>
</author>
<author>
<name sortKey="Morris, Mj" uniqKey="Morris M">MJ Morris</name>
</author>
<author>
<name sortKey="Rees, Sm" uniqKey="Rees S">SM Rees</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutula, Tp" uniqKey="Sutula T">TP Sutula</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morimoto, K" uniqKey="Morimoto K">K Morimoto</name>
</author>
<author>
<name sortKey="Fahnestock, M" uniqKey="Fahnestock M">M Fahnestock</name>
</author>
<author>
<name sortKey="Racine, Rj" uniqKey="Racine R">RJ Racine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, Mc" uniqKey="Lai M">MC Lai</name>
</author>
<author>
<name sortKey="Yang, Sn" uniqKey="Yang S">SN Yang</name>
</author>
<author>
<name sortKey="Huang, Lt" uniqKey="Huang L">LT Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, Mc" uniqKey="Lai M">MC Lai</name>
</author>
<author>
<name sortKey="Lui, Cc" uniqKey="Lui C">CC Lui</name>
</author>
<author>
<name sortKey="Yang, Sn" uniqKey="Yang S">SN Yang</name>
</author>
<author>
<name sortKey="Wang, Jy" uniqKey="Wang J">JY Wang</name>
</author>
<author>
<name sortKey="Huang, Lt" uniqKey="Huang L">LT Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bertram, Eh" uniqKey="Bertram E">EH Bertram</name>
</author>
<author>
<name sortKey="Zhang, Dx" uniqKey="Zhang D">DX Zhang</name>
</author>
<author>
<name sortKey="Williamson, Jm" uniqKey="Williamson J">JM Williamson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nanobashvili, Z" uniqKey="Nanobashvili Z">Z Nanobashvili</name>
</author>
<author>
<name sortKey="Chachua, T" uniqKey="Chachua T">T Chachua</name>
</author>
<author>
<name sortKey="Nanobashvili, A" uniqKey="Nanobashvili A">A Nanobashvili</name>
</author>
<author>
<name sortKey="Bilanishvili, I" uniqKey="Bilanishvili I">I Bilanishvili</name>
</author>
<author>
<name sortKey="Lindvall, O" uniqKey="Lindvall O">O Lindvall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mraovitch, S" uniqKey="Mraovitch S">S Mraovitch</name>
</author>
<author>
<name sortKey="Calando, Y" uniqKey="Calando Y">Y Calando</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mraovitch, S" uniqKey="Mraovitch S">S Mraovitch</name>
</author>
<author>
<name sortKey="Calando, Y" uniqKey="Calando Y">Y Calando</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Nc" uniqKey="Jones N">NC Jones</name>
</author>
<author>
<name sortKey="Salzberg, Mr" uniqKey="Salzberg M">MR Salzberg</name>
</author>
<author>
<name sortKey="Kumar, G" uniqKey="Kumar G">G Kumar</name>
</author>
<author>
<name sortKey="Couper, A" uniqKey="Couper A">A Couper</name>
</author>
<author>
<name sortKey="Morris, Mj" uniqKey="Morris M">MJ Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Racine, Rj" uniqKey="Racine R">RJ Racine</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinault, D" uniqKey="Pinault D">D Pinault</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinault, D" uniqKey="Pinault D">D Pinault</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinault, D" uniqKey="Pinault D">D Pinault</name>
</author>
<author>
<name sortKey="Vergnes, M" uniqKey="Vergnes M">M Vergnes</name>
</author>
<author>
<name sortKey="Marescaux, C" uniqKey="Marescaux C">C Marescaux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Csicsvari, J" uniqKey="Csicsvari J">J Csicsvari</name>
</author>
<author>
<name sortKey="Hirase, H" uniqKey="Hirase H">H Hirase</name>
</author>
<author>
<name sortKey="Czurko, A" uniqKey="Czurko A">A Czurko</name>
</author>
<author>
<name sortKey="Mamiya, A" uniqKey="Mamiya A">A Mamiya</name>
</author>
<author>
<name sortKey="Buzsaki, G" uniqKey="Buzsaki G">G Buzsaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartho, P" uniqKey="Bartho P">P Bartho</name>
</author>
<author>
<name sortKey="Hirase, H" uniqKey="Hirase H">H Hirase</name>
</author>
<author>
<name sortKey="Monconduit, L" uniqKey="Monconduit L">L Monconduit</name>
</author>
<author>
<name sortKey="Zugaro, M" uniqKey="Zugaro M">M Zugaro</name>
</author>
<author>
<name sortKey="Harris, Kd" uniqKey="Harris K">KD Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaneoke, Y" uniqKey="Kaneoke Y">Y Kaneoke</name>
</author>
<author>
<name sortKey="Vitek, Jl" uniqKey="Vitek J">JL Vitek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mirescu, C" uniqKey="Mirescu C">C Mirescu</name>
</author>
<author>
<name sortKey="Peters, Jd" uniqKey="Peters J">JD Peters</name>
</author>
<author>
<name sortKey="Gould, E" uniqKey="Gould E">E Gould</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, Mj" uniqKey="Thomas M">MJ Thomas</name>
</author>
<author>
<name sortKey="Watabe, Am" uniqKey="Watabe A">AM Watabe</name>
</author>
<author>
<name sortKey="Moody, Td" uniqKey="Moody T">TD Moody</name>
</author>
<author>
<name sortKey="Makhinson, M" uniqKey="Makhinson M">M Makhinson</name>
</author>
<author>
<name sortKey="O Dell, Tj" uniqKey="O Dell T">TJ O'Dell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pike, Fg" uniqKey="Pike F">FG Pike</name>
</author>
<author>
<name sortKey="Meredith, Rm" uniqKey="Meredith R">RM Meredith</name>
</author>
<author>
<name sortKey="Olding, Awa" uniqKey="Olding A">AWA Olding</name>
</author>
<author>
<name sortKey="Paulsen, O" uniqKey="Paulsen O">O Paulsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lisman, Je" uniqKey="Lisman J">JE Lisman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevens, Cf" uniqKey="Stevens C">CF Stevens</name>
</author>
<author>
<name sortKey="Wang, Yy" uniqKey="Wang Y">YY Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, Aj" uniqKey="Becker A">AJ Becker</name>
</author>
<author>
<name sortKey="Pitsch, J" uniqKey="Pitsch J">J Pitsch</name>
</author>
<author>
<name sortKey="Sochivko, D" uniqKey="Sochivko D">D Sochivko</name>
</author>
<author>
<name sortKey="Opitz, T" uniqKey="Opitz T">T Opitz</name>
</author>
<author>
<name sortKey="Staniek, M" uniqKey="Staniek M">M Staniek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graef, Jd" uniqKey="Graef J">JD Graef</name>
</author>
<author>
<name sortKey="Nordskog, Bk" uniqKey="Nordskog B">BK Nordskog</name>
</author>
<author>
<name sortKey="Wiggins, Wf" uniqKey="Wiggins W">WF Wiggins</name>
</author>
<author>
<name sortKey="Godwin, Dw" uniqKey="Godwin D">DW Godwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanabria, Erg" uniqKey="Sanabria E">ERG Sanabria</name>
</author>
<author>
<name sortKey="Da Silva, Av" uniqKey="Da Silva A">AV da Silva</name>
</author>
<author>
<name sortKey="Spreafico, R" uniqKey="Spreafico R">R Spreafico</name>
</author>
<author>
<name sortKey="Cavalheiro, Ea" uniqKey="Cavalheiro E">EA Cavalheiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heisler, Lk" uniqKey="Heisler L">LK Heisler</name>
</author>
<author>
<name sortKey="Chu, Hm" uniqKey="Chu H">HM Chu</name>
</author>
<author>
<name sortKey="Brennan, Tj" uniqKey="Brennan T">TJ Brennan</name>
</author>
<author>
<name sortKey="Danao, Ja" uniqKey="Danao J">JA Danao</name>
</author>
<author>
<name sortKey="Bajwa, P" uniqKey="Bajwa P">P Bajwa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeman Daniels, E" uniqKey="Freeman Daniels E">E Freeman-Daniels</name>
</author>
<author>
<name sortKey="Beck, Sg" uniqKey="Beck S">SG Beck</name>
</author>
<author>
<name sortKey="Kirby, Lg" uniqKey="Kirby L">LG Kirby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
<author>
<name sortKey="Anwyl, R" uniqKey="Anwyl R">R Anwyl</name>
</author>
<author>
<name sortKey="Devry, J" uniqKey="Devry J">J DeVry</name>
</author>
<author>
<name sortKey="Rowan, Mj" uniqKey="Rowan M">MJ Rowan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapus, Gl" uniqKey="Kapus G">GL Kapus</name>
</author>
<author>
<name sortKey="Gacsalyi, I" uniqKey="Gacsalyi I">I Gacsalyi</name>
</author>
<author>
<name sortKey="Vegh, M" uniqKey="Vegh M">M Vegh</name>
</author>
<author>
<name sortKey="Kompagne, H" uniqKey="Kompagne H">H Kompagne</name>
</author>
<author>
<name sortKey="Hegedus, E" uniqKey="Hegedus E">E Hegedus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bertram, Eh" uniqKey="Bertram E">EH Bertram</name>
</author>
<author>
<name sortKey="Mangan, Ps" uniqKey="Mangan P">PS Mangan</name>
</author>
<author>
<name sortKey="Zhang, Dx" uniqKey="Zhang D">DX Zhang</name>
</author>
<author>
<name sortKey="Scott, Ca" uniqKey="Scott C">CA Scott</name>
</author>
<author>
<name sortKey="Williamson, Jm" uniqKey="Williamson J">JM Williamson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hiyoshi, T" uniqKey="Hiyoshi T">T Hiyoshi</name>
</author>
<author>
<name sortKey="Wada, Ja" uniqKey="Wada J">JA Wada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, S" uniqKey="Patel S">S Patel</name>
</author>
<author>
<name sortKey="Millan, Mh" uniqKey="Millan M">MH Millan</name>
</author>
<author>
<name sortKey="Meldrum, Bs" uniqKey="Meldrum B">BS Meldrum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
<author>
<name sortKey="Su, Hl" uniqKey="Su H">HL Su</name>
</author>
<author>
<name sortKey="Yue, Cy" uniqKey="Yue C">CY Yue</name>
</author>
<author>
<name sortKey="Remy, S" uniqKey="Remy S">S Remy</name>
</author>
<author>
<name sortKey="Royeck, M" uniqKey="Royeck M">M Royeck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faas, Gc" uniqKey="Faas G">GC Faas</name>
</author>
<author>
<name sortKey="Vreugdenhil, M" uniqKey="Vreugdenhil M">M Vreugdenhil</name>
</author>
<author>
<name sortKey="Wadman, Wj" uniqKey="Wadman W">WJ Wadman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wimmer, Rd" uniqKey="Wimmer R">RD Wimmer</name>
</author>
<author>
<name sortKey="Astori, S" uniqKey="Astori S">S Astori</name>
</author>
<author>
<name sortKey="Bond, Ct" uniqKey="Bond C">CT Bond</name>
</author>
<author>
<name sortKey="Rovo, Z" uniqKey="Rovo Z">Z Rovo</name>
</author>
<author>
<name sortKey="Chatton, Jy" uniqKey="Chatton J">JY Chatton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aldenhoff, Jb" uniqKey="Aldenhoff J">JB Aldenhoff</name>
</author>
<author>
<name sortKey="Gruol, Dl" uniqKey="Gruol D">DL Gruol</name>
</author>
<author>
<name sortKey="Rivier, J" uniqKey="Rivier J">J Rivier</name>
</author>
<author>
<name sortKey="Vale, W" uniqKey="Vale W">W Vale</name>
</author>
<author>
<name sortKey="Siggins, Gr" uniqKey="Siggins G">GR Siggins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cain, Sm" uniqKey="Cain S">SM Cain</name>
</author>
<author>
<name sortKey="Snutch, Tp" uniqKey="Snutch T">TP Snutch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavdar, S" uniqKey="Cavdar S">S Cavdar</name>
</author>
<author>
<name sortKey="Onat, Fy" uniqKey="Onat F">FY Onat</name>
</author>
<author>
<name sortKey="Cakmak, Yo" uniqKey="Cakmak Y">YO Cakmak</name>
</author>
<author>
<name sortKey="Yananli, Hr" uniqKey="Yananli H">HR Yananli</name>
</author>
<author>
<name sortKey="Gulcebi, M" uniqKey="Gulcebi M">M Gulcebi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wouterlood, Fg" uniqKey="Wouterlood F">FG Wouterlood</name>
</author>
<author>
<name sortKey="Saldana, E" uniqKey="Saldana E">E Saldana</name>
</author>
<author>
<name sortKey="Witter, Mp" uniqKey="Witter M">MP Witter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suarez, M" uniqKey="Suarez M">M Suarez</name>
</author>
<author>
<name sortKey="Maglianesi, Ma" uniqKey="Maglianesi M">MA Maglianesi</name>
</author>
<author>
<name sortKey="Perassi, Ni" uniqKey="Perassi N">NI Perassi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ulrich Lai, Ym" uniqKey="Ulrich Lai Y">YM Ulrich-Lai</name>
</author>
<author>
<name sortKey="Herman, Jp" uniqKey="Herman J">JP Herman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhatnagar, S" uniqKey="Bhatnagar S">S Bhatnagar</name>
</author>
<author>
<name sortKey="Huber, R" uniqKey="Huber R">R Huber</name>
</author>
<author>
<name sortKey="Nowak, N" uniqKey="Nowak N">N Nowak</name>
</author>
<author>
<name sortKey="Trotter, P" uniqKey="Trotter P">P Trotter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siggins, Gr" uniqKey="Siggins G">GR Siggins</name>
</author>
<author>
<name sortKey="Gruol, D" uniqKey="Gruol D">D Gruol</name>
</author>
<author>
<name sortKey="Aldenhoff, J" uniqKey="Aldenhoff J">J Aldenhoff</name>
</author>
<author>
<name sortKey="Pittman, Q" uniqKey="Pittman Q">Q Pittman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Hl" uniqKey="Wang H">HL Wang</name>
</author>
<author>
<name sortKey="Wayner, Mj" uniqKey="Wayner M">MJ Wayner</name>
</author>
<author>
<name sortKey="Chai, Cy" uniqKey="Chai C">CY Chai</name>
</author>
<author>
<name sortKey="Lee, Ehy" uniqKey="Lee E">EHY Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tjong, Yw" uniqKey="Tjong Y">YW Tjong</name>
</author>
<author>
<name sortKey="Ip, Sp" uniqKey="Ip S">SP Ip</name>
</author>
<author>
<name sortKey="Lao, Lx" uniqKey="Lao L">LX Lao</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Fong, Hhs" uniqKey="Fong H">HHS Fong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parr, La" uniqKey="Parr L">LA Parr</name>
</author>
<author>
<name sortKey="Boudreau, M" uniqKey="Boudreau M">M Boudreau</name>
</author>
<author>
<name sortKey="Hecht, E" uniqKey="Hecht E">E Hecht</name>
</author>
<author>
<name sortKey="Winslow, Jt" uniqKey="Winslow J">JT Winslow</name>
</author>
<author>
<name sortKey="Nemeroff, Cb" uniqKey="Nemeroff C">CB Nemeroff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ons, S" uniqKey="Ons S">S Ons</name>
</author>
<author>
<name sortKey="Marti, O" uniqKey="Marti O">O Marti</name>
</author>
<author>
<name sortKey="Armario, A" uniqKey="Armario A">A Armario</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Skilbeck, Kj" uniqKey="Skilbeck K">KJ Skilbeck</name>
</author>
<author>
<name sortKey="Johnston, Ga" uniqKey="Johnston G">GA Johnston</name>
</author>
<author>
<name sortKey="Hinton, T" uniqKey="Hinton T">T Hinton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brooks Kayal, Ar" uniqKey="Brooks Kayal A">AR Brooks-Kayal</name>
</author>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H Jin</name>
</author>
<author>
<name sortKey="Price, M" uniqKey="Price M">M Price</name>
</author>
<author>
<name sortKey="Dichter, Ma" uniqKey="Dichter M">MA Dichter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brooks Kayal, Ar" uniqKey="Brooks Kayal A">AR Brooks-Kayal</name>
</author>
<author>
<name sortKey="Shumate, Md" uniqKey="Shumate M">MD Shumate</name>
</author>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H Jin</name>
</author>
<author>
<name sortKey="Rikhter, Ty" uniqKey="Rikhter T">TY Rikhter</name>
</author>
<author>
<name sortKey="Coulter, Da" uniqKey="Coulter D">DA Coulter</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adamec, Re" uniqKey="Adamec R">RE Adamec</name>
</author>
<author>
<name sortKey="Stark Adamec, C" uniqKey="Stark Adamec C">C Stark-Adamec</name>
</author>
<author>
<name sortKey="Burnham, Wm" uniqKey="Burnham W">WM Burnham</name>
</author>
<author>
<name sortKey="Bruun Meyer, S" uniqKey="Bruun Meyer S">S Bruun-Meyer</name>
</author>
<author>
<name sortKey="Perrin, R" uniqKey="Perrin R">R Perrin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nazer, F" uniqKey="Nazer F">F Nazer</name>
</author>
<author>
<name sortKey="Dickson, Ct" uniqKey="Dickson C">CT Dickson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crunelli, V" uniqKey="Crunelli V">V Crunelli</name>
</author>
<author>
<name sortKey="Errington, Ac" uniqKey="Errington A">AC Errington</name>
</author>
<author>
<name sortKey="Hughes, Sw" uniqKey="Hughes S">SW Hughes</name>
</author>
<author>
<name sortKey="Toth, Ti" uniqKey="Toth T">TI Toth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcfarlane, A" uniqKey="Mcfarlane A">A McFarlane</name>
</author>
<author>
<name sortKey="Clark, Cr" uniqKey="Clark C">CR Clark</name>
</author>
<author>
<name sortKey="Bryant, Ra" uniqKey="Bryant R">RA Bryant</name>
</author>
<author>
<name sortKey="Williams, Lm" uniqKey="Williams L">LM Williams</name>
</author>
<author>
<name sortKey="Niaura, R" uniqKey="Niaura R">R Niaura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsuru, N" uniqKey="Tsuru N">N Tsuru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teskey, Gc" uniqKey="Teskey G">GC Teskey</name>
</author>
<author>
<name sortKey="Racine, Rj" uniqKey="Racine R">RJ Racine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonhaus, Dw" uniqKey="Bonhaus D">DW Bonhaus</name>
</author>
<author>
<name sortKey="Walters, Jr" uniqKey="Walters J">JR Walters</name>
</author>
<author>
<name sortKey="Mcnamara, Jo" uniqKey="Mcnamara J">JO Mcnamara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cymerblit Sabba, A" uniqKey="Cymerblit Sabba A">A Cymerblit-Sabba</name>
</author>
<author>
<name sortKey="Schiller, Y" uniqKey="Schiller Y">Y Schiller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cymerblit Sabba, A" uniqKey="Cymerblit Sabba A">A Cymerblit-Sabba</name>
</author>
<author>
<name sortKey="Schiller, Y" uniqKey="Schiller Y">Y Schiller</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23825595</article-id>
<article-id pub-id-type="pmc">3688984</article-id>
<article-id pub-id-type="publisher-id">PONE-D-13-04989</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0066962</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Anatomy and Physiology</subject>
<subj-group>
<subject>Neurological System</subject>
<subj-group>
<subject>Neural Pathways</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Model Organisms</subject>
<subj-group>
<subject>Animal Models</subject>
<subj-group>
<subject>Rat</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Neuroscience</subject>
<subj-group>
<subject>Behavioral Neuroscience</subject>
<subject>Cellular Neuroscience</subject>
<subject>Neural Networks</subject>
<subject>Neurobiology of Disease and Regeneration</subject>
<subject>Neurophysiology</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Medicine</subject>
<subj-group>
<subject>Anatomy and Physiology</subject>
<subj-group>
<subject>Neurological System</subject>
<subj-group>
<subject>Neural Pathways</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Clinical Research Design</subject>
<subj-group>
<subject>Animal Models of Disease</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Neurology</subject>
<subj-group>
<subject>Epilepsy</subject>
<subj-group>
<subject>Temporal Lobe Epilepsy</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy</article-title>
<alt-title alt-title-type="running-head">Neuronal Activity, Early Life Stress and Kindling</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ali</surname>
<given-names>Idrish</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>O'Brien</surname>
<given-names>Patrick</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kumar</surname>
<given-names>Gaurav</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zheng</surname>
<given-names>Thomas</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jones</surname>
<given-names>Nigel C.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pinault</surname>
<given-names>Didier</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>French</surname>
<given-names>Chris</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Morris</surname>
<given-names>Margaret J.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Salzberg</surname>
<given-names>Michael R.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>O'Brien</surname>
<given-names>Terence J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>INSERM U1114, Physiopathologie et psychopathologie de la schizophrénie, Strasbourg, France</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Department of Pharmacology, School of Medical Sciences, University of New South Wales, New South Wales, Australia</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Victoria, Australia</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<addr-line>Department of Neurology, the Royal Melbourne Hospital, Melbourne, Victoria, Australia</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Charpier</surname>
<given-names>Stéphane</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University Paris 6, France</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>obrientj@unimelb.edu.au</email>
</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: TOB MS NJ MM IA. Performed the experiments: IA. Analyzed the data: IA TZ CF POB DP. Contributed reagents/materials/analysis tools: GK. Wrote the paper: IA DP NJ MM MS TOB.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>18</day>
<month>6</month>
<year>2013</year>
</pub-date>
<volume>8</volume>
<issue>6</issue>
<elocation-id>e66962</elocation-id>
<history>
<date date-type="received">
<day>2</day>
<month>2</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>5</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-year>2013</copyright-year>
<copyright-holder>Ali et al</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>Early life stress results in an enduring vulnerability to kindling-induced epileptogenesis in rats, but the underlying mechanisms are not well understood. Recent studies indicate the involvement of thalamocortical neuronal circuits in the progression of kindling epileptogenesis. Therefore, we sought to determine
<italic>in vivo</italic>
the effects of early life stress and amygdala kindling on the firing pattern of hippocampus as well as thalamic and cortical neurons. Eight week old male Wistar rats, previously exposed to maternal separation (MS) early life stress or early handling (EH), underwent amygdala kindling (or sham kindling). Once fully kindled,
<italic>in vivo</italic>
juxtacellular recordings in hippocampal, thalamic and cortical regions were performed under neuroleptic analgesia. In the thalamic reticular nucleus cells both kindling and MS independently lowered firing frequency and enhanced burst firing. Further, burst firing in the thalamic reticular nucleus was significantly increased in kindled MS rats compared to kindled EH rats (p<0.05). In addition, MS enhanced burst firing of hippocampal pyramidal neurons. Following a stimulation-induced seizure, somatosensory cortical neurons exhibited a more pronounced increase in burst firing in MS rats than in EH rats. These data demonstrate changes in firing patterns in thalamocortical and hippocampal regions resulting from both MS and amygdala kindling, which may reflect cellular changes underlying the enhanced vulnerability to kindling in rats that have been exposed to early life stress.</p>
</abstract>
<funding-group>
<funding-statement>This study was supported by the NHMRC (Project Grants #566843). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="12"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Mesial temporal lobe epilepsy (MTLE) is the most common form of focal epilepsy in adults, and is often drug resistant
<xref ref-type="bibr" rid="pone.0066962-Engel1">[1]</xref>
. It is characterised by focal limbic seizures that commonly impair consciousness and may generalise to become convulsive in nature. The exact mechanisms underlying the spreading of seizures to become secondarily generalised are not known
<xref ref-type="bibr" rid="pone.0066962-Jouny1">[2]</xref>
. In animal models, early life stress has been shown to affect neuroplasticity, neuroendocrine and neurochemical functions as well as electrophysiological properties in structures that are relevant to MTLE, notably the hippocampus
<xref ref-type="bibr" rid="pone.0066962-Ali1">[3]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Koe1">[4]</xref>
. These changes may be associated with the pathogenesis of MTLE
<xref ref-type="bibr" rid="pone.0066962-Scharfman1">[5]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Taher1">[6]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Kumar1">[7]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Karst1">[8]</xref>
and its associated psychiatric comorbidities, including anxiety related disorders
<xref ref-type="bibr" rid="pone.0066962-Sanchez1">[9]</xref>
. Moreover, early life stress induced by maternal separation (MS) has been shown to lead to an increased vulnerability to amygdala kindling-induced epileptogenesis in rats
<xref ref-type="bibr" rid="pone.0066962-Kumar2">[10]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Salzberg1">[11]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Jones1">[12]</xref>
, an important model of human MTLE
<xref ref-type="bibr" rid="pone.0066962-Sutula1">[13]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Morimoto1">[14]</xref>
. The effect of early life stress to result in an enhanced vulnerability to epileptogenesis has also been shown in other models of MTLE using different stress paradigms
<xref ref-type="bibr" rid="pone.0066962-Lai1">[15]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Lai2">[16]</xref>
, discussed in
<xref ref-type="bibr" rid="pone.0066962-Koe1">[4]</xref>
. However, as yet there is little evidence on the underlying mechanisms for this.</p>
<p>Kumar et al
<xref ref-type="bibr" rid="pone.0066962-Kumar2">[10]</xref>
showed that early life stress induced by MS results in adult rats that show an acceleration in the progression of focal limbic seizures to secondary generalised convulsive seizures using the rat amygdala kindling model. There is evidence that thalamic structures play a critical role in the progression of kindled seizures in rats
<xref ref-type="bibr" rid="pone.0066962-Bertram1">[17]</xref>
. The GABAergic thalamic reticular nucleus (TRN), a key component of thalamocortical circuits, has been implicated by other work as being associated with the progression of limbic epileptogenesis
<xref ref-type="bibr" rid="pone.0066962-Nanobashvili1">[18]</xref>
. Consistent with this, the administration of carbachol, a muscarinic receptor agonist, into lateral thalamic regions including the ventrobasal complex of thalamus and TRN was able to stimulate limbic and generalized convulsive seizures
<xref ref-type="bibr" rid="pone.0066962-Mraovitch1">[19]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Mraovitch2">[20]</xref>
.</p>
<p>We hypothesised that exposure to amygdala kindling would alter neuronal firing patterns in hippocampal and thalamocortical regions, and that exposure to MS would exacerbate these changes. Using in vivo juxtacellular recordings in rats, we found that interictal firing patterns of TRN neurons were altered by MS and kindling, while hippocampal pyramidal neurons were influenced only by MS. These alterations involve enhanced burst firing suggesting increased excitability of these structures. Consistent with this, during the initiation and progression of a stimulated seizure, the increase in the burst firing in somatosensory cortex was more pronounced in MS-exposed rats compared to early handled (EH) rats.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2a">
<title>Ethics Statement</title>
<p>The study was approved by the Animal Ethics Committee of the Royal Melbourne Hospital, the University of Melbourne (Ethics number: 0911087) and conformed to National Health and Medical Research Council Guidelines for the ethical use of animals in scientific research. All efforts were made to minimize stress and the number of animals necessary to produce reliable data.</p>
</sec>
<sec id="s2b">
<title>Experimental animals</title>
<p>Wistar rats were bred and housed in plastic boxes in the Zoology animal facility, University of Melbourne during the period of early-life manipulations (see below). At five weeks male rats were transferred to Department of Medicine (RMH) University of Melbourne, Biological Research Facility for all other experiments. Animals were maintained in standard conditions of 12 hour light/dark cycle at 19–24°C with ad libitum access to food and water.</p>
</sec>
<sec id="s2c">
<title>Early life interventions</title>
<p>The early life stress protocol was based on the same methodology as our previous published work
<xref ref-type="bibr" rid="pone.0066962-Kumar2">[10]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Salzberg1">[11]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Jones1">[12]</xref>
. On the day of birth, postnatal day 0, pups were assigned to either MS or EH control group. Separations were done for 180 minutes for MS (approximately between 0800 to 1100 hr) and 15 minutes for EH (approximately between 0800 to 0815 hr) per day from postnatal day 2–14. During the separation period, the dam was moved to a different room while the pups were moved to a separate cage placed on a heating pad maintained at 30°C. At the end of the separation, the pups and the dams were returned to the original cage. Cages were cleaned and replaced on PN day 2, 7, 14 and 21. Pups were weaned on day 21, thereafter, left to normal housing conditions; 3–4 rats in each cage and cleaning of cages twice a week. We used rats from 15 litters with 8–12 pups in each litter. For 7 of the litters the MS pups were isolated from their siblings as well as their mothers during which time they were kept on tissue paper lined plastic boxes kept on a heating pad. Each breeding pair was used only once to avoid transfer of possible maternal stress induced effects to the next litter.</p>
</sec>
<sec id="s2d">
<title>Open field test</title>
<p>At 6 weeks of age, the open field test was performed to compare the anxiety-like behaviours between MS and EH rats, as previously described
<xref ref-type="bibr" rid="pone.0066962-Jones2">[21]</xref>
. Briefly the rats were placed gently in the centre of an open arena of 1 metre diameter. Trials consisted of 5 minutes during which the rats were allowed to explore. The total distance travelled, and the frequency of entry and time spent in the central area of the field (diameter 66 cms) were quantified using Ethovision tracking software (Noldus Information Technology, Wageningen, The Netherlands).</p>
</sec>
<sec id="s2e">
<title>Bipolar electrode implantation and amygdala kindling</title>
<p>At 7 weeks of age electrode implantation surgery was performed
<xref ref-type="bibr" rid="pone.0066962-Taher1">[6]</xref>
. Briefly, under isoflurane anesthesia, each rat was implanted with a bipolar electrode in the left basolateral amygdala, along with three epidural EEG electrodes and one anchoring screw, all held in place with dental acrylate. All the epidural electrodes for EEG recording were implanted on the left hemisphere, while the right hemisphere was left clear to be used for electrophysiological recordings. The dental acrylate was cleared over the bregma, to facilitate stereotaxic guidance during later experiments.</p>
<p>After one week recovery, the after discharge threshold was tested as previously described in
<xref ref-type="bibr" rid="pone.0066962-Salzberg1">[11]</xref>
. Briefly, a current of increasing intensity was applied for 1 second through the bipolar electrode, using Accupulser Pulse generator/Stimulator, (A310, World Precision Instruments, Sarasota, FL), initially starting at 20 µA (60 Hz, 1 ms pulses) and increasing with 20 µA every 30 seconds, until an afterdischarge of at least 6 seconds was observed on EEG. Amygdala kindling started the next day: electrical stimulations were delivered at the after discharge threshold current twice daily, with an inter-stimulus interval of at least 4 hours. Seizures were graded according to the Racine's Classification
<xref ref-type="bibr" rid="pone.0066962-Racine1">[22]</xref>
, and the EEG recorded for each seizure. Preictal EEG recordings were also taken to characterise EEG parameters in freely moving rats. Kindling stimulation continued until rats were fully kindled (defined as 5 class V seizures)
<xref ref-type="bibr" rid="pone.0066962-Racine1">[22]</xref>
, after which the rats were used for electrophysiological experiments.</p>
</sec>
<sec id="s2f">
<title>Electrophysiology Experiments</title>
<sec id="s2f1">
<title>Anesthesia and Surgery</title>
<p>Once a rat was fully kindled, it was used for electrophysiology experiments within two days. The rats were anesthetised using ketamine (100 mg/kg; i.p. Ketasol®; Richterpharma) and xylazine (10 mg/kg; i.p. Rompun®; Bayer). Rats underwent tracheotomy to facilitate artificial ventilation during the recordings (SAR-830, CWE, Ardmore, USA; in pressure mode (8–12 cm H
<sub>2</sub>
O, 60 breaths per minute)). Rats were placed in a stereotaxic frame and artificially ventilated. The body temperature was maintained between 36.2–37.2°C with a thermoregulated blanket (Fine Science Tools., Inc, Heidelberg, Germany) at all times during the recordings. The critical physiological parameters like heart rate (300–350 beats/minute) and arterial PO
<sub>2</sub>
and PCO
<sub>2</sub>
were monitored and maintained at all times. The recordings were conducted under neuroleptic analgesia, with the depth of anesthesia titrated to maintain predominantly desynchronized EEG. To facilitate administration of neuroleptic analgesia, penile vein catheterisation was performed. An initial dose of neuroleptic analgesia was administered: (0.25 ml in 10 minutes, of: d-tubocurarine chloride (0.2 mg; Sigma Aldrich), fentanyl (0.22 µg; Mayne Pharma), haloperidol (25 µg; Janssen)) i.v. through the penile vein catheter. Thereafter, it was maintained at a continuous i.v. infusion (0.5 ml/Hr) of the mixture: d-tubocurarine (0.4 mg), fentanyl (0.425 µg), haloperidol (50 µg) and glucose (25 mg; Sigma). Two craniotomies were performed followed by small incisions in the dura, through which electrodes were inserted targeting the three regions of interest: S1 somatosensory cortex, hippocampal CA1 and CA3 pyramidal neurons and TRN using the stereotaxic atlas
<xref ref-type="bibr" rid="pone.0066962-Paxinos1">[23]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Pinault1">[24]</xref>
.</p>
</sec>
<sec id="s2f2">
<title>
<italic>In vivo</italic>
juxtacellular recordings</title>
<p>The firing patterns of S1 somatosensory cortex, hippocampal CA1 and CA3 pyramidal neurons and caudal region of the TRN neurons were recorded along with the EEG from frontal cortex and basolateral amygdala. The
<italic>in vivo</italic>
extracellular electrophysiology recordings were performed according to the methods described in
<xref ref-type="bibr" rid="pone.0066962-Pinault2">[25]</xref>
. Micropipettes were prepared from 1 mm thick glass capillaries (Harward Apparatus, Ltd., UK) by pulling, using a horizontal pipette puller (Sutter Instruments, CA; USA) and filled with a solution of 1.5% N-(2 aminoethyl) biotinamide hydrochloride (Neurobiotin, Vector Laboratories, Burlingame, CA; USA) in 1 M potassium acetate. Micropipettes (tip diameter ∼1 µm and resistance 20–30 mΩ) were lowered through the small incision in dura, using motorised stereotaxic microdrivers (StereoDrive, Neurostar, Germany). The data were processed (Cyberamp, Axon Instruments, Foster city, CA; USA) with band passes of 0.1–800 Hz for EEG and 0–6000 Hz for cellular activity. Data were then digitised at a sampling rate of 20 kHz per channel (Digidata 1440; Axon Instruments). The baseline cellular activity was recorded for 10 minutes after which a seizure was induced by stimulation using the bipolar electrode, followed by another 10 minutes recording. This allowed the study of firing patterns during interictal states as well as during a stimulated seizure. The last recorded pairs of neurons were labelled to confirm their location using the juxtacellular technique
<xref ref-type="bibr" rid="pone.0066962-Pinault2">[25]</xref>
. Briefly, the recorded cell was juxtacellularly filled with neurobiotin by applying positive currents (0.5–8 nA) through the micropipette tip (200 ms on/200 ms off for around 10 minutes). After the labelling, the micropipettes were slowly withdrawn, taking care not to injure the cell.</p>
</sec>
<sec id="s2f3">
<title>Histology</title>
<p>At the end of labelling the animals were killed with an overdose of pentobarbital (Lethobarb, Virbac; Australia) and were transcardially perfused with 200 ml of 0.1 M phosphate buffered saline (PBS) and fixed with 4% paraformaldehyde (PFA) solution in 500 ml PBS. The brain was extracted and was kept in PFA overnight for post fixing. Coronal sections of 100 µm thickness were cut using the Vibrotome (Vibrotome
<sup>TM</sup>
, St Louis, MO; USA) and serially collected in 0.1 M PBS. The sections were thoroughly washed with PBS and incubated overnight with a solution of 1∶100 avidin-biotin-peroxidase complex solution (Vectastain, ABC kit; Vector Laboratories, Burlingame, CA; USA) and 0.3% Triton X-100 at room temperature. The tracer was then revealed with nickel intensified 3,3 P-diaminobenzidine tetrahydrochloride activated by peroxidase (DAB; Vector Laboratories, Burlingame, CA; USA). The sections were then mounted on gelatin coated slides. These slides were then treated with 0.1% thionin for 30 seconds, washed with water for 1 minute, dehydrated and cover slipped. The location of the bipolar electrode and any labelled cells was verified microscopically referring to the stereotaxic atlas
<xref ref-type="bibr" rid="pone.0066962-Paxinos1">[23]</xref>
.</p>
</sec>
</sec>
<sec id="s2g">
<title>Data Analysis</title>
<sec id="s2g1">
<title>EEG analysis</title>
<p>Fast Fourier transform were computed using Clampfit software Version 10.2 (Axon Instruments, Foster City, CA; USA) for frontal cortical EEG. For rats under neuroleptic analgesia, total power of each EEG band was based on 4-s epochs with a resolution of 0.49 Hz and was applied for at least 1 minute of EEG. Total power of each EEG band in freely moving rats (recorded 1–2 days before the rats were used for electrophysiology experiments) was based on 1-s epochs with a resolution of 0.49 Hz and was applied for at least 30 seconds of EEG segments. The EEG bands were classified for 1–4 Hz (delta), 5–9 Hz (somatosensory rhythm), 10–16 Hz (spindle), 17–29 Hz (beta), 30–80 Hz (gamma)
<xref ref-type="bibr" rid="pone.0066962-Pinault3">[26]</xref>
.</p>
</sec>
<sec id="s2g2">
<title>Neuronal firing frequency and Burst firing</title>
<p>Data analysis was done using the Clampfit software Version 10.2 (Axon Instruments, Foster City, CA; USA). During interictal states, a total of three one minute epochs were analysed and averaged for each cell. Any cells recorded from the somatosensory cortex or the hippocampus that had firing characteristics based on their firing frequency and action potential duration similar to that of an interneuron
<xref ref-type="bibr" rid="pone.0066962-Csicsvari1">[27]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Bartho1">[28]</xref>
were excluded from the analysis. The action potentials recorded could fire as single action potentials or in burst mode. The inclusion criteria for a burst was a minimum of two action potentials, with an inter action potential interval of less than 6 ms duration. We determined the mean frequency of the neuronal firing and percentage of action potentials that fired in burst compared to the discrete events. We also calculated the characteristics of burst firing like mean number of action potentials in a burst, maximum number of action potentials in a burst and intraburst frequency. Similarly, mean neuronal firing frequency and % burst firing were analysed during the progression of a stimulated seizure.</p>
</sec>
<sec id="s2g3">
<title>Rhythmicity of firing</title>
<p>To assess whether the discharges of action potentials recorded were rhythmic, a method described previously
<xref ref-type="bibr" rid="pone.0066962-Kaneoke1">[29]</xref>
was used. This method involves construction of an autocorrelogram followed by making the spectrum (Lomb) of this autocorrelogram to detect the frequency as well as the statistical significance of the rhythmicity at observed frequency. The discharge patterns for which the peaks in the spectrum of autocorrelogram had a p<0.05 were considered to be rhythmic in nature. The automated software for analysing this data was generously provided by Dr. Kaneoke (Department of Integrative Physiology, National Institute of Physiological Sciences, Okazaki; Japan). The time stamps of action potential firing (start time) from 3–4 minutes of recording were obtained using Clampfit; using these data, the software was employed to determine whether each cell displayed rhythmic firing.</p>
</sec>
</sec>
<sec id="s2h">
<title>Statistics</title>
<p>The parameters of anxiety-like behaviour were analysed using two-tailed Student's
<italic>t</italic>
-test. Neuronal firing patterns during progression of stimulated seizures were analysed using two-way ANOVA with repeated measures, with early life exposure and kindling being the two independent variables. The firing frequency, burst firing (including bursting characteristics) and EEG power of specific frequency bands were analysed for statistical differences between groups using two-way ANOVA. Post hoc planned comparison was used to determine the intergroup statistical differences. For binary variables (i.e. proportion of cells that had burst firing or rhythmic firing), Fisher's exact test was used to determine the statistical significance between the groups.</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>Exposure to MS results in increased anxiety-like behaviour</title>
<p>Anxiety-like behaviour was tested at 6 weeks of age by using the Open Field Test. Compared to EH rats, MS rats showed a significantly increased anxiety-like behaviour as evidenced by a significantly lower number of inner circle entries (p = 0.046) as well as less total time spent in the inner circle (p = 0.037) (
<xref ref-type="fig" rid="pone-0066962-g001">Figure 1</xref>
). There was no significant difference in total distance travelled between MS and EH rats (p = 0.28).</p>
<fig id="pone-0066962-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0066962.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Effect of Maternal separation (MS) on anxiety-like behavior.</title>
<p>Maternal separation (MS), increases anxiety-like behaviour on the open field test, compared to early handled (EH) controls. This was evidenced by significant reductions in (
<bold>A</bold>
) the number of inner circle entries (t test p = 0.04) and (
<bold>B</bold>
) the total time spent in inner circle (p = 0.04). No significant differences (p>0.05) were observed when comparing the total distance travelled (
<bold>C</bold>
). Data are expressed as Mean ± SEM.</p>
</caption>
<graphic xlink:href="pone.0066962.g001"></graphic>
</fig>
</sec>
<sec id="s3b">
<title>Kindling increases power of delta frequency activity EEG spectra</title>
<p>Fully kindled MS (median-23.0 and range 12 to 31 stimulations to fully kindled) and EH (median-25.5 and range 14 to 38 stimulations to fully kindled) rats along with sham kindled rats from both treatment were used for
<italic>in vivo</italic>
electrophysiology experiments.</p>
<p>The spectral power of the frontal EEG was computed for the segments of the recordings from which the juxtacellular firing patterns were analysed (
<xref ref-type="fig" rid="pone-0066962-g002">Figure 2A</xref>
1). There was a significant increase in the power of 1–4 Hz (delta) frequency bands in the EEG of kindled rats (F
<sub>(3,34)</sub>
 = 11.9, p = 0.04), compared to sham-kindled rats (
<xref ref-type="fig" rid="pone-0066962-g002">Figure 2B</xref>
1). No other frequency bands were significantly affected by either MS or amygdala kindling (p>0.05). To check whether these results were not specific to the experimental conditions, a similar analysis was conducted on data obtained from freely moving rats (
<xref ref-type="fig" rid="pone-0066962-g002">Figure 2A</xref>
2). Similar to the rats under neuroleptic analgesia, there was a significant increase (F
<sub>(3,47)</sub>
 = 15.4, p = 0.004) in the power of 1–4 Hz (delta) frequency band in the EEG of kindled rats, compared to sham-kindled rats. Surprisingly, MS led to a significant decrease (F
<sub>(3,47)</sub>
 = 7.26, p = 0.04) in the power of delta band in the freely moving condition, compared to EH rats (
<xref ref-type="fig" rid="pone-0066962-g002">Figure 2B</xref>
2). In addition, there was a significant increase (F
<sub>(3,47)</sub>
 = 19.9, p = 0.001) in the power of 5–9 Hz in kindled rats, compared to sham-kindled rats (
<xref ref-type="fig" rid="pone-0066962-g002">Figure 2C</xref>
2). No other frequency bands were significantly affected by either amygdala kindling or MS (p>0.05).</p>
<fig id="pone-0066962-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0066962.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Effects of MS and Kindling on EEG spectral activity.</title>
<p>EEG spectral activities were analysed from rats under neuroleptic analgesia (A1–C1) as well as freely moving rats (A2–C2). Total power in the low frequency delta 1–4 Hz band was significantly increased in kindled rats, compared to sham-kindled rats when measured in rats under neuroleptic analgesia (F
<sub>(3,34)</sub>
 = 11.9, p = 0.04, panel B1) and in freely moving rats (F
<sub>(3,47)</sub>
 = 15.4, p = 0.004, panel B2). Also, in freely moving rats, MS led to a significant decrease in the power of delta frequency activity (F
<sub>(3,47)</sub>
 = 7.26, p = 0.04, panel B2). In the 5–9 Hz frequency band, there were no significant effect of MS or kindling observed in rats under neuroleptic analgesia (C1), but in freely moving rats, there was a significant increase in power of 5–9 Hz frequency in kindled rats, compared to sham-kindled rats (C2). There was no significant effect of kindling or MS on power of higher frequencies (p>0.05; data not shown). Data are expressed as Mean ± SEM.</p>
</caption>
<graphic xlink:href="pone.0066962.g002"></graphic>
</fig>
</sec>
<sec id="s3c">
<title>MS and kindling affect interictal neuronal firing patterns in the TRN and hippocampus, but not S1somatosensory cortex</title>
<p>The
<italic>in vivo</italic>
juxtacellular recordings were performed under neuroleptic analgesia from the caudal part of the TRN, pyramidal layers of the hippocampus including CA1 and CA3 neurons (data combined as there was no statistically significant difference in the firing patterns between these subregions) and S1 somatosensory cortical neurons (data from superficial (layer I–IV) and deeper layers (layer V–VI) were combined as their firing patterns were not statistically different).</p>
<sec id="s3c1">
<title>Firing frequency</title>
<p>MS as well as amygdala kindling led to a significant reductions in firing frequency of TRN neuronal cells (F
<sub>(3,168)</sub>
 = 5.41, p = 0.02 for MS and F
<sub>(3,168)</sub>
 = 8.93, p = 0.003 for kindling;
<xref ref-type="fig" rid="pone-0066962-g003">Figure 3B</xref>
). However, there was no significant effect of MS or kindling in the mean neuronal firing frequency of the hippocampal (F
<sub>(3,73)</sub>
 = 2.57, p = 0.11 for MS and F
<sub>(3,73)</sub>
 = 0.74, p = 0.39 for kindling,
<xref ref-type="fig" rid="pone-0066962-g004">Figure 4A</xref>
) or cortical neurons (F
<sub>(3,90)</sub>
 = 1.57, p = 0.21 for MS and F
<sub>(3,90)</sub>
 = 0.73, p = 0.39 for kindling,
<xref ref-type="fig" rid="pone-0066962-g004">Figure 4C</xref>
). When only the neurons that displayed burst firing (see below) were considered, the MS-induced reduction in firing frequency of hippocampal neurons approached statistical significance (p = 0.07), while no such effect was observed in the case of somatosensory cortical neurons (p = 0.18) (data not shown).</p>
<fig id="pone-0066962-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0066962.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Effects of kindling and MS on interictal neuronal firing in thalamic reticular nucleus (TRN).</title>
<p>Representative examples of recordings from each of the four groups are depicted in A with the underscored region of each upper trace expanded in the lower trace.
<bold>B</bold>
Both MS and kindling led to significant reductions in TRN neuronal firing frequency (F
<sub>(3,168)</sub>
 = 5.41, *p = 0.02 for MS and F
<sub>(3,168)</sub>
 = 8.93, **p = 0.003 for kindling), and these effects were accompanied by significant increases in the percentage of action potentials that fired in bursts (F
<sub>(3,165)</sub>
 = 9.24, **p = 0.002 for MS and F
<sub>(3,165)</sub>
 = 16.24, ***p<0.001 for kindling, panel C). Post hoc planned comparison showed that the percentage of action potentials firing in bursts were significantly more in MS kindled rats compared to EH kindled rats (F
<sub>(3,165)</sub>
 = 10.82, ##p = 0.001).
<bold>D</bold>
An example of a labeled TRN cell. Data are expressed as Mean ± SEM.</p>
</caption>
<graphic xlink:href="pone.0066962.g003"></graphic>
</fig>
<fig id="pone-0066962-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0066962.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Effects of kindling and MS on interictal neuronal firing in hippocampus and somatosensory cortex.</title>
<p>Neither MS nor kindling induced any effects on hippocampal pyramidal neuronal firing frequency (A), but an increase in the percentage of burst firing in this region was observed in MS rats (F
<sub>(3,74)</sub>
 = 10.54, **p = 0.001). Post hoc planned comparison showed that the percentage of action potentials firing in bursts were significantly more in MS kindled rats compared to EH kindled rats (F
<sub>(3,74)</sub>
 = 10.92, ##p = 0.001). In primary somatosensory cortical neurons, there was no significant effect of MS or kindling in
<bold>C</bold>
firing frequency or
<bold>D</bold>
percentage of action potentials firing in burst during interictal period. Data are expressed as Mean ± SEM.</p>
</caption>
<graphic xlink:href="pone.0066962.g004"></graphic>
</fig>
</sec>
<sec id="s3c2">
<title>Burst firing</title>
<p>In TRN, there was no significant difference in the proportion of bursting cells between any of the treatment groups. Almost all the recorded TRN cells displayed bursts of high frequency action potentials (n = >2, interval of <6 ms) (Sham EH: 42/44 cells; Sham MS: 27/27; Kindled EH: 42/43 and Kindled MS: 57/57 cells had burst firing). However, in those cells that displayed burst firing, both kindling as well as MS were associated with a significant increase (F
<sub>(3,165)</sub>
 = 9.24, p = 0.002 for MS and F
<sub>(3,165)</sub>
 = 16.24, p<0.0001 for kindling) in percentage of action potentials which fired in bursts (
<xref ref-type="fig" rid="pone-0066962-g003">Figure 3C</xref>
). Post hoc planned comparison showed a significantly increased burst firing in kindled MS rats when compared to Kindled EH rats (p = 0.001). Kindling but not MS also altered characteristics of burst firing in the TRN (
<xref ref-type="table" rid="pone-0066962-t001">Table 1</xref>
). Kindling was associated with a significant increase in mean number of action potentials firing in a burst (F
<sub>(3,165)</sub>
 = 8.18, p = 0.005), maximum number of action potentials in a burst (F
<sub>(3,165)</sub>
 = 6.75, p = 0.01) and intra-burst firing frequency (F
<sub>(3,165)</sub>
 = 4.10, p = 0.04). There was no effect of MS on all three characteristics of burst firing (Mean number of action potentials per burst: F
<sub>(3,165)</sub>
 = 0.00, p = 0.98, Maximum number of action potentials per burst: F
<sub>(3,165)</sub>
 = 0.41, p = 0.52 and Intra-burst frequency: F
<sub>(3,165)</sub>
 = 1.72, p = 0.19).</p>
<table-wrap id="pone-0066962-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0066962.t001</object-id>
<label>Table 1</label>
<caption>
<title>Effects of MS and Kindling on characteristics of burst firing in the TRN.</title>
</caption>
<alternatives>
<graphic id="pone-0066962-t001-1" xlink:href="pone.0066962.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="2" align="left" rowspan="1">Sham</td>
<td colspan="2" align="left" rowspan="1">Kindled</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">EH (n = 42 cells, 14 rats)</td>
<td align="left" rowspan="1" colspan="1">MS (n = 27 cells, 9 rats)</td>
<td align="left" rowspan="1" colspan="1">EH (n = 43 cells, 13 rats)</td>
<td align="left" rowspan="1" colspan="1">MS (n = 57 cells, 12 rats)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Mean number of APs in a burst</bold>
</td>
<td align="left" rowspan="1" colspan="1">3.5±0.2</td>
<td align="left" rowspan="1" colspan="1">3.4±0.2</td>
<td align="left" rowspan="1" colspan="1">4.0±0.2</td>
<td align="left" rowspan="1" colspan="1">4.0±0.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Maximum number of APs in a burst</bold>
</td>
<td align="left" rowspan="1" colspan="1">6.5±0.3</td>
<td align="left" rowspan="1" colspan="1">6.0±0.6</td>
<td align="left" rowspan="1" colspan="1">7.4±0.5</td>
<td align="left" rowspan="1" colspan="1">7.3±0.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Intraburst frequency</bold>
</td>
<td align="left" rowspan="1" colspan="1">285.7±9.7</td>
<td align="left" rowspan="1" colspan="1">302.6±16.0</td>
<td align="left" rowspan="1" colspan="1">310.9±10.0</td>
<td align="left" rowspan="1" colspan="1">323.4±10.0</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<p>Data are expressed as Mean ± SEM. Kindling led to a significant increase in mean number of action potentials (APs) per burst (F
<sub>(3,164)</sub>
 = 8.18, p = 0.005), Maximum number of APs per burst (F
<sub>(3,164)</sub>
 = 6.75, p = 0.01) and Intraburst frequency (F
<sub>(3,164)</sub>
 = 4.10, p = 0.04). MS did not affect any of the three characteristics of burst firing.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>In the hippocampal region, Fisher's exact test showed a significant increase in proportion of the cells with burst firing in MS rats compared to EH rats (MS: 32/37 cells, EH 30 out of 40 cells; p = 0.005). This effect was not observed when comparing kindled versus sham rats (p = 0.09). In addition, considering only the cells that had burst firing, MS was also associated with a significant increase (F
<sub>(3,58)</sub>
 = 8.27, p = 0.005) in percentage of action potentials firing in bursts. Post hoc planned comparison showed that the percentage of action potentials firing in bursts were significantly greater in kindled MS rats compared to kindled EH rats (F
<sub>(3,58)</sub>
 = 10.92, p = 0.001;
<xref ref-type="fig" rid="pone-0066962-g004">Figure 4B</xref>
). Unlike MS, amygdala kindling did not have a significant effect on the percentage of action potentials firing in bursts (F
<sub>(3,58)</sub>
 = 0.47, p = 0.47). Both MS as well as kindling did not affect any of the three characteristics (mean number of action potentials in a burst, maximum number of action potential in a burst and intraburst frequency) of burst firing in hippocampus (Data not shown).</p>
<p>In the somatosensory cortex, no significant effect of MS or kindling on percentage of action potentials firing in bursts (F
<sub>(3,90)</sub>
 = 0.49, p = 0.48 for MS and F
<sub>(3,90)</sub>
 = 1.24, p = 0.26 for kindling;
<xref ref-type="fig" rid="pone-0066962-g004">Figure 4D</xref>
) or the characteristics of the burst firing were observed.</p>
<p>The percentage of burst firing observed in the TRN and the hippocampal pyramidal neurons from all rats were correlated with the number of kindling stimulations delivered for each rat to reach a fully kindled state. This was done to assess whether the increase in the burst firing was related to the number of stimulations delivered to a rat to become fully kindled. When considering the TRN neurons, we did not find any significant correlation (Spearman r value = −0.12, p = 0.58
<xref ref-type="fig" rid="pone-0066962-g005">Figure 5A</xref>
) between these two parameters. However, we observed a negative correlation (Spearman r = −0.58; p = 0.01) between these two parameters in the hippocampus, suggesting an inverse relationship between them (
<xref ref-type="fig" rid="pone-0066962-g005">Figure 5B</xref>
).</p>
<fig id="pone-0066962-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0066962.g005</object-id>
<label>Figure 5</label>
<caption>
<title>Correlation of burst firing with number of stimulations to reach fully kindled state and power of EEG delta frequency.</title>
<p>The number of stimulations required to reach the fully kindled state was not correlated with the percentage of action potentials firing in bursts in the TRN (Spearman r value = −0.12, p = 0.58, A). While in the hippocampus, a significant negative correlation was observed between these two parameters (Spearman r value = −0.58, p = 0.01, B). No significant correlation was observed between the percentage of action potentials firing in bursts and power of EEG delta frequency for either the TRN (Spearman r value = 0.001, p = 0.99, C) or the hippocampus (Spearman r value = −0.29, p = 0.23, D).</p>
</caption>
<graphic xlink:href="pone.0066962.g005"></graphic>
</fig>
<p>In addition, the percentage of burst firing in the TRN and hippocampal pyramidal neurons from all rats were also correlated with the power of EEG delta frequency observed in the frontal EEG. No significant correlation was found between these parameters for either the TRN or the hippocampus (
<xref ref-type="fig" rid="pone-0066962-g005">Figure 5</xref>
C and D).</p>
</sec>
</sec>
<sec id="s3d">
<title>Kindling in MS exposed rats enhances interictal rhythmicity in firing</title>
<p>The effect of early life stress and amygdala kindling on interictal rhythmicity of neuronal firing was investigated in hippocampal, TRN and somatosensory cortical neurons. We found a significant increase in proportion of the neurons that were firing rhythmically (Fisher's exact test; p = 0.006) in the S
<sub>1</sub>
somatosensory cortex of kindled rats (25 rhythmic cells from 45 cells that were analysed) compared to sham rats (13 rhythmic cells from 48 cells). While considering only MS rats, the proportion of cells rhythmically firing in kindled MS rats was significantly more compared to the sham MS rats (p = 0.02). A similar effect was not observed while considering only EH rats (kindled EH versus Sham EH rats; p = 0.2;
<xref ref-type="fig" rid="pone-0066962-g006">Figure 6D</xref>
). In TRN or hippocampus, unlike cortical neurons, there was no significant effect (p>0.05) of MS or kindling on the proportion of neurons that were displaying rhythmic discharges (
<xref ref-type="fig" rid="pone-0066962-g006">Figure 6B and C</xref>
).</p>
<fig id="pone-0066962-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0066962.g006</object-id>
<label>Figure 6</label>
<caption>
<title>Effects of MS and kindling on percentage of cells recorded which fired in rhythmic pattern.</title>
<p>Representative traces from a rhythmic and a non-rhythmic neuron are depicted in
<bold>A</bold>
. Examples of Lomb spectrogram are shown for
<bold>A
<sub>1</sub>
</bold>
rhythmic and
<bold>A
<sub>2</sub>
</bold>
non-rhythmic neurons. There was no effect of MS or kindling on rhythmicity of firing from
<bold>B</bold>
TRN or
<bold>C</bold>
hippocampal pyramidal neurons.
<bold>D</bold>
However, we did observe a significant overall increase in proportion of cortical cells firing in rhythm in kindled rats compared to non-kindled rats (p = 0.006). Post-hoc analysis revealed that the proportion of cortical cells rhythmically firing in kindled MS rats was significantly more compared to sham MS rats (p = 0.02).</p>
</caption>
<graphic xlink:href="pone.0066962.g006"></graphic>
</fig>
</sec>
<sec id="s3e">
<title>Effects of MS and kindling on neuronal firing patterns during the progression of a stimulation-induced seizure</title>
<p>The effects of MS were investigated on neuronal firing patterns during the initiation and progression of an electrically evoked seizure. In TRN neurons, an increase in the firing frequency in both MS and EH rats was recorded with the progression of the seizure (F
<sub>(1,14)</sub>
 = 7.17, p<0.001;
<xref ref-type="fig" rid="pone-0066962-g007">Figure 7B</xref>
), but there was no significant effect of MS (F
<sub>(1,14)</sub>
 = 0.07, p = 0.78). The percentage of action potentials firing in bursts were not affected by either MS (F
<sub>(1,14)</sub>
 = 0.44, p = 0.51) or by the progression of seizure (F
<sub>(1,14)</sub>
 = 1.89, p = 0.055:
<xref ref-type="fig" rid="pone-0066962-g007">Figure 7C</xref>
).</p>
<fig id="pone-0066962-g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0066962.g007</object-id>
<label>Figure 7</label>
<caption>
<title>Analysis of neuronal firing patterns during progression of a stimulated (kindled) seizure.</title>
<p>Representative recordings of somatosensory cortical neurons before and after electrical stimulation are shown in
<bold>A</bold>
(EEG is included as the lower trace).
<bold>B</bold>
In TRN, a significant increase in firing frequency (effect of time F
<sub>(1,14)</sub>
 = 7.17, p<0.001) with the progression of seizure was observed, but there was no effect of ELS on this parameter.
<bold>C</bold>
Percentage of action potentials (Aps) firing in bursts were not affected by ELS or progression of seizure (F
<sub>(1,14)</sub>
 = 0.07, p = 0.78).
<bold>D</bold>
In somatosensory cortex, there was a significant increase in neuronal firing frequency with the progression of seizures (effect of time F
<sub>(1,10)</sub>
 = 2.97, p = 0.001) but no significant effect of MS was observed (F
<sub>(1,10)</sub>
 = 0.16, p = 0.69).
<bold>E</bold>
There was a significant increase in percentage of action potentials firing in bursts with progression of seizures (effect of time; F
<sub>(1,10)</sub>
 = 8.92, p<0.000). This increase in the burst firing during the seizures was more pronounced in MS rats compared to EH rats (Interaction: MS × time; F
<sub>(1,10)</sub>
 = 2.38, p<0.011). Data are expressed as Mean ± SEM.</p>
</caption>
<graphic xlink:href="pone.0066962.g007"></graphic>
</fig>
<p>In S
<sub>1</sub>
somatosensory cortical neurons, mean neuronal firing frequency significantly increased with the progression of the seizure (effect of time F
<sub>(1,10)</sub>
 = 2.97, p = 0.001), but there was no significant difference in the firing frequency between MS and EH rats (F
<sub>(1,10)</sub>
 = 0.16, p = 0.69;
<xref ref-type="fig" rid="pone-0066962-g007">Figure 7D</xref>
). Similarly, there was a significant increase in the percentage of action potentials that fired in bursts with the progression of seizure (Time; F
<sub>(1,10)</sub>
 = 8.92, p<0.001). This increase in the burst firing during the progression of a seizure was significantly more in the MS rats than in EH rats (Interaction: stress × time; F
<sub>(1,10)</sub>
 = 2.38, p<0.01;
<xref ref-type="fig" rid="pone-0066962-g007">Figure 7E</xref>
). The hippocampal data are not presented due to unavailability of sufficient numbers of hippocampal recordings during an evoked seizure.</p>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>This study investigated the effect of early life stress induced by MS and amygdala kindling on
<italic>in vivo</italic>
neuronal firing patterns in brain structures relevant to the progression of limbic seizures induced by amygdala kindling. The primary findings were: (i) interictally, in the TRN, kindling and MS were associated with lower frequency of tonic firing and with increased burst firing; (ii) interictally, in hippocampal pyramidal neurons, MS, but not kindling, was associated with a greater percentage of action potentials firing in bursts; (iii) in somatosensory cortex, during a stimulated seizure, MS rats had a more pronounced increase in burst firing of neurons compared to EH rats.</p>
<p>Early life stress has enduring effects on brain electrophysiological functioning, neuronal plasticity, and neurochemistry in structures relevant to limbic epilepsy and its comorbid affective disturbance, notably the hippocampus
<xref ref-type="bibr" rid="pone.0066962-Ali1">[3]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Koe1">[4]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Mirescu1">[30]</xref>
. The increased burst firing observed in this study in the hippocampus in MS exposed rats could strengthen synaptic neurotransmission
<xref ref-type="bibr" rid="pone.0066962-Thomas1">[31]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Pike1">[32]</xref>
by facilitating neurotransmitter release and signal transmission
<xref ref-type="bibr" rid="pone.0066962-Lisman1">[33]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Stevens1">[34]</xref>
, thereby increasing excitability of local circuits. Increased burst firing in hippocampus and midline thalamic regions has been implicated in the pathogenesis of MTLE
<xref ref-type="bibr" rid="pone.0066962-Becker1">[35]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Graef1">[36]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Sanabria1">[37]</xref>
. In addition, in 5HT
<sub>1A</sub>
receptor knockout mice, which display an anxiety-like phenotype, enhanced excitability in the hippocampal CA1 subregion has been reported
<xref ref-type="bibr" rid="pone.0066962-Heisler1">[38]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-FreemanDaniels1">[39]</xref>
. Furthermore, pharmacological inhibition of synaptic transmission in CA1 region of the hippocampus produces anxiolytic effects
<xref ref-type="bibr" rid="pone.0066962-Xu1">[40]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Kapus1">[41]</xref>
. Thus, the enhanced excitatory phenotype of hippocampal pyramidal cells observed in rats exposed to MS may also be relevant to their greater anxiety-like behaviour.</p>
<p>We found that kindled rats had a more bursting (epileptiform) interictal pattern of neuronal firing of TRN neurons compared to sham kindled rats. Several studies have suggested a role for thalamic structures in the development and progression of limbic seizures
<xref ref-type="bibr" rid="pone.0066962-Bertram1">[17]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Bertram2">[42]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Hiyoshi1">[43]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Patel1">[44]</xref>
. Enhanced burst firing has been shown in neurons of the midline thalamic nucleus of spontaneously seizing rats following pilocarpine-induced status epilepticus (SE)
<xref ref-type="bibr" rid="pone.0066962-Graef1">[36]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Bertram2">[42]</xref>
. Moreover, the TRN has been directly implicated in the development of limbic seizures: simultaneous electrical stimulation of the TRN slows kindling progression along with the severity of hippocampal kindling seizures
<xref ref-type="bibr" rid="pone.0066962-Nanobashvili1">[18]</xref>
; while focal injection of the muscarinic agonist, carbachol, in the TRN elicits limbic and generalised convulsive seizures
<xref ref-type="bibr" rid="pone.0066962-Mraovitch1">[19]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Mraovitch2">[20]</xref>
. Hence, kindling-induced bursting pattern in TRN neurons could be part of the neuronal mechanisms underlying secondary generalization of limbic seizures. We observed a similar pattern of neuronal firing, i.e. slower but with enhanced burst firing, in TRN neurons of rats exposed to MS compared to EH. Burst firing in the TRN of kindled rats exposed to MS was significantly more than in kindled EH rats. Taken together, these findings suggest that MS has effects on neuronal firing properties of TRN that are qualitatively similar to, but not as marked as, those induced by amygdala kindling. If this cellular phenotype contributes to the progression of kindling epileptogenesis, this could be part of the mechanism for faster progression of kindling in rats exposed to MS.</p>
<p>A number of possible mechanisms may underlie the enhanced burst firing observed in kindled and MS exposed rats, including increases in persistent sodium currents
<xref ref-type="bibr" rid="pone.0066962-Chen1">[45]</xref>
, enhanced expression and function of T-type calcium channels
<xref ref-type="bibr" rid="pone.0066962-Sanabria1">[37]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Faas1">[46]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Tringham1">[47]</xref>
, calcium-dependent small-conductance-type 2 (SK2) potassium channels
<xref ref-type="bibr" rid="pone.0066962-Wimmer1">[48]</xref>
or increased levels of corticotropin releasing hormone (CRH)
<xref ref-type="bibr" rid="pone.0066962-Aldenhoff1">[49]</xref>
. The properties of these neuronal bursts can vary according to the related mechanisms; for instance bursts can be of longer or shorter duration depending on the activation of particular T-type calcium channel isoforms
<xref ref-type="bibr" rid="pone.0066962-Cain1">[50]</xref>
. In contrast to the effects of kindling in the current study, burst firing properties such as mean and maximum number of action potentials within a burst were not affected by MS. This may suggest a possible difference in mechanisms associated with the generation of burst firing induced by MS and by amygdala kindling.</p>
<p>It is also critical to understand how MS mediates its effects in thalamic structures. The TRN is known to have connections with the limbic structures via midline thalamic regions such as the nucleus reuniens
<xref ref-type="bibr" rid="pone.0066962-Cavdar1">[51]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Wouterlood1">[52]</xref>
. Effects of early life stress have been widely described in limbic structures and in several midline thalamic structures including paraventricular nucleus of thalamus and anterodorsal thalamic nuclei
<xref ref-type="bibr" rid="pone.0066962-Suarez1">[53]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-UlrichLai1">[54]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Bhatnagar1">[55]</xref>
. However, direct studies reporting effects of stress in lateral thalamic structures are scarce. One study reported increased mRNA and protein expression of CRH, an important mediator of stress with predominantly excitatory effects in the brain
<xref ref-type="bibr" rid="pone.0066962-Siggins1">[56]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Wang1">[57]</xref>
, and its receptor CRHR
<sub>1</sub>
in thalamus of rats exposed to MS
<xref ref-type="bibr" rid="pone.0066962-Tjong1">[58]</xref>
. In addition, a study conducted in rhesus monkeys showed an increased thalamic glucose metabolism that corresponds to increased neuronal activity, in maternally separated monkeys compared to the non-separated controls
<xref ref-type="bibr" rid="pone.0066962-Parr1">[59]</xref>
. Moreover, TRN of rats exposed to chronic stress in adulthood displayed increased expression of activity-regulated cytoskeleton-associated protein (Arc), an immediate early gene that represents enhanced neuronal activity
<xref ref-type="bibr" rid="pone.0066962-Ons1">[60]</xref>
. Another study (unpublished data discussed in a review
<xref ref-type="bibr" rid="pone.0066962-Skilbeck1">[61]</xref>
) showed reduced α2 subunit protein expression of GABA receptors in lateral-dorsal thalamic regions and somatosensory cortex of rats exposed to early life stress. Alterations in α subunits of GABA receptors could alter its receptor pharmacology and function
<xref ref-type="bibr" rid="pone.0066962-BrooksKayal1">[62]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-BrooksKayal2">[63]</xref>
. Some of these molecular and metabolic alterations may be related to the effects of early life stress on electrophysiology in the lateral thalamic structures we observed.</p>
<p>In addition to the effects on single cell neuronal firing, we also investigated the effects of MS and kindling on brain neuronal network function by examining the EEG activity recorded over the cortex. Amygdala kindling was associated with a significant increase in the power of the delta frequency band both in rats under neuroleptic analgesia and in freely moving rats, consistent with previous studies showing increased delta activity in the amygdala of kindled rats
<xref ref-type="bibr" rid="pone.0066962-Xu2">[64]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-Adamec1">[65]</xref>
. Nazer and Dickson
<xref ref-type="bibr" rid="pone.0066962-Nazer1">[66]</xref>
showed that slow oscillations in the EEG promote epileptiform discharges in the hippocampus. Increased delta activity has also been reported to be related to the increased neuronal burst firing
<xref ref-type="bibr" rid="pone.0066962-Crunelli1">[67]</xref>
, although in this study we found no correlation between these two measures for either the hippocampus or the TRN (
<xref ref-type="fig" rid="pone-0066962-g005">Figure 5C&D</xref>
). The absence of correlation in these measures likely reflects the absence of functional relation between the recording sites in frontal cortex and the hippocampus as well as the TRN. In freely moving rats exposed to MS, there was a significant decrease in the delta frequency EEG activity. The implications of this finding are unknown but, interestingly, it is in line with decreased EEG power over wide frequency bands associated with early stress in humans
<xref ref-type="bibr" rid="pone.0066962-McFarlane1">[68]</xref>
.</p>
<p>We also investigated the effect of MS on neuronal firing with the onset and progression of a kindled seizure in the TRN and somatosensory cortex. With the onset of a seizure there was an increase in firing frequency as well as burst firing of somatosensory cortical neurons, whereas in TRN there was an increase in firing frequency only. A similar pattern has been reported previously
<italic>in vivo</italic>
in the amygdala
<xref ref-type="bibr" rid="pone.0066962-Tsuru1">[69]</xref>
, piriform and perirhinal cortices
<xref ref-type="bibr" rid="pone.0066962-Teskey1">[70]</xref>
and substantia nigra pars reticulata
<xref ref-type="bibr" rid="pone.0066962-Bonhaus1">[71]</xref>
, and also in hippocampus with chemoconvulsant induced seizures
<xref ref-type="bibr" rid="pone.0066962-CymerblitSabba1">[72]</xref>
,
<xref ref-type="bibr" rid="pone.0066962-CymerblitSabba2">[73]</xref>
. Our results are consistent with
<italic>in vitro</italic>
findings from epileptic rats of increased burst firing in somatosensory cortex in brain slices
<xref ref-type="bibr" rid="pone.0066962-Sanabria1">[37]</xref>
. However, ours is the first study to investigate neuronal firing patterns in the somatosensory cortex during an amygdala kindling-induced seizure. Notably, we found that the increase in burst firing with the progression of a limbic kindled seizure was significantly greater in rats previously exposed to MS. Such enhanced propensity to burst firing of cortical neurons may contribute to the increased propensity of animals exposed to MS to develop generalized convulsive seizures.</p>
<p>Overall, the results of this study demonstrate that exposure to early life stress in the form of MS induces enduring alterations in the firing patterns of neurons in the hippocampus, TRN and somatosensory cortex that may help explain the increased vulnerability to progression of limbic epileptogenesis brought by MS. These changes were more marked following kindling, and neurons in the somatosensory cortex were more vulnerable to being recruited into a burst firing pattern during a kindled seizure in rats that had experienced MS. Further studies aiming to understand the molecular mechanisms underlying the generation of burst firing observed in this study could provide support for a causal relationship between electrophysiological changes in epilepsy circuits and epilepsy progression, and open up potential therapeutic options involving pharmacological inhibition of these pathways.</p>
</sec>
</body>
<back>
<ack>
<p>We are grateful to Dr. Yoshiki Kaneoke (Department of System Neurophysiology Graduate School, Wakayama Medical University, Japan) for providing his software to calculate Lomb spectrograms.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0066962-Engel1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Engel</surname>
<given-names>J</given-names>
</name>
(
<year>2001</year>
)
<article-title>Mesial temporal lobe epilepsy: What have we learned?</article-title>
<source>Neuroscientist</source>
<volume>7</volume>
:
<fpage>340</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="pmid">11488399</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Jouny1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jouny</surname>
<given-names>CC</given-names>
</name>
,
<name>
<surname>Adamolekun</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Franaszczuk</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Bergey</surname>
<given-names>GK</given-names>
</name>
(
<year>2007</year>
)
<article-title>Intrinsic ictal dynamics at the seizure focus: Effects of secondary generalization revealed by complexity measures</article-title>
.
<source>Epilepsia</source>
<volume>48</volume>
:
<fpage>297</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="pmid">17295623</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Ali1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ali</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Salzberg</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>French</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>NC</given-names>
</name>
(
<year>2011</year>
)
<article-title>Electrophysiological insights into the enduring effects of early life stress on the brain</article-title>
.
<source>Psychopharmacology (Berl)</source>
<volume>214</volume>
:
<fpage>155</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="pmid">21165736</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Koe1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Koe</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>NC</given-names>
</name>
,
<name>
<surname>Salzberg</surname>
<given-names>MR</given-names>
</name>
(
<year>2009</year>
)
<article-title>Early life stress as an influence on limbic epilepsy: an hypothesis whose time has come?</article-title>
<source>Front Behav Neurosci</source>
<volume>3</volume>
:
<fpage>24</fpage>
<pub-id pub-id-type="pmid">19838325</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Scharfman1">
<label>5</label>
<mixed-citation publication-type="book">Scharfman HE, Pedley TA (2007) Temporal lobe epilepsy; Gilman S, editor. London, UK: Elsevier. 349–369 p.</mixed-citation>
</ref>
<ref id="pone.0066962-Taher1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Taher</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Salzberg</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Morris</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Rees</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>O'Brien</surname>
<given-names>TJ</given-names>
</name>
(
<year>2005</year>
)
<article-title>Chronic low-dose corticosterone supplementation enhances acquired epileptogenesis in the rat amygdala kindling model of TLE</article-title>
.
<source>Neuropsychopharmacology</source>
<volume>30</volume>
:
<fpage>1610</fpage>
<lpage>1616</lpage>
<pub-id pub-id-type="pmid">15770235</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Kumar1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kumar</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Couper</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>O'Brien</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Salzberg</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>NC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>The acceleration of amygdala kindling epileptogenesis by chronic low-dose corticosterone involves both mineralocorticoid and glucocorticoid receptors</article-title>
.
<source>Psychoneuroendocrinology</source>
<volume>32</volume>
:
<fpage>834</fpage>
<lpage>842</lpage>
<pub-id pub-id-type="pmid">17614213</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Karst1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Karst</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>de Kloet</surname>
<given-names>ER</given-names>
</name>
,
<name>
<surname>Joels</surname>
<given-names>M</given-names>
</name>
(
<year>1999</year>
)
<article-title>Episodic corticosterone treatment accelerates kindling epileptogenesis and triggers long-term changes in hippocampal CA1 cells, in the fully kindled state</article-title>
.
<source>Eur J Neurosci</source>
<volume>11</volume>
:
<fpage>889</fpage>
<lpage>898</lpage>
<pub-id pub-id-type="pmid">10103082</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Sanchez1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sanchez</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Ladd</surname>
<given-names>CO</given-names>
</name>
,
<name>
<surname>Plotsky</surname>
<given-names>PM</given-names>
</name>
(
<year>2001</year>
)
<article-title>Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models</article-title>
.
<source>Dev Psychopathol</source>
<volume>13</volume>
:
<fpage>419</fpage>
<lpage>449</lpage>
<pub-id pub-id-type="pmid">11523842</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Kumar2">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kumar</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>NC</given-names>
</name>
,
<name>
<surname>Morris</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Rees</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>O'Brien</surname>
<given-names>TJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Early life stress enhancement of limbic epileptogenesis in adult rats: mechanistic insights</article-title>
.
<source>PLoS One</source>
<volume>6</volume>
:
<fpage>e24033</fpage>
<pub-id pub-id-type="pmid">21957442</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Salzberg1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Salzberg</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Supit</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>NC</given-names>
</name>
,
<name>
<surname>Morris</surname>
<given-names>MJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Early postnatal stress confers enduring vulnerability to limbic epileptogenesis</article-title>
.
<source>Epilepsia</source>
<volume>48</volume>
:
<fpage>2079</fpage>
<lpage>2085</lpage>
<pub-id pub-id-type="pmid">17999745</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Jones1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jones</surname>
<given-names>NC</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>O'Brien</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Morris</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Rees</surname>
<given-names>SM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Anxiolytic effects of rapid amygdala kindling, and the influence of early life experience in rats</article-title>
.
<source>Behav Brain Res</source>
<volume>203</volume>
:
<fpage>81</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="pmid">19397932</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Sutula1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sutula</surname>
<given-names>TP</given-names>
</name>
(
<year>2005</year>
)
<article-title>Kindling, epilepsy, and the plasticity of network synchronization</article-title>
.
<source>Kindling 6</source>
<volume>55</volume>
:
<fpage>147</fpage>
<lpage>159</lpage>
</mixed-citation>
</ref>
<ref id="pone.0066962-Morimoto1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morimoto</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Fahnestock</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Racine</surname>
<given-names>RJ</given-names>
</name>
(
<year>2004</year>
)
<article-title>Kindling and status epilepticus models of epilepsy: rewiring the brain</article-title>
.
<source>Progress in Neurobiology</source>
<volume>73</volume>
:
<fpage>1</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">15193778</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Lai1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lai</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>SN</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>LT</given-names>
</name>
(
<year>2008</year>
)
<article-title>Neonatal isolation enhances anxiety-like behavior following early-life seizure in rats</article-title>
.
<source>Pediatr Neonatol</source>
<volume>49</volume>
:
<fpage>19</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">18947011</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Lai2">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lai</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Lui</surname>
<given-names>CC</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>SN</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>JY</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>LT</given-names>
</name>
(
<year>2009</year>
)
<article-title>Epileptogenesis is increased in rats with neonatal isolation and early-life seizure and ameliorated by MK-801: a long-term MRI and histological study</article-title>
.
<source>Pediatr Res</source>
<volume>66</volume>
:
<fpage>441</fpage>
<lpage>447</lpage>
<pub-id pub-id-type="pmid">19581840</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Bertram1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bertram</surname>
<given-names>EH</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>DX</given-names>
</name>
,
<name>
<surname>Williamson</surname>
<given-names>JM</given-names>
</name>
(
<year>2008</year>
)
<article-title>Multiple roles of midline dorsal thalamic nuclei in induction and spread of limbic seizures</article-title>
.
<source>Epilepsia</source>
<volume>49</volume>
:
<fpage>256</fpage>
<lpage>268</lpage>
<pub-id pub-id-type="pmid">18028408</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Nanobashvili1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nanobashvili</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Chachua</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Nanobashvili</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Bilanishvili</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Lindvall</surname>
<given-names>O</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus</article-title>
.
<source>Experimental Neurology</source>
<volume>181</volume>
:
<fpage>224</fpage>
<lpage>230</lpage>
<pub-id pub-id-type="pmid">12781995</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Mraovitch1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mraovitch</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Calando</surname>
<given-names>Y</given-names>
</name>
(
<year>1995</year>
)
<article-title>Limbic and/or Generalized Convulsive Seizures Elicited by Specific Sites in the Thalamus</article-title>
.
<source>Neuroreport</source>
<volume>6</volume>
:
<fpage>519</fpage>
<lpage>523</lpage>
<pub-id pub-id-type="pmid">7766856</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Mraovitch2">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mraovitch</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Calando</surname>
<given-names>Y</given-names>
</name>
(
<year>1999</year>
)
<article-title>Interactions between limbic, thalamo-striatal-cortical, and central autonomic pathways during epileptic seizure progression</article-title>
.
<source>Journal of Comparative Neurology</source>
<volume>411</volume>
:
<fpage>145</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="pmid">10404113</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Jones2">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jones</surname>
<given-names>NC</given-names>
</name>
,
<name>
<surname>Salzberg</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Couper</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Morris</surname>
<given-names>MJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Elevated anxiety and depressive-like behavior in a rat model of genetic generalized epilepsy suggesting common causation</article-title>
.
<source>Exp Neurol</source>
<volume>209</volume>
:
<fpage>254</fpage>
<lpage>260</lpage>
<pub-id pub-id-type="pmid">18022621</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Racine1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Racine</surname>
<given-names>RJ</given-names>
</name>
(
<year>1972</year>
)
<article-title>Modification of seizure activity by electrical stimulation. II. Motor seizure</article-title>
.
<source>Electroencephalogr Clin Neurophysiol</source>
<volume>32</volume>
:
<fpage>281</fpage>
<lpage>294</lpage>
<pub-id pub-id-type="pmid">4110397</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Paxinos1">
<label>23</label>
<mixed-citation publication-type="book">Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press.</mixed-citation>
</ref>
<ref id="pone.0066962-Pinault1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pinault</surname>
<given-names>D</given-names>
</name>
(
<year>2005</year>
)
<article-title>A new stabilizing craniotomy-duratomy technique for single-cell anatomo-electrophysiological exploration of living intact brain networks</article-title>
.
<source>Journal of Neuroscience Methods</source>
<volume>141</volume>
:
<fpage>231</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="pmid">15661305</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Pinault2">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pinault</surname>
<given-names>D</given-names>
</name>
(
<year>1996</year>
)
<article-title>A novel single-cell staining procedure performed in vivo under electrophysiological control: Morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin</article-title>
.
<source>Journal of Neuroscience Methods</source>
<volume>65</volume>
:
<fpage>113</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="pmid">8740589</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Pinault3">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pinault</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Vergnes</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Marescaux</surname>
<given-names>C</given-names>
</name>
(
<year>2001</year>
)
<article-title>Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: In vivo dual extracellular recording of thalamic relay and reticular neurons</article-title>
.
<source>Neuroscience</source>
<volume>105</volume>
:
<fpage>181</fpage>
<lpage>201</lpage>
<pub-id pub-id-type="pmid">11483311</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Csicsvari1">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Csicsvari</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Hirase</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Czurko</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mamiya</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Buzsaki</surname>
<given-names>G</given-names>
</name>
(
<year>1999</year>
)
<article-title>Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat</article-title>
.
<source>Journal of Neuroscience</source>
<volume>19</volume>
:
<fpage>274</fpage>
<lpage>287</lpage>
<pub-id pub-id-type="pmid">9870957</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Bartho1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bartho</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Hirase</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Monconduit</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Zugaro</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Harris</surname>
<given-names>KD</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Characterization of neocortical principal cells and Interneurons by network interactions and extracellular features</article-title>
.
<source>Journal of Neurophysiology</source>
<volume>92</volume>
:
<fpage>600</fpage>
<lpage>608</lpage>
<pub-id pub-id-type="pmid">15056678</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Kaneoke1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kaneoke</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Vitek</surname>
<given-names>JL</given-names>
</name>
(
<year>1996</year>
)
<article-title>Burst and oscillation as disparate neuronal properties</article-title>
.
<source>J Neurosci Methods</source>
<volume>68</volume>
:
<fpage>211</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="pmid">8912194</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Mirescu1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mirescu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Peters</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Gould</surname>
<given-names>E</given-names>
</name>
(
<year>2004</year>
)
<article-title>Early life experience alters response of adult neurogenesis to stress</article-title>
.
<source>Nat Neurosci</source>
<volume>7</volume>
:
<fpage>841</fpage>
<lpage>846</lpage>
<pub-id pub-id-type="pmid">15273691</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Thomas1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Thomas</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Watabe</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Moody</surname>
<given-names>TD</given-names>
</name>
,
<name>
<surname>Makhinson</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>O'Dell</surname>
<given-names>TJ</given-names>
</name>
(
<year>1998</year>
)
<article-title>Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation</article-title>
.
<source>Journal of Neuroscience</source>
<volume>18</volume>
:
<fpage>7118</fpage>
<lpage>7126</lpage>
<pub-id pub-id-type="pmid">9736635</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Pike1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pike</surname>
<given-names>FG</given-names>
</name>
,
<name>
<surname>Meredith</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>Olding</surname>
<given-names>AWA</given-names>
</name>
,
<name>
<surname>Paulsen</surname>
<given-names>O</given-names>
</name>
(
<year>1999</year>
)
<article-title>Postsynaptic bursting is essential for ‘Hebbian’ induction of associative long-term potentiation at excitatory synapses in rat hippocampus</article-title>
.
<source>Journal of Physiology-London</source>
<volume>518</volume>
:
<fpage>571</fpage>
<lpage>576</lpage>
</mixed-citation>
</ref>
<ref id="pone.0066962-Lisman1">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lisman</surname>
<given-names>JE</given-names>
</name>
(
<year>1997</year>
)
<article-title>Bursts as a unit of neural information: Making unreliable synapses reliable</article-title>
.
<source>Trends in Neurosciences</source>
<volume>20</volume>
:
<fpage>38</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">9004418</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Stevens1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Stevens</surname>
<given-names>CF</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>YY</given-names>
</name>
(
<year>1995</year>
)
<article-title>Facilitation and Depression at Single Central Synapses</article-title>
.
<source>Neuron</source>
<volume>14</volume>
:
<fpage>795</fpage>
<lpage>802</lpage>
<pub-id pub-id-type="pmid">7718241</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Becker1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Becker</surname>
<given-names>AJ</given-names>
</name>
,
<name>
<surname>Pitsch</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Sochivko</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Opitz</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Staniek</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy</article-title>
.
<source>J Neurosci</source>
<volume>28</volume>
:
<fpage>13341</fpage>
<lpage>13353</lpage>
<pub-id pub-id-type="pmid">19052226</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Graef1">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Graef</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Nordskog</surname>
<given-names>BK</given-names>
</name>
,
<name>
<surname>Wiggins</surname>
<given-names>WF</given-names>
</name>
,
<name>
<surname>Godwin</surname>
<given-names>DW</given-names>
</name>
(
<year>2009</year>
)
<article-title>An acquired channelopathy involving thalamic T-type Ca2+ channels after status epilepticus</article-title>
.
<source>J Neurosci</source>
<volume>29</volume>
:
<fpage>4430</fpage>
<lpage>4441</lpage>
<pub-id pub-id-type="pmid">19357270</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Sanabria1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sanabria</surname>
<given-names>ERG</given-names>
</name>
,
<name>
<surname>da Silva</surname>
<given-names>AV</given-names>
</name>
,
<name>
<surname>Spreafico</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Cavalheiro</surname>
<given-names>EA</given-names>
</name>
(
<year>2002</year>
)
<article-title>Damage, reorganization, and abnormal neocortical hyperexcitability in the pilocarpine model of temporal lobe epilepsy</article-title>
.
<source>Epilepsia</source>
<volume>43</volume>
:
<fpage>96</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="pmid">12121302</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Heisler1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Heisler</surname>
<given-names>LK</given-names>
</name>
,
<name>
<surname>Chu</surname>
<given-names>HM</given-names>
</name>
,
<name>
<surname>Brennan</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Danao</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Bajwa</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>1998</year>
)
<article-title>Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice</article-title>
.
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<volume>95</volume>
:
<fpage>15049</fpage>
<lpage>15054</lpage>
<pub-id pub-id-type="pmid">9844013</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-FreemanDaniels1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Freeman-Daniels</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Beck</surname>
<given-names>SG</given-names>
</name>
,
<name>
<surname>Kirby</surname>
<given-names>LG</given-names>
</name>
(
<year>2011</year>
)
<article-title>Cellular correlates of anxiety in CA1 hippocampal pyramidal cells of 5-HT1A receptor knockout mice</article-title>
.
<source>Psychopharmacology</source>
<volume>213</volume>
:
<fpage>453</fpage>
<lpage>463</lpage>
<pub-id pub-id-type="pmid">20981413</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Xu1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Xu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Anwyl</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>DeVry</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Rowan</surname>
<given-names>MJ</given-names>
</name>
(
<year>1997</year>
)
<article-title>Effect of repeated ipsapirone treatment on hippocampal excitatory synaptic transmission in the freely behaving rat: Role of 5-HT1A receptors and relationship to anxiolytic effect</article-title>
.
<source>European Journal of Pharmacology</source>
<volume>323</volume>
:
<fpage>59</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="pmid">9105877</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Kapus1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kapus</surname>
<given-names>GL</given-names>
</name>
,
<name>
<surname>Gacsalyi</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Vegh</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kompagne</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Hegedus</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Antagonism of AMPA receptors produces anxiolytic-like behavior in rodents: effects of GYKI 52466 and its novel analogues</article-title>
.
<source>Psychopharmacology (Berl)</source>
<volume>198</volume>
:
<fpage>231</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="pmid">18363046</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Bertram2">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bertram</surname>
<given-names>EH</given-names>
</name>
,
<name>
<surname>Mangan</surname>
<given-names>PS</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>DX</given-names>
</name>
,
<name>
<surname>Scott</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Williamson</surname>
<given-names>JM</given-names>
</name>
(
<year>2001</year>
)
<article-title>The midline thalamus: Alterations and a potential role in limbic epilepsy</article-title>
.
<source>Epilepsia</source>
<volume>42</volume>
:
<fpage>967</fpage>
<lpage>978</lpage>
<pub-id pub-id-type="pmid">11554881</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Hiyoshi1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hiyoshi</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Wada</surname>
<given-names>JA</given-names>
</name>
(
<year>1988</year>
)
<article-title>Midline Thalamic Lesion and Feline Amygdaloid Kindling.2. Effect of Lesion Placement Upon Completion of Primary Site Kindling</article-title>
.
<source>Electroencephalography and Clinical Neurophysiology</source>
<volume>70</volume>
:
<fpage>339</fpage>
<lpage>349</lpage>
<pub-id pub-id-type="pmid">2458242</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Patel1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Patel</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Millan</surname>
<given-names>MH</given-names>
</name>
,
<name>
<surname>Meldrum</surname>
<given-names>BS</given-names>
</name>
(
<year>1988</year>
)
<article-title>Decrease in Excitatory Transmission within the Lateral Habenula and the Mediodorsal Thalamus Protects against Limbic Seizures in Rats</article-title>
.
<source>Experimental Neurology</source>
<volume>101</volume>
:
<fpage>63</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">2839355</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Chen1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Su</surname>
<given-names>HL</given-names>
</name>
,
<name>
<surname>Yue</surname>
<given-names>CY</given-names>
</name>
,
<name>
<surname>Remy</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Royeck</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>An Increase in Persistent Sodium Current Contributes to Intrinsic Neuronal Bursting After Status Epilepticus</article-title>
.
<source>Journal of Neurophysiology</source>
<volume>105</volume>
:
<fpage>117</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="pmid">20980543</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Faas1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Faas</surname>
<given-names>GC</given-names>
</name>
,
<name>
<surname>Vreugdenhil</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Wadman</surname>
<given-names>WJ</given-names>
</name>
(
<year>1996</year>
)
<article-title>Calcium currents in pyramidal CA1 neurons in vitro after kindling epileptogenesis in the hippocampus of the rat</article-title>
.
<source>Neuroscience</source>
<volume>75</volume>
:
<fpage>57</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="pmid">8923523</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Tringham1">
<label>47</label>
<mixed-citation publication-type="book">Tringham E, Powell KL, Cain SM, Kuplast K, Mezeyova J, et al.. (2012) T-Type Calcium Channel Blockers That Attenuate Thalamic Burst Firing and Suppress Absence Seizures. Science Translational Medicine 4.</mixed-citation>
</ref>
<ref id="pone.0066962-Wimmer1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wimmer</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Astori</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bond</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>Rovo</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Chatton</surname>
<given-names>JY</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold</article-title>
.
<source>J Neurosci</source>
<volume>32</volume>
:
<fpage>13917</fpage>
<lpage>13928</lpage>
<pub-id pub-id-type="pmid">23035101</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Aldenhoff1">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aldenhoff</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>Gruol</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Rivier</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Vale</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Siggins</surname>
<given-names>GR</given-names>
</name>
(
<year>1983</year>
)
<article-title>Corticotropin Releasing-Factor Decreases Postburst Hyperpolarizations and Excites Hippocampal-Neurons</article-title>
.
<source>Science</source>
<volume>221</volume>
:
<fpage>875</fpage>
<lpage>877</lpage>
<pub-id pub-id-type="pmid">6603658</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Cain1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cain</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Snutch</surname>
<given-names>TP</given-names>
</name>
(
<year>2010</year>
)
<article-title>Contributions of T-type calcium channel isoforms to neuronal firing</article-title>
.
<source>Channels (Austin)</source>
<volume>4</volume>
:
<fpage>475</fpage>
<lpage>482</lpage>
<pub-id pub-id-type="pmid">21139420</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Cavdar1">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cavdar</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Onat</surname>
<given-names>FY</given-names>
</name>
,
<name>
<surname>Cakmak</surname>
<given-names>YO</given-names>
</name>
,
<name>
<surname>Yananli</surname>
<given-names>HR</given-names>
</name>
,
<name>
<surname>Gulcebi</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat</article-title>
.
<source>Journal of Anatomy</source>
<volume>212</volume>
:
<fpage>249</fpage>
<lpage>256</lpage>
<pub-id pub-id-type="pmid">18221482</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Wouterlood1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wouterlood</surname>
<given-names>FG</given-names>
</name>
,
<name>
<surname>Saldana</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Witter</surname>
<given-names>MP</given-names>
</name>
(
<year>1990</year>
)
<article-title>Projection from the Nucleus-Reuniens-Thalami to the Hippocampal Region – Light and Electron-Microscopic Tracing Study in the Rat with the Anterograde Tracer Phaseolus-Vulgaris Leukoagglutinin</article-title>
.
<source>Journal of Comparative Neurology</source>
<volume>296</volume>
:
<fpage>179</fpage>
<lpage>203</lpage>
<pub-id pub-id-type="pmid">2358531</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Suarez1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Suarez</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Maglianesi</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Perassi</surname>
<given-names>NI</given-names>
</name>
(
<year>1998</year>
)
<article-title>Involvement of the anterodorsal thalami nuclei on the hypophysoadrenal response to chronic stress in rats</article-title>
.
<source>Physiol Behav</source>
<volume>64</volume>
:
<fpage>111</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="pmid">9661990</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-UlrichLai1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ulrich-Lai</surname>
<given-names>YM</given-names>
</name>
,
<name>
<surname>Herman</surname>
<given-names>JP</given-names>
</name>
(
<year>2009</year>
)
<article-title>Neural regulation of endocrine and autonomic stress responses</article-title>
.
<source>Nat Rev Neurosci</source>
<volume>10</volume>
:
<fpage>397</fpage>
<lpage>409</lpage>
<pub-id pub-id-type="pmid">19469025</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Bhatnagar1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bhatnagar</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Huber</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Nowak</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Trotter</surname>
<given-names>P</given-names>
</name>
(
<year>2002</year>
)
<article-title>Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint</article-title>
.
<source>J Neuroendocrinol</source>
<volume>14</volume>
:
<fpage>403</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">12000546</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Siggins1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Siggins</surname>
<given-names>GR</given-names>
</name>
,
<name>
<surname>Gruol</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Aldenhoff</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Pittman</surname>
<given-names>Q</given-names>
</name>
(
<year>1985</year>
)
<article-title>Electrophysiological Actions of Corticotropin-Releasing Factor in the Central Nervous-System</article-title>
.
<source>Federation Proceedings</source>
<volume>44</volume>
:
<fpage>237</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="pmid">3155696</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Wang1">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>HL</given-names>
</name>
,
<name>
<surname>Wayner</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Chai</surname>
<given-names>CY</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>EHY</given-names>
</name>
(
<year>1998</year>
)
<article-title>Corticotrophin-releasing factor produces a long-lasting enhancement of synaptic efficacy in the hippocampus</article-title>
.
<source>European Journal of Neuroscience</source>
<volume>10</volume>
:
<fpage>3428</fpage>
<lpage>3437</lpage>
<pub-id pub-id-type="pmid">9824456</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Tjong1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tjong</surname>
<given-names>YW</given-names>
</name>
,
<name>
<surname>Ip</surname>
<given-names>SP</given-names>
</name>
,
<name>
<surname>Lao</surname>
<given-names>LX</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Fong</surname>
<given-names>HHS</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Neonatal maternal, separation elevates thalamic corticotrophin releasing factor type 1 receptor expression response to colonic distension in rat</article-title>
.
<source>Neuroendocrinology Letters</source>
<volume>31</volume>
:
<fpage>215</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="pmid">20424584</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Parr1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parr</surname>
<given-names>LA</given-names>
</name>
,
<name>
<surname>Boudreau</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hecht</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Winslow</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Nemeroff</surname>
<given-names>CB</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Early life stress affects cerebral glucose metabolism in adult rhesus monkeys (Macaca mulatta)</article-title>
.
<source>Dev Cogn Neurosci</source>
<volume>2</volume>
:
<fpage>181</fpage>
<lpage>193</lpage>
<pub-id pub-id-type="pmid">22682736</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Ons1">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ons</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Marti</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Armario</surname>
<given-names>A</given-names>
</name>
(
<year>2004</year>
)
<article-title>Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA</article-title>
.
<source>Journal of Neurochemistry</source>
<volume>89</volume>
:
<fpage>1111</fpage>
<lpage>1118</lpage>
<pub-id pub-id-type="pmid">15147503</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Skilbeck1">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Skilbeck</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Johnston</surname>
<given-names>GA</given-names>
</name>
,
<name>
<surname>Hinton</surname>
<given-names>T</given-names>
</name>
(
<year>2010</year>
)
<article-title>Stress and GABA receptors</article-title>
.
<source>J Neurochem</source>
<volume>112</volume>
:
<fpage>1115</fpage>
<lpage>1130</lpage>
<pub-id pub-id-type="pmid">20002524</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-BrooksKayal1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brooks-Kayal</surname>
<given-names>AR</given-names>
</name>
,
<name>
<surname>Jin</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Price</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Dichter</surname>
<given-names>MA</given-names>
</name>
(
<year>1998</year>
)
<article-title>Developmental expression of GABA(A) receptor subunit mRNAs in individual hippocampal neurons in vitro and in vivo</article-title>
.
<source>J Neurochem</source>
<volume>70</volume>
:
<fpage>1017</fpage>
<lpage>1028</lpage>
<pub-id pub-id-type="pmid">9489721</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-BrooksKayal2">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brooks-Kayal</surname>
<given-names>AR</given-names>
</name>
,
<name>
<surname>Shumate</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Jin</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Rikhter</surname>
<given-names>TY</given-names>
</name>
,
<name>
<surname>Coulter</surname>
<given-names>DA</given-names>
</name>
(
<year>1998</year>
)
<article-title>Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy</article-title>
.
<source>Nat Med</source>
<volume>4</volume>
:
<fpage>1166</fpage>
<lpage>1172</lpage>
<pub-id pub-id-type="pmid">9771750</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Xu2">
<label>64</label>
<mixed-citation publication-type="book">Xu Z, Wang Y, Jin M, Yue J, Xu C, et al.. (2012) Polarity-dependent effect of low-frequency stimulation on amygdaloid kindling in rats. Brain Stimul.</mixed-citation>
</ref>
<ref id="pone.0066962-Adamec1">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Adamec</surname>
<given-names>RE</given-names>
</name>
,
<name>
<surname>Stark-Adamec</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Burnham</surname>
<given-names>WM</given-names>
</name>
,
<name>
<surname>Bruun-Meyer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Perrin</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
(
<year>1981</year>
)
<article-title>Power spectral analysis of EEG drug response in the kindled rat brain</article-title>
.
<source>Electroencephalogr Clin Neurophysiol</source>
<volume>52</volume>
:
<fpage>451</fpage>
<lpage>460</lpage>
<pub-id pub-id-type="pmid">6171411</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Nazer1">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nazer</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Dickson</surname>
<given-names>CT</given-names>
</name>
(
<year>2009</year>
)
<article-title>Slow oscillation state facilitates epileptiform events in the hippocampus</article-title>
.
<source>Journal of Neurophysiology</source>
<volume>102</volume>
:
<fpage>1880</fpage>
<lpage>1889</lpage>
<pub-id pub-id-type="pmid">19553480</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Crunelli1">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Crunelli</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Errington</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Hughes</surname>
<given-names>SW</given-names>
</name>
,
<name>
<surname>Toth</surname>
<given-names>TI</given-names>
</name>
(
<year>2011</year>
)
<article-title>The thalamic low-threshold Ca(2)(+) potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks</article-title>
.
<source>Philos Transact A Math Phys Eng Sci</source>
<volume>369</volume>
:
<fpage>3820</fpage>
<lpage>3839</lpage>
</mixed-citation>
</ref>
<ref id="pone.0066962-McFarlane1">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>McFarlane</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Clark</surname>
<given-names>CR</given-names>
</name>
,
<name>
<surname>Bryant</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Williams</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>Niaura</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>The impact of early life stress on psychophysiological, personality and behavioral measures in 740 non-clinical subjects</article-title>
.
<source>J Integr Neurosci</source>
<volume>4</volume>
:
<fpage>27</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="pmid">16035139</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Tsuru1">
<label>69</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tsuru</surname>
<given-names>N</given-names>
</name>
(
<year>1985</year>
)
<article-title>Neuronal firing pattern following amygdaloid kindling in unrestrained rats</article-title>
.
<source>Epilepsia</source>
<volume>26</volume>
:
<fpage>488</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="pmid">4043019</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Teskey1">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Teskey</surname>
<given-names>GC</given-names>
</name>
,
<name>
<surname>Racine</surname>
<given-names>RJ</given-names>
</name>
(
<year>1993</year>
)
<article-title>Increased spontaneous unit discharge rates following electrical kindling in the rat</article-title>
.
<source>Brain Res</source>
<volume>624</volume>
:
<fpage>11</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="pmid">8252381</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-Bonhaus1">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bonhaus</surname>
<given-names>DW</given-names>
</name>
,
<name>
<surname>Walters</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Mcnamara</surname>
<given-names>JO</given-names>
</name>
(
<year>1986</year>
)
<article-title>Activation of Substantia-Nigra Neurons – Role in the Propagation of Seizures in Kindled Rats</article-title>
.
<source>Journal of Neuroscience</source>
<volume>6</volume>
:
<fpage>3024</fpage>
<lpage>3030</lpage>
<pub-id pub-id-type="pmid">3760946</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-CymerblitSabba1">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cymerblit-Sabba</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Schiller</surname>
<given-names>Y</given-names>
</name>
(
<year>2010</year>
)
<article-title>Network Dynamics during Development of Pharmacologically Induced Epileptic Seizures in Rats In Vivo</article-title>
.
<source>Journal of Neuroscience</source>
<volume>30</volume>
:
<fpage>1619</fpage>
<lpage>1630</lpage>
<pub-id pub-id-type="pmid">20130172</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0066962-CymerblitSabba2">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cymerblit-Sabba</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Schiller</surname>
<given-names>Y</given-names>
</name>
(
<year>2012</year>
)
<article-title>Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo</article-title>
.
<source>Journal of Neurophysiology</source>
<volume>107</volume>
:
<fpage>1718</fpage>
<lpage>1730</lpage>
<pub-id pub-id-type="pmid">22190619</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A93  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002A93  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024