Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002A06 ( Pmc/Corpus ); précédent : 002A059; suivant : 002A070 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Design of a Bovine Low-Density SNP Array Optimized for Imputation</title>
<author>
<name sortKey="Boichard, Didier" sort="Boichard, Didier" uniqKey="Boichard D" first="Didier" last="Boichard">Didier Boichard</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>UMR1313 Animal Genetics and Integrative Biology, National Institute for Agricultural Research (INRA), Jouy-en-Josas, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chung, Hoyoung" sort="Chung, Hoyoung" uniqKey="Chung H" first="Hoyoung" last="Chung">Hoyoung Chung</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Animal Genetic Improvement Division, National Institute of Animal Science, Seonghwan, Cheonan, Republic of Korea</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Bovine Functional Genomics Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dassonneville, Romain" sort="Dassonneville, Romain" uniqKey="Dassonneville R" first="Romain" last="Dassonneville">Romain Dassonneville</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>UMR1313 Animal Genetics and Integrative Biology, National Institute for Agricultural Research (INRA), Jouy-en-Josas, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut de l'Elevage, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="David, Xavier" sort="David, Xavier" uniqKey="David X" first="Xavier" last="David">Xavier David</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>National Association of Livestock and Artificial Insemination Cooperatives (UNCEIA), Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Eggen, Andre" sort="Eggen, Andre" uniqKey="Eggen A" first="André" last="Eggen">André Eggen</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Illumina, San Diego, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fritz, Sebastien" sort="Fritz, Sebastien" uniqKey="Fritz S" first="Sébastien" last="Fritz">Sébastien Fritz</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>National Association of Livestock and Artificial Insemination Cooperatives (UNCEIA), Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gietzen, Kimberly J" sort="Gietzen, Kimberly J" uniqKey="Gietzen K" first="Kimberly J." last="Gietzen">Kimberly J. Gietzen</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Illumina, San Diego, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hayes, Ben J" sort="Hayes, Ben J" uniqKey="Hayes B" first="Ben J." last="Hayes">Ben J. Hayes</name>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Biosciences Research Division, Department of Primary Industries Victoria, Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Dairy Futures Cooperative Research Centre, Bundoora, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff9">
<addr-line>La Trobe University, Bundoora, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lawley, Cynthia T" sort="Lawley, Cynthia T" uniqKey="Lawley C" first="Cynthia T." last="Lawley">Cynthia T. Lawley</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Illumina, San Diego, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sonstegard, Tad S" sort="Sonstegard, Tad S" uniqKey="Sonstegard T" first="Tad S." last="Sonstegard">Tad S. Sonstegard</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Bovine Functional Genomics Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Tassell, Curtis P" sort="Van Tassell, Curtis P" uniqKey="Van Tassell C" first="Curtis P." last="Van Tassell">Curtis P. Van Tassell</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Bovine Functional Genomics Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vanraden, Paul M" sort="Vanraden, Paul M" uniqKey="Vanraden P" first="Paul M." last="Vanraden">Paul M. Vanraden</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>Animal Improvement Programs Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Viaud Martinez, Karine A" sort="Viaud Martinez, Karine A" uniqKey="Viaud Martinez K" first="Karine A." last="Viaud-Martinez">Karine A. Viaud-Martinez</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Illumina, San Diego, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wiggans, George R" sort="Wiggans, George R" uniqKey="Wiggans G" first="George R." last="Wiggans">George R. Wiggans</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>Animal Improvement Programs Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22470530</idno>
<idno type="pmc">3314603</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314603</idno>
<idno type="RBID">PMC:3314603</idno>
<idno type="doi">10.1371/journal.pone.0034130</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">002A06</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002A06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Design of a Bovine Low-Density SNP Array Optimized for Imputation</title>
<author>
<name sortKey="Boichard, Didier" sort="Boichard, Didier" uniqKey="Boichard D" first="Didier" last="Boichard">Didier Boichard</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>UMR1313 Animal Genetics and Integrative Biology, National Institute for Agricultural Research (INRA), Jouy-en-Josas, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chung, Hoyoung" sort="Chung, Hoyoung" uniqKey="Chung H" first="Hoyoung" last="Chung">Hoyoung Chung</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Animal Genetic Improvement Division, National Institute of Animal Science, Seonghwan, Cheonan, Republic of Korea</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Bovine Functional Genomics Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dassonneville, Romain" sort="Dassonneville, Romain" uniqKey="Dassonneville R" first="Romain" last="Dassonneville">Romain Dassonneville</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>UMR1313 Animal Genetics and Integrative Biology, National Institute for Agricultural Research (INRA), Jouy-en-Josas, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Institut de l'Elevage, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="David, Xavier" sort="David, Xavier" uniqKey="David X" first="Xavier" last="David">Xavier David</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>National Association of Livestock and Artificial Insemination Cooperatives (UNCEIA), Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Eggen, Andre" sort="Eggen, Andre" uniqKey="Eggen A" first="André" last="Eggen">André Eggen</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Illumina, San Diego, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fritz, Sebastien" sort="Fritz, Sebastien" uniqKey="Fritz S" first="Sébastien" last="Fritz">Sébastien Fritz</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>National Association of Livestock and Artificial Insemination Cooperatives (UNCEIA), Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gietzen, Kimberly J" sort="Gietzen, Kimberly J" uniqKey="Gietzen K" first="Kimberly J." last="Gietzen">Kimberly J. Gietzen</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Illumina, San Diego, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hayes, Ben J" sort="Hayes, Ben J" uniqKey="Hayes B" first="Ben J." last="Hayes">Ben J. Hayes</name>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Biosciences Research Division, Department of Primary Industries Victoria, Melbourne, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Dairy Futures Cooperative Research Centre, Bundoora, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff9">
<addr-line>La Trobe University, Bundoora, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lawley, Cynthia T" sort="Lawley, Cynthia T" uniqKey="Lawley C" first="Cynthia T." last="Lawley">Cynthia T. Lawley</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Illumina, San Diego, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sonstegard, Tad S" sort="Sonstegard, Tad S" uniqKey="Sonstegard T" first="Tad S." last="Sonstegard">Tad S. Sonstegard</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Bovine Functional Genomics Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Tassell, Curtis P" sort="Van Tassell, Curtis P" uniqKey="Van Tassell C" first="Curtis P." last="Van Tassell">Curtis P. Van Tassell</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Bovine Functional Genomics Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vanraden, Paul M" sort="Vanraden, Paul M" uniqKey="Vanraden P" first="Paul M." last="Vanraden">Paul M. Vanraden</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>Animal Improvement Programs Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Viaud Martinez, Karine A" sort="Viaud Martinez, Karine A" uniqKey="Viaud Martinez K" first="Karine A." last="Viaud-Martinez">Karine A. Viaud-Martinez</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Illumina, San Diego, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wiggans, George R" sort="Wiggans, George R" uniqKey="Wiggans G" first="George R." last="Wiggans">George R. Wiggans</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>Animal Improvement Programs Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loci that are useful for determining subspecies classification and certain paternal and maternal breed lineages. The total number of SNPs was 6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip was over 97% for most dairy and beef populations. The BovineLD imputations were about 3 percentage points more accurate than those from the Illumina GoldenGate Bovine3K BeadChip across multiple populations. The improvement was greatest when neither parent was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds as was the proportion of SNPs that were polymorphic. The new BovineLD chip should facilitate low-cost genomic selection in taurine beef and dairy cattle.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Meuwissen, The" uniqKey="Meuwissen T">THE Meuwissen</name>
</author>
<author>
<name sortKey="Hayes, Bj" uniqKey="Hayes B">BJ Hayes</name>
</author>
<author>
<name sortKey="Goddard, Me" uniqKey="Goddard M">ME Goddard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heffner, El" uniqKey="Heffner E">EL Heffner</name>
</author>
<author>
<name sortKey="Jannink, Jl" uniqKey="Jannink J">JL Jannink</name>
</author>
<author>
<name sortKey="Sorrells, Me" uniqKey="Sorrells M">ME Sorrells</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiggans, Gr" uniqKey="Wiggans G">GR Wiggans</name>
</author>
<author>
<name sortKey="Vanraden, Pm" uniqKey="Vanraden P">PM VanRaden</name>
</author>
<author>
<name sortKey="Cooper, Ta" uniqKey="Cooper T">TA Cooper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaeffer, Lr" uniqKey="Schaeffer L">LR Schaeffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pryce, Je" uniqKey="Pryce J">JE Pryce</name>
</author>
<author>
<name sortKey="Goddard, Me" uniqKey="Goddard M">ME Goddard</name>
</author>
<author>
<name sortKey="Raadsma, Hw" uniqKey="Raadsma H">HW Raadsma</name>
</author>
<author>
<name sortKey="Hayes, Bj" uniqKey="Hayes B">BJ Hayes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pryce, Je" uniqKey="Pryce J">JE Pryce</name>
</author>
<author>
<name sortKey="Daetwyler, Hd" uniqKey="Daetwyler H">HD Daetwyler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Eenennaam, Al" uniqKey="Van Eenennaam A">AL Van Eenennaam</name>
</author>
<author>
<name sortKey="Van Der Werf, Jhj" uniqKey="Van Der Werf J">JHJ van der Werf</name>
</author>
<author>
<name sortKey="Goddard, Me" uniqKey="Goddard M">ME Goddard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scheet, P" uniqKey="Scheet P">P Scheet</name>
</author>
<author>
<name sortKey="Stephens, M" uniqKey="Stephens M">M Stephens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Browning, Sr" uniqKey="Browning S">SR Browning</name>
</author>
<author>
<name sortKey="Browning, Bl" uniqKey="Browning B">BL Browning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Druet, T" uniqKey="Druet T">T Druet</name>
</author>
<author>
<name sortKey="Georges, M" uniqKey="Georges M">M Georges</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daetwyler, Hd" uniqKey="Daetwyler H">HD Daetwyler</name>
</author>
<author>
<name sortKey="Wiggans, Gr" uniqKey="Wiggans G">GR Wiggans</name>
</author>
<author>
<name sortKey="Hayes, Bj" uniqKey="Hayes B">BJ Hayes</name>
</author>
<author>
<name sortKey="Woolliams, Ja" uniqKey="Woolliams J">JA Woolliams</name>
</author>
<author>
<name sortKey="Goddard, Me" uniqKey="Goddard M">ME Goddard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hickey, Jm" uniqKey="Hickey J">JM Hickey</name>
</author>
<author>
<name sortKey="Kinghorn, Bp" uniqKey="Kinghorn B">BP Kinghorn</name>
</author>
<author>
<name sortKey="Tier, B" uniqKey="Tier B">B Tier</name>
</author>
<author>
<name sortKey="Wilson, Jf" uniqKey="Wilson J">JF Wilson</name>
</author>
<author>
<name sortKey="Dunstan, N" uniqKey="Dunstan N">N Dunstan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanraden, Pm" uniqKey="Vanraden P">PM VanRaden</name>
</author>
<author>
<name sortKey="O Connell, Jr" uniqKey="O Connell J">JR O'Connell</name>
</author>
<author>
<name sortKey="Wiggans, Gr" uniqKey="Wiggans G">GR Wiggans</name>
</author>
<author>
<name sortKey="Weigel, Ka" uniqKey="Weigel K">KA Weigel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Druet, T" uniqKey="Druet T">T Druet</name>
</author>
<author>
<name sortKey="Schrooten, C" uniqKey="Schrooten C">C Schrooten</name>
</author>
<author>
<name sortKey="De Roos, Ap" uniqKey="De Roos A">AP de Roos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weigel, Ka" uniqKey="Weigel K">KA Weigel</name>
</author>
<author>
<name sortKey="Van Tassell, Cp" uniqKey="Van Tassell C">CP Van Tassell</name>
</author>
<author>
<name sortKey="O Connell, Jr" uniqKey="O Connell J">JR O'Connell</name>
</author>
<author>
<name sortKey="Vanraden, Pm" uniqKey="Vanraden P">PM VanRaden</name>
</author>
<author>
<name sortKey="Wiggans, Gr" uniqKey="Wiggans G">GR Wiggans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dassonneville, R" uniqKey="Dassonneville R">R Dassonneville</name>
</author>
<author>
<name sortKey="Br Ndum, Rf" uniqKey="Br Ndum R">RF Brøndum</name>
</author>
<author>
<name sortKey="Druet, T" uniqKey="Druet T">T Druet</name>
</author>
<author>
<name sortKey="Fritz, S" uniqKey="Fritz S">S Fritz</name>
</author>
<author>
<name sortKey="Guillaume, F" uniqKey="Guillaume F">F Guillaume</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiggans, Gr" uniqKey="Wiggans G">GR Wiggans</name>
</author>
<author>
<name sortKey="Cooper, Ta" uniqKey="Cooper T">TA Cooper</name>
</author>
<author>
<name sortKey="Vanraden, Pm" uniqKey="Vanraden P">PM VanRaden</name>
</author>
<author>
<name sortKey="Olson, Km" uniqKey="Olson K">KM Olson</name>
</author>
<author>
<name sortKey="Tooker, Me" uniqKey="Tooker M">ME Tooker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matukumalli, Lk" uniqKey="Matukumalli L">LK Matukumalli</name>
</author>
<author>
<name sortKey="Lawley, Ct" uniqKey="Lawley C">CT Lawley</name>
</author>
<author>
<name sortKey="Schnabel, Rd" uniqKey="Schnabel R">RD Schnabel</name>
</author>
<author>
<name sortKey="Taylor, Jf" uniqKey="Taylor J">JF Taylor</name>
</author>
<author>
<name sortKey="Allan, Mf" uniqKey="Allan M">MF Allan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnston, J" uniqKey="Johnston J">J Johnston</name>
</author>
<author>
<name sortKey="Kistemaker, G" uniqKey="Kistemaker G">G Kistemaker</name>
</author>
<author>
<name sortKey="Sullivan, Pg" uniqKey="Sullivan P">PG Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edwards, Cj" uniqKey="Edwards C">CJ Edwards</name>
</author>
<author>
<name sortKey="Ginja, C" uniqKey="Ginja C">C Ginja</name>
</author>
<author>
<name sortKey="Kantanen, J" uniqKey="Kantanen J">J Kantanen</name>
</author>
<author>
<name sortKey="Perez Pardal, L" uniqKey="Perez Pardal L">L Pérez-Pardal</name>
</author>
<author>
<name sortKey="Tresset, A" uniqKey="Tresset A">A Tresset</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dassonneville, R" uniqKey="Dassonneville R">R Dassonneville</name>
</author>
<author>
<name sortKey="Fritz, S" uniqKey="Fritz S">S Fritz</name>
</author>
<author>
<name sortKey="Ducrocq, V" uniqKey="Ducrocq V">V Ducrocq</name>
</author>
<author>
<name sortKey="Boichard, D" uniqKey="Boichard D">D Boichard</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22470530</article-id>
<article-id pub-id-type="pmc">3314603</article-id>
<article-id pub-id-type="publisher-id">PONE-D-11-24812</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0034130</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Agriculture</subject>
<subj-group>
<subject>Agricultural Biotechnology</subject>
</subj-group>
<subj-group>
<subject>Agricultural Production</subject>
</subj-group>
<subj-group>
<subject>Animal Management</subject>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Computational Biology</subject>
<subj-group>
<subject>Genomics</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Genetics</subject>
<subj-group>
<subject>Population Genetics</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Genomics</subject>
</subj-group>
<subj-group>
<subject>Population Biology</subject>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Veterinary Science</subject>
<subj-group>
<subject>Animal Types</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Design of a Bovine Low-Density SNP Array Optimized for Imputation</article-title>
<alt-title alt-title-type="running-head">Bovine SNP Array for Accurate Imputation</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Boichard</surname>
<given-names>Didier</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chung</surname>
<given-names>Hoyoung</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dassonneville</surname>
<given-names>Romain</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>David</surname>
<given-names>Xavier</given-names>
</name>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Eggen</surname>
<given-names>André</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fritz</surname>
<given-names>Sébastien</given-names>
</name>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gietzen</surname>
<given-names>Kimberly J.</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hayes</surname>
<given-names>Ben J.</given-names>
</name>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
<xref ref-type="aff" rid="aff9">
<sup>9</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lawley</surname>
<given-names>Cynthia T.</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sonstegard</surname>
<given-names>Tad S.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Van Tassell</surname>
<given-names>Curtis P.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>VanRaden</surname>
<given-names>Paul M.</given-names>
</name>
<xref ref-type="aff" rid="aff10">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Viaud-Martinez</surname>
<given-names>Karine A.</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wiggans</surname>
<given-names>George R.</given-names>
</name>
<xref ref-type="aff" rid="aff10">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<collab>for the Bovine LD Consortium</collab>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>UMR1313 Animal Genetics and Integrative Biology, National Institute for Agricultural Research (INRA), Jouy-en-Josas, France</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Animal Genetic Improvement Division, National Institute of Animal Science, Seonghwan, Cheonan, Republic of Korea</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Bovine Functional Genomics Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Institut de l'Elevage, Paris, France</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>National Association of Livestock and Artificial Insemination Cooperatives (UNCEIA), Paris, France</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<addr-line>Illumina, San Diego, California, United States of America</addr-line>
</aff>
<aff id="aff7">
<label>7</label>
<addr-line>Biosciences Research Division, Department of Primary Industries Victoria, Melbourne, Victoria, Australia</addr-line>
</aff>
<aff id="aff8">
<label>8</label>
<addr-line>Dairy Futures Cooperative Research Centre, Bundoora, Victoria, Australia</addr-line>
</aff>
<aff id="aff9">
<label>9</label>
<addr-line>La Trobe University, Bundoora, Victoria, Australia</addr-line>
</aff>
<aff id="aff10">
<label>10</label>
<addr-line>Animal Improvement Programs Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Liu</surname>
<given-names>Zhanjiang</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">Auburn University, United States of America</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>ben.hayes@dpi.vic.gov.au</email>
</corresp>
<fn fn-type="con">
<p>Conceived and designed the experiments: DB XD BJH TSS CPV. Performed the experiments: XD AE CTL TSS CPV HC SF GRW. Analyzed the data: RD BJH PMV GRW. Contributed reagents/materials/analysis tools: KJG KVM CTL. Wrote the paper: DB RD AE BJH CTL TSS CPV PMV GRW.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>28</day>
<month>3</month>
<year>2012</year>
</pub-date>
<volume>7</volume>
<issue>3</issue>
<elocation-id>e34130</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>12</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>2</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.</copyright-statement>
<copyright-year>2012</copyright-year>
</permissions>
<abstract>
<p>The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loci that are useful for determining subspecies classification and certain paternal and maternal breed lineages. The total number of SNPs was 6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip was over 97% for most dairy and beef populations. The BovineLD imputations were about 3 percentage points more accurate than those from the Illumina GoldenGate Bovine3K BeadChip across multiple populations. The improvement was greatest when neither parent was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds as was the proportion of SNPs that were polymorphic. The new BovineLD chip should facilitate low-cost genomic selection in taurine beef and dairy cattle.</p>
</abstract>
<counts>
<page-count count="10"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Genetic improvement of several key agricultural species is accelerating with the adoption of genomic selection
<xref ref-type="bibr" rid="pone.0034130-Meuwissen1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-Heffner1">[2]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-Wiggans1">[3]</xref>
. With this method, animals or plants can be selected for breeding on the basis of their genetic merit predicted by markers spanning the entire genome. Particularly in dairy cattle, this method has been shown to be more efficient than conventional progeny testing of bulls (up to double the rate of genetic gain) as well as substantially less expensive
<xref ref-type="bibr" rid="pone.0034130-Schaeffer1">[4]</xref>
. Moreover, genomic selection opens new opportunities for sustainable management of populations by more efficiently selecting for traits that have low heritability, e.g. fitness traits, or traits that are difficult to measure. This method is also useful for managing the accumulation of inbreeding within breeds with a small effective population size. In dairy cattle, genomic selection has been deployed at a rapid pace, and most countries with major dairy breeding programs now rely heavily on this new technology
<xref ref-type="bibr" rid="pone.0034130-Pryce1">[5]</xref>
.</p>
<p>A major challenge in implementing genomic selection in most species is the cost of genotyping. The expected value of the information gained by genotyping must exceed the cost of obtaining the genotypes. During the early stages of genomic selection in the dairy industry, the cost of high-density genotyping could be justified. The primary application was to evaluate bulls that were potential candidates for production of commercial semen. Using SNP information for those evaluations resulted in more accurate selection of bulls to acquire and extensively market. Once increased accuracies of genome-enhanced breeding values had been demonstrated, breeders and buyers quickly adopted this technology to improve accuracy of selection
<xref ref-type="bibr" rid="pone.0034130-Pryce2">[6]</xref>
. This example of a genomic-selection application has extreme value compared with other animal food production paradigms. In contrast, profit from genomic selection is likely to be much lower for beef bulls and dairy females
<xref ref-type="bibr" rid="pone.0034130-Pryce1">[5]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-VanEenennaam1">[7]</xref>
. An appealing approach in situations with much lower returns from genotyping is to use a more economical, reduced-density SNP chip with markers optimized for imputation.</p>
<p>Imputation is the process of predicting unknown genotypes for animals from observed genotypes and often uses information from a reference population with dense genotypes to predict missing genotypes for animals with lower density genotypes. It is also applied to merge genotypes of similar densities but different SNPs. Most imputation algorithms use information from relatives and population linkage disequilibrium. A number of software programs for imputation have been developed based originally on human genetics
<xref ref-type="bibr" rid="pone.0034130-Scheet1">[8]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-Browning1">[9]</xref>
and more recently on animal genetics
<xref ref-type="bibr" rid="pone.0034130-Druet1">[10]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-Daetwyler1">[11]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-Hickey1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-VanRaden1">[13]</xref>
. The limited effective population sizes and population structures in livestock allow the possibility of imputation of high-density genotypes from quite low-density genotypes
<xref ref-type="bibr" rid="pone.0034130-Daetwyler1">[11]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-Druet2">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-Weigel1">[15]</xref>
,
<xref ref-type="bibr" rid="pone.0034130-Dassonneville1">[16]</xref>
.</p>
<p>In 2010, a low-density bovine SNP chip, the Illumina GoldenGate Bovine3K Genotyping Beadchip (
<ext-link ext-link-type="uri" xlink:href="http://www.illumina.com/documents/products/datasheets/datasheet_bovine3K.pdf">http://www.illumina.com/documents/products/datasheets/datasheet_bovine3K.pdf</ext-link>
), was developed and made commercially available. That product offered a significant advance toward low-cost genomic selection in cattle; however, imputation accuracy was highly dependent on the relationship of the individual genotyped with the Bovine3K chip to the reference population genotyped at a higher density
<xref ref-type="bibr" rid="pone.0034130-Wiggans2">[17]</xref>
. In addition, some samples failed to provide genotypes of adequate quality for use in genomic predictions. The SNP call rate performance of the Bovine3K chip was slightly reduced compared with the BovineSNP50 chip
<xref ref-type="bibr" rid="pone.0034130-Matukumalli1">[18]</xref>
because GoldenGate chemistry relies on two hybridization events for proper SNP detection as opposed to a single event for Infinium chemistry.</p>
<p>In this study, the Illumina Infinium BovineLD Genotyping Beadchip (
<ext-link ext-link-type="uri" xlink:href="http://www.illumina.com/documents/products/datasheets/datasheet_bovineLD.pdf">http://www.illumina.com/documents/products/datasheets/datasheet_bovineLD.pdf</ext-link>
) was developed to provide high imputation accuracy for higher density SNP genotypes in taurine dairy and beef populations. The main objective was to provide a tool that would enable genomic estimated breeding values to be calculated from accurately imputed genotype data from an Infinium-based SNP array with very low rates of failed samples. The main features of the new BovineLD chip are presented along with its imputation performance in a range of breeds and reference populations.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2a">
<title>SNP selection</title>
<p>To provide highly accurate imputation to BovineSNP50 genotypes in global taurine breeds, SNPs were selected from validated assays from existing higher density chips and similar SNP detection technology, i.e. the Illumina BovineSNP50 and BovineHD (
<ext-link ext-link-type="uri" xlink:href="http://www.illumina.com/documents/products/datasheets/datasheet_bovineHD.pdf">http://www.illumina.com/documents/products/datasheets/datasheet_bovineHD.pdf</ext-link>
) SNP arrays, with priority given to BovineSNP50 content. From the known and validated SNPs, selection priority was 1) high minor allele frequencies (MAFs) in targeted breeds, 2) uniform spacing at a minimum of 2 SNPs per Mbp, with increased SNP density within 500 kbp of chromosomal ends, 3) inclusion of SNPs for determination of sex, parentage, Y haplotypes, and subspecies and maternal lineages, 4) SNP quality and fidelity criteria for robust reproducibility (>98% call rate and <0.01% Mendelian inconsistency), and 5) a target overlap of 2,000 SNPs with the Bovine3K chip to ensure backward compatibility. The anticipated SNP spacing (2 SNPs per Mbp) obviated the need to check for highly correlated SNPs.</p>
<p>The SNPs were selected to be highly informative with a high MAF over a large range of breeds from around the world (
<xref ref-type="table" rid="pone-0034130-t001">Table 1</xref>
). The reference MAF estimates were from breeds in 10 countries from North America, Europe, and Oceania. Content selection was optimized using taurine allele frequencies. To achieve regular spacing, the UMD3 bovine genome assembly (
<ext-link ext-link-type="uri" xlink:href="http://www.cbcb.umd.edu/research/bos_taurus_assembly.shtml">http://www.cbcb.umd.edu/research/bos_taurus_assembly.shtml</ext-link>
) was used to define 500-kbp segments over the 29 autosomes. A lack of flanking information at the end of each chromosome had resulted in lower imputation efficiency in preliminary tests. To correct that problem, the SNP density was doubled in the first and last segments of each chromosome. Reflecting the diverse membership of the Bovine LD Consortium, initial SNP selection was made by one member and updated by the others. The initial SNP selection was based on two independent criteria. First, SNPs with the highest mean MAF in each 500-kbp segment were selected over a broad range of European breeds including European Holstein, Montbéliarde, Normande, Jersey, Brown Swiss, Norwegian Red, Swedish Red and White, Finnish Ayrshire, Charolais, Limousine, Blonde d'Aquitaine, and Maine Anjou, with Holstein receiving double weight; the top two SNPs were selected in the segment at each end of the chromosome. Second, SNPs with the highest mean minimum MAF for six major European dairy breeds (European Holstein, Montbéliarde, Normande, Jersey, Brown Swiss, and Norwegian Red) were selected for each 500-kbp segment, with again 2 SNPs selected at each end of the chromosome. Selecting those SNPs with the highest mean of the two selection criteria within each 500-kbp segment (with doubling at the chromosome ends) resulted in 8,000 SNPs. Those 8,000 SNPs were subjected to a similar selection process using MAFs from North America and Oceania along with the European populations. For Holstein and Jersey breeds, the MAF used was the mean across the 3 populations; for Brown Swiss, only North America and Europe were included. The mean MAF was computed from Holstein, Jersey, Brown Swiss, Angus, and Brahman. The minimum MAF was from Jersey, Brown Swiss, and Angus. Again, the SNPs with the highest mean of the two selection criteria were selected with doubling at the chromosome ends.</p>
<table-wrap id="pone-0034130-t001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.t001</object-id>
<label>Table 1</label>
<caption>
<title>Number of DNA samples, minor allele frequencies (MAFs), and estimated frequency of loci that were polymorphic by breed and region.</title>
</caption>
<alternatives>
<graphic id="pone-0034130-t001-1" xlink:href="pone.0034130.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="2" align="left" rowspan="1">MAF</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Breed</td>
<td align="left" rowspan="1" colspan="1">Region</td>
<td align="left" rowspan="1" colspan="1">DNA samples (n)</td>
<td align="left" rowspan="1" colspan="1">Mean</td>
<td align="left" rowspan="1" colspan="1">Median</td>
<td align="left" rowspan="1" colspan="1">Loci that are polymorphic (%)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Angus</td>
<td align="left" rowspan="1" colspan="1">United States</td>
<td align="left" rowspan="1" colspan="1">6,400</td>
<td align="left" rowspan="1" colspan="1">0.33</td>
<td align="left" rowspan="1" colspan="1">0.35</td>
<td align="left" rowspan="1" colspan="1">98.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Australia</td>
<td align="left" rowspan="1" colspan="1">282</td>
<td align="left" rowspan="1" colspan="1">0.31</td>
<td align="left" rowspan="1" colspan="1">0.33</td>
<td align="left" rowspan="1" colspan="1">97.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ayrshire</td>
<td align="left" rowspan="1" colspan="1">North America</td>
<td align="left" rowspan="1" colspan="1">434</td>
<td align="left" rowspan="1" colspan="1">0.31</td>
<td align="left" rowspan="1" colspan="1">0.33</td>
<td align="left" rowspan="1" colspan="1">96.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beefmaster</td>
<td align="left" rowspan="1" colspan="1">United States</td>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">0.32</td>
<td align="left" rowspan="1" colspan="1">0.35</td>
<td align="left" rowspan="1" colspan="1">97.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Blonde d'Acquitaine</td>
<td align="left" rowspan="1" colspan="1">Europe</td>
<td align="left" rowspan="1" colspan="1">160</td>
<td align="left" rowspan="1" colspan="1">0.34</td>
<td align="left" rowspan="1" colspan="1">0.37</td>
<td align="left" rowspan="1" colspan="1">98.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brahman</td>
<td align="left" rowspan="1" colspan="1">Australia</td>
<td align="left" rowspan="1" colspan="1">80</td>
<td align="left" rowspan="1" colspan="1">0.21</td>
<td align="left" rowspan="1" colspan="1">0.18</td>
<td align="left" rowspan="1" colspan="1">89.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brown Swiss</td>
<td align="left" rowspan="1" colspan="1">North America, Europe</td>
<td align="left" rowspan="1" colspan="1">2,039</td>
<td align="left" rowspan="1" colspan="1">0.31</td>
<td align="left" rowspan="1" colspan="1">0.34</td>
<td align="left" rowspan="1" colspan="1">96.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Charolais</td>
<td align="left" rowspan="1" colspan="1">Europe</td>
<td align="left" rowspan="1" colspan="1">60</td>
<td align="left" rowspan="1" colspan="1">0.35</td>
<td align="left" rowspan="1" colspan="1">0.37</td>
<td align="left" rowspan="1" colspan="1">99.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fleckvieh</td>
<td align="left" rowspan="1" colspan="1">Europe</td>
<td align="left" rowspan="1" colspan="1">800</td>
<td align="left" rowspan="1" colspan="1">0.37</td>
<td align="left" rowspan="1" colspan="1">0.39</td>
<td align="left" rowspan="1" colspan="1">99.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Friesian</td>
<td align="left" rowspan="1" colspan="1">New Zealand</td>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">0.35</td>
<td align="left" rowspan="1" colspan="1">0.38</td>
<td align="left" rowspan="1" colspan="1">98.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gelbvieh</td>
<td align="left" rowspan="1" colspan="1">North America</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">0.35</td>
<td align="left" rowspan="1" colspan="1">0.38</td>
<td align="left" rowspan="1" colspan="1">98.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Guernsey</td>
<td align="left" rowspan="1" colspan="1">Global</td>
<td align="left" rowspan="1" colspan="1">61</td>
<td align="left" rowspan="1" colspan="1">0.29</td>
<td align="left" rowspan="1" colspan="1">0.30</td>
<td align="left" rowspan="1" colspan="1">93.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hereford</td>
<td align="left" rowspan="1" colspan="1">United States</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">0.31</td>
<td align="left" rowspan="1" colspan="1">0.33</td>
<td align="left" rowspan="1" colspan="1">96.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">Australia</td>
<td align="left" rowspan="1" colspan="1">2,257</td>
<td align="left" rowspan="1" colspan="1">0.36</td>
<td align="left" rowspan="1" colspan="1">0.38</td>
<td align="left" rowspan="1" colspan="1">98.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">North America</td>
<td align="left" rowspan="1" colspan="1">72,824</td>
<td align="left" rowspan="1" colspan="1">0.35</td>
<td align="left" rowspan="1" colspan="1">0.37</td>
<td align="left" rowspan="1" colspan="1">98.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Europe</td>
<td align="left" rowspan="1" colspan="1">16,000</td>
<td align="left" rowspan="1" colspan="1">0.36</td>
<td align="left" rowspan="1" colspan="1">0.38</td>
<td align="left" rowspan="1" colspan="1">98.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Jersey</td>
<td align="left" rowspan="1" colspan="1">Australia</td>
<td align="left" rowspan="1" colspan="1">545</td>
<td align="left" rowspan="1" colspan="1">0.30</td>
<td align="left" rowspan="1" colspan="1">0.32</td>
<td align="left" rowspan="1" colspan="1">95.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">North America</td>
<td align="left" rowspan="1" colspan="1">5,958</td>
<td align="left" rowspan="1" colspan="1">0.29</td>
<td align="left" rowspan="1" colspan="1">0.31</td>
<td align="left" rowspan="1" colspan="1">94.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Limousin</td>
<td align="left" rowspan="1" colspan="1">Europe</td>
<td align="left" rowspan="1" colspan="1">90</td>
<td align="left" rowspan="1" colspan="1">0.35</td>
<td align="left" rowspan="1" colspan="1">0.37</td>
<td align="left" rowspan="1" colspan="1">98.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Montbeliard</td>
<td align="left" rowspan="1" colspan="1">Europe</td>
<td align="left" rowspan="1" colspan="1">1,500</td>
<td align="left" rowspan="1" colspan="1">0.34</td>
<td align="left" rowspan="1" colspan="1">0.36</td>
<td align="left" rowspan="1" colspan="1">98.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">N'Dama</td>
<td align="left" rowspan="1" colspan="1">Africa</td>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">0.30</td>
<td align="left" rowspan="1" colspan="1">0.28</td>
<td align="left" rowspan="1" colspan="1">76.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Normande</td>
<td align="left" rowspan="1" colspan="1">Europe</td>
<td align="left" rowspan="1" colspan="1">1,200</td>
<td align="left" rowspan="1" colspan="1">0.34</td>
<td align="left" rowspan="1" colspan="1">0.36</td>
<td align="left" rowspan="1" colspan="1">98.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Norwegian Red</td>
<td align="left" rowspan="1" colspan="1">Norway</td>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">0.33</td>
<td align="left" rowspan="1" colspan="1">0.35</td>
<td align="left" rowspan="1" colspan="1">97.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Angus</td>
<td align="left" rowspan="1" colspan="1">Angus</td>
<td align="left" rowspan="1" colspan="1">55</td>
<td align="left" rowspan="1" colspan="1">0.32</td>
<td align="left" rowspan="1" colspan="1">0.34</td>
<td align="left" rowspan="1" colspan="1">98.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Danish</td>
<td align="left" rowspan="1" colspan="1">Europe</td>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">0.35</td>
<td align="left" rowspan="1" colspan="1">0.38</td>
<td align="left" rowspan="1" colspan="1">99.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Santa Gertrudis</td>
<td align="left" rowspan="1" colspan="1">United States</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">0.32</td>
<td align="left" rowspan="1" colspan="1">0.33</td>
<td align="left" rowspan="1" colspan="1">97.2</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>Next, some of the selected SNPs were replaced by Bovine3K SNPs that were in nearby locations to ensure backward compatibility. In addition, SNPs used for breed determination and parentage testing that had not already been selected were included, and some SNPs were added to fill gaps generated by map inconsistencies.</p>
<p>For the X chromosome, Bovine3K SNPs with high MAFs were selected and supplemented with BovineSNP50 SNPs, with consideration given to spacing, MAF, and fidelity. Because large gaps remained after that initial selection, additional X- chromosome SNPs were chosen from the BovineHD assay.</p>
<p>For the Y chromosome and mitochondrial DNA (mtDNA), 9 Y-specific and 13 mtDNA SNP markers were identified from the BovineHD chip based on assay fidelity and performance across 27 breeds, MAF across those breeds, and ability of a SNP to discern subspecies and geographic locations of breed origins.</p>
</sec>
<sec id="s2b">
<title>Imputation</title>
<p>Imputation efficiency was assessed in 10 populations (North American, French, and Australian Holsteins; North American and Australian Jerseys; North American Brown Swiss; Australian Angus; French Montbéliarde; French Normande; and French Blonde d'Aquitaine). Beagle software (
<ext-link ext-link-type="uri" xlink:href="http://faculty.washington.edu/browning/beagle/beagle.html">http://faculty.washington.edu/browning/beagle/beagle.html</ext-link>
)
<xref ref-type="bibr" rid="pone.0034130-Browning1">[9]</xref>
was used for the Australian and French populations and findhap.f90 (
<ext-link ext-link-type="uri" xlink:href="http://aipl.arsusda.gov/software/findhap/">http://aipl.arsusda.gov/software/findhap/</ext-link>
)
<xref ref-type="bibr" rid="pone.0034130-VanRaden1">[13]</xref>
for the North American populations. These imputation programs have similar performance in large dairy cattle data sets
<xref ref-type="bibr" rid="pone.0034130-Johnston1">[19]</xref>
. Using existing genotypes from the BovineSNP50 chip, imputation efficiency was determined by comparing imputed and obseved genotypes. Part of the population was retained as a “reference,” while target individuals for imputation had their genotypes reduced in silico to either BovineLD or Bovine3K genotypes. Results were assessed as the proportion of genotypes that were correct in the target population. For example, if the imputed genotype was a heterozygote and the BovineSNP50 genotype was a homozygote, that genotype was counted as incorrectly imputed. The count of correct genotypes included both observed and imputed genotypes to measure the overall success of a lower density genotype in approximating a BovineSNP50 genotype.</p>
</sec>
<sec id="s2c">
<title>Content validation</title>
<p>The SNP assays for 6,914 loci were validated using data from 290 samples that represented 26 global dairy and beef breeds (
<xref ref-type="table" rid="pone-0034130-t002">Table 2</xref>
) and included Bovine Hapmap samples
<xref ref-type="bibr" rid="pone.0034130-The1">[20]</xref>
. The 290 samples (234 males, 56 females) included 286 unrelated samples, 2 trios, and 2 replicates. All markers were assessed for clustering of the genotypes using Illumina GenomeStudio genotyping software (version 2010.3;
<ext-link ext-link-type="uri" xlink:href="http://www.illumina.com/documents/products/datasheets/datasheet_genomestudio_software.pdf">http://www.illumina.com/documents/products/datasheets/datasheet_genomestudio_software.pdf</ext-link>
. A total of 6,909 clearly identifiable and scorable clusters were retained for robust utility of the panel. The cluster positions were defined with priority given first to data from dairy breeds and second to beef breeds. The purpose of the resulting cluster position file is to apply known robust cluster positions to future genotyping data for high throughput genotype calling. For phylogenetic analysis based on Y and mtDNA SNPs, individual sequences for each breed were clustered to construct consensus sequences using SNPs from 9 Y-chromosome loci and 13 mtDNA loci with the DNASTAR SeqMan program (version 6.1;
<ext-link ext-link-type="uri" xlink:href="http://www.dnastar.com/t-sub-products-lasergene-seqmanpro.aspx">http://www.dnastar.com/t-sub-products-lasergene-seqmanpro.aspx</ext-link>
). There were 236 chromosome X SNP on the final Bovine LD chip. Flanking sequences and base calls for the 6,909 SNP are given in
<xref ref-type="supplementary-material" rid="pone.0034130.s001">Table S1</xref>
.</p>
<table-wrap id="pone-0034130-t002" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.t002</object-id>
<label>Table 2</label>
<caption>
<title>Numbers of samples, call rates, and BovineSNP50 concordance for validation of BovineLD single-nucleotide polymorphisms (SNPs) by breed.</title>
</caption>
<alternatives>
<graphic id="pone-0034130-t002-2" xlink:href="pone.0034130.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="2" align="left" rowspan="1">Call rate</td>
<td colspan="2" align="left" rowspan="1">Concordance rate</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Breed</td>
<td align="left" rowspan="1" colspan="1">Samples (n)</td>
<td align="left" rowspan="1" colspan="1">Call rate (%)</td>
<td align="left" rowspan="1" colspan="1">Samples (n)</td>
<td align="left" rowspan="1" colspan="1">Concordance
<xref ref-type="table-fn" rid="nt101">a</xref>
with BovineSNP50 SNPs (%)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Angus</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.98</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.997</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ayrshire</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.97</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">NA
<xref ref-type="table-fn" rid="nt102">b</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beefmaster</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.85</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.974</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Blonde d'Aquitaine</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.97</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.996</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brahman</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.5</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.972</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brown Swiss</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.999</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Charolais</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.99</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">99.995</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fleckvieh</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">99.98</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Friesian</td>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">99.93</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gelbvieh</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">99.97</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Guernsey</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.86</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hereford</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.86</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.997</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">99.96</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">99.999</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Jersey (United States)</td>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">99.96</td>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Jersey (Denmark)</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.91</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Limousin</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.97</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Montbeliard</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">99.995</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">N'Dama</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.85</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Normande</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.98</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.997</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Norwegian Red</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">99.88</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Angus</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.99</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Dairy (Angler)</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.99</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Danish (Denmark)</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.92</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Danish (Finland)</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.93</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Danish (Sweden)</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.84</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Santa Gertrudis</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.83</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">99.988</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">All breeds</td>
<td align="left" rowspan="1" colspan="1">290</td>
<td align="left" rowspan="1" colspan="1">99.93</td>
<td align="left" rowspan="1" colspan="1">186</td>
<td align="left" rowspan="1" colspan="1">99.995</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<label></label>
<p>
<sup>
<italic>a</italic>
</sup>
Concordance was included for animals with BovineSNP50 genotypes; “no calls” (null genotypes) on either BovineSNP50 or BovineLD were excluded from comparison.</p>
</fn>
<fn id="nt102">
<label></label>
<p>
<sup>
<italic>b</italic>
</sup>
NA = not applicable.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>SNP call rates and accuracy</title>
<p>The BovineLD chip, consisting of 6,909 final loci, was validated for 290 individuals from 26 major dairy and beef breeds (
<xref ref-type="table" rid="pone-0034130-t002">Table 2</xref>
). The mean call rate was 99.94% among dairy breeds, 99.90% among beef breeds, and 99.93% among all samples. For taurine breeds, discordant calls compared to BovineSNP50represented <0.01% of all genotyping calls (
<xref ref-type="table" rid="pone-0034130-t002">Table 2</xref>
). Mendelian consistency was examined using two Holstein trios, which showed a single error on BTB-01149046 out of 13,797 total possible comparisons. Reproducibility was 100% across two Holstein replicated samples. Based on the nearly perfect concordance between the BovineLD and the BovineSNP50 genotypes reported in
<xref ref-type="table" rid="pone-0034130-t002">Table 2</xref>
and the similar concordance between BovineSNP50 and BovineHD genotypes, Mendelian consistency and reproducibility were also examined for the overlapping 6,844 SNPs from BovineHD genotypes. Those data included 8 parent-progeny, 24 parent-parent-progeny, and 10 replicate comparisons that represented 11 taurine, 2 indicine, and 1 hybrid breeds (
<xref ref-type="table" rid="pone-0034130-t003">Table 3</xref>
). Mendelian consistency was 99.95%, and reproducibility was 99.99%.</p>
<table-wrap id="pone-0034130-t003" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.t003</object-id>
<label>Table 3</label>
<caption>
<title>Mendelian consistency and reproducibility comparisons for a set of 6,844 SNPs in common for the BovineHD and BovineLD BeadChips.</title>
</caption>
<alternatives>
<graphic id="pone-0034130-t003-3" xlink:href="pone.0034130.t003"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="2" align="left" rowspan="1">Correctly genotyped SNPs</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Statistic</td>
<td align="left" rowspan="1" colspan="1">Comparison</td>
<td align="left" rowspan="1" colspan="1">Breed</td>
<td align="left" rowspan="1" colspan="1">Comparisons (n)</td>
<td align="left" rowspan="1" colspan="1">SNPs genotyped (n)</td>
<td align="left" rowspan="1" colspan="1">Incorrectly genotyped SNPs (n)</td>
<td align="left" rowspan="1" colspan="1">(n)</td>
<td align="left" rowspan="1" colspan="1">(%)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Mendelian consistency</td>
<td align="left" rowspan="1" colspan="1">Parent-progeny pair</td>
<td align="left" rowspan="1" colspan="1">Angus</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">13,636</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">13,633</td>
<td align="left" rowspan="1" colspan="1">99.98</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">20,508</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">20,508</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Jersey</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">6,833</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">6,833</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">N'Dama</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">6,720</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">6,720</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Red Angus</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">6,807</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">6,806</td>
<td align="left" rowspan="1" colspan="1">99.99</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Parent-parent-progeny trio</td>
<td align="left" rowspan="1" colspan="1">Angus</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">20,473</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">20,471</td>
<td align="left" rowspan="1" colspan="1">99.99</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Beefmaster</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">6,803</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">6,793</td>
<td align="left" rowspan="1" colspan="1">99.85</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Brahman</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">20,279</td>
<td align="left" rowspan="1" colspan="1">42</td>
<td align="left" rowspan="1" colspan="1">20,237</td>
<td align="left" rowspan="1" colspan="1">99.79</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Brown Swiss</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">13,597</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">13,597</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Charalois</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">20,325</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">20,318</td>
<td align="left" rowspan="1" colspan="1">99.97</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Hereford</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">13,607</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">13,604</td>
<td align="left" rowspan="1" colspan="1">99.98</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">27,283</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">27,281</td>
<td align="left" rowspan="1" colspan="1">99.99</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Jersey</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">20,438</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">20,433</td>
<td align="left" rowspan="1" colspan="1">99.98</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Santa Gertrudis</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">20,410</td>
<td align="left" rowspan="1" colspan="1">43</td>
<td align="left" rowspan="1" colspan="1">20,367</td>
<td align="left" rowspan="1" colspan="1">99.79</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Overall</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="left" rowspan="1" colspan="1">217,719</td>
<td align="left" rowspan="1" colspan="1">118</td>
<td align="left" rowspan="1" colspan="1">217,601</td>
<td align="left" rowspan="1" colspan="1">99.95</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Reproducibility</td>
<td align="left" rowspan="1" colspan="1">Replicates</td>
<td align="left" rowspan="1" colspan="1">Hereford</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">6,792</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">6,791</td>
<td align="left" rowspan="1" colspan="1">99.99</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">27,320</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">27,319</td>
<td align="left" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Jersey</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">6,824</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">68,22</td>
<td align="left" rowspan="1" colspan="1">99.97</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Limousin</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">6,824</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">68,22</td>
<td align="left" rowspan="1" colspan="1">99.97</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Overall</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">47,760</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">47,754</td>
<td align="left" rowspan="1" colspan="1">99.99</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>The concordance rate for 2,088 SNPs in common between BovineLD and Bovine3K assays was 98.78% for 281 females genotyped with both chips. The most likely cause of the differential performance between the BovineLD and Bovine3K chips is the chemistry difference between the Infinium and GoldenGate assays.</p>
</sec>
<sec id="s3b">
<title>Performance for MAF, mean spacing, and paternal and maternal lineages</title>
<p>Data for calculating mean MAF (
<xref ref-type="table" rid="pone-0034130-t001">Table 1</xref>
) were primarily BovineLD markers extracted from BovineSNP50 data. However, if BovineSNP50 data were not available, BovineLD markers from the validation data were used. That method allowed MAFs to be calculated more accurately. Mean MAF for the 6,909 SNPs was ≥0.29 for all taurine breeds (
<xref ref-type="table" rid="pone-0034130-t001">Table 1</xref>
). For Brahman (a
<italic>Bos primigenius indicus</italic>
breed), mean MAF was lower (0.18). Overall, >89% of the SNPs were polymorphic in Brahman, which suggested that the BovineLD chip may be useful for imputation in this breed.</p>
<p>For the 6,909 SNPs selected for the BovineLD chip, median spacing was 0.348 Mbp, with only 82 (1.1%) of intervals greater than 1 Mbp (
<xref ref-type="fig" rid="pone-0034130-g001">Fig. 1</xref>
). These gaps originate either from the X chromosome, or from regions not covered by the BovineSNP50. The strategy of increasing SNP density at chromosome ends substantially improved imputation accuracy for those regions compared with the Bovine3K array (
<xref ref-type="fig" rid="pone-0034130-g002">Fig. 2</xref>
).</p>
<fig id="pone-0034130-g001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.g001</object-id>
<label>Figure 1</label>
<caption>
<title>BovineLD single-nucleotide polymorphism (SNP) gap distribution.</title>
</caption>
<graphic xlink:href="pone.0034130.g001"></graphic>
</fig>
<fig id="pone-0034130-g002" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Imputation accuracy for Bovine3K and BovineLD genotypes.</title>
<p>Imputation was performed for A) Bovine3K and B) BovineLD genotypes using Beagle software (
<ext-link ext-link-type="uri" xlink:href="http://faculty.washington.edu/browning/beagle/beagle.html">http://faculty.washington.edu/browning/beagle/beagle.html</ext-link>
); imputation accuracy is reported by single-nucleotide polymorphism (SNP).</p>
</caption>
<graphic xlink:href="pone.0034130.g002"></graphic>
</fig>
<p>The sex-specific and lineage identification SNPs also appeared to perform well. The nine Y-chromosome SNPs had a 100% call rate across 230 males of different breeds and no genotype calls for the 55 females. We investigated the frequency of the haplotypes of the alleles from these 9 SNP both within and across breeds. Four unique haplotypes were observed, which differed dramatically in frequency across breeds,
<xref ref-type="table" rid="pone-0034130-t004">Table 4</xref>
. One haplotype,
<named-content content-type="gene">CGCCGCAAC</named-content>
(haplotype 1) was observed only in cattle with indicine lineage (eg Brahmans, Beef Master, Santa Getrudis). The second haplotype (
<named-content content-type="gene">TCTCCTCAC</named-content>
) was associated with central European lineage, haplotype 3 (
<named-content content-type="gene">TCTCCTCAT</named-content>
) was 1 base different from haplotype 2 and probably appeared to be associated with breeds that came to the island of Jersey from France or Spain, and haplotype 4 (
<named-content content-type="gene">TCTTGTCGC</named-content>
) was associated with northern European lineage, including islands. Only a few breeds had more than one haplotype, e.g. Santa Gertrudis and Beefmaster, both of which are taurine–indicine hybrids. Common haplotypes across breeds appeared to reflect a common origin. Phylogenetic analysis separated the 26 breeds into four distinctive clades, which agrees with a previous report on the dual origins of dairy cattle breeds in Europe
<xref ref-type="bibr" rid="pone.0034130-Edwards1">[21]</xref>
. For mtDNA SNPs (
<xref ref-type="table" rid="pone-0034130-t005">Table 5</xref>
), seven unique mitochondrial haplotypes were found, however 259 of the animals sampled had the same mitochondrial haplotype. Haplotype 7 (
<named-content content-type="gene">AAGAGCAAAAAAG</named-content>
) was at highest frequency in indicine cattle. Most taurine×indicine cattle were derived from taurine cows. Therefore, the lack of haplotype 7 for taurine breeds in most regions is not unexpected. While more research is required, these preliminary results suggest the BovineLD markers could be useful in determining lineage origin between taurine and indicine breeds or identifying potential admixture within a population of locally adapted animals.</p>
<table-wrap id="pone-0034130-t004" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.t004</object-id>
<label>Table 4</label>
<caption>
<title>Animal counts for Y-chromosome haplotypes
<xref ref-type="table-fn" rid="nt103">a</xref>
by breed.</title>
</caption>
<alternatives>
<graphic id="pone-0034130-t004-4" xlink:href="pone.0034130.t004"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="4" align="left" rowspan="1">Y-chromosome haplotype counts (n)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Breed</td>
<td align="left" rowspan="1" colspan="1">1
<xref ref-type="table-fn" rid="nt104">b</xref>
</td>
<td align="left" rowspan="1" colspan="1">2
<xref ref-type="table-fn" rid="nt105">c</xref>
</td>
<td align="left" rowspan="1" colspan="1">3
<xref ref-type="table-fn" rid="nt106">d</xref>
</td>
<td align="left" rowspan="1" colspan="1">4
<xref ref-type="table-fn" rid="nt107">e</xref>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Angus</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ayrshire</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beefmaster</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Blonde d'Aquitaine</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brahman</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brown Swiss</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Charolais</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fleckvieh</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Friesian</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">12</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gelbvieh</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hereford</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">15</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Jersey</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Limousin</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Montbeliard</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">N'Dama</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Normande</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Norwegian Red</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Angus</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Dairy (Angler)</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Danish</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">15</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Santa Gertrudis</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">All breeds</td>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">74</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">122</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt103">
<label></label>
<p>
<sup>
<italic>a</italic>
</sup>
Haplotypes defined by SNP BovineHD310000-0048, -0099, -0103, -0210, -0515, -0517, -1188, -1404, and -1406.</p>
</fn>
<fn id="nt104">
<label></label>
<p>
<sup>
<italic>b</italic>
</sup>
<named-content content-type="gene">CGCCGCAAC</named-content>
.</p>
</fn>
<fn id="nt105">
<label></label>
<p>
<sup>
<italic>c</italic>
</sup>
<named-content content-type="gene">TCTCCTCAC</named-content>
.</p>
</fn>
<fn id="nt106">
<label></label>
<p>
<sup>
<italic>d</italic>
</sup>
<named-content content-type="gene">TCTCCTCAT</named-content>
.</p>
</fn>
<fn id="nt107">
<label></label>
<p>
<sup>
<italic>e</italic>
</sup>
<named-content content-type="gene">TCTTGTCGC</named-content>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="pone-0034130-t005" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.t005</object-id>
<label>Table 5</label>
<caption>
<title>Animal counts for mtDNA-chromosome haplotypes
<xref ref-type="table-fn" rid="nt108">a</xref>
by breed.</title>
</caption>
<alternatives>
<graphic id="pone-0034130-t005-5" xlink:href="pone.0034130.t005"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="8" align="left" rowspan="1">mtDNA-chromosome haplotype counts (n)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Breed</td>
<td align="left" rowspan="1" colspan="1">1
<xref ref-type="table-fn" rid="nt109">b</xref>
</td>
<td align="left" rowspan="1" colspan="1">2
<xref ref-type="table-fn" rid="nt110">c</xref>
</td>
<td align="left" rowspan="1" colspan="1">3
<xref ref-type="table-fn" rid="nt111">d</xref>
</td>
<td align="left" rowspan="1" colspan="1">4
<xref ref-type="table-fn" rid="nt112">e</xref>
</td>
<td align="left" rowspan="1" colspan="1">5
<xref ref-type="table-fn" rid="nt113">f</xref>
</td>
<td align="left" rowspan="1" colspan="1">6
<xref ref-type="table-fn" rid="nt114">g</xref>
</td>
<td align="left" rowspan="1" colspan="1">7
<xref ref-type="table-fn" rid="nt115">h</xref>
</td>
<td align="left" rowspan="1" colspan="1">Could not be determined</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Angus</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ayrshire</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beefmaster</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Blonde d'Aquitaine</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brahman</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brown Swiss</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Charolais</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fleckvieh</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Friesian</td>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gelbvieh</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Guernsey</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hereford</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Jersey</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Limousin</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Montbeliard</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">N'Dama</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Normande</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Norwegian Red</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Angus</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Dairy (Angler)</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Red Danish</td>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Santa Gertrudis</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">All breeds</td>
<td align="left" rowspan="1" colspan="1">259</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">8</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt108">
<label></label>
<p>
<sup>
<italic>a</italic>
</sup>
Haplotypes defined by SNP BovineHD320000-0141, -0145, -0180, -0226, -0252, -0312, -0332, -0342, -0354, -0358, -0368, -0384, and -0406.</p>
</fn>
<fn id="nt109">
<label></label>
<p>
<sup>
<italic>b</italic>
</sup>
<named-content content-type="gene">CCGCAACCGCCCG</named-content>
.</p>
</fn>
<fn id="nt110">
<label></label>
<p>
<sup>
<italic>c</italic>
</sup>
<named-content content-type="gene">CCGCAAACGCCCG</named-content>
.</p>
</fn>
<fn id="nt111">
<label></label>
<p>
<sup>
<italic>d</italic>
</sup>
<named-content content-type="gene">CCGCAACAGCCCG</named-content>
.</p>
</fn>
<fn id="nt112">
<label></label>
<p>
<sup>
<italic>e</italic>
</sup>
<named-content content-type="gene">CCGCAACCACCCG</named-content>
.</p>
</fn>
<fn id="nt113">
<label></label>
<p>
<sup>
<italic>f</italic>
</sup>
<named-content content-type="gene">CCGCAACCGCCCA</named-content>
.</p>
</fn>
<fn id="nt114">
<label></label>
<p>
<sup>
<italic>g</italic>
</sup>
<named-content content-type="gene">CAACAACCGCCCG</named-content>
.</p>
</fn>
<fn id="nt115">
<label></label>
<p>
<sup>
<italic>h</italic>
</sup>
<named-content content-type="gene">AAGAGCAAAAAAG</named-content>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s3c">
<title>Accuracy of imputation</title>
<p>Imputation accuracy was assessed in Australian, French, and North American cattle populations. In all cases, the accuracy of imputation to BovineSNP50 genotypes was ≥95% (
<xref ref-type="table" rid="pone-0034130-t006">Table 6</xref>
). Most imputation results were >97%, particularly for dairy breeds. The results were lower for some breeds, likely because of the limited reference population size used. For example, the considerably larger size of the North American reference set of Holsteins compared with the Australian set could explain why the North American imputation accuracy was 1.1 percentage points higher than for Australia. The effect of a smaller reference set of genotypes on imputation accuracy was further demonstrated by imputation from BovineLD genotypes for Australian Angus, which had the smallest reference population in the data set. For French populations, imputation efficiency also varied, with the highest accuracy for Holsteins and the lowest for Blondes d'Aquitaine (
<xref ref-type="table" rid="pone-0034130-t006">Table 6</xref>
); imputation accuracy for Normandes and Montbéliardes was slightly lower than for Holsteins. Again, much of the variation is likely explained by reference population size.</p>
<table-wrap id="pone-0034130-t006" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.t006</object-id>
<label>Table 6</label>
<caption>
<title>Accuracy of imputation from BovineLD genotypes to BovineSNP50 genotypes for Australian, French, and North American breeds.</title>
</caption>
<alternatives>
<graphic id="pone-0034130-t006-6" xlink:href="pone.0034130.t006"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="2" align="left" rowspan="1">Imputation accuracy</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Country/region
<xref ref-type="table-fn" rid="nt116">a</xref>
</td>
<td align="left" rowspan="1" colspan="1">Breed</td>
<td align="left" rowspan="1" colspan="1">Reference</td>
<td align="left" rowspan="1" colspan="1">Target</td>
<td align="left" rowspan="1" colspan="1">Genotypes correctly imputed (%)
<xref ref-type="table-fn" rid="nt117">b</xref>
</td>
<td align="left" rowspan="1" colspan="1">Known genotypes without error (%)
<xref ref-type="table-fn" rid="nt118">c</xref>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Australia</td>
<td align="left" rowspan="1" colspan="1">Angus</td>
<td align="left" rowspan="1" colspan="1">200</td>
<td align="left" rowspan="1" colspan="1">82</td>
<td align="left" rowspan="1" colspan="1">92.3</td>
<td align="left" rowspan="1" colspan="1">93.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">1,831</td>
<td align="left" rowspan="1" colspan="1">360</td>
<td align="left" rowspan="1" colspan="1">97.5</td>
<td align="left" rowspan="1" colspan="1">97.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Jersey</td>
<td align="left" rowspan="1" colspan="1">454</td>
<td align="left" rowspan="1" colspan="1">86</td>
<td align="left" rowspan="1" colspan="1">94.9</td>
<td align="left" rowspan="1" colspan="1">95.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">France</td>
<td align="left" rowspan="1" colspan="1">Blonde d'Aquitaine</td>
<td align="left" rowspan="1" colspan="1">753</td>
<td align="left" rowspan="1" colspan="1">237</td>
<td align="left" rowspan="1" colspan="1">95.2</td>
<td align="left" rowspan="1" colspan="1">95.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">3,505</td>
<td align="left" rowspan="1" colspan="1">966</td>
<td align="left" rowspan="1" colspan="1">98.5</td>
<td align="left" rowspan="1" colspan="1">98.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Montbéliarde</td>
<td align="left" rowspan="1" colspan="1">1,170</td>
<td align="left" rowspan="1" colspan="1">222</td>
<td align="left" rowspan="1" colspan="1">98.1</td>
<td align="left" rowspan="1" colspan="1">98.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Normande</td>
<td align="left" rowspan="1" colspan="1">1,176</td>
<td align="left" rowspan="1" colspan="1">248</td>
<td align="left" rowspan="1" colspan="1">98.4</td>
<td align="left" rowspan="1" colspan="1">98.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">North America</td>
<td align="left" rowspan="1" colspan="1">Brown Swiss</td>
<td align="left" rowspan="1" colspan="1">1,994</td>
<td align="left" rowspan="1" colspan="1">168</td>
<td align="left" rowspan="1" colspan="1">97.4</td>
<td align="left" rowspan="1" colspan="1">97.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Holstein</td>
<td align="left" rowspan="1" colspan="1">63,288</td>
<td align="left" rowspan="1" colspan="1">19,506</td>
<td align="left" rowspan="1" colspan="1">98.8</td>
<td align="left" rowspan="1" colspan="1">98.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Jersey</td>
<td align="left" rowspan="1" colspan="1">8,687</td>
<td align="left" rowspan="1" colspan="1">1,140</td>
<td align="left" rowspan="1" colspan="1">98.0</td>
<td align="left" rowspan="1" colspan="1">98.3</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt116">
<label></label>
<p>
<sup>
<italic>a</italic>
</sup>
Beagle software (
<ext-link ext-link-type="uri" xlink:href="http://faculty.washington.edu/browning/beagle/beagle.html">http://faculty.washington.edu/browning/beagle/beagle.html</ext-link>
) was used for Australian and French imputations and findhap.f90 (
<ext-link ext-link-type="uri" xlink:href="http://aipl.arsusda.gov/software/findhap/">http://aipl.arsusda.gov/software/findhap/</ext-link>
) for North American imputations.</p>
</fn>
<fn id="nt117">
<label></label>
<p>
<sup>
<italic>b</italic>
</sup>
The 6,909 SNPs on the BovineLD chip were excluded from the calculation of imputation accuracy.</p>
</fn>
<fn id="nt118">
<label></label>
<p>
<sup>
<italic>c</italic>
</sup>
All SNPs included, i.e. the 6,909 SNPs on the BovineLD chip.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>For Australian and North American Holsteins, accuracy of imputation to BovineSNP50 genotypes was better for BovineLD genotypes than for Bovine3K genotypes. For Australian Holsteins, imputation accuracies were up to almost 6 percentage points higher with the BovineLD chip than with the Bovine3K chip using the same data (
<xref ref-type="table" rid="pone-0034130-t007">Table 7</xref>
). Mean imputation accuracy was 92.8% for Australian Holstein Bovine3K genotypes compared with 97.6% for BovineLD genotypes. For North American Holsteins, accuracies of imputation to BovineSNP50 genotypes from Bovine3K genotypes ranged from 93.0 to 96.7% (depending on number of parents genotyped) for 2,456 animals genotyped with both Bovine3K and BovineSNP50 chips
<xref ref-type="bibr" rid="pone.0034130-Wiggans2">[17]</xref>
. Corresponding values for BovineLD genotypes (
<xref ref-type="table" rid="pone-0034130-t008">Table 8</xref>
) are 96.6 to 99.3%.</p>
<table-wrap id="pone-0034130-t007" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.t007</object-id>
<label>Table 7</label>
<caption>
<title>Accuracy of imputation
<xref ref-type="table-fn" rid="nt119">a</xref>
from BovineLD or Bovine3K genotypes to BovineSNP50 genotypes for Australian Holsteins with and without a sire in the reference population
<xref ref-type="table-fn" rid="nt120">b</xref>
.</title>
</caption>
<alternatives>
<graphic id="pone-0034130-t007-7" xlink:href="pone.0034130.t007"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Sire status</td>
<td align="left" rowspan="1" colspan="1">Genotyping chip</td>
<td align="left" rowspan="1" colspan="1">Animals imputed (n)</td>
<td align="left" rowspan="1" colspan="1">Imputation accuracy (%)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Included in reference population</td>
<td align="left" rowspan="1" colspan="1">BovineLD</td>
<td align="left" rowspan="1" colspan="1">240</td>
<td align="left" rowspan="1" colspan="1">98.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Bovine3K</td>
<td align="left" rowspan="1" colspan="1">240</td>
<td align="left" rowspan="1" colspan="1">94.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Not included in reference population</td>
<td align="left" rowspan="1" colspan="1">BovineLD</td>
<td align="left" rowspan="1" colspan="1">120</td>
<td align="left" rowspan="1" colspan="1">97.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Bovine3K</td>
<td align="left" rowspan="1" colspan="1">120</td>
<td align="left" rowspan="1" colspan="1">91.3</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt119">
<label></label>
<p>
<sup>
<italic>a</italic>
</sup>
Imputation was done using Beagle software (
<ext-link ext-link-type="uri" xlink:href="http://faculty.washington.edu/browning/beagle/beagle.html">http://faculty.washington.edu/browning/beagle/beagle.html</ext-link>
).</p>
</fn>
<fn id="nt120">
<label></label>
<p>
<sup>
<italic>b</italic>
</sup>
Reference population included 1,831 animals.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="pone-0034130-t008" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0034130.t008</object-id>
<label>Table 8</label>
<caption>
<title>Accuracy of imputation
<xref ref-type="table-fn" rid="nt121">a</xref>
from BovineLD genotypes to BovineSNP50 genotypes for North American Brown Swiss, Holsteins, and Jerseys with and without parents in the reference population
<xref ref-type="table-fn" rid="nt122">b</xref>
.</title>
</caption>
<alternatives>
<graphic id="pone-0034130-t008-8" xlink:href="pone.0034130.t008"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="2" align="left" rowspan="1">Jersey</td>
<td colspan="2" align="left" rowspan="1">Holstein</td>
<td colspan="2" align="left" rowspan="1">Brown Swiss</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sire genotype</td>
<td align="left" rowspan="1" colspan="1">Dam genotype</td>
<td align="left" rowspan="1" colspan="1">Animals with imputed genotypes (n)</td>
<td align="left" rowspan="1" colspan="1">Genotypes imputed correctly (%)</td>
<td align="left" rowspan="1" colspan="1">Animals with imputed genotypes (n)</td>
<td align="left" rowspan="1" colspan="1">Genotypes imputed correctly (%)</td>
<td align="left" rowspan="1" colspan="1">Animals with imputed genotypes (n)</td>
<td align="left" rowspan="1" colspan="1">Genotypes imputed correctly (%)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">BovineSNP50</td>
<td align="left" rowspan="1" colspan="1">BovineSNP50</td>
<td align="left" rowspan="1" colspan="1">345</td>
<td align="left" rowspan="1" colspan="1">99.1</td>
<td align="left" rowspan="1" colspan="1">9,319</td>
<td align="left" rowspan="1" colspan="1">99.3</td>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="left" rowspan="1" colspan="1">99.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BovineSNP50</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">593</td>
<td align="left" rowspan="1" colspan="1">98.1</td>
<td align="left" rowspan="1" colspan="1">9,383</td>
<td align="left" rowspan="1" colspan="1">98.7</td>
<td align="left" rowspan="1" colspan="1">145</td>
<td align="left" rowspan="1" colspan="1">97.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">BovineSNP50</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">98.1</td>
<td align="left" rowspan="1" colspan="1">135</td>
<td align="left" rowspan="1" colspan="1">98.5</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">97.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BovineSNP50</td>
<td align="left" rowspan="1" colspan="1">Bovine3K</td>
<td align="left" rowspan="1" colspan="1">158</td>
<td align="left" rowspan="1" colspan="1">98.3</td>
<td align="left" rowspan="1" colspan="1">158</td>
<td align="left" rowspan="1" colspan="1">98.8</td>
<td align="left" rowspan="1" colspan="1">NA
<xref ref-type="table-fn" rid="nt123">c</xref>
</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Bovine3K</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">96.9</td>
<td align="left" rowspan="1" colspan="1">NA</td>
<td align="left" rowspan="1" colspan="1">NA</td>
<td align="left" rowspan="1" colspan="1">NA</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Bovine3K</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">96.6</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">97.8</td>
<td align="left" rowspan="1" colspan="1">NA</td>
<td align="left" rowspan="1" colspan="1">NA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="left" rowspan="1" colspan="1">92.7</td>
<td align="left" rowspan="1" colspan="1">389</td>
<td align="left" rowspan="1" colspan="1">96.6</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">95.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">All comparisons</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1,140</td>
<td align="left" rowspan="1" colspan="1">98.3</td>
<td align="left" rowspan="1" colspan="1">19,506</td>
<td align="left" rowspan="1" colspan="1">98.9</td>
<td align="left" rowspan="1" colspan="1">168</td>
<td align="left" rowspan="1" colspan="1">97.9</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt121">
<label></label>
<p>
<sup>
<italic>a</italic>
</sup>
Imputation was done using findhap.f90 (
<ext-link ext-link-type="uri" xlink:href="http://aipl.arsusda.gov/software/findhap/">http://aipl.arsusda.gov/software/findhap/</ext-link>
), which includes both population- and pedigree-based haplotypes.</p>
</fn>
<fn id="nt122">
<label></label>
<p>
<sup>
<italic>b</italic>
</sup>
Reference population included 63,288 animals.</p>
</fn>
<fn id="nt123">
<label></label>
<p>
<sup>
<italic>c</italic>
</sup>
NA = not applicable.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The greatest improvement in imputation for BovineLD genotypes compared with Bovine3K genotypes was for individuals with no genotyped parents. For Australian Holsteins, difference in mean imputation accuracy with and without a sire in the reference population was 2.9 percentage points for Bovine3K genotypes but only 1.3 percentage points for BovineLD genotypes. The improvement was smaller for North American Holsteins: a difference of 2.7 percentage points between both parents genotyped and no genotyped parents for Bovine LD genotypes (
<xref ref-type="table" rid="pone-0034130-t006">Table 6</xref>
) compared with 3.7% for Bovine3K genotypes
<xref ref-type="bibr" rid="pone.0034130-Wiggans2">[17]</xref>
. Compared with North American Holsteins, BovineLD imputation accuracy for animals without a parent in the reference population was slightly poorer for North American Jersey and Brown Swiss populations (
<xref ref-type="table" rid="pone-0034130-t008">Table 8</xref>
). However, the more than doubling of markers and the different SNP selection criteria
<xref ref-type="bibr" rid="pone.0034130-Dassonneville2">[22]</xref>
compared with the Bovine3K chip allowed high imputation accuracies across a wider range of dairy breeds as well as some beef breeds.</p>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>The Illumina BovineLD BeadChip includes 6,909 SNPs selected to provide optimized imputation to BovineSNP50 genotypes in dairy breeds. The SNPs have MAFs of >0.3 in most breeds, and nearly uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mtDNA loci that are useful for gender checking, determining subspecies classification and identifying certain paternal and maternal breed lineages. Accuracy of imputation to BovineSNP50 genotypes using the BovineLD chip was >99% when both parents were genotyped in the North American BovineSNP50 reference population. That high accuracy suggests that the design criteria for the BovineLD chip would be useful to consider in other species for which an “imputation chip” could dramatically lower the cost of implementing genomic selection. BovineLD imputation was about 3 percentage points more accurate across multiple populations compared with Bovine3K imputation. The improvement was greatest when neither parent had been genotyped. The gain in imputation accuracy is attributed primarily to the increased overall density of the BovineLD chip compared with the Bovine3K chip and also to the even further increased density at the ends of chromosomes. The high MAFs also contribute to the improved imputation accuracy. The MAFs were similar across taurine beef and dairy breed as was the proportion of SNPs that were polymorphic. Although it would be expected that accuracies of imputation would be highest for those breeds which were included in the design of the chip, which was dominated by dairy breeds, the similar SNP characteristics (particularly the high MAF across many beef and dairy taurine breeds) suggest that the BovineLD chip will perform well in imputation of taurine beef cattle. Our results suggest that the imputation accuracy will also be quite dependent on the size of the population genotyped with a higher density SNP assay. Overall, the new BovineLD BeadChip should facilitate low cost genomic selection in
<italic>Bos primigenius taurus</italic>
beef and dairy cattle.</p>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0034130.s001">
<label>Table S1</label>
<caption>
<p>Genomic locations, flanking sequences and base calls for the 6,909 SNP on the bovineLD array.</p>
<p>(CSV)</p>
</caption>
<media xlink:href="pone.0034130.s001.csv" mimetype="text" mime-subtype="plain">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors would like to acknowledge the Beef Cooperative Research Centre for providing data. Cécile Grohs (National Institute for Agricultural Research, Centre de Recherches de Jouy en Josas), Christian Bendixen and Rikke Vingborg (GenoSkan), Reiner Emmerling (Institute of Animal Breeding, Bavarian State Research Center for Agriculture), Ekkehard Schütz (Institute of Veterinary Medicine, Georg August Universität), John Flynn (Weatherby's DNA Laboratory, Irish Equine Centre), Jürg Jürg Moll (Qualitas), and Céline Chantry-Darmon (Labogena) are acknowledged for providing samples for SNP validation. Pfizer Animal Genetics contributed both BovineLD and Bovine3K genotypes for 221 females. The authors thank Suzanne Hubbard (Animal Improvement Programs Laboratory) for her invaluable assistance in manuscript review.</p>
<p>Disclaimers: Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The U.S. Department of Agriculture is an equal opportunity provider and employer. TSS, CPV, PMV, and GRW were U.S. Government employees at the time they contributed to this work. The work of those individuals was prepared as part of official government duties. Title 17 U.S.C. §105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person's official duties. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the U.S. Department of Agriculture or the U.S. Government.</p>
</ack>
<fn-group>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
André Eggen, Kimberly J. Gietzen, Cynthia T. Lawley, and Karine Viaud are employees of Illumina Inc. This study was partly funded by Apisgene. There are no patents, products in development, or marketed products to declare. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.</p>
</fn>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding: </bold>
The National Research Agency (ANR) and Apisgene funded the French BovineSNP50 data. The Dairy Futures Cooperative Research Centre, Beef Genetic Technologies Cooperative Research Centre, Department of Primary Industries Victoria, and Dairy Australia funded the Australian dairy and beef genotyping. This project was also supported by Agriculture and Food Research Initiative Competitive Grant no. 2009-65205-05635 from the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture and by Projects 1265-31000-096-00D and 1265-31000-098-00D from the USDA Agricultural Research Service. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="pone.0034130-Meuwissen1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meuwissen</surname>
<given-names>THE</given-names>
</name>
<name>
<surname>Hayes</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Goddard</surname>
<given-names>ME</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Prediction of total genetic value using genome-wide dense marker maps.</article-title>
<source>Genetics</source>
<volume>157</volume>
<fpage>1819</fpage>
<lpage>1829</lpage>
<pub-id pub-id-type="pmid">11290733</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Heffner1">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heffner</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Jannink</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Sorrells</surname>
<given-names>ME</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Genomic selection accuracy using multifamily prediction models in a wheat breeding program.</article-title>
<source>The Plant Genome</source>
<volume>4</volume>
<fpage>65</fpage>
<lpage>75</lpage>
</element-citation>
</ref>
<ref id="pone.0034130-Wiggans1">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiggans</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>VanRaden</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>TA</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>The genomic evaluation system in the United States: past, present, future.</article-title>
<source>J Dairy Sci</source>
<volume>94</volume>
<fpage>3202</fpage>
<lpage>3211</lpage>
<pub-id pub-id-type="pmid">21605789</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Schaeffer1">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaeffer</surname>
<given-names>LR</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Strategy for applying genome-wide selection in dairy cattle.</article-title>
<source>J Anim Breed Genet</source>
<volume>123</volume>
<fpage>218</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="pmid">16882088</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Pryce1">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pryce</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Goddard</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Raadsma</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Hayes</surname>
<given-names>BJ</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Deterministic models of breeding scheme designs that incorporate genomic selection.</article-title>
<source>J Dairy Sci</source>
<volume>93</volume>
<fpage>5455</fpage>
<lpage>5466</lpage>
<pub-id pub-id-type="pmid">20965361</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Pryce2">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pryce</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Daetwyler</surname>
<given-names>HD</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Designing dairy cattle breeding schemes under genomic selection—a review of international research.</article-title>
<source>Anim Prod Sci</source>
<volume>52</volume>
<issue>3</issue>
<fpage>107</fpage>
<lpage>114</lpage>
</element-citation>
</ref>
<ref id="pone.0034130-VanEenennaam1">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Eenennaam</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>van der Werf</surname>
<given-names>JHJ</given-names>
</name>
<name>
<surname>Goddard</surname>
<given-names>ME</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>The value of using DNA markers for beef bull selection in the seedstock sector.</article-title>
<source>J Anim Sci</source>
<volume>89</volume>
<fpage>307</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="pmid">21262975</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Scheet1">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scheet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase.</article-title>
<source>Am J Hum Genet</source>
<volume>78</volume>
<fpage>629</fpage>
<lpage>644</lpage>
<pub-id pub-id-type="pmid">16532393</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Browning1">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Browning</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Browning</surname>
<given-names>BL</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Haplotype phasing: existing methods and new developments.</article-title>
<source>Nat Rev Genet</source>
<volume>16</volume>
<fpage>703</fpage>
<lpage>714</lpage>
<pub-id pub-id-type="pmid">21921926</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Druet1">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Druet</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Georges</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>A hidden Markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping.</article-title>
<source>Genetics</source>
<volume>184</volume>
<fpage>789</fpage>
<lpage>798</lpage>
<pub-id pub-id-type="pmid">20008575</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Daetwyler1">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Daetwyler</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Wiggans</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Hayes</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Woolliams</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Goddard</surname>
<given-names>ME</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Imputation of missing genotypes from sparse to high density using long-range phasing.</article-title>
<source>Genetics</source>
<volume>189</volume>
<fpage>317</fpage>
<lpage>327</lpage>
<pub-id pub-id-type="pmid">21705746</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Hickey1">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hickey</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Kinghorn</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Tier</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Dunstan</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<article-title>A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes.</article-title>
<source>Genet Sel Evol</source>
<volume>43</volume>
<fpage>12</fpage>
<pub-id pub-id-type="pmid">21388557</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-VanRaden1">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>VanRaden</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>O'Connell</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Wiggans</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Weigel</surname>
<given-names>KA</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Genomic evaluations with many more genotypes.</article-title>
<source>Genet Sel Evol</source>
<volume>43</volume>
<fpage>10</fpage>
<pub-id pub-id-type="pmid">21366914</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Druet2">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Druet</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schrooten</surname>
<given-names>C</given-names>
</name>
<name>
<surname>de Roos</surname>
<given-names>AP</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Imputation of genotypes from different single nucleotide polymorphism panels in dairy cattle.</article-title>
<source>J Dairy Sci</source>
<volume>93</volume>
<fpage>5443</fpage>
<lpage>5454</lpage>
<pub-id pub-id-type="pmid">20965360</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Weigel1">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weigel</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Van Tassell</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>O'Connell</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>VanRaden</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Wiggans</surname>
<given-names>GR</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Prediction of unobserved single nucleotide polymorphism genotypes of Jersey cattle using reference panels and population-based imputation algorithms.</article-title>
<source>J Dairy Sci</source>
<volume>93</volume>
<fpage>2229</fpage>
<lpage>2238</lpage>
<pub-id pub-id-type="pmid">20412938</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Dassonneville1">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dassonneville</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Brøndum</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Druet</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Guillaume</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<article-title>Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations.</article-title>
<source>J Dairy Sci</source>
<volume>94</volume>
<fpage>3679</fpage>
<lpage>3686</lpage>
<pub-id pub-id-type="pmid">21700057</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Wiggans2">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiggans</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>VanRaden</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Olson</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Tooker</surname>
<given-names>ME</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Use of the Illumina Bovine3K BeadChip in dairy genomic evaluation.</article-title>
<source>J Dairy Sci</source>
<volume>95</volume>
<fpage>1552</fpage>
<lpage>1558</lpage>
<pub-id pub-id-type="pmid">22365235</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Matukumalli1">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matukumalli</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Lawley</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Schnabel</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Allan</surname>
<given-names>MF</given-names>
</name>
<etal></etal>
</person-group>
<year>2009</year>
<article-title>Development and characterization of a high density SNP genotyping assay for cattle.</article-title>
<source>PLoS One</source>
<volume>4</volume>
<issue>4</issue>
<fpage>e5350</fpage>
<pub-id pub-id-type="pmid">19390634</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Johnston1">
<label>19</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Johnston</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kistemaker</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>PG</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Comparison of different imputation methods. Interbull Bulletin 44.</article-title>
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://www.interbull.org/images/stories/Jarmila_copy.pdf">http://www.interbull.org/images/stories/Jarmila_copy.pdf</ext-link>
. Accessed 2012 Mar 8</comment>
</element-citation>
</ref>
<ref id="pone.0034130-The1">
<label>20</label>
<element-citation publication-type="journal">
<collab>The Bovine Hap Map Consortium</collab>
<year>2009</year>
<article-title>Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds.</article-title>
<source>Science</source>
<volume>324</volume>
<fpage>528</fpage>
<lpage>532</lpage>
<pub-id pub-id-type="pmid">19390050</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Edwards1">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edwards</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Ginja</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kantanen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pérez-Pardal</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tresset</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<article-title>Dual origins of dairy cattle farming—evidence from a comprehensive survey of European Y-chromosomal variation.</article-title>
<source>PLoS ONE</source>
<volume>6</volume>
<fpage>e15922</fpage>
<pub-id pub-id-type="pmid">21253012</pub-id>
</element-citation>
</ref>
<ref id="pone.0034130-Dassonneville2">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dassonneville</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ducrocq</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Boichard</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Short Communication: Imputation performances of three low density marker panels in beef and dairy cattle.</article-title>
<source>J Dairy Sci</source>
<comment>In press</comment>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A06  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002A06  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024