Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatial Effects on the Multiplicity of Plasmodium falciparum Infections

Identifieur interne : 002954 ( Pmc/Corpus ); précédent : 002953; suivant : 002955

Spatial Effects on the Multiplicity of Plasmodium falciparum Infections

Auteurs : Stephan Karl ; Michael T. White ; George J. Milne ; David Gurarie ; Simon I. Hay ; Alyssa E. Barry ; Ingrid Felger ; Ivo Mueller

Source :

RBID : PMC:5053403

Abstract

As malaria is being pushed back on many frontiers and global case numbers are declining, accurate measurement and prediction of transmission becomes increasingly difficult. Low transmission settings are characterised by high levels of spatial heterogeneity, which stands in stark contrast to the widely used assumption of spatially homogeneous transmission used in mathematical transmission models for malaria. In the present study an individual-based mathematical malaria transmission model that incorporates multiple parasite clones, variable human exposure and duration of infection, limited mosquito flight distance and most importantly geographically heterogeneous human and mosquito population densities was used to illustrate the differences between homogeneous and heterogeneous transmission assumptions when aiming to predict surrogate indicators of transmission intensity such as population parasite prevalence or multiplicity of infection (MOI). In traditionally highly malaria endemic regions where most of the population harbours malaria parasites, humans are often infected with multiple parasite clones. However, studies have shown also in areas with low overall parasite prevalence, infection with multiple parasite clones is a common occurrence. Mathematical models assuming homogeneous transmission between humans and mosquitoes cannot explain these observations. Heterogeneity of transmission can arise from many factors including acquired immunity, body size and occupational exposure. In this study, we show that spatial heterogeneity has a profound effect on predictions of MOI and parasite prevalence. We illustrate, that models assuming homogeneous transmission underestimate average MOI in low transmission settings when compared to field data and that spatially heterogeneous models predict stable transmission at much lower overall parasite prevalence. Therefore it is very important that models used to guide malaria surveillance and control strategies in low transmission and elimination settings take into account the spatial features of the specific target area, including human and mosquito vector distribution.


Url:
DOI: 10.1371/journal.pone.0164054
PubMed: 27711149
PubMed Central: 5053403

Links to Exploration step

PMC:5053403

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spatial Effects on the Multiplicity of
<italic>Plasmodium falciparum</italic>
Infections</title>
<author>
<name sortKey="Karl, Stephan" sort="Karl, Stephan" uniqKey="Karl S" first="Stephan" last="Karl">Stephan Karl</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Vector-borne Diseases Unit, Papua New Guinea Insititute of Medical Research, Madang, Madang Province, Papua New Guinea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="White, Michael T" sort="White, Michael T" uniqKey="White M" first="Michael T." last="White">Michael T. White</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff004">
<addr-line>MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Milne, George J" sort="Milne, George J" uniqKey="Milne G" first="George J." last="Milne">George J. Milne</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gurarie, David" sort="Gurarie, David" uniqKey="Gurarie D" first="David" last="Gurarie">David Gurarie</name>
<affiliation>
<nlm:aff id="aff006">
<addr-line>Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hay, Simon I" sort="Hay, Simon I" uniqKey="Hay S" first="Simon I." last="Hay">Simon I. Hay</name>
<affiliation>
<nlm:aff id="aff007">
<addr-line>Institute for Health Metrics and Evaluation, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff008">
<addr-line>Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barry, Alyssa E" sort="Barry, Alyssa E" uniqKey="Barry A" first="Alyssa E." last="Barry">Alyssa E. Barry</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Felger, Ingrid" sort="Felger, Ingrid" uniqKey="Felger I" first="Ingrid" last="Felger">Ingrid Felger</name>
<affiliation>
<nlm:aff id="aff009">
<addr-line>Department of Medical Parasitology and Infection Biology Swiss Tropical and Public Health Institute, Basel, Switzerland</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff010">
<addr-line>University of Basel, Basel, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mueller, Ivo" sort="Mueller, Ivo" uniqKey="Mueller I" first="Ivo" last="Mueller">Ivo Mueller</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff011">
<addr-line>Malaria: Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27711149</idno>
<idno type="pmc">5053403</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053403</idno>
<idno type="RBID">PMC:5053403</idno>
<idno type="doi">10.1371/journal.pone.0164054</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">002954</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002954</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Spatial Effects on the Multiplicity of
<italic>Plasmodium falciparum</italic>
Infections</title>
<author>
<name sortKey="Karl, Stephan" sort="Karl, Stephan" uniqKey="Karl S" first="Stephan" last="Karl">Stephan Karl</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Vector-borne Diseases Unit, Papua New Guinea Insititute of Medical Research, Madang, Madang Province, Papua New Guinea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="White, Michael T" sort="White, Michael T" uniqKey="White M" first="Michael T." last="White">Michael T. White</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff004">
<addr-line>MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Milne, George J" sort="Milne, George J" uniqKey="Milne G" first="George J." last="Milne">George J. Milne</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gurarie, David" sort="Gurarie, David" uniqKey="Gurarie D" first="David" last="Gurarie">David Gurarie</name>
<affiliation>
<nlm:aff id="aff006">
<addr-line>Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hay, Simon I" sort="Hay, Simon I" uniqKey="Hay S" first="Simon I." last="Hay">Simon I. Hay</name>
<affiliation>
<nlm:aff id="aff007">
<addr-line>Institute for Health Metrics and Evaluation, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff008">
<addr-line>Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barry, Alyssa E" sort="Barry, Alyssa E" uniqKey="Barry A" first="Alyssa E." last="Barry">Alyssa E. Barry</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Felger, Ingrid" sort="Felger, Ingrid" uniqKey="Felger I" first="Ingrid" last="Felger">Ingrid Felger</name>
<affiliation>
<nlm:aff id="aff009">
<addr-line>Department of Medical Parasitology and Infection Biology Swiss Tropical and Public Health Institute, Basel, Switzerland</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff010">
<addr-line>University of Basel, Basel, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mueller, Ivo" sort="Mueller, Ivo" uniqKey="Mueller I" first="Ivo" last="Mueller">Ivo Mueller</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff011">
<addr-line>Malaria: Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>As malaria is being pushed back on many frontiers and global case numbers are declining, accurate measurement and prediction of transmission becomes increasingly difficult. Low transmission settings are characterised by high levels of spatial heterogeneity, which stands in stark contrast to the widely used assumption of spatially homogeneous transmission used in mathematical transmission models for malaria. In the present study an individual-based mathematical malaria transmission model that incorporates multiple parasite clones, variable human exposure and duration of infection, limited mosquito flight distance and most importantly geographically heterogeneous human and mosquito population densities was used to illustrate the differences between homogeneous and heterogeneous transmission assumptions when aiming to predict surrogate indicators of transmission intensity such as population parasite prevalence or multiplicity of infection (MOI). In traditionally highly malaria endemic regions where most of the population harbours malaria parasites, humans are often infected with multiple parasite clones. However, studies have shown also in areas with low overall parasite prevalence, infection with multiple parasite clones is a common occurrence. Mathematical models assuming homogeneous transmission between humans and mosquitoes cannot explain these observations. Heterogeneity of transmission can arise from many factors including acquired immunity, body size and occupational exposure. In this study, we show that spatial heterogeneity has a profound effect on predictions of MOI and parasite prevalence. We illustrate, that models assuming homogeneous transmission underestimate average MOI in low transmission settings when compared to field data and that spatially heterogeneous models predict stable transmission at much lower overall parasite prevalence. Therefore it is very important that models used to guide malaria surveillance and control strategies in low transmission and elimination settings take into account the spatial features of the specific target area, including human and mosquito vector distribution.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bousema, T" uniqKey="Bousema T">T Bousema</name>
</author>
<author>
<name sortKey="Drakeley, C" uniqKey="Drakeley C">C Drakeley</name>
</author>
<author>
<name sortKey="Gesase, S" uniqKey="Gesase S">S Gesase</name>
</author>
<author>
<name sortKey="Hashim, R" uniqKey="Hashim R">R Hashim</name>
</author>
<author>
<name sortKey="Magesa, S" uniqKey="Magesa S">S Magesa</name>
</author>
<author>
<name sortKey="Mosha, F" uniqKey="Mosha F">F Mosha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bejon, P" uniqKey="Bejon P">P Bejon</name>
</author>
<author>
<name sortKey="Williams, Tn" uniqKey="Williams T">TN Williams</name>
</author>
<author>
<name sortKey="Liljander, A" uniqKey="Liljander A">A Liljander</name>
</author>
<author>
<name sortKey="Noor, Am" uniqKey="Noor A">AM Noor</name>
</author>
<author>
<name sortKey="Wambua, J" uniqKey="Wambua J">J Wambua</name>
</author>
<author>
<name sortKey="Ogada, E" uniqKey="Ogada E">E Ogada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bousema, T" uniqKey="Bousema T">T Bousema</name>
</author>
<author>
<name sortKey="Griffin, Jt" uniqKey="Griffin J">JT Griffin</name>
</author>
<author>
<name sortKey="Sauerwein, Rw" uniqKey="Sauerwein R">RW Sauerwein</name>
</author>
<author>
<name sortKey="Smith, Dl" uniqKey="Smith D">DL Smith</name>
</author>
<author>
<name sortKey="Churcher, Ts" uniqKey="Churcher T">TS Churcher</name>
</author>
<author>
<name sortKey="Takken, W" uniqKey="Takken W">W Takken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaufmann, C" uniqKey="Kaufmann C">C Kaufmann</name>
</author>
<author>
<name sortKey="Briegel, H" uniqKey="Briegel H">H Briegel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guerra, Ca" uniqKey="Guerra C">CA Guerra</name>
</author>
<author>
<name sortKey="Reiner, Rc" uniqKey="Reiner R">RC Reiner</name>
</author>
<author>
<name sortKey="Perkins, Ta" uniqKey="Perkins T">TA Perkins</name>
</author>
<author>
<name sortKey="Lindsay, Sw" uniqKey="Lindsay S">SW Lindsay</name>
</author>
<author>
<name sortKey="Midega, Jt" uniqKey="Midega J">JT Midega</name>
</author>
<author>
<name sortKey="Brady, Oj" uniqKey="Brady O">OJ Brady</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reddy, Mr" uniqKey="Reddy M">MR Reddy</name>
</author>
<author>
<name sortKey="Overgaard, Hj" uniqKey="Overgaard H">HJ Overgaard</name>
</author>
<author>
<name sortKey="Abaga, S" uniqKey="Abaga S">S Abaga</name>
</author>
<author>
<name sortKey="Reddy, Vp" uniqKey="Reddy V">VP Reddy</name>
</author>
<author>
<name sortKey="Caccone, A" uniqKey="Caccone A">A Caccone</name>
</author>
<author>
<name sortKey="Kiszewski, Ae" uniqKey="Kiszewski A">AE Kiszewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staedke, Sg" uniqKey="Staedke S">SG Staedke</name>
</author>
<author>
<name sortKey="Nottingham, Ew" uniqKey="Nottingham E">EW Nottingham</name>
</author>
<author>
<name sortKey="Cox, J" uniqKey="Cox J">J Cox</name>
</author>
<author>
<name sortKey="Kamya, Mr" uniqKey="Kamya M">MR Kamya</name>
</author>
<author>
<name sortKey="Rosenthal, Pj" uniqKey="Rosenthal P">PJ Rosenthal</name>
</author>
<author>
<name sortKey="Dorsey, G" uniqKey="Dorsey G">G Dorsey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reuben, R" uniqKey="Reuben R">R Reuben</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muirhead Thomson" uniqKey="Muirhead Thomson">Muirhead-Thomson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takken, W" uniqKey="Takken W">W Takken</name>
</author>
<author>
<name sortKey="Klowden, Mj" uniqKey="Klowden M">MJ Klowden</name>
</author>
<author>
<name sortKey="Chambers, Gm" uniqKey="Chambers G">GM Chambers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lefevre, T" uniqKey="Lefevre T">T Lefevre</name>
</author>
<author>
<name sortKey="Gouagna, Lc" uniqKey="Gouagna L">LC Gouagna</name>
</author>
<author>
<name sortKey="Dabire, Kr" uniqKey="Dabire K">KR Dabire</name>
</author>
<author>
<name sortKey="Elguero, E" uniqKey="Elguero E">E Elguero</name>
</author>
<author>
<name sortKey="Fontenille, D" uniqKey="Fontenille D">D Fontenille</name>
</author>
<author>
<name sortKey="Renaud, F" uniqKey="Renaud F">F Renaud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bretscher, Mt" uniqKey="Bretscher M">MT Bretscher</name>
</author>
<author>
<name sortKey="Maire, N" uniqKey="Maire N">N Maire</name>
</author>
<author>
<name sortKey="Chitnis, N" uniqKey="Chitnis N">N Chitnis</name>
</author>
<author>
<name sortKey="Felger, I" uniqKey="Felger I">I Felger</name>
</author>
<author>
<name sortKey="Owusu Agyei, S" uniqKey="Owusu Agyei S">S Owusu-Agyei</name>
</author>
<author>
<name sortKey="Smith, T" uniqKey="Smith T">T Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parthasarathy, Pr" uniqKey="Parthasarathy P">PR Parthasarathy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruce, Mc" uniqKey="Bruce M">MC Bruce</name>
</author>
<author>
<name sortKey="Donnelly, Ca" uniqKey="Donnelly C">CA Donnelly</name>
</author>
<author>
<name sortKey="Packer, M" uniqKey="Packer M">M Packer</name>
</author>
<author>
<name sortKey="Lagog, M" uniqKey="Lagog M">M Lagog</name>
</author>
<author>
<name sortKey="Gibson, N" uniqKey="Gibson N">N Gibson</name>
</author>
<author>
<name sortKey="Narara, A" uniqKey="Narara A">A Narara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, I" uniqKey="Muller I">I Muller</name>
</author>
<author>
<name sortKey="Smith, T" uniqKey="Smith T">T Smith</name>
</author>
<author>
<name sortKey="Mellor, S" uniqKey="Mellor S">S Mellor</name>
</author>
<author>
<name sortKey="Rare, L" uniqKey="Rare L">L Rare</name>
</author>
<author>
<name sortKey="Genton, B" uniqKey="Genton B">B Genton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cattani, Ja" uniqKey="Cattani J">JA Cattani</name>
</author>
<author>
<name sortKey="Tulloch, Jl" uniqKey="Tulloch J">JL Tulloch</name>
</author>
<author>
<name sortKey="Vrbova, H" uniqKey="Vrbova H">H Vrbova</name>
</author>
<author>
<name sortKey="Jolley, D" uniqKey="Jolley D">D Jolley</name>
</author>
<author>
<name sortKey="Gibson, Fd" uniqKey="Gibson F">FD Gibson</name>
</author>
<author>
<name sortKey="Moir, Js" uniqKey="Moir J">JS Moir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wernsdorfer, Wh" uniqKey="Wernsdorfer W">WH Wernsdorfer</name>
</author>
<author>
<name sortKey="Mcgregor, I" uniqKey="Mcgregor I">I McGregor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, E" uniqKey="Lin E">E Lin</name>
</author>
<author>
<name sortKey="Kiniboro, B" uniqKey="Kiniboro B">B Kiniboro</name>
</author>
<author>
<name sortKey="Gray, L" uniqKey="Gray L">L Gray</name>
</author>
<author>
<name sortKey="Dobbie, S" uniqKey="Dobbie S">S Dobbie</name>
</author>
<author>
<name sortKey="Robinson, L" uniqKey="Robinson L">L Robinson</name>
</author>
<author>
<name sortKey="Laumaea, A" uniqKey="Laumaea A">A Laumaea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aguas, R" uniqKey="Aguas R">R Aguas</name>
</author>
<author>
<name sortKey="White, Lj" uniqKey="White L">LJ White</name>
</author>
<author>
<name sortKey="Snow, Rw" uniqKey="Snow R">RW Snow</name>
</author>
<author>
<name sortKey="Gomes, Mg" uniqKey="Gomes M">MG Gomes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koram, Ka" uniqKey="Koram K">KA Koram</name>
</author>
<author>
<name sortKey="Owusu Agyei, S" uniqKey="Owusu Agyei S">S Owusu-Agyei</name>
</author>
<author>
<name sortKey="Fryauff, Dj" uniqKey="Fryauff D">DJ Fryauff</name>
</author>
<author>
<name sortKey="Anto, F" uniqKey="Anto F">F Anto</name>
</author>
<author>
<name sortKey="Atuguba, F" uniqKey="Atuguba F">F Atuguba</name>
</author>
<author>
<name sortKey="Hodgson, A" uniqKey="Hodgson A">A Hodgson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michon, P" uniqKey="Michon P">P Michon</name>
</author>
<author>
<name sortKey="Cole Tobian, Jl" uniqKey="Cole Tobian J">JL Cole-Tobian</name>
</author>
<author>
<name sortKey="Dabod, E" uniqKey="Dabod E">E Dabod</name>
</author>
<author>
<name sortKey="Schoepflin, S" uniqKey="Schoepflin S">S Schoepflin</name>
</author>
<author>
<name sortKey="Igu, J" uniqKey="Igu J">J Igu</name>
</author>
<author>
<name sortKey="Susapu, M" uniqKey="Susapu M">M Susapu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bomblies, A" uniqKey="Bomblies A">A Bomblies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karl, S" uniqKey="Karl S">S Karl</name>
</author>
<author>
<name sortKey="Halder, N" uniqKey="Halder N">N Halder</name>
</author>
<author>
<name sortKey="Kelso, Jk" uniqKey="Kelso J">JK Kelso</name>
</author>
<author>
<name sortKey="Ritchie, Sa" uniqKey="Ritchie S">SA Ritchie</name>
</author>
<author>
<name sortKey="Milne, Gj" uniqKey="Milne G">GJ Milne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milne, Gj" uniqKey="Milne G">GJ Milne</name>
</author>
<author>
<name sortKey="Baskaran, P" uniqKey="Baskaran P">P Baskaran</name>
</author>
<author>
<name sortKey="Halder, N" uniqKey="Halder N">N Halder</name>
</author>
<author>
<name sortKey="Karl, S" uniqKey="Karl S">S Karl</name>
</author>
<author>
<name sortKey="Kelso, J" uniqKey="Kelso J">J Kelso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carter, R" uniqKey="Carter R">R Carter</name>
</author>
<author>
<name sortKey="Mendis, Kn" uniqKey="Mendis K">KN Mendis</name>
</author>
<author>
<name sortKey="Roberts, D" uniqKey="Roberts D">D Roberts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perkins, Ta" uniqKey="Perkins T">TA Perkins</name>
</author>
<author>
<name sortKey="Scott, Tw" uniqKey="Scott T">TW Scott</name>
</author>
<author>
<name sortKey="Le Menach, A" uniqKey="Le Menach A">A Le Menach</name>
</author>
<author>
<name sortKey="Smith, Dl" uniqKey="Smith D">DL Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barry, Ae" uniqKey="Barry A">AE Barry</name>
</author>
<author>
<name sortKey="Schultz, L" uniqKey="Schultz L">L Schultz</name>
</author>
<author>
<name sortKey="Senn, N" uniqKey="Senn N">N Senn</name>
</author>
<author>
<name sortKey="Nale, J" uniqKey="Nale J">J Nale</name>
</author>
<author>
<name sortKey="Kiniboro, B" uniqKey="Kiniboro B">B Kiniboro</name>
</author>
<author>
<name sortKey="Siba, Pm" uniqKey="Siba P">PM Siba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, A" uniqKey="Ross A">A Ross</name>
</author>
<author>
<name sortKey="Koepfli, C" uniqKey="Koepfli C">C Koepfli</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Schoepflin, S" uniqKey="Schoepflin S">S Schoepflin</name>
</author>
<author>
<name sortKey="Siba, P" uniqKey="Siba P">P Siba</name>
</author>
<author>
<name sortKey="Mueller, I" uniqKey="Mueller I">I Mueller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stoddard, St" uniqKey="Stoddard S">ST Stoddard</name>
</author>
<author>
<name sortKey="Forshey, Bm" uniqKey="Forshey B">BM Forshey</name>
</author>
<author>
<name sortKey="Morrison, Ac" uniqKey="Morrison A">AC Morrison</name>
</author>
<author>
<name sortKey="Paz Soldan, Va" uniqKey="Paz Soldan V">VA Paz-Soldan</name>
</author>
<author>
<name sortKey="Vazquez Prokopec, Gm" uniqKey="Vazquez Prokopec G">GM Vazquez-Prokopec</name>
</author>
<author>
<name sortKey="Astete, H" uniqKey="Astete H">H Astete</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liebman, Ka" uniqKey="Liebman K">KA Liebman</name>
</author>
<author>
<name sortKey="Stoddard, St" uniqKey="Stoddard S">ST Stoddard</name>
</author>
<author>
<name sortKey="Morrison, Ac" uniqKey="Morrison A">AC Morrison</name>
</author>
<author>
<name sortKey="Rocha, C" uniqKey="Rocha C">C Rocha</name>
</author>
<author>
<name sortKey="Minnick, S" uniqKey="Minnick S">S Minnick</name>
</author>
<author>
<name sortKey="Sihuincha, M" uniqKey="Sihuincha M">M Sihuincha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, Rm" uniqKey="Anderson R">RM Anderson</name>
</author>
<author>
<name sortKey="May, R" uniqKey="May R">R May</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andraud, M" uniqKey="Andraud M">M Andraud</name>
</author>
<author>
<name sortKey="Hens, N" uniqKey="Hens N">N Hens</name>
</author>
<author>
<name sortKey="Marais, C" uniqKey="Marais C">C Marais</name>
</author>
<author>
<name sortKey="Beutels, P" uniqKey="Beutels P">P Beutels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chao, Dl" uniqKey="Chao D">DL Chao</name>
</author>
<author>
<name sortKey="Halstead, Sb" uniqKey="Halstead S">SB Halstead</name>
</author>
<author>
<name sortKey="Halloran, Me" uniqKey="Halloran M">ME Halloran</name>
</author>
<author>
<name sortKey="Longini, Im" uniqKey="Longini I">IM Longini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Focks, Da" uniqKey="Focks D">DA Focks</name>
</author>
<author>
<name sortKey="Haile, Dg" uniqKey="Haile D">DG Haile</name>
</author>
<author>
<name sortKey="Daniels, E" uniqKey="Daniels E">E Daniels</name>
</author>
<author>
<name sortKey="Mount, Ga" uniqKey="Mount G">GA Mount</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griffin, Jt" uniqKey="Griffin J">JT Griffin</name>
</author>
<author>
<name sortKey="Hollingsworth, Td" uniqKey="Hollingsworth T">TD Hollingsworth</name>
</author>
<author>
<name sortKey="Okell, Lc" uniqKey="Okell L">LC Okell</name>
</author>
<author>
<name sortKey="Churcher, Ts" uniqKey="Churcher T">TS Churcher</name>
</author>
<author>
<name sortKey="White, M" uniqKey="White M">M White</name>
</author>
<author>
<name sortKey="Hinsley, W" uniqKey="Hinsley W">W Hinsley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karl, S" uniqKey="Karl S">S Karl</name>
</author>
<author>
<name sortKey="Gurarie, D" uniqKey="Gurarie D">D Gurarie</name>
</author>
<author>
<name sortKey="Zimmerman, Pa" uniqKey="Zimmerman P">PA Zimmerman</name>
</author>
<author>
<name sortKey="King, Ch" uniqKey="King C">CH King</name>
</author>
<author>
<name sortKey="St Pierre, Tg" uniqKey="St Pierre T">TG St Pierre</name>
</author>
<author>
<name sortKey="Davis, Tm" uniqKey="Davis T">TM Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maude, Rj" uniqKey="Maude R">RJ Maude</name>
</author>
<author>
<name sortKey="Saralamba, S" uniqKey="Saralamba S">S Saralamba</name>
</author>
<author>
<name sortKey="Lewis, A" uniqKey="Lewis A">A Lewis</name>
</author>
<author>
<name sortKey="Sherwood, D" uniqKey="Sherwood D">D Sherwood</name>
</author>
<author>
<name sortKey="White, Nj" uniqKey="White N">NJ White</name>
</author>
<author>
<name sortKey="Day, Np" uniqKey="Day N">NP Day</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Betuela, I" uniqKey="Betuela I">I Betuela</name>
</author>
<author>
<name sortKey="Rosanas Urgell, A" uniqKey="Rosanas Urgell A">A Rosanas-Urgell</name>
</author>
<author>
<name sortKey="Kiniboro, B" uniqKey="Kiniboro B">B Kiniboro</name>
</author>
<author>
<name sortKey="Stanisic, Di" uniqKey="Stanisic D">DI Stanisic</name>
</author>
<author>
<name sortKey="Samol, L" uniqKey="Samol L">L Samol</name>
</author>
<author>
<name sortKey="De Lazzari, E" uniqKey="De Lazzari E">E de Lazzari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hetzel, Mw" uniqKey="Hetzel M">MW Hetzel</name>
</author>
<author>
<name sortKey="Choudhury, Aa" uniqKey="Choudhury A">AA Choudhury</name>
</author>
<author>
<name sortKey="Pulford, J" uniqKey="Pulford J">J Pulford</name>
</author>
<author>
<name sortKey="Ura, Y" uniqKey="Ura Y">Y Ura</name>
</author>
<author>
<name sortKey="Whittaker, M" uniqKey="Whittaker M">M Whittaker</name>
</author>
<author>
<name sortKey="Siba, Pm" uniqKey="Siba P">PM Siba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koepfli, C" uniqKey="Koepfli C">C Koepfli</name>
</author>
<author>
<name sortKey="Ross, A" uniqKey="Ross A">A Ross</name>
</author>
<author>
<name sortKey="Kiniboro, B" uniqKey="Kiniboro B">B Kiniboro</name>
</author>
<author>
<name sortKey="Smith, Ta" uniqKey="Smith T">TA Smith</name>
</author>
<author>
<name sortKey="Zimmerman, Pa" uniqKey="Zimmerman P">PA Zimmerman</name>
</author>
<author>
<name sortKey="Siba, P" uniqKey="Siba P">P Siba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macdonald, G" uniqKey="Macdonald G">G Macdonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Felger, I" uniqKey="Felger I">I Felger</name>
</author>
<author>
<name sortKey="Maire, M" uniqKey="Maire M">M Maire</name>
</author>
<author>
<name sortKey="Bretscher, Mt" uniqKey="Bretscher M">MT Bretscher</name>
</author>
<author>
<name sortKey="Falk, N" uniqKey="Falk N">N Falk</name>
</author>
<author>
<name sortKey="Tiaden, A" uniqKey="Tiaden A">A Tiaden</name>
</author>
<author>
<name sortKey="Sama, W" uniqKey="Sama W">W Sama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charlwood, Jd" uniqKey="Charlwood J">JD Charlwood</name>
</author>
<author>
<name sortKey="Graves, Pm" uniqKey="Graves P">PM Graves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charlwood, Jd" uniqKey="Charlwood J">JD Charlwood</name>
</author>
<author>
<name sortKey="Graves, Pm" uniqKey="Graves P">PM Graves</name>
</author>
<author>
<name sortKey="Marshall, Tf" uniqKey="Marshall T">TF Marshall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charlwood, Jd" uniqKey="Charlwood J">JD Charlwood</name>
</author>
<author>
<name sortKey="Dagoro, H" uniqKey="Dagoro H">H Dagoro</name>
</author>
<author>
<name sortKey="Paru, R" uniqKey="Paru R">R Paru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koinari, M" uniqKey="Koinari M">M Koinari</name>
</author>
<author>
<name sortKey="Karl, S" uniqKey="Karl S">S Karl</name>
</author>
<author>
<name sortKey="Ryan, U" uniqKey="Ryan U">U Ryan</name>
</author>
<author>
<name sortKey="Lymbery, Aj" uniqKey="Lymbery A">AJ Lymbery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, Wd" uniqKey="Gu W">WD Gu</name>
</author>
<author>
<name sortKey="Novak, Rj" uniqKey="Novak R">RJ Novak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, S" uniqKey="Gupta S">S Gupta</name>
</author>
<author>
<name sortKey="Swinton, J" uniqKey="Swinton J">J Swinton</name>
</author>
<author>
<name sortKey="Anderson, Rm" uniqKey="Anderson R">RM Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gething, Pw" uniqKey="Gething P">PW Gething</name>
</author>
<author>
<name sortKey="Van Boeckel, Tp" uniqKey="Van Boeckel T">TP Van Boeckel</name>
</author>
<author>
<name sortKey="Smith, Dl" uniqKey="Smith D">DL Smith</name>
</author>
<author>
<name sortKey="Guerra, Ca" uniqKey="Guerra C">CA Guerra</name>
</author>
<author>
<name sortKey="Patil, Ap" uniqKey="Patil A">AP Patil</name>
</author>
<author>
<name sortKey="Snow, Rw" uniqKey="Snow R">RW Snow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="May, R" uniqKey="May R">R May</name>
</author>
<author>
<name sortKey="Anderson, Rm" uniqKey="Anderson R">RM Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wesolowski, A" uniqKey="Wesolowski A">A Wesolowski</name>
</author>
<author>
<name sortKey="Stresman, G" uniqKey="Stresman G">G Stresman</name>
</author>
<author>
<name sortKey="Eagle, N" uniqKey="Eagle N">N Eagle</name>
</author>
<author>
<name sortKey="Stevenson, J" uniqKey="Stevenson J">J Stevenson</name>
</author>
<author>
<name sortKey="Owaga, C" uniqKey="Owaga C">C Owaga</name>
</author>
<author>
<name sortKey="Marube, E" uniqKey="Marube E">E Marube</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perkins, Ta" uniqKey="Perkins T">TA Perkins</name>
</author>
<author>
<name sortKey="Garcia, Aj" uniqKey="Garcia A">AJ Garcia</name>
</author>
<author>
<name sortKey="Paz Soldan, Va" uniqKey="Paz Soldan V">VA Paz-Soldan</name>
</author>
<author>
<name sortKey="Stoddard, St" uniqKey="Stoddard S">ST Stoddard</name>
</author>
<author>
<name sortKey="Reiner, Rc" uniqKey="Reiner R">RC Reiner</name>
</author>
<author>
<name sortKey="Vazquez Prokopec, G" uniqKey="Vazquez Prokopec G">G Vazquez-Prokopec</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Dl" uniqKey="Smith D">DL Smith</name>
</author>
<author>
<name sortKey="Drakeley, Cj" uniqKey="Drakeley C">CJ Drakeley</name>
</author>
<author>
<name sortKey="Chiyaka, C" uniqKey="Chiyaka C">C Chiyaka</name>
</author>
<author>
<name sortKey="Hay, Si" uniqKey="Hay S">SI Hay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bharti, Ar" uniqKey="Bharti A">AR Bharti</name>
</author>
<author>
<name sortKey="Chuquiyauri, R" uniqKey="Chuquiyauri R">R Chuquiyauri</name>
</author>
<author>
<name sortKey="Brouwer, Kc" uniqKey="Brouwer K">KC Brouwer</name>
</author>
<author>
<name sortKey="Stancil, J" uniqKey="Stancil J">J Stancil</name>
</author>
<author>
<name sortKey="Lin, J" uniqKey="Lin J">J Lin</name>
</author>
<author>
<name sortKey="Llanos Cuentas, A" uniqKey="Llanos Cuentas A">A Llanos-Cuentas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garrett Jones, C" uniqKey="Garrett Jones C">C Garrett-Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ribeiro, Jm" uniqKey="Ribeiro J">JM Ribeiro</name>
</author>
<author>
<name sortKey="Seulu, F" uniqKey="Seulu F">F Seulu</name>
</author>
<author>
<name sortKey="Abose, T" uniqKey="Abose T">T Abose</name>
</author>
<author>
<name sortKey="Kidane, G" uniqKey="Kidane G">G Kidane</name>
</author>
<author>
<name sortKey="Teklehaimanot, A" uniqKey="Teklehaimanot A">A Teklehaimanot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keating, J" uniqKey="Keating J">J Keating</name>
</author>
<author>
<name sortKey="Mbogo, Cm" uniqKey="Mbogo C">CM Mbogo</name>
</author>
<author>
<name sortKey="Mwangangi, J" uniqKey="Mwangangi J">J Mwangangi</name>
</author>
<author>
<name sortKey="Nzovu, Jg" uniqKey="Nzovu J">JG Nzovu</name>
</author>
<author>
<name sortKey="Gu, V" uniqKey="Gu V">V Gu</name>
</author>
<author>
<name sortKey="Regens, Jl" uniqKey="Regens J">JL Regens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bejon, P" uniqKey="Bejon P">P Bejon</name>
</author>
<author>
<name sortKey="Williams, Tn" uniqKey="Williams T">TN Williams</name>
</author>
<author>
<name sortKey="Nyundo, C" uniqKey="Nyundo C">C Nyundo</name>
</author>
<author>
<name sortKey="Hay, Si" uniqKey="Hay S">SI Hay</name>
</author>
<author>
<name sortKey="Benz, D" uniqKey="Benz D">D Benz</name>
</author>
<author>
<name sortKey="Gething, Pw" uniqKey="Gething P">PW Gething</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hii, Jl" uniqKey="Hii J">JL Hii</name>
</author>
<author>
<name sortKey="Smith, T" uniqKey="Smith T">T Smith</name>
</author>
<author>
<name sortKey="Mai, A" uniqKey="Mai A">A Mai</name>
</author>
<author>
<name sortKey="Mellor, S" uniqKey="Mellor S">S Mellor</name>
</author>
<author>
<name sortKey="Lewis, D" uniqKey="Lewis D">D Lewis</name>
</author>
<author>
<name sortKey="Alexander, N" uniqKey="Alexander N">N Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y Kim</name>
</author>
<author>
<name sortKey="Escalante, Aa" uniqKey="Escalante A">AA Escalante</name>
</author>
<author>
<name sortKey="Schneider, Ka" uniqKey="Schneider K">KA Schneider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanabe, K" uniqKey="Tanabe K">K Tanabe</name>
</author>
<author>
<name sortKey="Sakihama, N" uniqKey="Sakihama N">N Sakihama</name>
</author>
<author>
<name sortKey="Kaneko, A" uniqKey="Kaneko A">A Kaneko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gurarie, D" uniqKey="Gurarie D">D Gurarie</name>
</author>
<author>
<name sortKey="Karl, S" uniqKey="Karl S">S Karl</name>
</author>
<author>
<name sortKey="Zimmerman, Pa" uniqKey="Zimmerman P">PA Zimmerman</name>
</author>
<author>
<name sortKey="King, Ch" uniqKey="King C">CH King</name>
</author>
<author>
<name sortKey="St Pierre, Tg" uniqKey="St Pierre T">TG St Pierre</name>
</author>
<author>
<name sortKey="Davis, Tm" uniqKey="Davis T">TM Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, Cj" uniqKey="Thomas C">CJ Thomas</name>
</author>
<author>
<name sortKey="Cross, De" uniqKey="Cross D">DE Cross</name>
</author>
<author>
<name sortKey="Bogh, C" uniqKey="Bogh C">C Bogh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eckhoff, Pa" uniqKey="Eckhoff P">PA Eckhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arifin, Sm" uniqKey="Arifin S">SM Arifin</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Davis, Gj" uniqKey="Davis G">GJ Davis</name>
</author>
<author>
<name sortKey="Gentile, Je" uniqKey="Gentile J">JE Gentile</name>
</author>
<author>
<name sortKey="Madey, Gr" uniqKey="Madey G">GR Madey</name>
</author>
<author>
<name sortKey="Collins, Fh" uniqKey="Collins F">FH Collins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Mt" uniqKey="White M">MT White</name>
</author>
<author>
<name sortKey="Griffin, Jt" uniqKey="Griffin J">JT Griffin</name>
</author>
<author>
<name sortKey="Churcher, Ts" uniqKey="Churcher T">TS Churcher</name>
</author>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Basanez, Mg" uniqKey="Basanez M">MG Basanez</name>
</author>
<author>
<name sortKey="Ghani, Ac" uniqKey="Ghani A">AC Ghani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Dl" uniqKey="Smith D">DL Smith</name>
</author>
<author>
<name sortKey="Mckenzie, Fe" uniqKey="Mckenzie F">FE McKenzie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wearing, Hj" uniqKey="Wearing H">HJ Wearing</name>
</author>
<author>
<name sortKey="Rohani, P" uniqKey="Rohani P">P Rohani</name>
</author>
<author>
<name sortKey="Keeling, Mj" uniqKey="Keeling M">MJ Keeling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, M" uniqKey="White M">M White</name>
</author>
<author>
<name sortKey="Karl, S" uniqKey="Karl S">S Karl</name>
</author>
<author>
<name sortKey="Battle, Ke" uniqKey="Battle K">KE Battle</name>
</author>
<author>
<name sortKey="Hay, Si" uniqKey="Hay S">SI Hay</name>
</author>
<author>
<name sortKey="Mueller, I" uniqKey="Mueller I">I Mueller</name>
</author>
<author>
<name sortKey="Ghani, A" uniqKey="Ghani A">A Ghani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Dl" uniqKey="Smith D">DL Smith</name>
</author>
<author>
<name sortKey="Mckenzie, Fe" uniqKey="Mckenzie F">FE McKenzie</name>
</author>
<author>
<name sortKey="Snow, Rw" uniqKey="Snow R">RW Snow</name>
</author>
<author>
<name sortKey="Hay, Si" uniqKey="Hay S">SI Hay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Midega, Jt" uniqKey="Midega J">JT Midega</name>
</author>
<author>
<name sortKey="Mbogo, Cm" uniqKey="Mbogo C">CM Mbogo</name>
</author>
<author>
<name sortKey="Mwambi, H" uniqKey="Mwambi H">H Mwambi</name>
</author>
<author>
<name sortKey="Wilson, Md" uniqKey="Wilson M">MD Wilson</name>
</author>
<author>
<name sortKey="Ojwang, G" uniqKey="Ojwang G">G Ojwang</name>
</author>
<author>
<name sortKey="Mwangangi, Jm" uniqKey="Mwangangi J">JM Mwangangi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toure, Yt" uniqKey="Toure Y">YT Toure</name>
</author>
<author>
<name sortKey="Dolo, G" uniqKey="Dolo G">G Dolo</name>
</author>
<author>
<name sortKey="Petrarca, V" uniqKey="Petrarca V">V Petrarca</name>
</author>
<author>
<name sortKey="Traore, Sf" uniqKey="Traore S">SF Traore</name>
</author>
<author>
<name sortKey="Bouare, M" uniqKey="Bouare M">M Bouare</name>
</author>
<author>
<name sortKey="Dao, A" uniqKey="Dao A">A Dao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Achee, Nl" uniqKey="Achee N">NL Achee</name>
</author>
<author>
<name sortKey="Grieco, Jp" uniqKey="Grieco J">JP Grieco</name>
</author>
<author>
<name sortKey="Andre, Rg" uniqKey="Andre R">RG Andre</name>
</author>
<author>
<name sortKey="Rejmankova, E" uniqKey="Rejmankova E">E Rejmankova</name>
</author>
<author>
<name sortKey="Roberts, Dr" uniqKey="Roberts D">DR Roberts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailey, Sf" uniqKey="Bailey S">SF Bailey</name>
</author>
<author>
<name sortKey="Baerg, Dc" uniqKey="Baerg D">DC Baerg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdel Malek, Aa" uniqKey="Abdel Malek A">AA abdel-Malek</name>
</author>
<author>
<name sortKey="Abdel Aal, Ma" uniqKey="Abdel Aal M">MA abdel-Aal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ejerctto, A" uniqKey="Ejerctto A">A Ejerctto</name>
</author>
<author>
<name sortKey="Urbino, Cm" uniqKey="Urbino C">CM Urbino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koepfli, C" uniqKey="Koepfli C">C Koepfli</name>
</author>
<author>
<name sortKey="Schoepflin, S" uniqKey="Schoepflin S">S Schoepflin</name>
</author>
<author>
<name sortKey="Bretscher, M" uniqKey="Bretscher M">M Bretscher</name>
</author>
<author>
<name sortKey="Lin, E" uniqKey="Lin E">E Lin</name>
</author>
<author>
<name sortKey="Kiniboro, B" uniqKey="Kiniboro B">B Kiniboro</name>
</author>
<author>
<name sortKey="Zimmerman, Pa" uniqKey="Zimmerman P">PA Zimmerman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barry, Ae" uniqKey="Barry A">AE Barry</name>
</author>
<author>
<name sortKey="Arnott, A" uniqKey="Arnott A">A Arnott</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27711149</article-id>
<article-id pub-id-type="pmc">5053403</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0164054</article-id>
<article-id pub-id-type="publisher-id">PONE-D-16-23772</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Epidemiology</subject>
<subj-group>
<subject>Disease Vectors</subject>
<subj-group>
<subject>Insect Vectors</subject>
<subj-group>
<subject>Mosquitoes</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Organisms</subject>
<subj-group>
<subject>Animals</subject>
<subj-group>
<subject>Invertebrates</subject>
<subj-group>
<subject>Arthropoda</subject>
<subj-group>
<subject>Insects</subject>
<subj-group>
<subject>Mosquitoes</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Parasitic Diseases</subject>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Parasitic Diseases</subject>
<subj-group>
<subject>Malaria</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Tropical Diseases</subject>
<subj-group>
<subject>Malaria</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Molecular Biology</subject>
<subj-group>
<subject>Molecular Biology Techniques</subject>
<subj-group>
<subject>Cloning</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and Analysis Methods</subject>
<subj-group>
<subject>Molecular Biology Techniques</subject>
<subj-group>
<subject>Cloning</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Organisms</subject>
<subj-group>
<subject>Protozoans</subject>
<subj-group>
<subject>Parasitic Protozoans</subject>
<subj-group>
<subject>Malarial Parasites</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Infectious Diseases</subject>
<subj-group>
<subject>Vector-Borne Diseases</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Earth Sciences</subject>
<subj-group>
<subject>Geography</subject>
<subj-group>
<subject>Human Geography</subject>
<subj-group>
<subject>Human Mobility</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Social Sciences</subject>
<subj-group>
<subject>Human Geography</subject>
<subj-group>
<subject>Human Mobility</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Population Biology</subject>
<subj-group>
<subject>Population Dynamics</subject>
<subj-group>
<subject>Geographic Distribution</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Spatial Effects on the Multiplicity of
<italic>Plasmodium falciparum</italic>
Infections</article-title>
<alt-title alt-title-type="running-head">Spatial Effects on Multiplicity of Infection</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Karl</surname>
<given-names>Stephan</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="cor001">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>White</surname>
<given-names>Michael T.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Milne</surname>
<given-names>George J.</given-names>
</name>
<xref ref-type="aff" rid="aff005">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gurarie</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="aff006">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hay</surname>
<given-names>Simon I.</given-names>
</name>
<xref ref-type="aff" rid="aff007">
<sup>7</sup>
</xref>
<xref ref-type="aff" rid="aff008">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Barry</surname>
<given-names>Alyssa E.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Felger</surname>
<given-names>Ingrid</given-names>
</name>
<xref ref-type="aff" rid="aff009">
<sup>9</sup>
</xref>
<xref ref-type="aff" rid="aff010">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mueller</surname>
<given-names>Ivo</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff011">
<sup>11</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia</addr-line>
</aff>
<aff id="aff003">
<label>3</label>
<addr-line>Vector-borne Diseases Unit, Papua New Guinea Insititute of Medical Research, Madang, Madang Province, Papua New Guinea</addr-line>
</aff>
<aff id="aff004">
<label>4</label>
<addr-line>MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom</addr-line>
</aff>
<aff id="aff005">
<label>5</label>
<addr-line>School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia</addr-line>
</aff>
<aff id="aff006">
<label>6</label>
<addr-line>Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio, United States of America</addr-line>
</aff>
<aff id="aff007">
<label>7</label>
<addr-line>Institute for Health Metrics and Evaluation, Seattle, Washington, United States of America</addr-line>
</aff>
<aff id="aff008">
<label>8</label>
<addr-line>Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America</addr-line>
</aff>
<aff id="aff009">
<label>9</label>
<addr-line>Department of Medical Parasitology and Infection Biology Swiss Tropical and Public Health Institute, Basel, Switzerland</addr-line>
</aff>
<aff id="aff010">
<label>10</label>
<addr-line>University of Basel, Basel, Switzerland</addr-line>
</aff>
<aff id="aff011">
<label>11</label>
<addr-line>Malaria: Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Marinho</surname>
<given-names>Claudio Romero Farias</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Universidade de Sao Paulo Instituto de Ciencias Biomedicas, BRAZIL</addr-line>
</aff>
<author-notes>
<fn fn-type="COI-statement" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>
<list list-type="simple">
<list-item>
<p>
<bold>Conceptualization:</bold>
SK MTW SIH IF AB IM.</p>
</list-item>
<list-item>
<p>
<bold>Data curation:</bold>
SK IF AB MTW.</p>
</list-item>
<list-item>
<p>
<bold>Formal analysis:</bold>
SK MTW.</p>
</list-item>
<list-item>
<p>
<bold>Funding acquisition:</bold>
SK MTW IM AB IF.</p>
</list-item>
<list-item>
<p>
<bold>Investigation:</bold>
SK MTW.</p>
</list-item>
<list-item>
<p>
<bold>Methodology:</bold>
SK MTW GJM DG.</p>
</list-item>
<list-item>
<p>
<bold>Project administration:</bold>
SK MTW IF AB IM.</p>
</list-item>
<list-item>
<p>
<bold>Resources:</bold>
SK IM AB IF.</p>
</list-item>
<list-item>
<p>
<bold>Software:</bold>
SK GJM DG.</p>
</list-item>
<list-item>
<p>
<bold>Supervision:</bold>
SK MTW SIH IF AB IM.</p>
</list-item>
<list-item>
<p>
<bold>Validation:</bold>
SK MTW DG IM.</p>
</list-item>
<list-item>
<p>
<bold>Visualization:</bold>
SK MTW.</p>
</list-item>
<list-item>
<p>
<bold>Writing – original draft:</bold>
SK MTW IF SIH AB IM.</p>
</list-item>
<list-item>
<p>
<bold>Writing – review & editing:</bold>
SK MTW DG GJM SIH IF AB IM.</p>
</list-item>
</list>
</p>
</fn>
<corresp id="cor001">* E-mail:
<email>karl@wehi.edu.au</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>6</day>
<month>10</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>11</volume>
<issue>10</issue>
<elocation-id>e0164054</elocation-id>
<history>
<date date-type="received">
<day>5</day>
<month>7</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>9</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© 2016 Karl et al</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Karl et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="pone.0164054.pdf"></self-uri>
<abstract>
<p>As malaria is being pushed back on many frontiers and global case numbers are declining, accurate measurement and prediction of transmission becomes increasingly difficult. Low transmission settings are characterised by high levels of spatial heterogeneity, which stands in stark contrast to the widely used assumption of spatially homogeneous transmission used in mathematical transmission models for malaria. In the present study an individual-based mathematical malaria transmission model that incorporates multiple parasite clones, variable human exposure and duration of infection, limited mosquito flight distance and most importantly geographically heterogeneous human and mosquito population densities was used to illustrate the differences between homogeneous and heterogeneous transmission assumptions when aiming to predict surrogate indicators of transmission intensity such as population parasite prevalence or multiplicity of infection (MOI). In traditionally highly malaria endemic regions where most of the population harbours malaria parasites, humans are often infected with multiple parasite clones. However, studies have shown also in areas with low overall parasite prevalence, infection with multiple parasite clones is a common occurrence. Mathematical models assuming homogeneous transmission between humans and mosquitoes cannot explain these observations. Heterogeneity of transmission can arise from many factors including acquired immunity, body size and occupational exposure. In this study, we show that spatial heterogeneity has a profound effect on predictions of MOI and parasite prevalence. We illustrate, that models assuming homogeneous transmission underestimate average MOI in low transmission settings when compared to field data and that spatially heterogeneous models predict stable transmission at much lower overall parasite prevalence. Therefore it is very important that models used to guide malaria surveillance and control strategies in low transmission and elimination settings take into account the spatial features of the specific target area, including human and mosquito vector distribution.</p>
</abstract>
<funding-group>
<award-group id="award001">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/501100000925</institution-id>
<institution>National Health and Medical Research Council</institution>
</institution-wrap>
</funding-source>
<award-id>1052760</award-id>
<principal-award-recipient>
<name>
<surname>Karl</surname>
<given-names>Stephan</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award002">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/501100000265</institution-id>
<institution>Medical Research Council</institution>
</institution-wrap>
</funding-source>
<principal-award-recipient>
<name>
<surname>White</surname>
<given-names>Michael T</given-names>
</name>
</principal-award-recipient>
</award-group>
<funding-statement>SK, AB and IM acknowledge support from the Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS. SK was supported by an NHMRC (Australia) Early Career Fellowship (GNT 1052760). MTW was supported by an MRC (UK) Research Fellowship. The authors thank all researchers and study participants involved in the PNG studies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="8"></fig-count>
<table-count count="1"></table-count>
<page-count count="20"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All relevant data are within the paper and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All relevant data are within the paper and its Supporting Information files.</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>Declining malaria transmission is associated with the formation of ‘hotspots’, which are geographical regions of limited extent, where infections cluster and transmission may remain persistent. [
<xref rid="pone.0164054.ref001" ref-type="bibr">1</xref>
] Such hotspots may not be easily identifiable by routine surveillance as much of the transmission within a hotspot is likely to occur between asymptomatic individuals. [
<xref rid="pone.0164054.ref002" ref-type="bibr">2</xref>
]</p>
<p>The primary reason for the occurrence of transmission hotspots is that malaria transmission is not homogeneous and humans can be exposed to substantially different levels of mosquito biting on the micro-scale (i.e., on a scale of a few meters, between neighbouring households or even within the same household). Most likely both vector population related factors such as productivity of breeding sites and distance of human dwellings from these sites as well as human related factors crucially affect micro-scale variation in transmission intensity and human exposure. [
<xref rid="pone.0164054.ref003" ref-type="bibr">3</xref>
] Although Anopheles mosquitoes are known to be able to fly considerable distances (several km) [
<xref rid="pone.0164054.ref004" ref-type="bibr">4</xref>
,
<xref rid="pone.0164054.ref005" ref-type="bibr">5</xref>
], they will prefer available hosts close to their breeding sites. [
<xref rid="pone.0164054.ref006" ref-type="bibr">6</xref>
,
<xref rid="pone.0164054.ref007" ref-type="bibr">7</xref>
] A wide variety of human factors such as body size, bed net usage, time spent outdoors, quality of housing and even beer-consumption has previously been shown to affect human susceptibility to mosquito bites. [
<xref rid="pone.0164054.ref008" ref-type="bibr">8</xref>
<xref rid="pone.0164054.ref011" ref-type="bibr">11</xref>
]</p>
<p>Another important factor contributing to the heterogeneity of transmission is the very variable and difficult-to-quantify duration of infection in humans. [
<xref rid="pone.0164054.ref012" ref-type="bibr">12</xref>
] Some aspects influencing duration of infection, such as acquired immunity and super-infection with new clones are directly related to exposure, others, such as treatment-seeking behaviour are less dependent on exposure. [
<xref rid="pone.0164054.ref013" ref-type="bibr">13</xref>
,
<xref rid="pone.0164054.ref014" ref-type="bibr">14</xref>
] For example, people living a considerable distance from a health centre will seek malaria treatment less frequently leading to longer average durations of infection. [
<xref rid="pone.0164054.ref015" ref-type="bibr">15</xref>
] From the interplay of these different aspects complex patterns may arise: for example, infants, who still carry maternal antibodies (e.g., < 6 months of age) and very small children who stay mostly indoors and are closely monitored by their parents (e.g., < 2–3 yrs. of age) are often shown to harbour infections less frequently. [
<xref rid="pone.0164054.ref016" ref-type="bibr">16</xref>
] If they do get infected, they will receive treatment more often, especially since they will develop symptomatic infections more frequently leading to comparatively short durations of infection and thus a smaller overall contribution to onward transmission. [
<xref rid="pone.0164054.ref017" ref-type="bibr">17</xref>
<xref rid="pone.0164054.ref019" ref-type="bibr">19</xref>
] In contrast, older children and young adults (e.g., 5–15 yrs. of age) who spend more time outdoors are usually found to carry infections more frequently. However, due to a higher degree of immunity these infections are more often asymptomatic. [
<xref rid="pone.0164054.ref018" ref-type="bibr">18</xref>
,
<xref rid="pone.0164054.ref020" ref-type="bibr">20</xref>
,
<xref rid="pone.0164054.ref021" ref-type="bibr">21</xref>
]</p>
<p>Incorporation of heterogeneity in transmission represents a challenge for mathematical transmission models of vector borne diseases. Previous mathematical modelling studies have shown that heterogeneity of exposure, for example, based on the ‘80/20-rule’ (i.e., a scenario where 20% of the human population receives 80% of mosquito bites) may contribute considerably to sustaining transmission by leading to increased estimates of the basic reproduction number, R
<sub>0</sub>
. [
<xref rid="pone.0164054.ref003" ref-type="bibr">3</xref>
] However, few studies have modelled the spatial aspects, specifically the geographical distribution of humans and mosquitoes on the micro-scale (i.e., with a spatial resolution of a few meters), an important factor underlying this heterogeneity in transmission intensity. [
<xref rid="pone.0164054.ref022" ref-type="bibr">22</xref>
<xref rid="pone.0164054.ref026" ref-type="bibr">26</xref>
]</p>
<p>Infections with multiple parasite clones are common in high transmission settings and it has been hypothesized that the observed multiplicity of infection (number of clones per person, MOI) may be a good indicator of the level of transmission in a population. MOI is calculated by counting the number of genetically distinct clones detected in infected individuals. MOI must therefore take values of ≥1. Many studies report ‘mean MOI’, although it is unlikely that MOI follows a simple Poisson distribution in a population where transmission is heterogeneous. [
<xref rid="pone.0164054.ref003" ref-type="bibr">3</xref>
] Heterogeneity also impacts the relationship between MOI and parasite prevalence (another surrogate measure of transmission). Individuals residing within local transmission hotspots may be subject to much higher rates of infectious bites, therefore maintaining higher MOI levels even at very low (i.e., < 1%) overall parasite prevalence in the larger population. [
<xref rid="pone.0164054.ref027" ref-type="bibr">27</xref>
] Previous studies have shown that at low parasite prevalence average MOI is often higher than what can be explained by the random mixing of parasite clones, humans and mosquitoes in homogeneous transmission models (for a list of relevant studies describing MOI based on merozoite surface protein 2 (
<italic>msp2</italic>
) genotyping, see supporting information
<xref ref-type="supplementary-material" rid="pone.0164054.s001">S1 Table</xref>
). [
<xref rid="pone.0164054.ref028" ref-type="bibr">28</xref>
]</p>
<p>Using a spatial mathematical transmission model that allows for the transmission of multiple parasite clones, we therefore investigated whether spatially heterogeneous human and mosquito populations better explain the observed mean MOI
<italic>vs</italic>
. mean parasite prevalence relationship. [
<xref rid="pone.0164054.ref003" ref-type="bibr">3</xref>
,
<xref rid="pone.0164054.ref007" ref-type="bibr">7</xref>
,
<xref rid="pone.0164054.ref016" ref-type="bibr">16</xref>
,
<xref rid="pone.0164054.ref023" ref-type="bibr">23</xref>
,
<xref rid="pone.0164054.ref029" ref-type="bibr">29</xref>
] Based on the underlying spatial distributions of human and mosquito populations, limited mixing between these populations will arise from i) the constrained radius of mosquito flight and ii) the distance dependent movement of human individuals. [
<xref rid="pone.0164054.ref029" ref-type="bibr">29</xref>
,
<xref rid="pone.0164054.ref030" ref-type="bibr">30</xref>
] Coupled with other factors (some mentioned above) that determine human exposure, this will inherently result in a small proportion of the population receiving most mosquito bites. As opposed to imposing an ‘80/20-rule’, these spatial features may better capture heterogeneous transmission and result in more versatile and realistic models.</p>
<p>Most currently used mathematical models for malaria and other vector borne infectious diseases do not explicitly consider spatial features of transmission but assume a homogeneous mixture of human individuals and mosquitoes. [
<xref rid="pone.0164054.ref023" ref-type="bibr">23</xref>
,
<xref rid="pone.0164054.ref031" ref-type="bibr">31</xref>
<xref rid="pone.0164054.ref037" ref-type="bibr">37</xref>
] This may be appropriate for many aspects of transmission especially for scenarios of high transmission. However, in the modelling of very low transmission scenarios where the mosquito distribution is more heterogeneous, the actual spatial distribution of human and mosquito populations may need to be taken into account in order to provide reliable estimates. Such low transmission scenarios will be dominant in the future if malaria incidence continues to decline as expected.</p>
<p>The model presented here was calibrated using the spatial village structure, human age distribution and household composition (number of inhabitants and family structure) as present on the North Coast of Papua New Guinea (PNG) to ensure realistic simulations. [
<xref rid="pone.0164054.ref038" ref-type="bibr">38</xref>
] Our recent studies in this area also provided detailed data on the number circulating
<italic>msp2</italic>
alleles, overall malaria prevalence and MOI. [
<xref rid="pone.0164054.ref018" ref-type="bibr">18</xref>
,
<xref rid="pone.0164054.ref027" ref-type="bibr">27</xref>
,
<xref rid="pone.0164054.ref039" ref-type="bibr">39</xref>
<xref rid="pone.0164054.ref041" ref-type="bibr">41</xref>
]</p>
</sec>
<sec sec-type="materials|methods" id="sec002">
<title>Materials and Methods</title>
<p>We used an individual based, spatially explicit model with individual humans and mosquitoes. [
<xref rid="pone.0164054.ref042" ref-type="bibr">42</xref>
] The human population in the model (n = 3461) was based on the age distribution and household structure of rural Madang Province, PNG. [
<xref rid="pone.0164054.ref038" ref-type="bibr">38</xref>
] We used a set of geo-referenced households (n = 663) in an area of approximately 35 km
<sup>2</sup>
(
<xref ref-type="fig" rid="pone.0164054.g001">Fig 1</xref>
).</p>
<fig id="pone.0164054.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0164054.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Modelling Area and Characteristics of the Modelled Human Population.</title>
<p>Panel A: Geographical distribution of households (black dots = households); Panel B: Age dependent exposure [
<xref rid="pone.0164054.ref009" ref-type="bibr">9</xref>
] and duration of infection [
<xref rid="pone.0164054.ref012" ref-type="bibr">12</xref>
,
<xref rid="pone.0164054.ref043" ref-type="bibr">43</xref>
]; Panel C: Rural population age distribution in Madang Province, PNG based on the current census data. [
<xref rid="pone.0164054.ref038" ref-type="bibr">38</xref>
]</p>
</caption>
<graphic xlink:href="pone.0164054.g001"></graphic>
</fig>
<p>
<italic>Anopheles farauti s</italic>
.
<italic>l</italic>
. is the main vector in coastal Madang. [
<xref rid="pone.0164054.ref044" ref-type="bibr">44</xref>
] It has been shown that
<italic>A</italic>
.
<italic>farauti</italic>
generally fly less than 50 m after blood feeding and have a memorized home range, whereas the other, less abundant species in the area (e.g.,
<italic>A</italic>
.
<italic>punctulatus</italic>
and
<italic>A</italic>
.
<italic>koliensis</italic>
) may disperse further. [
<xref rid="pone.0164054.ref045" ref-type="bibr">45</xref>
,
<xref rid="pone.0164054.ref046" ref-type="bibr">46</xref>
]. Another circumstance that will limit mosquito dispersal in coastal PNG is the relative absence of non-human hosts as there are only few domestic animals (pigs, few cattle). These animals are usually kept next to, or under the houses at night in PNG. [
<xref rid="pone.0164054.ref046" ref-type="bibr">46</xref>
,
<xref rid="pone.0164054.ref047" ref-type="bibr">47</xref>
] As in previous modelling approaches, we assumed that mosquitoes are confined to the households of a specific geographical area and predominantly feed on humans residing in households within this area. [
<xref rid="pone.0164054.ref048" ref-type="bibr">48</xref>
] Within household exposure and duration of infection are dependent on human age (
<xref ref-type="fig" rid="pone.0164054.g001">Fig 1</xref>
). [
<xref rid="pone.0164054.ref009" ref-type="bibr">9</xref>
] It is also possible for mosquitoes to bite humans outside their area, however this probability decreases with the square of the distance between individual human and mosquito locations (households).</p>
<p>The probability that a specific mosquito (M
<sub>
<italic>j</italic>
</sub>
) bites a specific human (H
<sub>
<italic>i</italic>
</sub>
) is:
<disp-formula id="pone.0164054.e001">
<alternatives>
<graphic xlink:href="pone.0164054.e001.jpg" id="pone.0164054.e001g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M1">
<mml:mrow>
<mml:mi>P</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo>/</mml:mo>
<mml:msub>
<mml:mi>M</mml:mi>
<mml:mi>j</mml:mi>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>=</mml:mo>
<mml:mi>w</mml:mi>
<mml:msub>
<mml:mi>e</mml:mi>
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>/</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:mi>q</mml:mi>
<mml:msub>
<mml:mi>d</mml:mi>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:math>
</alternatives>
<label>(1)</label>
</disp-formula>
</p>
<p>In Eq (
<xref ref-type="disp-formula" rid="pone.0164054.e001">1</xref>
),
<italic>d</italic>
is distance between a human and a mosquito (if human and mosquito are within the same household then
<italic>d</italic>
= 0),
<italic>e</italic>
<sub>
<italic>a</italic>
</sub>
is a weight of human exposure related to age (
<italic>a</italic>
) based on [
<xref rid="pone.0164054.ref009" ref-type="bibr">9</xref>
] with a value ≤ 1,
<italic>w</italic>
is the biting rate and
<italic>q</italic>
is the scaling factor that determines the extent of human/mosquito mixing. Note that
<italic>q</italic>
does not represent the maximum distance that mosquitoes are physically able to fly but is related to the range of host seeking in the presence of an ample host reservoir in close proximity of the mosquito’s present location. We assume that for transmission from human to mosquito, clones are transmitted independently from each other with the same probability of transmission per bite
<italic>a</italic>
. [
<xref rid="pone.0164054.ref049" ref-type="bibr">49</xref>
] For transmission from mosquito to human it is assumed that all clones present in the salivary glands of the mosquito are transmitted simultaneously with a success rate
<italic>b</italic>
.</p>
<p>Multi-clone infections are acquired either by humans being bitten by one mosquito infected with multiple clones or infected humans being bitten again (on the same day, or a subsequent day), by different infected mosquitoes. If a human is superinfected with the same clone, duration of infection can be extended (a new independent infection process for the same clone is started parallel to the existing one). If a human is infected with multiple strains, these are cleared independently. Similarly, in theory, mosquitoes can bite other infected humans and acquire more infections however, due to the limited mosquito life-span, this occurs very infrequently.</p>
<p>On each simulation day, travellers can acquire single or multi-clone infections similar to humans that are present in the modelling area. The force of infection acting on travellers is assumed to be constant and independent of that within the modelling area. This causes infections to be occasionally introduced to the modelling area, and overall strain distribution to be maintained. The clone distribution used in the present study is shown in
<xref ref-type="fig" rid="pone.0164054.g002">Fig 2</xref>
.</p>
<fig id="pone.0164054.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0164054.g002</object-id>
<label>Fig 2</label>
<caption>
<title>
<italic>Plasmodium falciparum</italic>
Clone Distribution Used in the Present Study.</title>
<p>This distribution resembles that in lowland coastal PNG based on
<italic>msp2</italic>
genotyping data collected in a recent cohort study in the same region of PNG (data unpublished).</p>
</caption>
<graphic xlink:href="pone.0164054.g002"></graphic>
</fig>
<p>Humans remain infected for a duration that is dependent on age, based on previous field observations and modelling [
<xref rid="pone.0164054.ref012" ref-type="bibr">12</xref>
,
<xref rid="pone.0164054.ref014" ref-type="bibr">14</xref>
,
<xref rid="pone.0164054.ref043" ref-type="bibr">43</xref>
] and are assumed to remain infectious for the entire duration of infection. Mosquitoes undergo an extrinsic incubation period of the average duration 1/
<italic>n</italic>
(12 days) and live on average
<italic>1/μ</italic>
of 10 days. [
<xref rid="pone.0164054.ref050" ref-type="bibr">50</xref>
]</p>
<p>The model is implemented as a simulation in which individual humans and mosquitoes are objects with properties such as geographic location and infection status (
<italic>susceptible-S</italic>
,
<italic>infected-E</italic>
,
<italic>infective</italic>
,
<italic>-I</italic>
). Transmission and progression between the infection states are stochastic processes, with fixed probabilities (as given in
<xref ref-type="table" rid="pone.0164054.t001">Table 1</xref>
), and follow the standard approach (
<xref ref-type="fig" rid="pone.0164054.g003">Fig 3</xref>
). Mosquitoes are assumed to bite with a frequency
<italic>w</italic>
, meaning that at each day (simulation time-step), a proportion ~
<italic>w</italic>
of the mosquito population is randomly chosen (i.e., assuming an exponential distribution of biting frequency per mosquito) and assigned to bite humans (multiple bites per human are possible). The choices of the human/mosquito pairs are based on distance between humans and mosquitoes and on human exposure characteristics as specified by Eq (
<xref ref-type="disp-formula" rid="pone.0164054.e001">1</xref>
) and shown in
<xref ref-type="fig" rid="pone.0164054.g001">Fig 1</xref>
. Only the adult, female mosquito population is modelled and ‘dead’ mosquitoes are replaced by new mosquitoes resulting in a constant mosquito population, equivalent to widely used approaches. [
<xref rid="pone.0164054.ref051" ref-type="bibr">51</xref>
]</p>
<fig id="pone.0164054.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0164054.g003</object-id>
<label>Fig 3</label>
<caption>
<title>Model Used in the Present Study.</title>
<p>Humans are either susceptible (S) or infected/infectious (I). Correspondingly, mosquitoes are either susceptible (S), within the extrinsic incubation period (E) or within the infectious period (I). Superscripts
<italic>H</italic>
and
<italic>M</italic>
refer to humans and mosquitoes, respectively.
<italic>n</italic>
<sup>
<italic>M</italic>
</sup>
an
<italic>n</italic>
<sup>
<italic>H</italic>
</sup>
refer to the total number of mosquitoes and humans, respectively. As in most previous models of malaria transmission, all durations of residence in these states are assumed to be exponentially distributed (constant transition probabilities). The indices
<italic>i</italic>
and
<italic>j</italic>
indicate that we use an individual based approach in which each human and each mosquito is represented as an individual object.
<italic>P(S</italic>
<sup>
<italic>H</italic>
</sup>
<sub>
<italic>j</italic>
</sub>
<italic>/I</italic>
<sup>
<italic>M</italic>
</sup>
<sub>
<italic>i</italic>
</sub>
<italic>)</italic>
and
<italic>P(I</italic>
<sup>
<italic>H</italic>
</sup>
<sub>
<italic>j</italic>
</sub>
<italic>/ S</italic>
<sup>
<italic>M</italic>
</sup>
<sub>
<italic>i</italic>
</sub>
<italic>)</italic>
denote the distance weighted probability (
<xref ref-type="disp-formula" rid="pone.0164054.e001">Eq 1</xref>
) that a human (
<italic>j</italic>
) is bitten by a specific mosquito (
<italic>i</italic>
), whereas
<italic>a</italic>
and
<italic>b</italic>
are the probabilities of transmission given a potentially infectious bite.</p>
</caption>
<graphic xlink:href="pone.0164054.g003"></graphic>
</fig>
<table-wrap id="pone.0164054.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0164054.t001</object-id>
<label>Table 1</label>
<caption>
<title>Parameters Used in the Present Study.</title>
</caption>
<alternatives>
<graphic id="pone.0164054.t001g" xlink:href="pone.0164054.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Parameter</th>
<th align="left" rowspan="1" colspan="1">Description</th>
<th align="left" colspan="2" rowspan="1">Value</th>
<th align="left" rowspan="1" colspan="1">Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<underline>
<italic>Transmission probability</italic>
</underline>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" colspan="3" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>a</italic>
</td>
<td align="left" rowspan="1" colspan="1">human to mosquito</td>
<td align="left" rowspan="1" colspan="1">0.23</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref054" ref-type="bibr">54</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>b</italic>
</td>
<td align="left" rowspan="1" colspan="1">mosquito to human</td>
<td align="left" rowspan="1" colspan="1">0.5</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref055" ref-type="bibr">55</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<underline>
<italic>Human/Parasite</italic>
</underline>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" colspan="3" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>s</italic>
</td>
<td align="left" rowspan="1" colspan="1">number of clones
<xref ref-type="table-fn" rid="t001fn001">
<sup>
<italic>1</italic>
</sup>
</xref>
</td>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" colspan="3" rowspan="1">unpublished</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>r</italic>
</td>
<td align="left" rowspan="1" colspan="1">rate of clearance of infections</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" colspan="3" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<italic><2 yrs</italic>
</td>
<td align="left" rowspan="1" colspan="1">1/129 day
<sup>-1</sup>
</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref043" ref-type="bibr">43</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<italic>2–19 yrs</italic>
</td>
<td align="left" rowspan="1" colspan="1">1/200 day
<sup>-1</sup>
</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref043" ref-type="bibr">43</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<italic>>19 yrs</italic>
</td>
<td align="left" rowspan="1" colspan="1">1/150 day
<sup>-1</sup>
</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref043" ref-type="bibr">43</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>e</italic>
<sub>
<italic>a</italic>
</sub>
</td>
<td align="left" rowspan="1" colspan="1">weighted exposure dependent on age</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" colspan="3" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<italic><2 yrs</italic>
</td>
<td align="left" rowspan="1" colspan="1">0.01</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref009" ref-type="bibr">9</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<italic>2–10 yrs</italic>
</td>
<td align="left" rowspan="1" colspan="1">0.33</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref009" ref-type="bibr">9</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<italic>10–18 yrs</italic>
</td>
<td align="left" rowspan="1" colspan="1">0.37</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref009" ref-type="bibr">9</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<italic>>18 yrs</italic>
</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref009" ref-type="bibr">9</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<underline>
<italic>Mosquito</italic>
</underline>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" colspan="3" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>w</italic>
</td>
<td align="left" rowspan="1" colspan="1">mosquito biting frequency</td>
<td align="left" rowspan="1" colspan="1">0.21 day
<sup>-1</sup>
</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref056" ref-type="bibr">56</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>μ</italic>
</td>
<td align="left" rowspan="1" colspan="1">1/mosquito life expectancy</td>
<td align="left" rowspan="1" colspan="1">0.1 day
<sup>-1</sup>
</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref050" ref-type="bibr">50</xref>
,
<xref rid="pone.0164054.ref056" ref-type="bibr">56</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>n</italic>
</td>
<td align="left" rowspan="1" colspan="1">1/duration of sporogony in mosquito</td>
<td align="left" rowspan="1" colspan="1">0.083 day
<sup>-1</sup>
</td>
<td align="left" colspan="3" rowspan="1">[
<xref rid="pone.0164054.ref050" ref-type="bibr">50</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>q</italic>
</td>
<td align="left" rowspan="1" colspan="1">distance scale of human/mosquito mixing
<xref ref-type="table-fn" rid="t001fn002">
<sup>
<italic>2</italic>
</sup>
</xref>
</td>
<td align="left" rowspan="1" colspan="1">0.03 m
<sup>-2</sup>
</td>
<td align="left" colspan="3" rowspan="1">arbitrary</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<underline>
<italic>Migration</italic>
</underline>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" colspan="3" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>F</italic>
</td>
<td align="left" rowspan="1" colspan="1">fraction of adult humans travelling</td>
<td align="left" rowspan="1" colspan="1">0.1</td>
<td align="left" colspan="3" rowspan="1">arbitrary</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>t</italic>
</td>
<td align="left" rowspan="1" colspan="1">average travel time</td>
<td align="left" rowspan="1" colspan="1">14 days</td>
<td align="left" colspan="3" rowspan="1">arbitrary</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>p</italic>
<sub>
<italic>out</italic>
</sub>
</td>
<td align="left" rowspan="1" colspan="1">probability of infection while traveling
<xref ref-type="table-fn" rid="t001fn003">
<sup>3</sup>
</xref>
</td>
<td align="left" rowspan="1" colspan="1">0.0–0.1 day
<sup>-1</sup>
</td>
<td align="left" colspan="3" rowspan="1">arbitrary</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t001fn001">
<p>
<sup>1</sup>
see
<xref ref-type="fig" rid="pone.0164054.g002">Fig 2</xref>
for clone distribution</p>
</fn>
<fn id="t001fn002">
<p>
<sup>2</sup>
with
<italic>q</italic>
= 0.03 m the probability that a mosquito seeks a host at a distance of 10 m is 25% of that at 0 m (same household) and 0.3% at 100 m</p>
</fn>
<fn id="t001fn003">
<p>
<sup>3</sup>
<italic>p</italic>
<sub>
<italic>out</italic>
</sub>
is a linear function based on the number of infections within the modelling area,
<inline-formula id="pone.0164054.e002">
<alternatives>
<graphic id="pone.0164054.e002g" xlink:href="pone.0164054.e002"></graphic>
<mml:math id="M2">
<mml:mrow>
<mml:msub>
<mml:mi>p</mml:mi>
<mml:mrow>
<mml:mi>o</mml:mi>
<mml:mi>u</mml:mi>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mi>k</mml:mi>
<mml:mstyle displaystyle="true">
<mml:mo></mml:mo>
<mml:mi>I</mml:mi>
</mml:mstyle>
</mml:mrow>
</mml:math>
</alternatives>
</inline-formula>
where
<inline-formula id="pone.0164054.e003">
<alternatives>
<graphic id="pone.0164054.e003g" xlink:href="pone.0164054.e003"></graphic>
<mml:math id="M3">
<mml:mrow>
<mml:mstyle displaystyle="true">
<mml:mo></mml:mo>
<mml:mi>I</mml:mi>
</mml:mstyle>
</mml:mrow>
</mml:math>
</alternatives>
</inline-formula>
is the sum of all infections within the modelling area and
<italic>k</italic>
is a scaling factor to achieve 0.1/day probability at 100% infection rate (
<italic>k</italic>
= 1.07 x 10
<sup>−6</sup>
).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>To represent the integration of the modelling area into a wider geographical region with a similar parasite clone distribution, we allow for infections to be introduced into the modelling area by human migration/travel. We assume, that on average a 10% fraction of the adult population (>14 years) is currently travelling, resulting in a constant population within the modelling area. Average travelling time per person is 14 days. Humans outside the modelling area can be infected with a probability dependent on transmission within the modelling area, and the infecting clone(s) will be chosen based on the overall clone distribution in the modelling area at the start of the simulation. (
<xref ref-type="fig" rid="pone.0164054.g002">Fig 2</xref>
). If transmission within the modelling area is high, introductions through migration occur more frequently but decrease linearly with decreasing transmission. More complex models describing human movement and migration have previously been developed yet their implementation is only reasonable if local human migration and movement data for the modelling area is available, which was not the case for PNG. [
<xref rid="pone.0164054.ref023" ref-type="bibr">23</xref>
,
<xref rid="pone.0164054.ref052" ref-type="bibr">52</xref>
,
<xref rid="pone.0164054.ref053" ref-type="bibr">53</xref>
] All model parameters are shown in
<xref ref-type="table" rid="pone.0164054.t001">Table 1</xref>
.</p>
<sec id="sec003">
<title>Different Transmission Environments</title>
<p>Following observations from the field, we assumed that in high transmission settings, mosquito density is more evenly distributed across households as compared to low transmission settings (this is further underpinned by the data analysis presented in Supporting Information
<xref ref-type="supplementary-material" rid="pone.0164054.s002">S1 Text</xref>
). In low transmission settings, mosquitoes were assumed to be clustered around specific breeding sites so that a smaller proportion of households sustained most of the mosquito population. In the present study 3 such mosquito population clusters were purposely generated to represent hotspots. These are represented by the circles in
<xref ref-type="fig" rid="pone.0164054.g004">Fig 4A</xref>
. We assumed that stable mosquito numbers exist in these clusters (e.g., related to stable bodies of water), and that mosquito numbers are decreasing with the square of the distance away from the centre of each of these hotspots (
<xref ref-type="fig" rid="pone.0164054.g004">Fig 4A</xref>
).</p>
<fig id="pone.0164054.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0164054.g004</object-id>
<label>Fig 4</label>
<caption>
<title>Heterogeneous Mosquito Distribution per Household in Low Transmission Settings.</title>
<p>For the illustrative purposes of this work, we assumed 3 regions in the modelling area where mosquito density was higher than in the surrounding areas (indicated by circles in Fig 4A). The colour scale indicates the number of mosquitoes per household assumed for households located in the respective areas. Panel B shows the resulting overall proportion of mosquitoes found in the overall proportion of households. As observed in field studies, especially in low transmission settings, often a small proportion of households harbour most of the mosquitoes. A general experimental observation is that mosquito numbers become more evenly distributed as mosquito numbers increase (Supporting Information
<xref ref-type="supplementary-material" rid="pone.0164054.s002">S1 Text</xref>
). [
<xref rid="pone.0164054.ref057" ref-type="bibr">57</xref>
,
<xref rid="pone.0164054.ref058" ref-type="bibr">58</xref>
] The numbers on the curves in 4B indicate the mosquito-to-human ratios resulting in the respective curves.</p>
</caption>
<graphic xlink:href="pone.0164054.g004"></graphic>
</fig>
<p>As transmission intensity increases, the areas away from these ‘hotspots’ are gradually and homogeneously populated with mosquitoes (e.g., by the formation of temporal, shallow water bodies during the rainy season) whereas within the hotspot area, mosquito numbers remain stable but not lower than the mosquito density of the surrounding landscape a characteristic e.g., observed by Ribeiro et al. in Ethiopia. [
<xref rid="pone.0164054.ref057" ref-type="bibr">57</xref>
] A Supporting Video File (
<xref ref-type="supplementary-material" rid="pone.0164054.s003">S1 Video</xref>
) was generated to illustrate this assumption graphically.
<xref ref-type="fig" rid="pone.0164054.g004">Fig 4B</xref>
shows the resulting proportion of mosquitoes
<italic>vs</italic>
proportion of households for various mosquito-to-human ratios. This resembles observations from the field (e.g., from Kenya and Ethiopia, for further analyses see Supporting Information
<xref ref-type="supplementary-material" rid="pone.0164054.s002">S1 Text</xref>
). [
<xref rid="pone.0164054.ref057" ref-type="bibr">57</xref>
<xref rid="pone.0164054.ref060" ref-type="bibr">60</xref>
]</p>
<p>The spatial model including heterogeneous biting based on geography, mosquito flight and age-dependent exposure was compared to two other models. Firstly, a ‘null model’, where exposure was homogeneous and parasite clones were Poisson distributed across the human population at a given prevalence, and secondly, a model with no spatial features but taking into account age-dependent within-human differences in exposure and duration of infection (shown in
<xref ref-type="fig" rid="pone.0164054.g001">Fig 1B and 1C</xref>
). The model was run for different mosquito-to-human ratios as shown in
<xref ref-type="fig" rid="pone.0164054.g004">Fig 4A</xref>
to achieve different parasite prevalence. Prevalence was then plotted against MOI. The resulting prevalence
<italic>vs</italic>
MOI pattern was compared to data compiled from a literature survey on
<italic>msp2</italic>
based observations of MOI (
<xref ref-type="supplementary-material" rid="pone.0164054.s001">S1 Table</xref>
). Spatial estimates for average frequency of infected bites per person per unit time (entomological inoculation rate, EIR) where derived by running the model at an equilibrium state for 30 years, mapping the average number of infectious bites per person per year and applying an inverse distance weighted interpolation algorithm to derive EIR isolines using the QGis 2.0 software.</p>
</sec>
<sec id="sec004">
<title>Model Limitations</title>
<p>Similarly to previous modelling studies, transmission of individual clones was regarded to be mutually independent and the present model does not account for genetic recombination in the mosquito vector. [
<xref rid="pone.0164054.ref061" ref-type="bibr">61</xref>
] Therefore, clones are not changed by passage through the mosquito. This simplistic assumption is sensible for a scenario where estimates of MOI are based on genotyping of a single marker gene such as
<italic>pfmsp2</italic>
, where new alleles will only arise through relatively rare events such as point mutations, crossing overs and /or replication errors changing the number of sequence repeats. [
<xref rid="pone.0164054.ref062" ref-type="bibr">62</xref>
] Similarly, the model does not account for clone specific acquisition of immunity in the human population. [
<xref rid="pone.0164054.ref043" ref-type="bibr">43</xref>
,
<xref rid="pone.0164054.ref063" ref-type="bibr">63</xref>
] However, the aim of this study was to show the general effects of spatial heterogeneity on MOI and therefore these features were not considered essential.</p>
<p>As with previous vector borne disease models, the present model assumes a fixed spatial distribution of humans and mosquitoes in which humans and mosquitoes are predominantly associated with specific locations. [
<xref rid="pone.0164054.ref033" ref-type="bibr">33</xref>
,
<xref rid="pone.0164054.ref048" ref-type="bibr">48</xref>
] Mixing due to human movement and mosquito flight are partially captured by the distance weighted biting given by Eq
<xref ref-type="disp-formula" rid="pone.0164054.e001">1</xref>
. [
<xref rid="pone.0164054.ref064" ref-type="bibr">64</xref>
] As with most other malaria transmission models, we do not explicitly model the mosquito life cycle (apart from the female adult stage). While epidemiological models aiming to describe vector control (e.g., [
<xref rid="pone.0164054.ref023" ref-type="bibr">23</xref>
,
<xref rid="pone.0164054.ref065" ref-type="bibr">65</xref>
<xref rid="pone.0164054.ref067" ref-type="bibr">67</xref>
]) should include mosquito population dynamics, this was not within the scope of the present study.</p>
<p>The model is subject to the usual limitations of the widely used compartmental model systems including exponentially distributed transitions and fixed infectivity (gametocytes are not explicitly included in the model). [
<xref rid="pone.0164054.ref068" ref-type="bibr">68</xref>
,
<xref rid="pone.0164054.ref069" ref-type="bibr">69</xref>
] Only
<italic>P</italic>
.
<italic>falciparum</italic>
transmission is considered. For
<italic>P</italic>
.
<italic>vivax</italic>
, additional considerations regarding the presence of a hypnozoite reservoir in the human population will need to be taken into account. [
<xref rid="pone.0164054.ref070" ref-type="bibr">70</xref>
] We do not explicitly account for treatment or other malaria control measures such as bed nets. Furthermore, we do not consider imperfect detectability of clones in multiple-clone infections, which is the main cause for the age
<italic>vs</italic>
. MOI relationship shown by several studies [
<xref rid="pone.0164054.ref043" ref-type="bibr">43</xref>
]. However we show that the present model can be expanded to realistically reproduce this relationship when incorporating additional data on age dependent detectability. (
<xref ref-type="supplementary-material" rid="pone.0164054.s002">S1 Text</xref>
)</p>
<p>In agent-based simulations, the number of modelled parasite clones, humans and mosquitoes is constrained by computational limitations and therefore a relatively confined modelling area and population size were chosen. [
<xref rid="pone.0164054.ref071" ref-type="bibr">71</xref>
]</p>
</sec>
</sec>
<sec sec-type="results" id="sec005">
<title>Results</title>
<sec id="sec006">
<title>Spatial EIR estimates</title>
<p>The clustering of mosquitoes around persistent breeding sites leads to very variable EIR estimates across the landscape in low transmission settings. This is illustrated in
<xref ref-type="fig" rid="pone.0164054.g005">Fig 5</xref>
showing estimated EIR isolines for low, medium and high transmission settings [3%,25% and 70% parasite prevalence in the overall population, respectively, based on the mosquito density distribution illustrated in
<xref ref-type="fig" rid="pone.0164054.g004">Fig 4</xref>
(and
<xref ref-type="supplementary-material" rid="pone.0164054.s003">S1 Video</xref>
)].
<xref ref-type="fig" rid="pone.0164054.g005">Fig 5A</xref>
, representing the low transmission scenario, shows clearly defined hotspots. As the mosquito-to-human ratio is increased and the overall mosquito distribution becomes more homogeneous, EIR estimates also become more evenly distributed. (
<xref ref-type="fig" rid="pone.0164054.g005">Fig 5B and 5C</xref>
).</p>
<fig id="pone.0164054.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0164054.g005</object-id>
<label>Fig 5</label>
<caption>
<title>Estimated EIR Isolines for Different Transmission Settings.</title>
<p>At low transmission (3%) transmission is highly clustered based on mosquito and household density. The heterogeneity in EIR decreases as transmission increases (25% and 70%) and the hotspots lose their clear-cut edges. The isolines were derived from infection event counts when running the model for 30 years at the respective prevalence. It can be seen especially in Panel A, that the northernmost mosquito cluster does not result in sustained transmission due to lower mosquito numbers in this cluster as explained in the text.</p>
</caption>
<graphic xlink:href="pone.0164054.g005"></graphic>
</fig>
<p>
<xref ref-type="fig" rid="pone.0164054.g005">Fig 5</xref>
shows that, with the spatial model, even at very low average prevalence in the entire population, individuals in a confined area determined by the mosquito clusters may still be exposed to >100 infectious bites per year, whereas in most of the remaining area the probability to receive an infectious bite is near zero. The individuals within the hotspot are therefore likely to maintain higher infection prevalence and MOI levels and the MOI population average is likely to be considerably above the lower limit value of 1. Importantly, this will also facilitate the generation of genetic diversity until transmission within the hotspot itself is targeted.</p>
<p>Especially Panel 5A shows, that the northernmost mosquito cluster (shown in
<xref ref-type="fig" rid="pone.0164054.g004">Fig 4A</xref>
) does not result in sustained transmission given the same assumptions about mosquito numbers and flight as in the other clusters. The reason for this is that the centre of the cluster (with the highest mosquito density) is around a relatively isolated household (only 1 other household is within 50 m, and 5 within 100 m). Since we assume decreasing mosquito numbers away from the cluster centre, this mosquito cluster contains overall fewer mosquitoes. The other mosquito clusters contain 15 and 11 households, respectively, within a 100 m radius from the centre leading to much higher mosquito numbers and a much higher rate of exchange of infections between households.</p>
</sec>
<sec id="sec007">
<title>Average MOI with Changing Parasite Prevalence</title>
<p>Average MOI of the overall population in the spatially explicit simulations remained considerably above the lower limit of 1 for very low malaria prevalences (~ 1%). It should be noted that below a prevalence of around 1% (or ~35 infected individuals in the modelling area) the parasite population was not sustained, owing to the limited number of human individuals in the model. However, even if the modelling area would be much larger (e.g., containing many 10K or 100K people) it is really the size of the hotspot and the transmission intensity within the hotspot (e.g.,
<xref ref-type="fig" rid="pone.0164054.g005">Fig 5A</xref>
) that determines prevalence. In other words, if the modelling area would be expanded but no new hotspots would be added, much lower overall prevalence would be possible, and MOI would asymptotically approach the limit value of 1.
<xref ref-type="fig" rid="pone.0164054.g006">Fig 6</xref>
shows the MOI versus overall prevalence data compiled from the literature survey (
<xref ref-type="supplementary-material" rid="pone.0164054.s001">S1 Table</xref>
) in combination with the predictions from the spatially explicit model, the non-spatial model incorporating within-human differences and the homogeneous null model. Both, the null-model (homogeneous mixing) and also the model where only human attributes are heterogeneous but no spatial features are included, do not support field observations of MOI substantially >1 at low levels of overall parasite prevalence (e.g., at prevalence levels below 10% the null model and the non-spatial model both predict MOI levels of ~1).</p>
<fig id="pone.0164054.g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0164054.g006</object-id>
<label>Fig 6</label>
<caption>
<title>MOI
<italic>vs</italic>
. Parasite Prevalence: Spatial Model and Null Model Predictions
<italic>vs</italic>
. Field Data.</title>
<p>Panel A shows the spatial model prediction (red, with 95% CI band), the null-model prediction (black), the model with no spatial features but age based exposure and infection duration (blue, dashed) and the field data (dots). Spatial model predictions were smoothened by appying a lowess algorithm. Panel B shows the data gathered in the literature review grouped into 10% prevalence ranges using box and whisker plots (boxes are median/interquartile ranges, whiskers are ranges).</p>
</caption>
<graphic xlink:href="pone.0164054.g006"></graphic>
</fig>
</sec>
<sec id="sec008">
<title>MOI Estimates for Populations Inside and Outside of Hotspots</title>
<p>
<xref ref-type="fig" rid="pone.0164054.g007">Fig 7</xref>
shows an example of predicted MOI distribution for the population living inside and outside the hotspots generated in the present model with an average mosquito-to-human ratio of 0.1, 1 and 1.5 (corresponding to the same scenarios as in
<xref ref-type="fig" rid="pone.0164054.g005">Fig 5</xref>
with 3%, 25% and 70% prevalence in the spatial model). For the low transmission scenario (3% prevalence), there are stark differences in prevalence outside and inside the hotspots (0.4% outside, 13% inside and mean MOI: 1 outside and 2.1 inside). The differences decrease in the higher transmission scenarios, yet MOI is always higher in the population residing within the hotspots (2.7
<italic>vs</italic>
. 1.4 for the 25% scenario and 3.6
<italic>vs</italic>
. 1.9 for the 70% scenario).</p>
<fig id="pone.0164054.g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0164054.g007</object-id>
<label>Fig 7</label>
<caption>
<title>MOI in Sub-Populations Living Inside or Outside of Hotspots.</title>
<p>The extent of the potential hotspots is given in
<xref ref-type="fig" rid="pone.0164054.g004">Fig 4</xref>
. The population within the hotspots exhibits higher average MOI and a higher parasite prevalence consistent with field observations. [
<xref rid="pone.0164054.ref043" ref-type="bibr">43</xref>
]</p>
</caption>
<graphic xlink:href="pone.0164054.g007"></graphic>
</fig>
</sec>
<sec id="sec009">
<title>Changing Average Prevalence with Mosquito-to-Human Ratio</title>
<p>Mosquito-to-human ratio is usually used to adjust the ‘transmission level’ in compartmental models. The spatial model and the null model exhibit different characteristics with regard to the relationship between mosquito-to-human ratio and the resulting equilibrium parasite prevalence as shown in
<xref ref-type="fig" rid="pone.0164054.g008">Fig 8</xref>
. Whereas in the non-spatial, homogeneous human population model, predicted prevalence increases within a narrow range from 0% to ~100%, the spatial model shows a slower increase but prevalence > 0% is sustained by lower mosquito-to-human ratios than in the null model. The reasons for this are i) the assumption that mosquitoes are clustered around specific households and ii) the resulting limited spatial mixing of mosquitoes and human populations.</p>
<fig id="pone.0164054.g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0164054.g008</object-id>
<label>Fig 8</label>
<caption>
<title>Relationship Between Mosquito-to-Human Ratio and Equilibrium Prevalence.</title>
<p>While spatial transmission features lead to higher predicted prevalence in overall low transmission settings, these features result in a lower rise in predicted prevalence with increasing mosquito-to-human ratio (as transmission is still locally confined even at higher mosquito-to-human ratios).</p>
</caption>
<graphic xlink:href="pone.0164054.g008"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="conclusions" id="sec010">
<title>Discussion</title>
<p>The present modelling study using a spatially explicit environment with realistic geographic household distribution underlines the importance of considering spatial heterogeneity when modelling malaria transmission, especially in low transmission settings. [
<xref rid="pone.0164054.ref071" ref-type="bibr">71</xref>
] We show that the relationship between MOI and parasite prevalence is not well captured by models with homogeneous transmission as field studies have shown that even in low transmission settings, MOI levels above the limiting value of 1 are a common occurrence. [
<xref rid="pone.0164054.ref027" ref-type="bibr">27</xref>
]</p>
<p>From a modelling perspective, the existence of ‘hotspots’ where stable transmission occurs only within a small, and geographically focused proportion of the population can explain these observations. Within the hotspot, transmission (e.g., as measured by local or household-based EIR) can be much higher than in the surrounding areas, causing a small proportion of the population to exhibit higher MOI levels.
<xref ref-type="fig" rid="pone.0164054.g006">Fig 6A</xref>
shows that MOI is a nonlinear function of prevalence and especially at low transmission intensities (e.g., as indicated by overall parasite prevalence of <10%), MOI changes very little with changing overall prevalence. This implies that average MOI is unlikely to be a very sensitive measure of the overall transmission intensity in low transmission settings and that local EIR variation will need to be taken into consideration when deducing transmission intensity based on MOI. Genotyping however, may also represent an opportunity to ‘triangulate’ hotspot locations and guide focalised malaria control in very low transmission settings.</p>
<p>It should be noted that spatial heterogeneity is not the only type of heterogeneity that determines human exposure and infection, and thus MOI distribution in a population. Several other important factors such as age-related exposure and occupational exposure, and the related degree of acquired (clone-specific) immunity will also influence the MOI distribution in a population.</p>
<p>It is very likely, that Anopheles flight and host seeking behaviour significantly influences the extent and focus of transmission hotspots. Different species of Anopheles mosquitoes exhibit very different behaviour. Although it has been shown that Anopheles mosquitoes are able to fly, or be carried by wind, for >10 km, recapture rates are often very low (<1%) making it difficult to estimate the distance naturally flown by an individual mosquito, especially when an ample host reservoir is present. [
<xref rid="pone.0164054.ref072" ref-type="bibr">72</xref>
,
<xref rid="pone.0164054.ref073" ref-type="bibr">73</xref>
] We assume that the majority of mosquitoes stay in close proximity to suitable hosts and rarely fly long distance since
<italic>Anopheles farauti s</italic>
.
<italic>l</italic>
., which is the main vector in coastal lowlands on the North Coast of PNG has been shown to exhibit this behaviour. [
<xref rid="pone.0164054.ref074" ref-type="bibr">74</xref>
<xref rid="pone.0164054.ref077" ref-type="bibr">77</xref>
]</p>
<p>All models discussed here (the spatial model, the non-spatial model incorporating inter-human heterogeneity and the homogeneous null-model) exhibit a very steep increase in MOI at prevalence rates > 80%, whereas the data collected in the literature review as part of the present study, suggests a more moderate increase. It should be noted, that all available molecular techniques to determine MOI will underestimate true MOI due to the non-detection of minority clones. Therefore, due to the fact that the present model does not account for detectability (e.g., the probability to detect a clone based on different parasite density of clones in the blood of an individual), MOI is likely to be overestimated by the models [
<xref rid="pone.0164054.ref078" ref-type="bibr">78</xref>
]. At high transmission, an increasing proportion of people are infected with minority clones for which the probability of detection is lower. [
<xref rid="pone.0164054.ref041" ref-type="bibr">41</xref>
] Therefore, it is expected that detectability reduces observed MOI at high transmission levels much more than at low transmission levels. However, data on within-host clone distribution and related detectability are very sparse. In addition, it is likely that clone specific acquired immunity and the related clone specific clinical incidence shapes regional clone abundance profiles. Studies that relate parasite genotypes with clinical incidence are required to calibrate more complex multi-clone models which include clinical incidence and treatment. [
<xref rid="pone.0164054.ref079" ref-type="bibr">79</xref>
]</p>
<p>Challenges for the development of models such as the one presented here, are the requirements for much more detailed parasitological (clone specific growth, clinical incidence rates), entomological (mosquito dispersion and host seeking) and human behavioural (movement and migration) data, efficient programming and supercomputer facilities to minimize run time.</p>
<p>However, the current model, although subject to substantial limitations, illustrates clearly that individual-based, spatial approaches are required to capture important features of micro-scale malaria transmission, especially in low transmission settings. As these types of settings will become more and more common as malaria infection rates decline, it will be very beneficial to incorporate spatial approaches into prediction frameworks aimed at informing malaria control in low transmission and pre-elimination settings.</p>
</sec>
<sec sec-type="supplementary-material" id="sec011">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0164054.s001">
<label>S1 Table</label>
<caption>
<title>Results from Literature Review on
<italic>msp2</italic>
MOI
<italic>vs</italic>
. Malaria Prevalence.</title>
<p>The search query ‘falciparum multiplicity infection prevalence msp2’ resulted in 33 hits. Data for all ages was used.</p>
<p>(XLSX)</p>
</caption>
<media xlink:href="pone.0164054.s001.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0164054.s002">
<label>S1 Text</label>
<caption>
<title>Further Information Regarding the Relationship of MOI
<italic>vs</italic>
. Age and Heterogeneity of Mosquito Population in Low
<italic>vs</italic>
. High Transmission Settings.</title>
<p>(DOC)</p>
</caption>
<media xlink:href="pone.0164054.s002.doc">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0164054.s003">
<label>S1 Video</label>
<caption>
<title>Graphical Illustration of our Assumptions Regarding the Expansion of the Mosquito Population.</title>
<p>The video shows a gradual increase of mosquito numbers based on our assumptions. At low transmission (low mosquito numbers), mosquitoes are clustered around specific sites inside the modelling area. As transmission increases, the mosquito populations in these sites expand. Further increase of mosquito numbers is assumed to occur homogeneously across the entire modelling area.</p>
<p>(MP4)</p>
</caption>
<media xlink:href="pone.0164054.s003.mp4">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>SK, AB and IM acknowledge support from the Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS. SK was supported by an NHMRC (Australia) Early Career Fellowship (GNT 1052760). MTW was supported by an MRC (UK) Research Fellowship. The authors thank all researchers and study participants involved in the PNG studies.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0164054.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bousema</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Drakeley</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Gesase</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Hashim</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Magesa</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Mosha</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
<article-title>Identification of hot spots of malaria transmission for targeted malaria control</article-title>
.
<source>The Journal of infectious diseases</source>
.
<year>2010</year>
;
<volume>201</volume>
(
<issue>11</issue>
):
<fpage>1764</fpage>
<lpage>74</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1086/652456">10.1086/652456</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">20415536</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bejon</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Williams</surname>
<given-names>TN</given-names>
</name>
,
<name>
<surname>Liljander</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Noor</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Wambua</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Ogada</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
<article-title>Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya</article-title>
.
<source>PLoS medicine</source>
.
<year>2010</year>
;
<volume>7</volume>
(
<issue>7</issue>
):
<fpage>e1000304</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pmed.1000304">10.1371/journal.pmed.1000304</ext-link>
</comment>
; PubMed Central PMCID: PMC2897769.
<pub-id pub-id-type="pmid">20625549</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bousema</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Griffin</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Sauerwein</surname>
<given-names>RW</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Churcher</surname>
<given-names>TS</given-names>
</name>
,
<name>
<surname>Takken</surname>
<given-names>W</given-names>
</name>
,
<etal>et al</etal>
<article-title>Hitting hotspots: spatial targeting of malaria for control and elimination</article-title>
.
<source>PLoS medicine</source>
.
<year>2012</year>
;
<volume>9</volume>
(
<issue>1</issue>
):
<fpage>e1001165</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pmed.1001165">10.1371/journal.pmed.1001165</ext-link>
</comment>
; PubMed Central PMCID: PMC3269430.
<pub-id pub-id-type="pmid">22303287</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kaufmann</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Briegel</surname>
<given-names>H</given-names>
</name>
.
<article-title>Flight performance of the malaria vectors
<italic>Anopheles gambiae</italic>
and
<italic>Anopheles atroparvus</italic>
</article-title>
.
<source>Journal of vector ecology: Journal of the Society for Vector Ecology</source>
.
<year>2004</year>
;
<volume>29</volume>
(
<issue>1</issue>
):
<fpage>140</fpage>
<lpage>53</lpage>
. .
<pub-id pub-id-type="pmid">15266751</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Guerra</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Reiner</surname>
<given-names>RC</given-names>
<suffix>Jr.</suffix>
</name>
,
<name>
<surname>Perkins</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Lindsay</surname>
<given-names>SW</given-names>
</name>
,
<name>
<surname>Midega</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Brady</surname>
<given-names>OJ</given-names>
</name>
,
<etal>et al</etal>
<article-title>A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens</article-title>
.
<source>Parasites & vectors</source>
.
<year>2014</year>
;
<volume>7</volume>
(
<issue>1</issue>
):
<fpage>276</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1756-3305-7-276">10.1186/1756-3305-7-276</ext-link>
</comment>
; PubMed Central PMCID: PMC4067626.
<pub-id pub-id-type="pmid">24946878</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reddy</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Overgaard</surname>
<given-names>HJ</given-names>
</name>
,
<name>
<surname>Abaga</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Reddy</surname>
<given-names>VP</given-names>
</name>
,
<name>
<surname>Caccone</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kiszewski</surname>
<given-names>AE</given-names>
</name>
,
<etal>et al</etal>
<article-title>Outdoor host seeking behaviour of
<italic>Anopheles gambiae</italic>
mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea</article-title>
.
<source>Malaria journal</source>
.
<year>2011</year>
;
<volume>10</volume>
:
<fpage>184</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1475-2875-10-184">10.1186/1475-2875-10-184</ext-link>
</comment>
; PubMed Central PMCID: PMC3146901.
<pub-id pub-id-type="pmid">21736750</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Staedke</surname>
<given-names>SG</given-names>
</name>
,
<name>
<surname>Nottingham</surname>
<given-names>EW</given-names>
</name>
,
<name>
<surname>Cox</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Kamya</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Rosenthal</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Dorsey</surname>
<given-names>G</given-names>
</name>
.
<article-title>Short report: proximity to mosquito breeding sites as a risk factor for clinical malaria episodes in an urban cohort of Ugandan children</article-title>
.
<source>The American journal of tropical medicine and hygiene</source>
.
<year>2003</year>
;
<volume>69</volume>
(
<issue>3</issue>
):
<fpage>244</fpage>
<lpage>6</lpage>
. .
<pub-id pub-id-type="pmid">14628938</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reuben</surname>
<given-names>R</given-names>
</name>
.
<article-title>Women and malaria—special risks and appropriate control strategy</article-title>
.
<source>Social science & medicine (1982)</source>
.
<year>1993</year>
;
<volume>37</volume>
(
<issue>4</issue>
):
<fpage>473</fpage>
<lpage>80</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/0277-9536(93)90282-9">10.1016/0277-9536(93)90282-9</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">8211259</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muirhead-Thomson</surname>
</name>
.
<article-title>The distribution of Anopheline mosquito bites among different age groups: a new factor in malaria epidemiology</article-title>
.
<source>British Medical Journal</source>
.
<year>1951</year>
;
<volume>1</volume>
(
<issue>1114</issue>
).
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1136/bmj.1.4715.1114">10.1136/bmj.1.4715.1114</ext-link>
</comment>
<pub-id pub-id-type="pmid">14830852</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Takken</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Klowden</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Chambers</surname>
<given-names>GM</given-names>
</name>
.
<article-title>Effect of body size on host seeking and blood meal utilization in
<italic>Anopheles gambiae</italic>
sensu stricto (Diptera: Culicidae): the disadvantage of being small</article-title>
.
<source>Journal of medical entomology</source>
.
<year>1998</year>
;
<volume>35</volume>
(
<issue>5</issue>
):
<fpage>639</fpage>
<lpage>45</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jmedent/35.5.639">10.1093/jmedent/35.5.639</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">9775585</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lefevre</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Gouagna</surname>
<given-names>LC</given-names>
</name>
,
<name>
<surname>Dabire</surname>
<given-names>KR</given-names>
</name>
,
<name>
<surname>Elguero</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Fontenille</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Renaud</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
<article-title>Beer consumption increases human attractiveness to malaria mosquitoes</article-title>
.
<source>PloS one</source>
.
<year>2010</year>
;
<volume>5</volume>
(
<issue>3</issue>
):
<fpage>e9546</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0009546">10.1371/journal.pone.0009546</ext-link>
</comment>
; PubMed Central PMCID: PMC2832015.
<pub-id pub-id-type="pmid">20209056</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bretscher</surname>
<given-names>MT</given-names>
</name>
,
<name>
<surname>Maire</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Chitnis</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Felger</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Owusu-Agyei</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>T</given-names>
</name>
.
<article-title>The distribution of
<italic>Plasmodium falciparum</italic>
infection durations</article-title>
.
<source>Epidemics</source>
.
<year>2011</year>
;
<volume>3</volume>
(
<issue>2</issue>
):
<fpage>109</fpage>
<lpage>18</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.epidem.2011.03.002">10.1016/j.epidem.2011.03.002</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">21624782</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parthasarathy</surname>
<given-names>PR</given-names>
</name>
.
<article-title>The effect of superinfection on the distribution of the infectious period—a continued fraction approximation</article-title>
.
<source>IMA journal of mathematics applied in medicine and biology</source>
.
<year>1997</year>
;
<volume>14</volume>
(
<issue>2</issue>
):
<fpage>113</fpage>
<lpage>23</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/imammb14.2.113">10.1093/imammb14.2.113</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">9216069</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bruce</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Donnelly</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Packer</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Lagog</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Gibson</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Narara</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Age- and species-specific duration of infection in asymptomatic malaria infections in Papua New Guinea</article-title>
.
<source>Parasitology</source>
.
<year>2000</year>
;
<volume>121</volume>
(
<issue>Pt 3</issue>
):
<fpage>247</fpage>
<lpage>56</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1017/s0031182099006344">10.1017/s0031182099006344</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">11085245</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muller</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Mellor</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Rare</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Genton</surname>
<given-names>B</given-names>
</name>
.
<article-title>The effect of distance from home on attendance at a small rural health centre in Papua New Guinea</article-title>
.
<source>International journal of epidemiology</source>
.
<year>1998</year>
;
<volume>27</volume>
(
<issue>5</issue>
):
<fpage>878</fpage>
<lpage>84</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/ije/27.5.878">10.1093/ije/27.5.878</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">9839747</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cattani</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Tulloch</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Vrbova</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Jolley</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Gibson</surname>
<given-names>FD</given-names>
</name>
,
<name>
<surname>Moir</surname>
<given-names>JS</given-names>
</name>
,
<etal>et al</etal>
<article-title>The epidemiology of malaria in a population surrounding Madang, Papua New Guinea</article-title>
.
<source>The American journal of tropical medicine and hygiene</source>
.
<year>1986</year>
;
<volume>35</volume>
(
<issue>1</issue>
):
<fpage>3</fpage>
<lpage>15</lpage>
. .
<pub-id pub-id-type="pmid">3511748</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref017">
<label>17</label>
<mixed-citation publication-type="book">
<name>
<surname>Wernsdorfer</surname>
<given-names>WH</given-names>
</name>
,
<name>
<surname>McGregor</surname>
<given-names>I</given-names>
</name>
.
<chapter-title>Malaria: principles and practice of malariology</chapter-title>
<publisher-loc>Edinburgh; New York</publisher-loc>
:
<publisher-name>Churchill Livingstone</publisher-name>
;
<year>1988</year>
2 v. (
<fpage>xv</fpage>
, 1818 p.) p.</mixed-citation>
</ref>
<ref id="pone.0164054.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lin</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Kiniboro</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Gray</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Dobbie</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Robinson</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Laumaea</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Differential patterns of infection and disease with
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
in young Papua New Guinean children</article-title>
.
<source>PloS one</source>
.
<year>2010</year>
;
<volume>5</volume>
(
<issue>2</issue>
):
<fpage>e9047</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0009047">10.1371/journal.pone.0009047</ext-link>
</comment>
; PubMed Central PMCID: PMC2816213.
<pub-id pub-id-type="pmid">20140220</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aguas</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>White</surname>
<given-names>LJ</given-names>
</name>
,
<name>
<surname>Snow</surname>
<given-names>RW</given-names>
</name>
,
<name>
<surname>Gomes</surname>
<given-names>MG</given-names>
</name>
.
<article-title>Prospects for malaria eradication in sub-Saharan Africa</article-title>
.
<source>PloS one</source>
.
<year>2008</year>
;
<volume>3</volume>
(
<issue>3</issue>
):
<fpage>e1767</fpage>
Epub 2008/03/13.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0001767">10.1371/journal.pone.0001767</ext-link>
</comment>
; PubMed Central PMCID: PMC2262141.
<pub-id pub-id-type="pmid">18335042</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Koram</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Owusu-Agyei</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Fryauff</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Anto</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Atuguba</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Hodgson</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Seasonal profiles of malaria infection, anaemia, and bednet use among age groups and communities in northern Ghana</article-title>
.
<source>Trop Med Int Health</source>
.
<year>2003</year>
;
<volume>8</volume>
(
<issue>9</issue>
):
<fpage>793</fpage>
<lpage>802</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1046/j.1365-3156.2003.01092.x">10.1046/j.1365-3156.2003.01092.x</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">12950665</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Michon</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Cole-Tobian</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Dabod</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Schoepflin</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Igu</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Susapu</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>The risk of malarial infections and disease in Papua New Guinean children</article-title>
.
<source>The American journal of tropical medicine and hygiene</source>
.
<year>2007</year>
;
<volume>76</volume>
(
<issue>6</issue>
):
<fpage>997</fpage>
<lpage>1008</lpage>
. ; PubMed Central PMCID: PMC3740942.
<pub-id pub-id-type="pmid">17556601</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bomblies</surname>
<given-names>A</given-names>
</name>
.
<article-title>Agent-based modeling of malaria vectors: the importance of spatial simulation</article-title>
.
<source>Parasites & Vectors</source>
.
<year>2014</year>
;
<volume>7</volume>
:
<fpage>308</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1756-3305-7-308">10.1186/1756-3305-7-308</ext-link>
</comment>
; PubMed Central PMCID: PMC4088367.
<pub-id pub-id-type="pmid">24992942</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Karl</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Halder</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Kelso</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Ritchie</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Milne</surname>
<given-names>GJ</given-names>
</name>
.
<article-title>A spatial simulation model for dengue virus infection in urban areas</article-title>
.
<source>BMC infectious diseases</source>
.
<year>2014</year>
;
<volume>14</volume>
:
<fpage>447</fpage>
Epub 2014/08/21.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1471-2334-14-447">10.1186/1471-2334-14-447</ext-link>
</comment>
; PubMed Central PMCID: PMC4152583.
<pub-id pub-id-type="pmid">25139524</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Milne</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Baskaran</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Halder</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Karl</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Kelso</surname>
<given-names>J</given-names>
</name>
.
<article-title>Pandemic influenza in Papua New Guinea: a modelling study comparison with pandemic spread in a developed country</article-title>
.
<source>BMJ open</source>
.
<year>2013</year>
;
<volume>3</volume>
(
<issue>3</issue>
). Epub 2013/03/29.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1136/bmjopen-2012-002518">10.1136/bmjopen-2012-002518</ext-link>
</comment>
; PubMed Central PMCID: PMC3612822.
<pub-id pub-id-type="pmid">23535701</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Carter</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Mendis</surname>
<given-names>KN</given-names>
</name>
,
<name>
<surname>Roberts</surname>
<given-names>D</given-names>
</name>
.
<article-title>Spatial targeting of interventions against malaria</article-title>
.
<source>Bulletin of the World Health Organization</source>
.
<year>2000</year>
;
<volume>78</volume>
(
<issue>12</issue>
):
<fpage>1401</fpage>
<lpage>11</lpage>
. ; PubMed Central PMCID: PMC2560653.
<pub-id pub-id-type="pmid">11196487</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Perkins</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Scott</surname>
<given-names>TW</given-names>
</name>
,
<name>
<surname>Le Menach</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>DL</given-names>
</name>
.
<article-title>Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission</article-title>
.
<source>PLoS Comput Biol</source>
.
<year>2013</year>
;
<volume>9</volume>
(
<issue>12</issue>
):
<fpage>e1003327</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pcbi.1003327">10.1371/journal.pcbi.1003327</ext-link>
</comment>
; PubMed Central PMCID: PMC3861021.
<pub-id pub-id-type="pmid">24348223</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Barry</surname>
<given-names>AE</given-names>
</name>
,
<name>
<surname>Schultz</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Senn</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Nale</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Kiniboro</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Siba</surname>
<given-names>PM</given-names>
</name>
,
<etal>et al</etal>
<article-title>High levels of genetic diversity of
<italic>Plasmodium falciparum</italic>
populations in Papua New Guinea despite variable infection prevalence</article-title>
.
<source>The American journal of tropical medicine and hygiene</source>
.
<year>2013</year>
;
<volume>88</volume>
(
<issue>4</issue>
):
<fpage>718</fpage>
<lpage>25</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.4269/ajtmh.12-0056">10.4269/ajtmh.12-0056</ext-link>
</comment>
; PubMed Central PMCID: PMC3617858.
<pub-id pub-id-type="pmid">23400571</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ross</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Koepfli</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Schoepflin</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Siba</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Mueller</surname>
<given-names>I</given-names>
</name>
,
<etal>et al</etal>
<article-title>Estimating the numbers of malaria infections in blood samples using high-resolution genotyping data</article-title>
.
<source>PloS one</source>
.
<year>2012</year>
;
<volume>7</volume>
(
<issue>8</issue>
):
<fpage>e42496</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0042496">10.1371/journal.pone.0042496</ext-link>
</comment>
; PubMed Central PMCID: PMC3430681.
<pub-id pub-id-type="pmid">22952595</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Stoddard</surname>
<given-names>ST</given-names>
</name>
,
<name>
<surname>Forshey</surname>
<given-names>BM</given-names>
</name>
,
<name>
<surname>Morrison</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Paz-Soldan</surname>
<given-names>VA</given-names>
</name>
,
<name>
<surname>Vazquez-Prokopec</surname>
<given-names>GM</given-names>
</name>
,
<name>
<surname>Astete</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
<article-title>House-to-house human movement drives dengue virus transmission</article-title>
.
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
.
<year>2013</year>
;
<volume>110</volume>
(
<issue>3</issue>
):
<fpage>994</fpage>
<lpage>9</lpage>
. Epub 2013/01/02.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.1213349110">10.1073/pnas.1213349110</ext-link>
</comment>
; PubMed Central PMCID: PMC3549073.
<pub-id pub-id-type="pmid">23277539</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liebman</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Stoddard</surname>
<given-names>ST</given-names>
</name>
,
<name>
<surname>Morrison</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Minnick</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Sihuincha</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>Spatial dimensions of dengue virus transmission across interepidemic and epidemic periods in Iquitos, Peru (1999–2003)</article-title>
.
<source>PLoS neglected tropical diseases</source>
.
<year>2012</year>
;
<volume>6</volume>
(
<issue>2</issue>
):
<fpage>e1472</fpage>
Epub 2012/03/01.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pntd.0001472">10.1371/journal.pntd.0001472</ext-link>
</comment>
; PubMed Central PMCID: PMC3283551.
<pub-id pub-id-type="pmid">22363822</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref031">
<label>31</label>
<mixed-citation publication-type="book">
<name>
<surname>Anderson</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>May</surname>
<given-names>R</given-names>
</name>
.
<chapter-title>Infectious diseases of humans</chapter-title>
<publisher-loc>Oxford</publisher-loc>
:
<publisher-name>Oxford University Press</publisher-name>
;
<year>1991</year>
. 768 p.</mixed-citation>
</ref>
<ref id="pone.0164054.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Andraud</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hens</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Marais</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Beutels</surname>
<given-names>P</given-names>
</name>
.
<article-title>Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches</article-title>
.
<source>PloS one</source>
.
<year>2012</year>
;
<volume>7</volume>
(
<issue>11</issue>
):
<fpage>e49085</fpage>
Epub 2012/11/10.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0049085">10.1371/journal.pone.0049085</ext-link>
</comment>
; PubMed Central PMCID: PMC3490912.
<pub-id pub-id-type="pmid">23139836</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chao</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Halstead</surname>
<given-names>SB</given-names>
</name>
,
<name>
<surname>Halloran</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Longini</surname>
<given-names>IM</given-names>
<suffix>Jr.</suffix>
</name>
<article-title>Controlling dengue with vaccines in Thailand</article-title>
.
<source>PLoS neglected tropical diseases</source>
.
<year>2012</year>
;
<volume>6</volume>
(
<issue>10</issue>
):
<fpage>e1876</fpage>
Epub 2012/11/13.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pntd.0001876">10.1371/journal.pntd.0001876</ext-link>
</comment>
; PubMed Central PMCID: PMC3493390.
<pub-id pub-id-type="pmid">23145197</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Focks</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Haile</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Daniels</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Mount</surname>
<given-names>GA</given-names>
</name>
.
<article-title>Dynamic life table model for
<italic>Aedes aegypti</italic>
(diptera: Culicidae): simulation results and validation</article-title>
.
<source>Journal of medical entomology</source>
.
<year>1993</year>
;
<volume>30</volume>
(
<issue>6</issue>
):
<fpage>1018</fpage>
<lpage>28</lpage>
. Epub 1993/11/01.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jmedent/30.6.1018">10.1093/jmedent/30.6.1018</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">8271243</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Griffin</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Hollingsworth</surname>
<given-names>TD</given-names>
</name>
,
<name>
<surname>Okell</surname>
<given-names>LC</given-names>
</name>
,
<name>
<surname>Churcher</surname>
<given-names>TS</given-names>
</name>
,
<name>
<surname>White</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hinsley</surname>
<given-names>W</given-names>
</name>
,
<etal>et al</etal>
<article-title>Reducing
<italic>Plasmodium falciparum</italic>
malaria transmission in Africa: a model-based evaluation of intervention strategies</article-title>
.
<source>PLoS medicine</source>
.
<year>2010</year>
;
<volume>7</volume>
(
<issue>8</issue>
). Epub 2010/08/17.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pmed.1000324">10.1371/journal.pmed.1000324</ext-link>
</comment>
; PubMed Central PMCID: PMC2919425.
<pub-id pub-id-type="pmid">20711482</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Karl</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Gurarie</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Zimmerman</surname>
<given-names>PA</given-names>
</name>
,
<name>
<surname>King</surname>
<given-names>CH</given-names>
</name>
,
<name>
<surname>St Pierre</surname>
<given-names>TG</given-names>
</name>
,
<name>
<surname>Davis</surname>
<given-names>TM</given-names>
</name>
.
<article-title>A sub-microscopic gametocyte reservoir can sustain malaria transmission</article-title>
.
<source>PloS one</source>
.
<year>2011</year>
;
<volume>6</volume>
(
<issue>6</issue>
):
<fpage>e20805</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0020805">10.1371/journal.pone.0020805</ext-link>
</comment>
<pub-id pub-id-type="pmid">21695129</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Maude</surname>
<given-names>RJ</given-names>
</name>
,
<name>
<surname>Saralamba</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Lewis</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sherwood</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>White</surname>
<given-names>NJ</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>NP</given-names>
</name>
,
<etal>et al</etal>
<article-title>Modelling malaria elimination on the internet</article-title>
.
<source>Malaria journal</source>
.
<year>2011</year>
;
<volume>10</volume>
:
<fpage>191</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1475-2875-10-191">10.1186/1475-2875-10-191</ext-link>
</comment>
; PubMed Central PMCID: PMC3160427.
<pub-id pub-id-type="pmid">21756319</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref038">
<label>38</label>
<mixed-citation publication-type="other">National Statistical Office of Papua New Guinea. Preliminary Figures Papua New Guinea Census 2011. 2013, Waigani, Papua New Guinea.</mixed-citation>
</ref>
<ref id="pone.0164054.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Betuela</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Rosanas-Urgell</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kiniboro</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Stanisic</surname>
<given-names>DI</given-names>
</name>
,
<name>
<surname>Samol</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>de Lazzari</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
<article-title>Relapses contribute significantly to the risk of
<italic>Plasmodium vivax</italic>
infection and disease in Papua New Guinean children 1–5 years of age</article-title>
.
<source>The Journal of infectious diseases</source>
.
<year>2012</year>
;
<volume>206</volume>
(
<issue>11</issue>
):
<fpage>1771</fpage>
<lpage>80</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/infdis/jis580">10.1093/infdis/jis580</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">22966124</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hetzel</surname>
<given-names>MW</given-names>
</name>
,
<name>
<surname>Choudhury</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Pulford</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Ura</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Whittaker</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Siba</surname>
<given-names>PM</given-names>
</name>
,
<etal>et al</etal>
<article-title>Progress in mosquito net coverage in Papua New Guinea</article-title>
.
<source>Malaria journal</source>
.
<year>2014</year>
;
<volume>13</volume>
:
<fpage>242</fpage>
Epub 2014/06/26.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1475-2875-13-242">10.1186/1475-2875-13-242</ext-link>
</comment>
; PubMed Central PMCID: PMC4077150.
<pub-id pub-id-type="pmid">24961245</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Koepfli</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Ross</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kiniboro</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Zimmerman</surname>
<given-names>PA</given-names>
</name>
,
<name>
<surname>Siba</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
<article-title>Multiplicity and diversity of
<italic>Plasmodium vivax</italic>
infections in a highly endemic region in Papua New Guinea</article-title>
.
<source>PLoS neglected tropical diseases</source>
.
<year>2011</year>
;
<volume>5</volume>
(
<issue>12</issue>
):
<fpage>e1424</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pntd.0001424">10.1371/journal.pntd.0001424</ext-link>
</comment>
; PubMed Central PMCID: PMC3243695.
<pub-id pub-id-type="pmid">22206027</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref042">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Macdonald</surname>
<given-names>G</given-names>
</name>
.
<article-title>The analysis of equilibrium in malaria</article-title>
.
<source>Tropical diseases bulletin</source>
.
<year>1952</year>
;
<volume>49</volume>
(
<issue>9</issue>
):
<fpage>813</fpage>
<lpage>29</lpage>
. .
<pub-id pub-id-type="pmid">12995455</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Felger</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Maire</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Bretscher</surname>
<given-names>MT</given-names>
</name>
,
<name>
<surname>Falk</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Tiaden</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sama</surname>
<given-names>W</given-names>
</name>
,
<etal>et al</etal>
<article-title>The dynamics of natural
<italic>Plasmodium falciparum</italic>
infections</article-title>
.
<source>PloS one</source>
.
<year>2012</year>
;
<volume>7</volume>
(
<issue>9</issue>
):
<fpage>e45542</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0045542">10.1371/journal.pone.0045542</ext-link>
</comment>
; PubMed Central PMCID: PMC3445515.
<pub-id pub-id-type="pmid">23029082</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref044">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Charlwood</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Graves</surname>
<given-names>PM</given-names>
</name>
.
<article-title>The effect of permethrin-impregnated bednets on a population of
<italic>Anopheles farauti</italic>
in coastal Papua New Guinea</article-title>
.
<source>Medical and veterinary entomology</source>
.
<year>1987</year>
;
<volume>1</volume>
(
<issue>3</issue>
):
<fpage>319</fpage>
<lpage>27</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1365-2915.1987.tb00361.x">10.1111/j.1365-2915.1987.tb00361.x</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">2979548</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref045">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Charlwood</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Graves</surname>
<given-names>PM</given-names>
</name>
,
<name>
<surname>Marshall</surname>
<given-names>TF</given-names>
</name>
.
<article-title>Evidence for a 'memorized' home range in
<italic>Anopheles farauti</italic>
females from Papua New Guinea</article-title>
.
<source>Medical and veterinary entomology</source>
.
<year>1988</year>
;
<volume>2</volume>
(
<issue>2</issue>
):
<fpage>101</fpage>
<lpage>8</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1365-2915.1988.tb00059.x">10.1111/j.1365-2915.1988.tb00059.x</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">2980166</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref046">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Charlwood</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Dagoro</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Paru</surname>
<given-names>R</given-names>
</name>
.
<article-title>Blood-Feeding and Resting Behavior in the
<italic>Anopheles</italic>
-
<italic>Punctulatus</italic>
Donitz Complex (Diptera, Cullicidae) from Coastal Papua-New-Guinea</article-title>
.
<source>Bulletin of entomological research</source>
.
<year>1985</year>
;
<volume>75</volume>
(
<issue>3</issue>
):
<fpage>463</fpage>
<lpage>75</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1017/s0007485300014577">10.1017/s0007485300014577</ext-link>
</comment>
.</mixed-citation>
</ref>
<ref id="pone.0164054.ref047">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Koinari</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Karl</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ryan</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Lymbery</surname>
<given-names>AJ</given-names>
</name>
.
<article-title>Infection levels of gastrointestinal parasites in sheep and goats in Papua New Guinea</article-title>
.
<source>Journal of helminthology</source>
.
<year>2013</year>
;
<volume>87</volume>
(
<issue>4</issue>
):
<fpage>409</fpage>
<lpage>15</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1017/S0022149x12000594">10.1017/S0022149x12000594</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">23050494</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref048">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gu</surname>
<given-names>WD</given-names>
</name>
,
<name>
<surname>Novak</surname>
<given-names>RJ</given-names>
</name>
.
<article-title>Agent-based modelling of mosquito foraging behaviour for malaria control</article-title>
.
<source>Transactions of the Royal Society of Tropical Medicine and Hygiene</source>
.
<year>2009</year>
;
<volume>103</volume>
(
<issue>11</issue>
):
<fpage>1105</fpage>
<lpage>12</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.trstmh.2009.01.006">10.1016/j.trstmh.2009.01.006</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">19200566</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref049">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gupta</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Swinton</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Anderson</surname>
<given-names>RM</given-names>
</name>
.
<article-title>Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria</article-title>
.
<source>Proceedings</source>
.
<year>1994</year>
;
<volume>256</volume>
(
<issue>1347</issue>
):
<fpage>231</fpage>
<lpage>8</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1098/rspb.1994.0075">10.1098/rspb.1994.0075</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">7914705</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref050">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gething</surname>
<given-names>PW</given-names>
</name>
,
<name>
<surname>Van Boeckel</surname>
<given-names>TP</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Guerra</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Patil</surname>
<given-names>AP</given-names>
</name>
,
<name>
<surname>Snow</surname>
<given-names>RW</given-names>
</name>
,
<etal>et al</etal>
<article-title>Modelling the global constraints of temperature on transmission of
<italic>Plasmodium falciparum</italic>
and P.
<italic>vivax</italic>
</article-title>
.
<source>Parasites & Vectors</source>
.
<year>2011</year>
;
<volume>4</volume>
<fpage>92</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1756-3305-4-92">10.1186/1756-3305-4-92</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">21615906</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref051">
<label>51</label>
<mixed-citation publication-type="book">
<name>
<surname>May</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Anderson</surname>
<given-names>RM</given-names>
</name>
,
<chapter-title>Infectious diseases of humans: dynamics and control</chapter-title>
<publisher-loc>Oxford</publisher-loc>
:
<publisher-name>Oxford University Press</publisher-name>
;
<year>1991</year>
.</mixed-citation>
</ref>
<ref id="pone.0164054.ref052">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wesolowski</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Stresman</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Eagle</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Stevenson</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Owaga</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Marube</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
<article-title>Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones</article-title>
.
<source>Scientific reports</source>
.
<year>2014</year>
;
<volume>4</volume>
:
<fpage>5678</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/srep05678">10.1038/srep05678</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">25022440</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref053">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Perkins</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Garcia</surname>
<given-names>AJ</given-names>
</name>
,
<name>
<surname>Paz-Soldan</surname>
<given-names>VA</given-names>
</name>
,
<name>
<surname>Stoddard</surname>
<given-names>ST</given-names>
</name>
,
<name>
<surname>Reiner</surname>
<given-names>RC</given-names>
<suffix>Jr.</suffix>
</name>
,
<name>
<surname>Vazquez-Prokopec</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
<article-title>Theory and data for simulating fine-scale human movement in an urban environment</article-title>
.
<source>Journal of the Royal Society</source>
,
<source>Interface / the Royal Society</source>
.
<year>2014</year>
;
<volume>11</volume>
(
<issue>99</issue>
).
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1098/rsif.2014.0642">10.1098/rsif.2014.0642</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">25142528</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref054">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Smith</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Drakeley</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Chiyaka</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Hay</surname>
<given-names>SI</given-names>
</name>
.
<article-title>A quantitative analysis of transmission efficiency versus intensity for malaria</article-title>
.
<source>Nature Communications</source>
.
<year>2010</year>
;
<volume>1</volume>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/ncomms1107">10.1038/ncomms1107</ext-link>
</comment>
PubMed PMID: WOS:000288224800006.
<pub-id pub-id-type="pmid">21045826</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref055">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bharti</surname>
<given-names>AR</given-names>
</name>
,
<name>
<surname>Chuquiyauri</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Brouwer</surname>
<given-names>KC</given-names>
</name>
,
<name>
<surname>Stancil</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Llanos-Cuentas</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Experimental infection of the neotropical malaria vector
<italic>Anopheles</italic>
darlingi by human patient-derived
<italic>Plasmodium vivax</italic>
in the Peruvian Amazon</article-title>
.
<source>American Journal of Tropical Medicine and Hygiene</source>
.
<year>2006</year>
;
<volume>75</volume>
(
<issue>4</issue>
):
<fpage>610</fpage>
<lpage>6</lpage>
. PubMed PMID: WOS:000241214100006.
<pub-id pub-id-type="pmid">17038681</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref056">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Garrett-Jones</surname>
<given-names>C</given-names>
</name>
.
<article-title>The human blood index of malaria vectors in relation to epidemiological assessment</article-title>
.
<source>Bulletin of the World Health Organization</source>
.
<year>1964</year>
;
<volume>30</volume>
:
<fpage>241</fpage>
<lpage>61</lpage>
. .
<pub-id pub-id-type="pmid">14153413</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref057">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ribeiro</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Seulu</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Abose</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Kidane</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Teklehaimanot</surname>
<given-names>A</given-names>
</name>
.
<article-title>Temporal and spatial distribution of anopheline mosquitos in an Ethiopian village: implications for malaria control strategies</article-title>
.
<source>Bulletin of the World Health Organization</source>
.
<year>1996</year>
;
<volume>74</volume>
(
<issue>3</issue>
):
<fpage>299</fpage>
<lpage>305</lpage>
. ; PubMed Central PMCID: PMC2486923.
<pub-id pub-id-type="pmid">8789928</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref058">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Keating</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Mbogo</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Mwangangi</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Nzovu</surname>
<given-names>JG</given-names>
</name>
,
<name>
<surname>Gu</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Regens</surname>
<given-names>JL</given-names>
</name>
,
<etal>et al</etal>
<article-title>
<italic>Anopheles gambiae</italic>
s.l. and
<italic>Anopheles funestus</italic>
mosquito distributions at 30 villages along the Kenyan coast</article-title>
.
<source>Journal of medical entomology</source>
.
<year>2005</year>
;
<volume>42</volume>
(
<issue>3</issue>
):
<fpage>241</fpage>
<lpage>6</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jmedent/42.3.241">10.1093/jmedent/42.3.241</ext-link>
</comment>
; PubMed Central PMCID: PMC2673524.
<pub-id pub-id-type="pmid">15962770</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref059">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bejon</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Williams</surname>
<given-names>TN</given-names>
</name>
,
<name>
<surname>Nyundo</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Hay</surname>
<given-names>SI</given-names>
</name>
,
<name>
<surname>Benz</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Gething</surname>
<given-names>PW</given-names>
</name>
,
<etal>et al</etal>
<article-title>A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots</article-title>
.
<source>eLife</source>
.
<year>2014</year>
;
<volume>3</volume>
:
<fpage>e02130</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.7554/eLife.02130">10.7554/eLife.02130</ext-link>
</comment>
; PubMed Central PMCID: PMC3999589.
<pub-id pub-id-type="pmid">24843017</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref060">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hii</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Mai</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mellor</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Lewis</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Alexander</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
<article-title>Spatial and temporal variation in abundance of
<italic>Anopheles</italic>
(Diptera:Culicidae) in a malaria endemic area in Papua New Guinea</article-title>
.
<source>Journal of medical entomology</source>
.
<year>1997</year>
;
<volume>34</volume>
(
<issue>2</issue>
):
<fpage>193</fpage>
<lpage>205</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jmedent/34.2.193">10.1093/jmedent/34.2.193</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">9103763</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref061">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Escalante</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Schneider</surname>
<given-names>KA</given-names>
</name>
.
<article-title>A Population Genetic Model for the Initial Spread of Partially Resistant Malaria Parasites under Anti-Malarial Combination Therapy and Weak Intrahost Competition</article-title>
.
<source>PloS one</source>
.
<year>2014</year>
;
<volume>9</volume>
(
<issue>7</issue>
):
<fpage>e101601</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0101601">10.1371/journal.pone.0101601</ext-link>
</comment>
; PubMed Central PMCID: PMC4090191.
<pub-id pub-id-type="pmid">25007207</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref062">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tanabe</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Sakihama</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Kaneko</surname>
<given-names>A</given-names>
</name>
.
<article-title>Stable SNPs in malaria antigen genes in isolated populations</article-title>
.
<source>Science (New York, NY</source>
.
<year>2004</year>
;
<volume>303</volume>
(
<issue>5657</issue>
):
<fpage>493</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1126/science.1092077">10.1126/science.1092077</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">14739451</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref063">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gurarie</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Karl</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Zimmerman</surname>
<given-names>PA</given-names>
</name>
,
<name>
<surname>King</surname>
<given-names>CH</given-names>
</name>
,
<name>
<surname>St Pierre</surname>
<given-names>TG</given-names>
</name>
,
<name>
<surname>Davis</surname>
<given-names>TM</given-names>
</name>
.
<article-title>Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities</article-title>
.
<source>PloS one</source>
.
<year>2012</year>
;
<volume>7</volume>
(
<issue>3</issue>
):
<fpage>e34040</fpage>
Epub 2012/04/04.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0034040">10.1371/journal.pone.0034040</ext-link>
</comment>
; PubMed Central PMCID: PMC3314696.
<pub-id pub-id-type="pmid">22470511</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref064">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Thomas</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Cross</surname>
<given-names>DE</given-names>
</name>
,
<name>
<surname>Bogh</surname>
<given-names>C</given-names>
</name>
.
<article-title>Landscape movements of
<italic>Anopheles gambiae</italic>
malaria vector mosquitoes in rural Gambia</article-title>
.
<source>PloS one</source>
.
<year>2013</year>
;
<volume>8</volume>
(
<issue>7</issue>
):
<fpage>e68679</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0068679">10.1371/journal.pone.0068679</ext-link>
</comment>
; PubMed Central PMCID: PMC3715529.
<pub-id pub-id-type="pmid">23874719</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref065">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Eckhoff</surname>
<given-names>PA</given-names>
</name>
.
<article-title>A malaria transmission-directed model of mosquito life cycle and ecology</article-title>
.
<source>Malaria journal</source>
.
<year>2011</year>
;
<volume>10</volume>
:
<fpage>303</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1475-2875-10-303">10.1186/1475-2875-10-303</ext-link>
</comment>
; PubMed Central PMCID: PMC3224385.
<pub-id pub-id-type="pmid">21999664</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref066">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Arifin</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Davis</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Gentile</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Madey</surname>
<given-names>GR</given-names>
</name>
,
<name>
<surname>Collins</surname>
<given-names>FH</given-names>
</name>
.
<article-title>An agent-based model of the population dynamics of
<italic>Anopheles gambiae</italic>
</article-title>
.
<source>Malaria journal</source>
.
<year>2014</year>
;
<volume>13</volume>
:
<fpage>424</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1475-2875-13-424">10.1186/1475-2875-13-424</ext-link>
</comment>
; PubMed Central PMCID: PMC4233045.
<pub-id pub-id-type="pmid">25373418</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref067">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>MT</given-names>
</name>
,
<name>
<surname>Griffin</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Churcher</surname>
<given-names>TS</given-names>
</name>
,
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
,
<name>
<surname>Basanez</surname>
<given-names>MG</given-names>
</name>
,
<name>
<surname>Ghani</surname>
<given-names>AC</given-names>
</name>
.
<article-title>Modelling the impact of vector control interventions on
<italic>Anopheles gambiae</italic>
population dynamics</article-title>
.
<source>Parasites & vectors</source>
.
<year>2011</year>
;
<volume>4</volume>
:
<fpage>153</fpage>
Epub 2011/07/30.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1756-3305-4-153">10.1186/1756-3305-4-153</ext-link>
</comment>
; PubMed Central PMCID: PMC3158753.
<pub-id pub-id-type="pmid">21798055</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref068">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>Smith</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>McKenzie</surname>
<given-names>FE</given-names>
</name>
.
<article-title>Statics and dynamics of malaria infection in
<italic>Anopheles</italic>
mosquitoes</article-title>
.
<source>Malaria journal</source>
.
<year>2004</year>
;
<volume>3</volume>
:
<fpage>13</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1475-2875-3-13">10.1186/1475-2875-3-13</ext-link>
</comment>
; PubMed Central PMCID: PMC449722.
<pub-id pub-id-type="pmid">15180900</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref069">
<label>69</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wearing</surname>
<given-names>HJ</given-names>
</name>
,
<name>
<surname>Rohani</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Keeling</surname>
<given-names>MJ</given-names>
</name>
.
<article-title>Appropriate models for the management of infectious diseases</article-title>
.
<source>PLoS medicine</source>
.
<year>2005</year>
;
<volume>2</volume>
(
<issue>7</issue>
):
<fpage>e174</fpage>
Epub 2005/07/15.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pmed.0020174">10.1371/journal.pmed.0020174</ext-link>
</comment>
; PubMed Central PMCID: PMC1181873.
<pub-id pub-id-type="pmid">16013892</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref070">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Karl</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Battle</surname>
<given-names>KE</given-names>
</name>
,
<name>
<surname>Hay</surname>
<given-names>SI</given-names>
</name>
,
<name>
<surname>Mueller</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Ghani</surname>
<given-names>A</given-names>
</name>
.
<article-title>Modelling the contribution of the hypnozoite reservoir to
<italic>Plasmodium vivax</italic>
transmission</article-title>
.
<source>eLife</source>
.
<year>2014</year>
;
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.7554/eLife.04692">10.7554/eLife.04692</ext-link>
</comment>
<pub-id pub-id-type="pmid">25406065</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref071">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Smith</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>McKenzie</surname>
<given-names>FE</given-names>
</name>
,
<name>
<surname>Snow</surname>
<given-names>RW</given-names>
</name>
,
<name>
<surname>Hay</surname>
<given-names>SI</given-names>
</name>
.
<article-title>Revisiting the basic reproductive number for malaria and its implications for malaria control</article-title>
.
<source>PLoS biology</source>
.
<year>2007</year>
;
<volume>5</volume>
(
<issue>3</issue>
):
<fpage>e42</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pbio.0050042">10.1371/journal.pbio.0050042</ext-link>
</comment>
; PubMed Central PMCID: PMC1802755.
<pub-id pub-id-type="pmid">17311470</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref072">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>Midega</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Mbogo</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Mwambi</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Wilson</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Ojwang</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Mwangangi</surname>
<given-names>JM</given-names>
</name>
,
<etal>et al</etal>
<article-title>Estimating dispersal and survival of
<italic>Anopheles gambiae</italic>
and
<italic>Anopheles funestus</italic>
along the Kenyan coast by using mark-release-recapture methods</article-title>
.
<source>Journal of medical entomology</source>
.
<year>2007</year>
;
<volume>44</volume>
(
<issue>6</issue>
):
<fpage>923</fpage>
<lpage>9</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1603/0022-2585(2007)44[923:Edasoa]2.0.Co;2">10.1603/0022-2585(2007)44[923:Edasoa]2.0.Co;2</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">18047189</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref073">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Toure</surname>
<given-names>YT</given-names>
</name>
,
<name>
<surname>Dolo</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Petrarca</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Traore</surname>
<given-names>SF</given-names>
</name>
,
<name>
<surname>Bouare</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Dao</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Mark-release-recapture experiments with
<italic>Anopheles gambiae</italic>
sl in Banambani Village, Mali, to determine population size and structure</article-title>
.
<source>Medical and veterinary entomology</source>
.
<year>1998</year>
;
<volume>12</volume>
(
<issue>1</issue>
):
<fpage>74</fpage>
<lpage>83</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1046/j.1365-2915.1998.00071.x">10.1046/j.1365-2915.1998.00071.x</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">9513942</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref074">
<label>74</label>
<mixed-citation publication-type="journal">
<name>
<surname>Achee</surname>
<given-names>NL</given-names>
</name>
,
<name>
<surname>Grieco</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Andre</surname>
<given-names>RG</given-names>
</name>
,
<name>
<surname>Rejmankova</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Roberts</surname>
<given-names>DR</given-names>
</name>
.
<article-title>A mark release-recapture study to define the flight behaviors of
<italic>Anopheles vestitipennis</italic>
and
<italic>Anopheles albimanus</italic>
in Belize, Central America</article-title>
.
<source>Journal of the American Mosquito Control Association</source>
.
<year>2007</year>
;
<volume>23</volume>
(
<issue>3</issue>
):
<fpage>276</fpage>
<lpage>82</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.2987/8756-971X(2007)23[276:AMSTDT2.0.CO;2">10.2987/8756-971X(2007)23[276:AMSTDT2.0.CO;2</ext-link>
</comment>
.
<pub-id pub-id-type="pmid">17939506</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref075">
<label>75</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bailey</surname>
<given-names>SF</given-names>
</name>
,
<name>
<surname>Baerg</surname>
<given-names>DC</given-names>
</name>
.
<article-title>The flight habits of
<italic>Anopheles freeborni aitken</italic>
</article-title>
.
<source>Proceedings and papers of the annual conference of the California Mosquito Control Association, inc.</source>
<year>1967</year>
;
<volume>35</volume>
:
<fpage>55</fpage>
<lpage>69</lpage>
. .
<pub-id pub-id-type="pmid">5629692</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref076">
<label>76</label>
<mixed-citation publication-type="journal">
<name>
<surname>abdel-Malek</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>abdel-Aal</surname>
<given-names>MA</given-names>
</name>
.
<article-title>Study of the dispersion and flight range of
<italic>Anopheles sergenti Theo</italic>
</article-title>
.
<article-title>in Siwa Oasis using radioactive isotopes as markers</article-title>
.
<source>Bulletin of the World Health Organization</source>
.
<year>1966</year>
;
<volume>35</volume>
(
<issue>6</issue>
):
<fpage>968</fpage>
<lpage>73</lpage>
. ; PubMed Central PMCID: PMC2476271.</mixed-citation>
</ref>
<ref id="pone.0164054.ref077">
<label>77</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ejerctto</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Urbino</surname>
<given-names>CM</given-names>
</name>
.
<article-title>Flight range of gravid and newly emerged
<italic>Anopheles</italic>
</article-title>
.
<source>Bulletin of the World Health Organization</source>
.
<year>1951</year>
;
<volume>3</volume>
(
<issue>4</issue>
):
<fpage>663</fpage>
<lpage>71</lpage>
. ; PubMed Central PMCID: PMC2554024.
<pub-id pub-id-type="pmid">14821773</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref078">
<label>78</label>
<mixed-citation publication-type="journal">
<name>
<surname>Koepfli</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Schoepflin</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bretscher</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Kiniboro</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Zimmerman</surname>
<given-names>PA</given-names>
</name>
,
<etal>et al</etal>
<article-title>How much remains undetected? Probability of molecular detection of human Plasmodia in the field</article-title>
.
<source>PloS one</source>
.
<year>2011</year>
;
<volume>6</volume>
(
<issue>4</issue>
):
<fpage>e19010</fpage>
Epub 2011/05/10.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0019010">10.1371/journal.pone.0019010</ext-link>
</comment>
; PubMed Central PMCID: PMC3084249.
<pub-id pub-id-type="pmid">21552561</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0164054.ref079">
<label>79</label>
<mixed-citation publication-type="journal">
<name>
<surname>Barry</surname>
<given-names>AE</given-names>
</name>
,
<name>
<surname>Arnott</surname>
<given-names>A</given-names>
</name>
.
<article-title>Strategies for designing and monitoring malaria vaccines targeting diverse antigens</article-title>
.
<source>Frontiers in immunology</source>
.
<year>2014</year>
;
<volume>5</volume>
:
<fpage>359</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.3389/fimmu.2014.00359">10.3389/fimmu.2014.00359</ext-link>
</comment>
; PubMed Central PMCID: PMC4112938.
<pub-id pub-id-type="pmid">25120545</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002954 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002954 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5053403
   |texte=   Spatial Effects on the Multiplicity of Plasmodium falciparum Infections
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27711149" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024