Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites

Identifieur interne : 002920 ( Pmc/Corpus ); précédent : 002919; suivant : 002921

Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites

Auteurs : Kristian E. Swearingen ; Scott E. Lindner ; Erika L. Flannery ; Ashley M. Vaughan ; Robert D. Morrison ; Rapatbhorn Patrapuvich ; Cristian Koepfli ; Ivo Muller ; Aaron Jex ; Robert L. Moritz ; Stefan H. I. Kappe ; Jetsumon Sattabongkot ; Sebastian A. Mikolajczak

Source :

RBID : PMC:5552340

Abstract

Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates. However, P. vivax malaria affects more people in a wider global range. Furthermore, unlike P. falciparum, P. vivax can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes P. vivax unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by Plasmodium is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for P. falciparum (RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in P. vivax, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in P. vivax sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in P. vivax salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in P. falciparum salivary gland sporozoites, were also observed to be similarly modified in P. vivax sporozoites. Quantitative comparison of the P. vivax and P. falciparum salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on P. vivax salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other Plasmodium species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in P. falciparum.


Url:
DOI: 10.1371/journal.pntd.0005791
PubMed: 28759593
PubMed Central: 5552340

Links to Exploration step

PMC:5552340

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteogenomic analysis of the total and surface-exposed proteomes of
<italic>Plasmodium vivax</italic>
salivary gland sporozoites</title>
<author>
<name sortKey="Swearingen, Kristian E" sort="Swearingen, Kristian E" uniqKey="Swearingen K" first="Kristian E." last="Swearingen">Kristian E. Swearingen</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Institute for Systems Biology, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lindner, Scott E" sort="Lindner, Scott E" uniqKey="Lindner S" first="Scott E." last="Lindner">Scott E. Lindner</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Flannery, Erika L" sort="Flannery, Erika L" uniqKey="Flannery E" first="Erika L." last="Flannery">Erika L. Flannery</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vaughan, Ashley M" sort="Vaughan, Ashley M" uniqKey="Vaughan A" first="Ashley M." last="Vaughan">Ashley M. Vaughan</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morrison, Robert D" sort="Morrison, Robert D" uniqKey="Morrison R" first="Robert D." last="Morrison">Robert D. Morrison</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Patrapuvich, Rapatbhorn" sort="Patrapuvich, Rapatbhorn" uniqKey="Patrapuvich R" first="Rapatbhorn" last="Patrapuvich">Rapatbhorn Patrapuvich</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Koepfli, Cristian" sort="Koepfli, Cristian" uniqKey="Koepfli C" first="Cristian" last="Koepfli">Cristian Koepfli</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Muller, Ivo" sort="Muller, Ivo" uniqKey="Muller I" first="Ivo" last="Muller">Ivo Muller</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff006">
<addr-line>Malaria: Parasites & Hosts Unit, Institut Pasteur, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jex, Aaron" sort="Jex, Aaron" uniqKey="Jex A" first="Aaron" last="Jex">Aaron Jex</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff007">
<addr-line>Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moritz, Robert L" sort="Moritz, Robert L" uniqKey="Moritz R" first="Robert L." last="Moritz">Robert L. Moritz</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Institute for Systems Biology, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kappe, Stefan H I" sort="Kappe, Stefan H I" uniqKey="Kappe S" first="Stefan H. I." last="Kappe">Stefan H. I. Kappe</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff008">
<addr-line>Department of Global Health, University of Washington, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sattabongkot, Jetsumon" sort="Sattabongkot, Jetsumon" uniqKey="Sattabongkot J" first="Jetsumon" last="Sattabongkot">Jetsumon Sattabongkot</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mikolajczak, Sebastian A" sort="Mikolajczak, Sebastian A" uniqKey="Mikolajczak S" first="Sebastian A." last="Mikolajczak">Sebastian A. Mikolajczak</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28759593</idno>
<idno type="pmc">5552340</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552340</idno>
<idno type="RBID">PMC:5552340</idno>
<idno type="doi">10.1371/journal.pntd.0005791</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">002920</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002920</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Proteogenomic analysis of the total and surface-exposed proteomes of
<italic>Plasmodium vivax</italic>
salivary gland sporozoites</title>
<author>
<name sortKey="Swearingen, Kristian E" sort="Swearingen, Kristian E" uniqKey="Swearingen K" first="Kristian E." last="Swearingen">Kristian E. Swearingen</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Institute for Systems Biology, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lindner, Scott E" sort="Lindner, Scott E" uniqKey="Lindner S" first="Scott E." last="Lindner">Scott E. Lindner</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Flannery, Erika L" sort="Flannery, Erika L" uniqKey="Flannery E" first="Erika L." last="Flannery">Erika L. Flannery</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vaughan, Ashley M" sort="Vaughan, Ashley M" uniqKey="Vaughan A" first="Ashley M." last="Vaughan">Ashley M. Vaughan</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morrison, Robert D" sort="Morrison, Robert D" uniqKey="Morrison R" first="Robert D." last="Morrison">Robert D. Morrison</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Patrapuvich, Rapatbhorn" sort="Patrapuvich, Rapatbhorn" uniqKey="Patrapuvich R" first="Rapatbhorn" last="Patrapuvich">Rapatbhorn Patrapuvich</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Koepfli, Cristian" sort="Koepfli, Cristian" uniqKey="Koepfli C" first="Cristian" last="Koepfli">Cristian Koepfli</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Muller, Ivo" sort="Muller, Ivo" uniqKey="Muller I" first="Ivo" last="Muller">Ivo Muller</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff006">
<addr-line>Malaria: Parasites & Hosts Unit, Institut Pasteur, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jex, Aaron" sort="Jex, Aaron" uniqKey="Jex A" first="Aaron" last="Jex">Aaron Jex</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff007">
<addr-line>Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moritz, Robert L" sort="Moritz, Robert L" uniqKey="Moritz R" first="Robert L." last="Moritz">Robert L. Moritz</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Institute for Systems Biology, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kappe, Stefan H I" sort="Kappe, Stefan H I" uniqKey="Kappe S" first="Stefan H. I." last="Kappe">Stefan H. I. Kappe</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff008">
<addr-line>Department of Global Health, University of Washington, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sattabongkot, Jetsumon" sort="Sattabongkot, Jetsumon" uniqKey="Sattabongkot J" first="Jetsumon" last="Sattabongkot">Jetsumon Sattabongkot</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mikolajczak, Sebastian A" sort="Mikolajczak, Sebastian A" uniqKey="Mikolajczak S" first="Sebastian A." last="Mikolajczak">Sebastian A. Mikolajczak</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Neglected Tropical Diseases</title>
<idno type="ISSN">1935-2727</idno>
<idno type="eISSN">1935-2735</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Plasmodium falciparum</italic>
and
<italic>Plasmodium vivax</italic>
cause the majority of human malaria cases. Research efforts predominantly focus on
<italic>P</italic>
.
<italic>falciparum</italic>
because of the clinical severity of infection and associated mortality rates. However,
<italic>P</italic>
.
<italic>vivax</italic>
malaria affects more people in a wider global range. Furthermore, unlike
<italic>P</italic>
.
<italic>falciparum</italic>
,
<italic>P</italic>
.
<italic>vivax</italic>
can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes
<italic>P</italic>
.
<italic>vivax</italic>
unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by
<italic>Plasmodium</italic>
is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for
<italic>P</italic>
.
<italic>falciparum</italic>
(RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in
<italic>P</italic>
.
<italic>vivax</italic>
, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites, were also observed to be similarly modified in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites. Quantitative comparison of the
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other
<italic>Plasmodium</italic>
species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in
<italic>P</italic>
.
<italic>falciparum</italic>
.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adekunle, Ai" uniqKey="Adekunle A">AI Adekunle</name>
</author>
<author>
<name sortKey="Pinkevych, M" uniqKey="Pinkevych M">M Pinkevych</name>
</author>
<author>
<name sortKey="Mcgready, R" uniqKey="Mcgready R">R McGready</name>
</author>
<author>
<name sortKey="Luxemburger, C" uniqKey="Luxemburger C">C Luxemburger</name>
</author>
<author>
<name sortKey="White, Lj" uniqKey="White L">LJ White</name>
</author>
<author>
<name sortKey="Nosten, F" uniqKey="Nosten F">F Nosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Nj" uniqKey="White N">NJ White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Price, Rn" uniqKey="Price R">RN Price</name>
</author>
<author>
<name sortKey="Douglas, Nm" uniqKey="Douglas N">NM Douglas</name>
</author>
<author>
<name sortKey="Anstey, Nm" uniqKey="Anstey N">NM Anstey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Nj" uniqKey="White N">NJ White</name>
</author>
<author>
<name sortKey="Imwong, M" uniqKey="Imwong M">M Imwong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bousema, T" uniqKey="Bousema T">T Bousema</name>
</author>
<author>
<name sortKey="Drakeley, C" uniqKey="Drakeley C">C Drakeley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wells, Tn" uniqKey="Wells T">TN Wells</name>
</author>
<author>
<name sortKey="Burrows, Jn" uniqKey="Burrows J">JN Burrows</name>
</author>
<author>
<name sortKey="Baird, Jk" uniqKey="Baird J">JK Baird</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baird, Jk" uniqKey="Baird J">JK Baird</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="John, Gk" uniqKey="John G">GK John</name>
</author>
<author>
<name sortKey="Douglas, Nm" uniqKey="Douglas N">NM Douglas</name>
</author>
<author>
<name sortKey="Von Seidlein, L" uniqKey="Von Seidlein L">L von Seidlein</name>
</author>
<author>
<name sortKey="Nosten, F" uniqKey="Nosten F">F Nosten</name>
</author>
<author>
<name sortKey="Baird, Jk" uniqKey="Baird J">JK Baird</name>
</author>
<author>
<name sortKey="White, Nj" uniqKey="White N">NJ White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, Jw" uniqKey="Bennett J">JW Bennett</name>
</author>
<author>
<name sortKey="Pybus, Bs" uniqKey="Pybus B">BS Pybus</name>
</author>
<author>
<name sortKey="Yadava, A" uniqKey="Yadava A">A Yadava</name>
</author>
<author>
<name sortKey="Tosh, D" uniqKey="Tosh D">D Tosh</name>
</author>
<author>
<name sortKey="Sousa, Jc" uniqKey="Sousa J">JC Sousa</name>
</author>
<author>
<name sortKey="Mccarthy, Wf" uniqKey="Mccarthy W">WF McCarthy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doolan, Dl" uniqKey="Doolan D">DL Doolan</name>
</author>
<author>
<name sortKey="Hoffman, Sl" uniqKey="Hoffman S">SL Hoffman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arevalo Herrera, M" uniqKey="Arevalo Herrera M">M Arevalo-Herrera</name>
</author>
<author>
<name sortKey="Vasquez Jimenez, Jm" uniqKey="Vasquez Jimenez J">JM Vasquez-Jimenez</name>
</author>
<author>
<name sortKey="Lopez Perez, M" uniqKey="Lopez Perez M">M Lopez-Perez</name>
</author>
<author>
<name sortKey="Vallejo, Af" uniqKey="Vallejo A">AF Vallejo</name>
</author>
<author>
<name sortKey="Amado Garavito, Ab" uniqKey="Amado Garavito A">AB Amado-Garavito</name>
</author>
<author>
<name sortKey="Cespedes, N" uniqKey="Cespedes N">N Cespedes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Regules, Ja" uniqKey="Regules J">JA Regules</name>
</author>
<author>
<name sortKey="Cummings, Jf" uniqKey="Cummings J">JF Cummings</name>
</author>
<author>
<name sortKey="Ockenhouse, Cf" uniqKey="Ockenhouse C">CF Ockenhouse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, Jw" uniqKey="Bennett J">JW Bennett</name>
</author>
<author>
<name sortKey="Yadava, A" uniqKey="Yadava A">A Yadava</name>
</author>
<author>
<name sortKey="Tosh, D" uniqKey="Tosh D">D Tosh</name>
</author>
<author>
<name sortKey="Sattabongkot, J" uniqKey="Sattabongkot J">J Sattabongkot</name>
</author>
<author>
<name sortKey="Komisar, J" uniqKey="Komisar J">J Komisar</name>
</author>
<author>
<name sortKey="Ware, La" uniqKey="Ware L">LA Ware</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, M" uniqKey="White M">M White</name>
</author>
<author>
<name sortKey="Amino, R" uniqKey="Amino R">R Amino</name>
</author>
<author>
<name sortKey="Mueller, I" uniqKey="Mueller I">I Mueller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yadava, A" uniqKey="Yadava A">A Yadava</name>
</author>
<author>
<name sortKey="Waters, Nc" uniqKey="Waters N">NC Waters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Florens, L" uniqKey="Florens L">L Florens</name>
</author>
<author>
<name sortKey="Washburn, Mp" uniqKey="Washburn M">MP Washburn</name>
</author>
<author>
<name sortKey="Raine, Jd" uniqKey="Raine J">JD Raine</name>
</author>
<author>
<name sortKey="Anthony, Rm" uniqKey="Anthony R">RM Anthony</name>
</author>
<author>
<name sortKey="Grainger, M" uniqKey="Grainger M">M Grainger</name>
</author>
<author>
<name sortKey="Haynes, Jd" uniqKey="Haynes J">JD Haynes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lasonder, E" uniqKey="Lasonder E">E Lasonder</name>
</author>
<author>
<name sortKey="Janse, Cj" uniqKey="Janse C">CJ Janse</name>
</author>
<author>
<name sortKey="Van Gemert, Gj" uniqKey="Van Gemert G">GJ van Gemert</name>
</author>
<author>
<name sortKey="Mair, Gr" uniqKey="Mair G">GR Mair</name>
</author>
<author>
<name sortKey="Vermunt, Am" uniqKey="Vermunt A">AM Vermunt</name>
</author>
<author>
<name sortKey="Douradinha, Bg" uniqKey="Douradinha B">BG Douradinha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, N" uniqKey="Hall N">N Hall</name>
</author>
<author>
<name sortKey="Karras, M" uniqKey="Karras M">M Karras</name>
</author>
<author>
<name sortKey="Raine, Jd" uniqKey="Raine J">JD Raine</name>
</author>
<author>
<name sortKey="Carlton, Jm" uniqKey="Carlton J">JM Carlton</name>
</author>
<author>
<name sortKey="Kooij, Tw" uniqKey="Kooij T">TW Kooij</name>
</author>
<author>
<name sortKey="Berriman, M" uniqKey="Berriman M">M Berriman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindner, Se" uniqKey="Lindner S">SE Lindner</name>
</author>
<author>
<name sortKey="Swearingen, Ke" uniqKey="Swearingen K">KE Swearingen</name>
</author>
<author>
<name sortKey="Harupa, A" uniqKey="Harupa A">A Harupa</name>
</author>
<author>
<name sortKey="Vaughan, Am" uniqKey="Vaughan A">AM Vaughan</name>
</author>
<author>
<name sortKey="Sinnis, P" uniqKey="Sinnis P">P Sinnis</name>
</author>
<author>
<name sortKey="Moritz, Rl" uniqKey="Moritz R">RL Moritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swearingen, Ke" uniqKey="Swearingen K">KE Swearingen</name>
</author>
<author>
<name sortKey="Lindner, Se" uniqKey="Lindner S">SE Lindner</name>
</author>
<author>
<name sortKey="Shi, L" uniqKey="Shi L">L Shi</name>
</author>
<author>
<name sortKey="Shears, Mj" uniqKey="Shears M">MJ Shears</name>
</author>
<author>
<name sortKey="Harupa, A" uniqKey="Harupa A">A Harupa</name>
</author>
<author>
<name sortKey="Hopp, Cs" uniqKey="Hopp C">CS Hopp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kennedy, M" uniqKey="Kennedy M">M Kennedy</name>
</author>
<author>
<name sortKey="Fishbaugher, Me" uniqKey="Fishbaugher M">ME Fishbaugher</name>
</author>
<author>
<name sortKey="Vaughan, Am" uniqKey="Vaughan A">AM Vaughan</name>
</author>
<author>
<name sortKey="Patrapuvich, R" uniqKey="Patrapuvich R">R Patrapuvich</name>
</author>
<author>
<name sortKey="Boonhok, R" uniqKey="Boonhok R">R Boonhok</name>
</author>
<author>
<name sortKey="Yimamnuaychok, N" uniqKey="Yimamnuaychok N">N Yimamnuaychok</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kessner, D" uniqKey="Kessner D">D Kessner</name>
</author>
<author>
<name sortKey="Chambers, M" uniqKey="Chambers M">M Chambers</name>
</author>
<author>
<name sortKey="Burke, R" uniqKey="Burke R">R Burke</name>
</author>
<author>
<name sortKey="Agus, D" uniqKey="Agus D">D Agus</name>
</author>
<author>
<name sortKey="Mallick, P" uniqKey="Mallick P">P Mallick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eng, Jk" uniqKey="Eng J">JK Eng</name>
</author>
<author>
<name sortKey="Jahan, Ta" uniqKey="Jahan T">TA Jahan</name>
</author>
<author>
<name sortKey="Hoopmann, Mr" uniqKey="Hoopmann M">MR Hoopmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deutsch, Ew" uniqKey="Deutsch E">EW Deutsch</name>
</author>
<author>
<name sortKey="Mendoza, L" uniqKey="Mendoza L">L Mendoza</name>
</author>
<author>
<name sortKey="Shteynberg, D" uniqKey="Shteynberg D">D Shteynberg</name>
</author>
<author>
<name sortKey="Slagel, J" uniqKey="Slagel J">J Slagel</name>
</author>
<author>
<name sortKey="Sun, Z" uniqKey="Sun Z">Z Sun</name>
</author>
<author>
<name sortKey="Moritz, Rl" uniqKey="Moritz R">RL Moritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keller, A" uniqKey="Keller A">A Keller</name>
</author>
<author>
<name sortKey="Nesvizhskii, Ai" uniqKey="Nesvizhskii A">AI Nesvizhskii</name>
</author>
<author>
<name sortKey="Kolker, E" uniqKey="Kolker E">E Kolker</name>
</author>
<author>
<name sortKey="Aebersold, R" uniqKey="Aebersold R">R Aebersold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shteynberg, D" uniqKey="Shteynberg D">D Shteynberg</name>
</author>
<author>
<name sortKey="Nesvizhskii, Ai" uniqKey="Nesvizhskii A">AI Nesvizhskii</name>
</author>
<author>
<name sortKey="Moritz, Rl" uniqKey="Moritz R">RL Moritz</name>
</author>
<author>
<name sortKey="Deutsch, Ew" uniqKey="Deutsch E">EW Deutsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nesvizhskii, Ai" uniqKey="Nesvizhskii A">AI Nesvizhskii</name>
</author>
<author>
<name sortKey="Keller, A" uniqKey="Keller A">A Keller</name>
</author>
<author>
<name sortKey="Kolker, E" uniqKey="Kolker E">E Kolker</name>
</author>
<author>
<name sortKey="Aebersold, R" uniqKey="Aebersold R">R Aebersold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gardner, Mj" uniqKey="Gardner M">MJ Gardner</name>
</author>
<author>
<name sortKey="Hall, N" uniqKey="Hall N">N Hall</name>
</author>
<author>
<name sortKey="Fung, E" uniqKey="Fung E">E Fung</name>
</author>
<author>
<name sortKey="White, O" uniqKey="White O">O White</name>
</author>
<author>
<name sortKey="Berriman, M" uniqKey="Berriman M">M Berriman</name>
</author>
<author>
<name sortKey="Hyman, Rw" uniqKey="Hyman R">RW Hyman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aurrecoechea, C" uniqKey="Aurrecoechea C">C Aurrecoechea</name>
</author>
<author>
<name sortKey="Brestelli, J" uniqKey="Brestelli J">J Brestelli</name>
</author>
<author>
<name sortKey="Brunk, Bp" uniqKey="Brunk B">BP Brunk</name>
</author>
<author>
<name sortKey="Dommer, J" uniqKey="Dommer J">J Dommer</name>
</author>
<author>
<name sortKey="Fischer, S" uniqKey="Fischer S">S Fischer</name>
</author>
<author>
<name sortKey="Gajria, B" uniqKey="Gajria B">B Gajria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X Jiang</name>
</author>
<author>
<name sortKey="Peery, A" uniqKey="Peery A">A Peery</name>
</author>
<author>
<name sortKey="Hall, Ab" uniqKey="Hall A">AB Hall</name>
</author>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A Sharma</name>
</author>
<author>
<name sortKey="Chen, Xg" uniqKey="Chen X">XG Chen</name>
</author>
<author>
<name sortKey="Waterhouse, Rm" uniqKey="Waterhouse R">RM Waterhouse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giraldo Calderon, Gi" uniqKey="Giraldo Calderon G">GI Giraldo-Calderon</name>
</author>
<author>
<name sortKey="Emrich, Sj" uniqKey="Emrich S">SJ Emrich</name>
</author>
<author>
<name sortKey="Maccallum, Rm" uniqKey="Maccallum R">RM MacCallum</name>
</author>
<author>
<name sortKey="Maslen, G" uniqKey="Maslen G">G Maslen</name>
</author>
<author>
<name sortKey="Dialynas, E" uniqKey="Dialynas E">E Dialynas</name>
</author>
<author>
<name sortKey="Topalis, P" uniqKey="Topalis P">P Topalis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carlton, Jm" uniqKey="Carlton J">JM Carlton</name>
</author>
<author>
<name sortKey="Adams, Jh" uniqKey="Adams J">JH Adams</name>
</author>
<author>
<name sortKey="Silva, Jc" uniqKey="Silva J">JC Silva</name>
</author>
<author>
<name sortKey="Bidwell, Sl" uniqKey="Bidwell S">SL Bidwell</name>
</author>
<author>
<name sortKey="Lorenzi, H" uniqKey="Lorenzi H">H Lorenzi</name>
</author>
<author>
<name sortKey="Caler, E" uniqKey="Caler E">E Caler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jex, A" uniqKey="Jex A">A Jex</name>
</author>
<author>
<name sortKey="Mueller, I" uniqKey="Mueller I">I Mueller</name>
</author>
<author>
<name sortKey="Kappe, Shi" uniqKey="Kappe S">SHI Kappe</name>
</author>
<author>
<name sortKey="Mikolajczak, Sa" uniqKey="Mikolajczak S">SA Mikolajczak</name>
</author>
<author>
<name sortKey="Sattabongkot, J" uniqKey="Sattabongkot J">J Sattabongkot</name>
</author>
<author>
<name sortKey="Patrapuvich, R" uniqKey="Patrapuvich R">R Patrapuvich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Auburn, S" uniqKey="Auburn S">S Auburn</name>
</author>
<author>
<name sortKey="Bohme, U" uniqKey="Bohme U">U Bohme</name>
</author>
<author>
<name sortKey="Steinbiss, S" uniqKey="Steinbiss S">S Steinbiss</name>
</author>
<author>
<name sortKey="Trimarsanto, H" uniqKey="Trimarsanto H">H Trimarsanto</name>
</author>
<author>
<name sortKey="Hostetler, J" uniqKey="Hostetler J">J Hostetler</name>
</author>
<author>
<name sortKey="Sanders, M" uniqKey="Sanders M">M Sanders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Ts" uniqKey="Kim T">TS Kim</name>
</author>
<author>
<name sortKey="Kim, Hh" uniqKey="Kim H">HH Kim</name>
</author>
<author>
<name sortKey="Lee, Ss" uniqKey="Lee S">SS Lee</name>
</author>
<author>
<name sortKey="Oh, Cm" uniqKey="Oh C">CM Oh</name>
</author>
<author>
<name sortKey="Choi, Km" uniqKey="Choi K">KM Choi</name>
</author>
<author>
<name sortKey="Lin, K" uniqKey="Lin K">K Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fermin, D" uniqKey="Fermin D">D Fermin</name>
</author>
<author>
<name sortKey="Basrur, V" uniqKey="Basrur V">V Basrur</name>
</author>
<author>
<name sortKey="Yocum, Ak" uniqKey="Yocum A">AK Yocum</name>
</author>
<author>
<name sortKey="Nesvizhskii, Ai" uniqKey="Nesvizhskii A">AI Nesvizhskii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Wen, Z" uniqKey="Wen Z">Z Wen</name>
</author>
<author>
<name sortKey="Washburn, Mp" uniqKey="Washburn M">MP Washburn</name>
</author>
<author>
<name sortKey="Florens, L" uniqKey="Florens L">L Florens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zybailov, B" uniqKey="Zybailov B">B Zybailov</name>
</author>
<author>
<name sortKey="Mosley, Al" uniqKey="Mosley A">AL Mosley</name>
</author>
<author>
<name sortKey="Sardiu, Me" uniqKey="Sardiu M">ME Sardiu</name>
</author>
<author>
<name sortKey="Coleman, Mk" uniqKey="Coleman M">MK Coleman</name>
</author>
<author>
<name sortKey="Florens, L" uniqKey="Florens L">L Florens</name>
</author>
<author>
<name sortKey="Washburn, Mp" uniqKey="Washburn M">MP Washburn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gokce, E" uniqKey="Gokce E">E Gokce</name>
</author>
<author>
<name sortKey="Shuford, Cm" uniqKey="Shuford C">CM Shuford</name>
</author>
<author>
<name sortKey="Franck, Wl" uniqKey="Franck W">WL Franck</name>
</author>
<author>
<name sortKey="Dean, Ra" uniqKey="Dean R">RA Dean</name>
</author>
<author>
<name sortKey="Muddiman, Dc" uniqKey="Muddiman D">DC Muddiman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hendrickson, El" uniqKey="Hendrickson E">EL Hendrickson</name>
</author>
<author>
<name sortKey="Xia, Q" uniqKey="Xia Q">Q Xia</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T Wang</name>
</author>
<author>
<name sortKey="Leigh, Ja" uniqKey="Leigh J">JA Leigh</name>
</author>
<author>
<name sortKey="Hackett, M" uniqKey="Hackett M">M Hackett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krogh, A" uniqKey="Krogh A">A Krogh</name>
</author>
<author>
<name sortKey="Larsson, B" uniqKey="Larsson B">B Larsson</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G von Heijne</name>
</author>
<author>
<name sortKey="Sonnhammer, El" uniqKey="Sonnhammer E">EL Sonnhammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petersen, Tn" uniqKey="Petersen T">TN Petersen</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G von Heijne</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pierleoni, A" uniqKey="Pierleoni A">A Pierleoni</name>
</author>
<author>
<name sortKey="Martelli, Pl" uniqKey="Martelli P">PL Martelli</name>
</author>
<author>
<name sortKey="Casadio, R" uniqKey="Casadio R">R Casadio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Old, Wm" uniqKey="Old W">WM Old</name>
</author>
<author>
<name sortKey="Meyer Arendt, K" uniqKey="Meyer Arendt K">K Meyer-Arendt</name>
</author>
<author>
<name sortKey="Aveline Wolf, L" uniqKey="Aveline Wolf L">L Aveline-Wolf</name>
</author>
<author>
<name sortKey="Pierce, Kg" uniqKey="Pierce K">KG Pierce</name>
</author>
<author>
<name sortKey="Mendoza, A" uniqKey="Mendoza A">A Mendoza</name>
</author>
<author>
<name sortKey="Sevinsky, Jr" uniqKey="Sevinsky J">JR Sevinsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Portillo, Ha" uniqKey="Del Portillo H">HA del Portillo</name>
</author>
<author>
<name sortKey="Fernandez Becerra, C" uniqKey="Fernandez Becerra C">C Fernandez-Becerra</name>
</author>
<author>
<name sortKey="Bowman, S" uniqKey="Bowman S">S Bowman</name>
</author>
<author>
<name sortKey="Oliver, K" uniqKey="Oliver K">K Oliver</name>
</author>
<author>
<name sortKey="Preuss, M" uniqKey="Preuss M">M Preuss</name>
</author>
<author>
<name sortKey="Sanchez, Cp" uniqKey="Sanchez C">CP Sanchez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hofsteenge, J" uniqKey="Hofsteenge J">J Hofsteenge</name>
</author>
<author>
<name sortKey="Huwiler, Kg" uniqKey="Huwiler K">KG Huwiler</name>
</author>
<author>
<name sortKey="Macek, B" uniqKey="Macek B">B Macek</name>
</author>
<author>
<name sortKey="Hess, D" uniqKey="Hess D">D Hess</name>
</author>
<author>
<name sortKey="Lawler, J" uniqKey="Lawler J">J Lawler</name>
</author>
<author>
<name sortKey="Mosher, Df" uniqKey="Mosher D">DF Mosher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, T" uniqKey="Sato T">T Sato</name>
</author>
<author>
<name sortKey="Sato, M" uniqKey="Sato M">M Sato</name>
</author>
<author>
<name sortKey="Kiyohara, K" uniqKey="Kiyohara K">K Kiyohara</name>
</author>
<author>
<name sortKey="Sogabe, M" uniqKey="Sogabe M">M Sogabe</name>
</author>
<author>
<name sortKey="Shikanai, T" uniqKey="Shikanai T">T Shikanai</name>
</author>
<author>
<name sortKey="Kikuchi, N" uniqKey="Kikuchi N">N Kikuchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozma, K" uniqKey="Kozma K">K Kozma</name>
</author>
<author>
<name sortKey="Keusch, Jj" uniqKey="Keusch J">JJ Keusch</name>
</author>
<author>
<name sortKey="Hegemann, B" uniqKey="Hegemann B">B Hegemann</name>
</author>
<author>
<name sortKey="Luther, Kb" uniqKey="Luther K">KB Luther</name>
</author>
<author>
<name sortKey="Klein, D" uniqKey="Klein D">D Klein</name>
</author>
<author>
<name sortKey="Hess, D" uniqKey="Hess D">D Hess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hofsteenge, J" uniqKey="Hofsteenge J">J Hofsteenge</name>
</author>
<author>
<name sortKey="Muller, Dr" uniqKey="Muller D">DR Muller</name>
</author>
<author>
<name sortKey="De Beer, T" uniqKey="De Beer T">T de Beer</name>
</author>
<author>
<name sortKey="Loffler, A" uniqKey="Loffler A">A Loffler</name>
</author>
<author>
<name sortKey="Richter, Wj" uniqKey="Richter W">WJ Richter</name>
</author>
<author>
<name sortKey="Vliegenthart, Jf" uniqKey="Vliegenthart J">JF Vliegenthart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Julenius, K" uniqKey="Julenius K">K Julenius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macek, B" uniqKey="Macek B">B Macek</name>
</author>
<author>
<name sortKey="Hofsteenge, J" uniqKey="Hofsteenge J">J Hofsteenge</name>
</author>
<author>
<name sortKey="Peter Katalinic, J" uniqKey="Peter Katalinic J">J Peter-Katalinic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Lw" uniqKey="Wang L">LW Wang</name>
</author>
<author>
<name sortKey="Leonhard Melief, C" uniqKey="Leonhard Melief C">C Leonhard-Melief</name>
</author>
<author>
<name sortKey="Haltiwanger, Rs" uniqKey="Haltiwanger R">RS Haltiwanger</name>
</author>
<author>
<name sortKey="Apte, Ss" uniqKey="Apte S">SS Apte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cova, M" uniqKey="Cova M">M Cova</name>
</author>
<author>
<name sortKey="Rodrigues, Ja" uniqKey="Rodrigues J">JA Rodrigues</name>
</author>
<author>
<name sortKey="Smith, Tk" uniqKey="Smith T">TK Smith</name>
</author>
<author>
<name sortKey="Izquierdo, L" uniqKey="Izquierdo L">L Izquierdo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doud, Mb" uniqKey="Doud M">MB Doud</name>
</author>
<author>
<name sortKey="Koksal, Ac" uniqKey="Koksal A">AC Koksal</name>
</author>
<author>
<name sortKey="Mi, Lz" uniqKey="Mi L">LZ Mi</name>
</author>
<author>
<name sortKey="Song, G" uniqKey="Song G">G Song</name>
</author>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C Lu</name>
</author>
<author>
<name sortKey="Springer, Ta" uniqKey="Springer T">TA Springer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, G" uniqKey="Song G">G Song</name>
</author>
<author>
<name sortKey="Koksal, Ac" uniqKey="Koksal A">AC Koksal</name>
</author>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C Lu</name>
</author>
<author>
<name sortKey="Springer, Ta" uniqKey="Springer T">TA Springer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Treeck, M" uniqKey="Treeck M">M Treeck</name>
</author>
<author>
<name sortKey="Sanders, Jl" uniqKey="Sanders J">JL Sanders</name>
</author>
<author>
<name sortKey="Elias, Je" uniqKey="Elias J">JE Elias</name>
</author>
<author>
<name sortKey="Boothroyd, Jc" uniqKey="Boothroyd J">JC Boothroyd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Solyakov, L" uniqKey="Solyakov L">L Solyakov</name>
</author>
<author>
<name sortKey="Halbert, J" uniqKey="Halbert J">J Halbert</name>
</author>
<author>
<name sortKey="Alam, Mm" uniqKey="Alam M">MM Alam</name>
</author>
<author>
<name sortKey="Semblat, Jp" uniqKey="Semblat J">JP Semblat</name>
</author>
<author>
<name sortKey="Dorin Semblat, D" uniqKey="Dorin Semblat D">D Dorin-Semblat</name>
</author>
<author>
<name sortKey="Reininger, L" uniqKey="Reininger L">L Reininger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lasonder, E" uniqKey="Lasonder E">E Lasonder</name>
</author>
<author>
<name sortKey="Green, Jl" uniqKey="Green J">JL Green</name>
</author>
<author>
<name sortKey="Camarda, G" uniqKey="Camarda G">G Camarda</name>
</author>
<author>
<name sortKey="Talabani, H" uniqKey="Talabani H">H Talabani</name>
</author>
<author>
<name sortKey="Holder, Aa" uniqKey="Holder A">AA Holder</name>
</author>
<author>
<name sortKey="Langsley, G" uniqKey="Langsley G">G Langsley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pease, Bn" uniqKey="Pease B">BN Pease</name>
</author>
<author>
<name sortKey="Huttlin, El" uniqKey="Huttlin E">EL Huttlin</name>
</author>
<author>
<name sortKey="Jedrychowski, Mp" uniqKey="Jedrychowski M">MP Jedrychowski</name>
</author>
<author>
<name sortKey="Talevich, E" uniqKey="Talevich E">E Talevich</name>
</author>
<author>
<name sortKey="Harmon, J" uniqKey="Harmon J">J Harmon</name>
</author>
<author>
<name sortKey="Dillman, T" uniqKey="Dillman T">T Dillman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lasonder, E" uniqKey="Lasonder E">E Lasonder</name>
</author>
<author>
<name sortKey="Green, Jl" uniqKey="Green J">JL Green</name>
</author>
<author>
<name sortKey="Grainger, M" uniqKey="Grainger M">M Grainger</name>
</author>
<author>
<name sortKey="Langsley, G" uniqKey="Langsley G">G Langsley</name>
</author>
<author>
<name sortKey="Holder, Aa" uniqKey="Holder A">AA Holder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Acharya, P" uniqKey="Acharya P">P Acharya</name>
</author>
<author>
<name sortKey="Pallavi, R" uniqKey="Pallavi R">R Pallavi</name>
</author>
<author>
<name sortKey="Chandran, S" uniqKey="Chandran S">S Chandran</name>
</author>
<author>
<name sortKey="Chakravarti, H" uniqKey="Chakravarti H">H Chakravarti</name>
</author>
<author>
<name sortKey="Middha, S" uniqKey="Middha S">S Middha</name>
</author>
<author>
<name sortKey="Acharya, J" uniqKey="Acharya J">J Acharya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oehring, Sc" uniqKey="Oehring S">SC Oehring</name>
</author>
<author>
<name sortKey="Woodcroft, Bj" uniqKey="Woodcroft B">BJ Woodcroft</name>
</author>
<author>
<name sortKey="Moes, S" uniqKey="Moes S">S Moes</name>
</author>
<author>
<name sortKey="Wetzel, J" uniqKey="Wetzel J">J Wetzel</name>
</author>
<author>
<name sortKey="Dietz, O" uniqKey="Dietz O">O Dietz</name>
</author>
<author>
<name sortKey="Pulfer, A" uniqKey="Pulfer A">A Pulfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lasonder, E" uniqKey="Lasonder E">E Lasonder</name>
</author>
<author>
<name sortKey="Rijpma, Sr" uniqKey="Rijpma S">SR Rijpma</name>
</author>
<author>
<name sortKey="Van Schaijk, Bc" uniqKey="Van Schaijk B">BC van Schaijk</name>
</author>
<author>
<name sortKey="Hoeijmakers, Wa" uniqKey="Hoeijmakers W">WA Hoeijmakers</name>
</author>
<author>
<name sortKey="Kensche, Pr" uniqKey="Kensche P">PR Kensche</name>
</author>
<author>
<name sortKey="Gresnigt, Ms" uniqKey="Gresnigt M">MS Gresnigt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silvestrini, F" uniqKey="Silvestrini F">F Silvestrini</name>
</author>
<author>
<name sortKey="Lasonder, E" uniqKey="Lasonder E">E Lasonder</name>
</author>
<author>
<name sortKey="Olivieri, A" uniqKey="Olivieri A">A Olivieri</name>
</author>
<author>
<name sortKey="Camarda, G" uniqKey="Camarda G">G Camarda</name>
</author>
<author>
<name sortKey="Van Schaijk, B" uniqKey="Van Schaijk B">B van Schaijk</name>
</author>
<author>
<name sortKey="Sanchez, M" uniqKey="Sanchez M">M Sanchez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Florens, L" uniqKey="Florens L">L Florens</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S Yang</name>
</author>
<author>
<name sortKey="Schwartz, O" uniqKey="Schwartz O">O Schwartz</name>
</author>
<author>
<name sortKey="Peglar, M" uniqKey="Peglar M">M Peglar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowyer, Pw" uniqKey="Bowyer P">PW Bowyer</name>
</author>
<author>
<name sortKey="Simon, Gm" uniqKey="Simon G">GM Simon</name>
</author>
<author>
<name sortKey="Cravatt, Bf" uniqKey="Cravatt B">BF Cravatt</name>
</author>
<author>
<name sortKey="Bogyo, M" uniqKey="Bogyo M">M Bogyo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moreno Perez, Da" uniqKey="Moreno Perez D">DA Moreno-Perez</name>
</author>
<author>
<name sortKey="Degano, R" uniqKey="Degano R">R Degano</name>
</author>
<author>
<name sortKey="Ibarrola, N" uniqKey="Ibarrola N">N Ibarrola</name>
</author>
<author>
<name sortKey="Muro, A" uniqKey="Muro A">A Muro</name>
</author>
<author>
<name sortKey="Patarroyo, Ma" uniqKey="Patarroyo M">MA Patarroyo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roobsoong, W" uniqKey="Roobsoong W">W Roobsoong</name>
</author>
<author>
<name sortKey="Roytrakul, S" uniqKey="Roytrakul S">S Roytrakul</name>
</author>
<author>
<name sortKey="Sattabongkot, J" uniqKey="Sattabongkot J">J Sattabongkot</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Udomsangpetch, R" uniqKey="Udomsangpetch R">R Udomsangpetch</name>
</author>
<author>
<name sortKey="Cui, L" uniqKey="Cui L">L Cui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schiapparelli, Lm" uniqKey="Schiapparelli L">LM Schiapparelli</name>
</author>
<author>
<name sortKey="Mcclatchy, Db" uniqKey="Mcclatchy D">DB McClatchy</name>
</author>
<author>
<name sortKey="Liu, Hh" uniqKey="Liu H">HH Liu</name>
</author>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P Sharma</name>
</author>
<author>
<name sortKey="Yates, Jr" uniqKey="Yates J">JR Yates</name>
</author>
<author>
<name sortKey="Cline, Ht" uniqKey="Cline H">HT Cline</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Nihmi, Fm" uniqKey="Al Nihmi F">FM Al-Nihmi</name>
</author>
<author>
<name sortKey="Kolli, Sk" uniqKey="Kolli S">SK Kolli</name>
</author>
<author>
<name sortKey="Reddy, Sr" uniqKey="Reddy S">SR Reddy</name>
</author>
<author>
<name sortKey="Mastan, Bs" uniqKey="Mastan B">BS Mastan</name>
</author>
<author>
<name sortKey="Togiri, J" uniqKey="Togiri J">J Togiri</name>
</author>
<author>
<name sortKey="Maruthi, M" uniqKey="Maruthi M">M Maruthi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hernandez Romano, J" uniqKey="Hernandez Romano J">J Hernandez-Romano</name>
</author>
<author>
<name sortKey="Rodriguez, Mh" uniqKey="Rodriguez M">MH Rodriguez</name>
</author>
<author>
<name sortKey="Pando, V" uniqKey="Pando V">V Pando</name>
</author>
<author>
<name sortKey="Torres Monzon, Ja" uniqKey="Torres Monzon J">JA Torres-Monzon</name>
</author>
<author>
<name sortKey="Alvarado Delgado, A" uniqKey="Alvarado Delgado A">A Alvarado-Delgado</name>
</author>
<author>
<name sortKey="Lecona Valera, An" uniqKey="Lecona Valera A">AN Lecona Valera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staros, Jv" uniqKey="Staros J">JV Staros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wass, Mn" uniqKey="Wass M">MN Wass</name>
</author>
<author>
<name sortKey="Stanway, R" uniqKey="Stanway R">R Stanway</name>
</author>
<author>
<name sortKey="Blagborough, Am" uniqKey="Blagborough A">AM Blagborough</name>
</author>
<author>
<name sortKey="Lal, K" uniqKey="Lal K">K Lal</name>
</author>
<author>
<name sortKey="Prieto, Jh" uniqKey="Prieto J">JH Prieto</name>
</author>
<author>
<name sortKey="Raine, D" uniqKey="Raine D">D Raine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Manzalawy, Y" uniqKey="El Manzalawy Y">Y El-Manzalawy</name>
</author>
<author>
<name sortKey="Munoz, Ee" uniqKey="Munoz E">EE Munoz</name>
</author>
<author>
<name sortKey="Lindner, Se" uniqKey="Lindner S">SE Lindner</name>
</author>
<author>
<name sortKey="Honavar, V" uniqKey="Honavar V">V Honavar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karpievitch, Yv" uniqKey="Karpievitch Y">YV Karpievitch</name>
</author>
<author>
<name sortKey="Dabney, Ar" uniqKey="Dabney A">AR Dabney</name>
</author>
<author>
<name sortKey="Smith, Rd" uniqKey="Smith R">RD Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Roch, Kg" uniqKey="Le Roch K">KG Le Roch</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Blair, Pl" uniqKey="Blair P">PL Blair</name>
</author>
<author>
<name sortKey="Grainger, M" uniqKey="Grainger M">M Grainger</name>
</author>
<author>
<name sortKey="Moch, Jk" uniqKey="Moch J">JK Moch</name>
</author>
<author>
<name sortKey="Haynes, Jd" uniqKey="Haynes J">JD Haynes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Vm" uniqKey="Zhang V">VM Zhang</name>
</author>
<author>
<name sortKey="Chavchich, M" uniqKey="Chavchich M">M Chavchich</name>
</author>
<author>
<name sortKey="Waters, Nc" uniqKey="Waters N">NC Waters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doerig, C" uniqKey="Doerig C">C Doerig</name>
</author>
<author>
<name sortKey="Abdi, A" uniqKey="Abdi A">A Abdi</name>
</author>
<author>
<name sortKey="Bland, N" uniqKey="Bland N">N Bland</name>
</author>
<author>
<name sortKey="Eschenlauer, S" uniqKey="Eschenlauer S">S Eschenlauer</name>
</author>
<author>
<name sortKey="Dorin Semblat, D" uniqKey="Dorin Semblat D">D Dorin-Semblat</name>
</author>
<author>
<name sortKey="Fennell, C" uniqKey="Fennell C">C Fennell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doerig, C" uniqKey="Doerig C">C Doerig</name>
</author>
<author>
<name sortKey="Meijer, L" uniqKey="Meijer L">L Meijer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacot, D" uniqKey="Jacot D">D Jacot</name>
</author>
<author>
<name sortKey="Tosetti, N" uniqKey="Tosetti N">N Tosetti</name>
</author>
<author>
<name sortKey="Pires, I" uniqKey="Pires I">I Pires</name>
</author>
<author>
<name sortKey="Stock, J" uniqKey="Stock J">J Stock</name>
</author>
<author>
<name sortKey="Graindorge, A" uniqKey="Graindorge A">A Graindorge</name>
</author>
<author>
<name sortKey="Hung, Yf" uniqKey="Hung Y">YF Hung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bargieri, Dy" uniqKey="Bargieri D">DY Bargieri</name>
</author>
<author>
<name sortKey="Andenmatten, N" uniqKey="Andenmatten N">N Andenmatten</name>
</author>
<author>
<name sortKey="Lagal, V" uniqKey="Lagal V">V Lagal</name>
</author>
<author>
<name sortKey="Thiberge, S" uniqKey="Thiberge S">S Thiberge</name>
</author>
<author>
<name sortKey="Whitelaw, Ja" uniqKey="Whitelaw J">JA Whitelaw</name>
</author>
<author>
<name sortKey="Tardieux, I" uniqKey="Tardieux I">I Tardieux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Treeck, M" uniqKey="Treeck M">M Treeck</name>
</author>
<author>
<name sortKey="Zacherl, S" uniqKey="Zacherl S">S Zacherl</name>
</author>
<author>
<name sortKey="Herrmann, S" uniqKey="Herrmann S">S Herrmann</name>
</author>
<author>
<name sortKey="Cabrera, A" uniqKey="Cabrera A">A Cabrera</name>
</author>
<author>
<name sortKey="Kono, M" uniqKey="Kono M">M Kono</name>
</author>
<author>
<name sortKey="Struck, Ns" uniqKey="Struck N">NS Struck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harupa, A" uniqKey="Harupa A">A Harupa</name>
</author>
<author>
<name sortKey="Sack, Bk" uniqKey="Sack B">BK Sack</name>
</author>
<author>
<name sortKey="Lakshmanan, V" uniqKey="Lakshmanan V">V Lakshmanan</name>
</author>
<author>
<name sortKey="Arang, N" uniqKey="Arang N">N Arang</name>
</author>
<author>
<name sortKey="Douglass, An" uniqKey="Douglass A">AN Douglass</name>
</author>
<author>
<name sortKey="Oliver, Bg" uniqKey="Oliver B">BG Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, G" uniqKey="Song G">G Song</name>
</author>
<author>
<name sortKey="Springer, Ta" uniqKey="Springer T">TA Springer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luca, Vc" uniqKey="Luca V">VC Luca</name>
</author>
<author>
<name sortKey="Jude, Km" uniqKey="Jude K">KM Jude</name>
</author>
<author>
<name sortKey="Pierce, Nw" uniqKey="Pierce N">NW Pierce</name>
</author>
<author>
<name sortKey="Nachury, Mv" uniqKey="Nachury M">MV Nachury</name>
</author>
<author>
<name sortKey="Fischer, S" uniqKey="Fischer S">S Fischer</name>
</author>
<author>
<name sortKey="Garcia, Kc" uniqKey="Garcia K">KC Garcia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arredondo, Sa" uniqKey="Arredondo S">SA Arredondo</name>
</author>
<author>
<name sortKey="Cai, M" uniqKey="Cai M">M Cai</name>
</author>
<author>
<name sortKey="Takayama, Y" uniqKey="Takayama Y">Y Takayama</name>
</author>
<author>
<name sortKey="Macdonald, Nj" uniqKey="Macdonald N">NJ MacDonald</name>
</author>
<author>
<name sortKey="Anderson, De" uniqKey="Anderson D">DE Anderson</name>
</author>
<author>
<name sortKey="Aravind, L" uniqKey="Aravind L">L Aravind</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Liu, R" uniqKey="Liu R">R Liu</name>
</author>
<author>
<name sortKey="Ni, M" uniqKey="Ni M">M Ni</name>
</author>
<author>
<name sortKey="Gill, P" uniqKey="Gill P">P Gill</name>
</author>
<author>
<name sortKey="Lee, As" uniqKey="Lee A">AS Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montagna, Gn" uniqKey="Montagna G">GN Montagna</name>
</author>
<author>
<name sortKey="Buscaglia, Ca" uniqKey="Buscaglia C">CA Buscaglia</name>
</author>
<author>
<name sortKey="Munter, S" uniqKey="Munter S">S Munter</name>
</author>
<author>
<name sortKey="Goosmann, C" uniqKey="Goosmann C">C Goosmann</name>
</author>
<author>
<name sortKey="Frischknecht, F" uniqKey="Frischknecht F">F Frischknecht</name>
</author>
<author>
<name sortKey="Brinkmann, V" uniqKey="Brinkmann V">V Brinkmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simon, N" uniqKey="Simon N">N Simon</name>
</author>
<author>
<name sortKey="Lasonder, E" uniqKey="Lasonder E">E Lasonder</name>
</author>
<author>
<name sortKey="Scheuermayer, M" uniqKey="Scheuermayer M">M Scheuermayer</name>
</author>
<author>
<name sortKey="Kuehn, A" uniqKey="Kuehn A">A Kuehn</name>
</author>
<author>
<name sortKey="Tews, S" uniqKey="Tews S">S Tews</name>
</author>
<author>
<name sortKey="Fischer, R" uniqKey="Fischer R">R Fischer</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Negl Trop Dis</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Negl Trop Dis</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosntds</journal-id>
<journal-title-group>
<journal-title>PLoS Neglected Tropical Diseases</journal-title>
</journal-title-group>
<issn pub-type="ppub">1935-2727</issn>
<issn pub-type="epub">1935-2735</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28759593</article-id>
<article-id pub-id-type="pmc">5552340</article-id>
<article-id pub-id-type="doi">10.1371/journal.pntd.0005791</article-id>
<article-id pub-id-type="publisher-id">PNTD-D-17-00343</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Parasitology</subject>
<subj-group>
<subject>Parasite Groups</subject>
<subj-group>
<subject>Apicomplexa</subject>
<subj-group>
<subject>Plasmodium</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Parasitology</subject>
<subj-group>
<subject>Parasite Groups</subject>
<subj-group>
<subject>Apicomplexa</subject>
<subj-group>
<subject>Sporozoites</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Anatomy</subject>
<subj-group>
<subject>Digestive System</subject>
<subj-group>
<subject>Salivary Glands</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Anatomy</subject>
<subj-group>
<subject>Digestive System</subject>
<subj-group>
<subject>Salivary Glands</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Anatomy</subject>
<subj-group>
<subject>Exocrine Glands</subject>
<subj-group>
<subject>Salivary Glands</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Anatomy</subject>
<subj-group>
<subject>Exocrine Glands</subject>
<subj-group>
<subject>Salivary Glands</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and life sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteins</subject>
<subj-group>
<subject>DNA-binding proteins</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Peptides</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteins</subject>
<subj-group>
<subject>Post-Translational Modification</subject>
<subj-group>
<subject>Phosphorylation</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Cell Biology</subject>
<subj-group>
<subject>Cellular Structures and Organelles</subject>
<subj-group>
<subject>Cell Membranes</subject>
<subj-group>
<subject>Membrane Proteins</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteins</subject>
<subj-group>
<subject>Proteomes</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Proteogenomic analysis of the total and surface-exposed proteomes of
<italic>Plasmodium vivax</italic>
salivary gland sporozoites</article-title>
<alt-title alt-title-type="running-head">Proteogenomic analysis of
<italic>Plasmodium vivax</italic>
salivary gland sporozoites</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Swearingen</surname>
<given-names>Kristian E.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Conceptualization</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Funding acquisition</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<role content-type="http://credit.casrai.org/">Writing – original draft</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lindner</surname>
<given-names>Scott E.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Flannery</surname>
<given-names>Erika L.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vaughan</surname>
<given-names>Ashley M.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Investigation</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Morrison</surname>
<given-names>Robert D.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Patrapuvich</surname>
<given-names>Rapatbhorn</given-names>
</name>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<xref ref-type="aff" rid="aff004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Koepfli</surname>
<given-names>Cristian</given-names>
</name>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<xref ref-type="aff" rid="aff005">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Muller</surname>
<given-names>Ivo</given-names>
</name>
<role content-type="http://credit.casrai.org/">Funding acquisition</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<xref ref-type="aff" rid="aff005">
<sup>5</sup>
</xref>
<xref ref-type="aff" rid="aff006">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jex</surname>
<given-names>Aaron</given-names>
</name>
<role content-type="http://credit.casrai.org/">Funding acquisition</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<xref ref-type="aff" rid="aff005">
<sup>5</sup>
</xref>
<xref ref-type="aff" rid="aff007">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moritz</surname>
<given-names>Robert L.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Funding acquisition</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kappe</surname>
<given-names>Stefan H. I.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Funding acquisition</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff008">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sattabongkot</surname>
<given-names>Jetsumon</given-names>
</name>
<role content-type="http://credit.casrai.org/">Funding acquisition</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<xref ref-type="aff" rid="aff004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0003-1996-9703</contrib-id>
<name>
<surname>Mikolajczak</surname>
<given-names>Sebastian A.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Conceptualization</role>
<role content-type="http://credit.casrai.org/">Funding acquisition</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Project administration</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<role content-type="http://credit.casrai.org/">Supervision</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor001">*</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Institute for Systems Biology, Seattle, Washington, United States of America</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Center for Infectious Disease Research, Seattle, Washington, United States of America</addr-line>
</aff>
<aff id="aff003">
<label>3</label>
<addr-line>Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America</addr-line>
</aff>
<aff id="aff004">
<label>4</label>
<addr-line>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand</addr-line>
</aff>
<aff id="aff005">
<label>5</label>
<addr-line>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia</addr-line>
</aff>
<aff id="aff006">
<label>6</label>
<addr-line>Malaria: Parasites & Hosts Unit, Institut Pasteur, Paris, France</addr-line>
</aff>
<aff id="aff007">
<label>7</label>
<addr-line>Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia</addr-line>
</aff>
<aff id="aff008">
<label>8</label>
<addr-line>Department of Global Health, University of Washington, Seattle, Washington, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Ribeiro</surname>
<given-names>José M. C.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>National Institute of Allergy and Infectious Diseases, UNITED STATES</addr-line>
</aff>
<author-notes>
<fn fn-type="COI-statement" id="coi001">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>sebastian.mikolajczak@cidresearch.org</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>31</day>
<month>7</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<month>7</month>
<year>2017</year>
</pub-date>
<volume>11</volume>
<issue>7</issue>
<elocation-id>e0005791</elocation-id>
<history>
<date date-type="received">
<day>9</day>
<month>3</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>7</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© 2017 Swearingen et al</copyright-statement>
<copyright-year>2017</copyright-year>
<copyright-holder>Swearingen et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="pntd.0005791.pdf"></self-uri>
<abstract>
<p>
<italic>Plasmodium falciparum</italic>
and
<italic>Plasmodium vivax</italic>
cause the majority of human malaria cases. Research efforts predominantly focus on
<italic>P</italic>
.
<italic>falciparum</italic>
because of the clinical severity of infection and associated mortality rates. However,
<italic>P</italic>
.
<italic>vivax</italic>
malaria affects more people in a wider global range. Furthermore, unlike
<italic>P</italic>
.
<italic>falciparum</italic>
,
<italic>P</italic>
.
<italic>vivax</italic>
can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes
<italic>P</italic>
.
<italic>vivax</italic>
unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by
<italic>Plasmodium</italic>
is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for
<italic>P</italic>
.
<italic>falciparum</italic>
(RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in
<italic>P</italic>
.
<italic>vivax</italic>
, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites, were also observed to be similarly modified in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites. Quantitative comparison of the
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other
<italic>Plasmodium</italic>
species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in
<italic>P</italic>
.
<italic>falciparum</italic>
.</p>
</abstract>
<abstract abstract-type="summary">
<title>Author summary</title>
<p>Malaria is one of the most important infectious diseases in the world with hundreds of millions of new cases every year. Malaria is caused by parasites of the genus
<italic>Plasmodium</italic>
which have a complex life cycle, alternating between mosquito and mammalian hosts. Human infections are initiated with a sporozoite inoculum deposited into the skin by parasite-infected mosquitoes as they probe for blood. Sporozoites must locate blood vessels and enter the circulation to reach the liver where they invade and grow in hepatocytes. In the case of
<italic>Plasmodium vivax</italic>
, one of the two
<italic>Plasmodium</italic>
species responsible for the majority of the disease burden in the world, the parasite has the ability to persist for months in the liver after the initial infection and its activation causes the recurring appearance of the parasite in the blood. Though all clinical symptoms are attributable to the blood stages, it is only by attacking the transmission stages before the formation of hypnozoites (the persisting parasites in the liver) that an impact on the burden of vivax malaria can be achieved. We used state-of-the-art mass spectrometry-based proteomics tools to identify the total protein make-up of
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites. By analyzing which proteins are exposed to the parasite surface and determining the degree of protein’s post-translational modifications, our investigation will aid the understanding of the novel biology of sporozoites and importantly, advise the development of potential vaccine candidates targeting this parasite stage.</p>
</abstract>
<funding-group>
<award-group id="award001">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/100000005</institution-id>
<institution>U.S. Department of Defense</institution>
</institution-wrap>
</funding-source>
<award-id>PR141672</award-id>
<principal-award-recipient>
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0003-1996-9703</contrib-id>
<name>
<surname>Mikolajczak</surname>
<given-names>Sebastian A.</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award002">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>K25AI119229</award-id>
<principal-award-recipient>
<name>
<surname>Swearingen</surname>
<given-names>Kristian E.</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award003">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/100000057</institution-id>
<institution>National Institute of General Medical Sciences</institution>
</institution-wrap>
</funding-source>
<award-id>P50GM076547</award-id>
<principal-award-recipient>
<name>
<surname>Moritz</surname>
<given-names>Robert L.</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award004">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/100000057</institution-id>
<institution>National Institute of General Medical Sciences</institution>
</institution-wrap>
</funding-source>
<award-id>R01GM087221</award-id>
<principal-award-recipient>
<name>
<surname>Moritz</surname>
<given-names>Robert L.</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award005">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/100000001</institution-id>
<institution>National Science Foundation</institution>
</institution-wrap>
</funding-source>
<award-id>0923536</award-id>
<principal-award-recipient>
<name>
<surname>Moritz</surname>
<given-names>Robert L.</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award006">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/501100000925</institution-id>
<institution>National Health and Medical Research Council</institution>
</institution-wrap>
</funding-source>
<award-id>1021544</award-id>
<principal-award-recipient>
<name>
<surname>Muller</surname>
<given-names>Ivo</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award007">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/501100000925</institution-id>
<institution>National Health and Medical Research Council</institution>
</institution-wrap>
</funding-source>
<award-id>1043345</award-id>
<principal-award-recipient>
<name>
<surname>Muller</surname>
<given-names>Ivo</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award008">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/501100000925</institution-id>
<institution>National Health and Medical Research Council</institution>
</institution-wrap>
</funding-source>
<award-id>1126395</award-id>
<principal-award-recipient>
<name>
<surname>Jex</surname>
<given-names>Aaron</given-names>
</name>
</principal-award-recipient>
</award-group>
<funding-statement>Research reported in this publication was supported by the Department of Defense under award number PR141672 (SAM, ELF, RP, JS), by the National Institutes of Health National Institute of Allergy and Infectious Disease (
<ext-link ext-link-type="uri" xlink:href="http://www.niaid.nih.gov/">http://www.niaid.nih.gov/</ext-link>
) under award numbers K25AI119229 (KES), 1K22AI101039 (SEL) and 1R01AI123341 (SEL), by the National Institutes of Health National Institute of General Medical Sciences (
<ext-link ext-link-type="uri" xlink:href="http://www.nigms.nih.gov">www.nigms.nih.gov</ext-link>
) under award number P50GM076547 (RLM) and R01GM087221 (RLM), by the National Institutes of Health National Center for Research Resources under award number S10RR027584 (RLM), by the National Science Foundation (
<ext-link ext-link-type="uri" xlink:href="http://www.nsf.gov">www.nsf.gov</ext-link>
) under award number 0923536 (RLM, KES), by the National Health and Medical Research Council (
<ext-link ext-link-type="uri" xlink:href="https://www.nhmrc.gov.au/">https://www.nhmrc.gov.au/</ext-link>
) under award numbers 1021544, 1043345, 1092789 (CK, IM, AJ) and 1126395 (AJ) and the Victorian State Government Operational Infrastructure Support and Australian Government National Health and Medical Research Council Independent Research Institute Infrastructure Support Scheme (CK, IM, AJ). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Department of Defense, National Institutes of Health, the National Science Foundation, or the National Health and Medical Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="4"></fig-count>
<table-count count="4"></table-count>
<page-count count="36"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>PLOS Publication Stage</meta-name>
<meta-value>vor-update-to-uncorrected-proof</meta-value>
</custom-meta>
<custom-meta>
<meta-name>Publication Update</meta-name>
<meta-value>2017-08-10</meta-value>
</custom-meta>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>The mass spectrometry data generated for this manuscript, along with the search parameters, analysis parameters and protein databases can be downloaded from PeptideAtlas (
<ext-link ext-link-type="uri" xlink:href="http://www.peptideatlas.org">www.peptideatlas.org</ext-link>
) using the identifiers PASS00976 (whole proteome) and PASS00977 (surface-labeled).</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>The mass spectrometry data generated for this manuscript, along with the search parameters, analysis parameters and protein databases can be downloaded from PeptideAtlas (
<ext-link ext-link-type="uri" xlink:href="http://www.peptideatlas.org">www.peptideatlas.org</ext-link>
) using the identifiers PASS00976 (whole proteome) and PASS00977 (surface-labeled).</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>Malaria is a major global infectious disease, responsible for nearly 429,000 deaths and 212 million new cases annually (World Malaria Report 2016, WHO). This disease, found in much of the tropical and subtropical regions of the world, is caused by parasites of the genus
<italic>Plasmodium</italic>
, transmitted to humans by the bite of infected anopheline mosquitoes. Parasites (sporozoites) that have infected the mosquito salivary gland are transmitted to the human host as the mosquito injects saliva while taking a blood meal. These sporozoites find their way to the liver where they invade hepatocytes and reproduce asexually. The mature liver stages rupture and the release of exoerythrocytic merozoites that are ready to invade erythrocytes causes the clinical symptoms of malaria.</p>
<p>The majority of human malaria cases are caused by
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
. A large proportion of malaria research efforts focus on
<italic>P</italic>
.
<italic>falciparum</italic>
infections, motivated by the severity of clinical symptoms and the high mortality rate that is especially evident among children in sub-Saharan Africa. In contrast,
<italic>P</italic>
.
<italic>vivax</italic>
malaria affects more people in a wider global range [
<xref rid="pntd.0005791.ref001" ref-type="bibr">1</xref>
,
<xref rid="pntd.0005791.ref002" ref-type="bibr">2</xref>
], but infections with
<italic>P</italic>
.
<italic>vivax</italic>
often do not cause disease that matches the severity observed for
<italic>P</italic>
.
<italic>falciparum</italic>
infections.
<italic>P</italic>
.
<italic>vivax</italic>
-infected individuals of all age groups may still endure repeated, debilitating febrile attacks, severe anemia, and respiratory distress that are more frequently fatal than previously appreciated [
<xref rid="pntd.0005791.ref003" ref-type="bibr">3</xref>
]. Additionally, with only one exposure to infectious mosquito bite,
<italic>P</italic>
.
<italic>vivax</italic>
can initiate not only one symptomatic infection but a series of reoccurring onsets of malaria episodes that, if not treated, can last for months. These recurring infections are due to a distinctive property of
<italic>P</italic>
.
<italic>vivax</italic>
liver infection: formation of hypnozoites, a portion of
<italic>P</italic>
.
<italic>vivax</italic>
liver-stage parasites that becomes dormant and can reactivate weeks to months or even years later [
<xref rid="pntd.0005791.ref004" ref-type="bibr">4</xref>
].</p>
<p>The malaria elimination strategies of vector control and treating symptomatic blood-stage infection with anti-malarial drugs are not as effective against
<italic>P</italic>
.
<italic>vivax</italic>
as against
<italic>P</italic>
.
<italic>falciparum</italic>
because
<italic>P</italic>
.
<italic>vivax</italic>
can persist in the liver as dormant hypnozoites, and because
<italic>P</italic>
.
<italic>vivax</italic>
gametocytes develop earlier and can be transmitted before onset of clinical symptoms [
<xref rid="pntd.0005791.ref005" ref-type="bibr">5</xref>
<xref rid="pntd.0005791.ref007" ref-type="bibr">7</xref>
]. Currently, the only approved treatment for
<italic>P</italic>
.
<italic>vivax</italic>
is primaquine. Primaquine, however, comes with major complications: its short half-life translates to long dosage regimens, its toxicity for patients with glucose-6-phosphate-dehydrogenase deficiency requires pre-screening of recipients [
<xref rid="pntd.0005791.ref008" ref-type="bibr">8</xref>
], and limited effectiveness in patients with certain cytochrome P450 2D6 polymorphisms will require consideration [
<xref rid="pntd.0005791.ref009" ref-type="bibr">9</xref>
].</p>
<p>An alternative route to reducing the burden of vivax malaria would be the development of an effective vaccine against
<italic>P</italic>
.
<italic>vivax</italic>
. Targeting
<italic>P</italic>
.
<italic>vivax</italic>
pre-erythrocytic stages (the sporozoite stage and the liver stage) for vaccine development not only has the advantage that these initial stages of infection involve only a small number of parasites and are completely asymptomatic, but also that such a vaccine could prevent relapsing infections. In fact, one of the most effective experimental vaccination strategies against
<italic>P</italic>
.
<italic>falciparum</italic>
infection is the use of live attenuated sporozoites (damaged by irradiation) that are effective in inducing complete immune protection by their ability to mount humoral and cellular immune responses against the sporozoite and the liver stage of the parasite [
<xref rid="pntd.0005791.ref010" ref-type="bibr">10</xref>
]. This method of vaccination was recently tested in
<italic>P</italic>
.
<italic>vivax</italic>
showing encouraging protective efficacy [
<xref rid="pntd.0005791.ref011" ref-type="bibr">11</xref>
]. Nevertheless, the major obstacle for a successful pre-erythrocytic vaccine lies in the required threshold for vaccine efficacy: to protect against infection, the pre-erythrocytic vaccine must be completely effective. Full development of a single liver-stage parasite and exoerythrocytic merozoite release results in full-blown blood stage infection and all the clinical consequences of the disease. This requirement–inducing sterile immunity by targeting the liver stages–may be especially difficult to achieve for vaccines targeting the liver stages of
<italic>P</italic>
.
<italic>vivax</italic>
due to the ability of the parasite to form hypnozoites. It is presently unknown if vaccination regimens that target developing liver stages would also be able to target hepatocytes harboring hypnozoites.</p>
<p>Thus, an effective subunit vaccination strategy that targets the parasite before it enters the hepatocyte could be the most plausible solution for preventing a
<italic>P</italic>
.
<italic>vivax</italic>
hepatocyte infection, development of liver-stage parasites, and hypnozoite formation. It has been shown that antibody responses against the circumsporozoite protein (CSP), a major surface protein on the
<italic>Plasmodium</italic>
sporozoite, can lead to sterile protection against infection, but in most cases these responses offer only partial protection in
<italic>P</italic>
.
<italic>falciparum</italic>
[
<xref rid="pntd.0005791.ref012" ref-type="bibr">12</xref>
]. A recent clinical study in which a
<italic>P</italic>
.
<italic>vivax</italic>
CSP-based subunit vaccine was used showed no sterile protection, but a significant delay in the onset of parasitemia was observed [
<xref rid="pntd.0005791.ref013" ref-type="bibr">13</xref>
]. As opposed to
<italic>P</italic>
.
<italic>falciparum</italic>
infection where partial protection offers only limited benefits, partial protection that could be observed after immunizations against
<italic>P</italic>
.
<italic>vivax</italic>
has the potential to considerably affect the hypnozoite burden in the liver by limiting the number of sporozoites reaching the hepatocyte and developing into hypnozoites, thereby directly decreasing the chances of relapse malaria [
<xref rid="pntd.0005791.ref014" ref-type="bibr">14</xref>
]. A vaccine targeting
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites is therefore highly desirable.</p>
<p>The identification of non-CSP antigens that can be included into a multi-antigen subunit vaccine has recently gained momentum for
<italic>P</italic>
.
<italic>falciparum</italic>
, but such an effort has not yet been initiated for
<italic>P</italic>
.
<italic>vivax</italic>
. After mosquito transmission, sporozoites embark on a complex route of infection in the human host and three biological activities of the sporozoite are essential for their success, namely, gliding motility, cell traversal, and cell invasion. All of these activities require engagement of sporozoite surface and secreted proteins with the host environment and thus might be blocked by antibodies. Therefore, the discovery of new
<italic>P</italic>
.
<italic>vivax</italic>
sporozoite surface antigens, together with CSP-based antigens, may allow the development of a better antibody-based, anti-infection vaccine [
<xref rid="pntd.0005791.ref015" ref-type="bibr">15</xref>
].</p>
<p>Mass spectrometry (MS)-based proteomics has previously been employed to catalogue the protein complement of
<italic>P</italic>
.
<italic>falciparum</italic>
,
<italic>P</italic>
.
<italic>yoelii</italic>
and
<italic>P</italic>
.
<italic>berghei</italic>
salivary gland sporozoites with the goal of identifying new targets for therapeutics and new antigens for subunit-based vaccines [
<xref rid="pntd.0005791.ref016" ref-type="bibr">16</xref>
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. The most comprehensive proteomic analyses to-date of
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites detected over 2000 of the approximately 5000 gene products predicted from the
<italic>Plasmodium falciparum</italic>
genome [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
] and identified 42 putatively surface-exposed sporozoite proteins [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
] by a chemical labeling strategy. Here, by applying similar proteomics techniques to the analysis of the proteins present in
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites of field isolates, a combined total of 1970
<italic>P</italic>
.
<italic>vivax</italic>
proteins were identified, of which 36 have been categorized as putative sporozoite surface proteins. Post-translational modification of sporozoite proteins by glycosylation and phosphorylation have also been evaluated to further aid the development of subunit vaccines.</p>
</sec>
<sec sec-type="materials|methods" id="sec002">
<title>Materials and methods</title>
<sec id="sec003">
<title>Ethics statement</title>
<p>The human blood collection protocol was approved by the Ethical Committee of the Faculty of Tropical Medicine, Mahidol University. All adult subjects participating in this study provided written informed consent. No child participants were included in this study.</p>
</sec>
<sec id="sec004">
<title>Production of
<italic>Plasmodium vivax</italic>
sporozoite-infected mosquitoes</title>
<p>
<italic>Anopheles dirus</italic>
mosquitoes (from the Mahidol University colony maintained at the Faculty of Tropical Medicine laboratories) were infected with blood collected from patients who were confirmed positive for only
<italic>P</italic>
.
<italic>vivax</italic>
malaria via microscopy at local health centers in close proximity to the Kanchanaburi Campus, Mahidol University. In brief, 150 μL of red blood cell pellet from blood samples was suspended in pooled normal AB serum to a packed cell volume of 50%. The suspension was fed for 30 min to 100 female mosquitoes (5-7 days old) via an artificial membrane attached to a water-jacketed glass feeder maintained at 37°C. Unfed mosquitoes were removed and fed mosquitoes were maintained on a 10% w/v sucrose solution and incubated at 26°C and 80% humidity for at least 14 days. Salivary gland dissections were performed at days 14-19. CSP haplotype (VK210 or VK247) was determined by PCR.</p>
</sec>
<sec id="sec005">
<title>Sporozoite isolation, purification and surface labeling</title>
<p>Salivary glands from
<italic>P</italic>
.
<italic>vivax</italic>
-infected mosquitoes were harvested by microdissection and homogenized by grinding. Sporozoite preparations were purified from mosquito debris on an Accudenz discontinuous gradient as previously described [
<xref rid="pntd.0005791.ref021" ref-type="bibr">21</xref>
]. Total sporozoite numbers were counted on a hemocytometer. For the total proteome analyses, 3.5 × 10
<sup>6</sup>
VK210 and 4.5 × 10
<sup>6</sup>
VK247 sporozoites were pelleted for 3 min at 16,000 ×
<italic>g</italic>
, re-suspended in 1 × PBS pH 7.4, pelleted, and stored at -80°C. Prior to protein separation by SDS-PAGE, the pellet was re-suspended in an equal volume of 2 × sample buffer and heated for 5 min at 70°C. For the surface proteome samples, 2 × 10
<sup>6</sup>
VK210 and 1.8 × 10
<sup>7</sup>
VK247 sporozoites were pelleted for 3 min at 4,000 ×
<italic>g</italic>
at 4°C and re-suspended with ice-cold 1 × PBS pH 8.0. The VK247 sample was evenly split into two tubes and all three samples were pelleted again. One of the VK247 samples was set aside as an unlabeled control. The remaining two samples were re-suspended in 40 μL ice-cold 1 × PBS pH 8.0 per 10
<sup>6</sup>
sporozoites. A 10 mM stock solution of EZ-Link Sulfo-NHS-SS-Biotin (Thermo Fisher Scientific, part number 21331) was added to a final concentration of 2 mM and the samples were incubated for 1 h at 4°C. The sporozoites were pelleted and re-suspended in 500 μL ice-cold 1 × Tris-buffered saline (TBS) pH 8.0 and incubated for 5 min on ice to quench excess biotin label. The sporozoites were then pelleted for 2 min at 16,000 ×
<italic>g</italic>
and washed a second time in 1 × TBS, each time removing as much supernatant as possible without disturbing the pellet. The samples were stored at -80°C until lysis. The sporozoites were lysed by re-suspending the pellet in 100 μL lysis buffer (1% w/v SDS, 4 M urea, 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 × protease inhibitor (Roche cOmplete)) and incubating for 30 min at 4°C with end-over-end rotation. The samples were diluted to 1 mL in 1 × PBS pH 7.4, added to 1 mg of magnetic streptavidin beads (Dynabeads MyONe Streptavidin T1) which had been washed three times in 1 × PBS, and incubated for 1 h at 4°C with end-over-end rotation. The beads were washed sequentially with the following: 1) 2% w/v SDS; 2) 0.1% w/v SDS, 6 M urea, 1 M NaCl, 50 mM Tris-HCl pH 8.0; 3) 0.1% w/v SDS, 4 M urea, 200 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl pH 8.0; 4) 0.1% w/v SDS, 50 mM NaCl, 50 mM Tris-HCl pH 8.0. Bound proteins were eluted by adding 40 μL 2 × sample buffer (4% w/v SDS, 125 mM Tris-HCl pH 6.8, 20% v/v glycerol, 0.02% w/v bromophenol blue) to which dithiothreitol (DTT) was added to a final concentration of 50 mM and heating the tube for 7 min at 70°C. The eluted sample was transferred to a new tube and stored at -80°C until separation by SDS-PAGE.</p>
</sec>
<sec id="sec006">
<title>SDS-PAGE fractionation</title>
<p>SDS-PAGE pre-fractionation and in-gel tryptic digestion were performed essentially as described in [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
]. Extended methods are provided in
<xref ref-type="supplementary-material" rid="pntd.0005791.s001">S1 File</xref>
. Briefly, samples were electrophoresed through a 4-20% w/v SDS-polyacrylamide gel (Pierce Precise Tris-HEPES). Gels were stained with Imperial Stain (Thermo Fisher Scientific), de-stained in Milli-Q Water (Millipore), and cut into fractions (
<xref ref-type="supplementary-material" rid="pntd.0005791.s011">S1 Table</xref>
). Gel pieces were then de-stained with 50 mM ammonium bicarbonate (ABC) in 50% acetonitrile (ACN) and dehydrated with ACN. Disulfide bonds were reduced with 10 mM DTT and cysteines were alkylated with 50 mM iodoacetamide in 100 mM ABC. Gel pieces were washed with ABC in 50% ACN, dehydrated with ACN, and rehydrated with 6.25 ng/μL sequencing grade trypsin (Promega). The supernatant was recovered and peptides were extracted by incubating the gel pieces with 2% v/v ACN/1% v/v formic acid, then ACN. The extractions were combined with the digest supernatant, evaporated to dryness in a rotary vacuum, and reconstituted in liquid chromatography (LC) loading buffer consisting of 2% v/v ACN/0.2% v/v trifluoroacetic acid (TFA).</p>
</sec>
<sec id="sec007">
<title>Liquid chromatography-mass spectrometry</title>
<p>LC and MS parameters were essentially as described previously [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
,
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. Extended method details are provided in
<xref ref-type="supplementary-material" rid="pntd.0005791.s011">S1 Table</xref>
. Briefly, LC was performed using an Agilent 1100 nano pump with electronically controlled split flow or a Proxeon Easy nLC. Peptides were separated on a column with an integrated fritted tip (360 μm outer diameter (O.D.), 75 μm inner diameter (I.D.), 15 μm I.D. tip; New Objective) packed in-house with a 20 cm bed of C18 (Dr. Maisch ReproSil-Pur C18-AQ, 120 Å, 3 μm). Prior to each run, sample was loaded onto a trap column consisting of a fritted capillary (360 μm O.D., 150 μm I.D.) packed with a 1 cm bed of the same stationary phase and washed with loading buffer or buffer A (0.1% v/v formic in water). The trap was then placed in-line with the separation column for the separation gradient. The LC mobile phases consisted of buffer A and buffer B (0.1% v/v formic acid in ACN). The separation gradient was 5% B to 35% B over 60 min for the surface-labeled samples and 5% B to 25% B over 120 or 180 min for the whole proteome samples. Tandem MS (MS/MS) was performed with an LTQ Velos Pro-Orbitrap Elite (Thermo Fisher Scientific). Data-dependent acquisition was employed to select the top precursors for collision-induced dissociation (CID) and analysis in the ion trap. Dynamic exclusion and precursor charge state selection were employed. Two nanoLC-MS technical replicates were performed for each fraction, with roughly half the available sample injected for each replicate.</p>
</sec>
<sec id="sec008">
<title>Peak list generation</title>
<p>The MS data generated for this manuscript, along with the search parameters, analysis parameters and protein databases can be downloaded from PeptideAtlas (
<ext-link ext-link-type="uri" xlink:href="http://www.peptideatlas.org">www.peptideatlas.org</ext-link>
) using the identifiers PASS00976 (whole proteome) and PASS00977 (surface-labeled). Mass spectrometer output files were converted to mzML format using msConvert version 2.2.0 (whole proteome data) or 3.0.5533 (surface-labeled data) [
<xref rid="pntd.0005791.ref022" ref-type="bibr">22</xref>
] and searched with Comet version 2015.02 rev.0 [
<xref rid="pntd.0005791.ref023" ref-type="bibr">23</xref>
]. The protein sequence database is described in the following section. The precursor mass tolerance was ±10 ppm, and fragment ions bins were set to a tolerance of 1.0005
<italic>m/z</italic>
and a monoisotopic mass offset of 0.4
<italic>m/z</italic>
. Semi-tryptic peptides and up to 2 missed cleavages were allowed. The search parameters included a static modification of +57.021464 Da at Cys for formation of S-carboxamidomethyl-Cys by iodoacetamide and potential modifications of +15.994915 Da at Met for oxidation, -17.026549 Da at peptide N-terminal Gln for deamidation from formation of pyroGlu, -18.010565 Da at peptide N-terminal Glu for loss of water from formation of pyroGlu, -17.026549 Da at peptide N-terminal Cys for deamidation from formation of cyclized N-terminal S-carboxamidomethyl-Cys, and +42.010565 for acetylation at the N-terminus of the protein, either at N-terminal Met or the N-terminal residue after cleavage of N-terminal Met. Additionally, the search parameters for sporozoite surface samples included a potential modification of +145.019749 Da at Lys for addition of the biotin label, the disulfide bond of which had been cleaved and alkylated. The MS/MS data were analyzed using the Trans-Proteomic Pipeline (TPP) [
<xref rid="pntd.0005791.ref024" ref-type="bibr">24</xref>
] version 5.0.0 Typhoon. Peptide spectrum matches (PSMs) were assigned scores in PeptideProphet [
<xref rid="pntd.0005791.ref025" ref-type="bibr">25</xref>
], peptide-level scores were assigned in iProphet [
<xref rid="pntd.0005791.ref026" ref-type="bibr">26</xref>
], and Protein identifications were inferred with ProteinProphet [
<xref rid="pntd.0005791.ref027" ref-type="bibr">27</xref>
]. Additional TPP parameters are available in
<xref ref-type="supplementary-material" rid="pntd.0005791.s001">S1 File</xref>
. In the case that multiple proteins were inferred at equal confidence by a set of peptides, the inference was counted as a single identification and all relevant protein IDs were listed. Only proteins with ProteinProphet probabilities corresponding to a false discovery rate (FDR) less than 1.0% (as determined from the ProteinProphet mixture models) were reported. For comparison with
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites, a publically available data set [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
] (available from PeptideAtlas using the identifier PASS00095) was re-analyzed with the same software and parameters described above. The spectra were searched against a database comprising
<italic>P</italic>
.
<italic>falciparum</italic>
3D7 [
<xref rid="pntd.0005791.ref028" ref-type="bibr">28</xref>
] (PlasmoDB v.30,
<ext-link ext-link-type="uri" xlink:href="http://www.plasmodb.org">www.plasmodb.org</ext-link>
[
<xref rid="pntd.0005791.ref029" ref-type="bibr">29</xref>
]),
<italic>Anopheles stephensi</italic>
Indian AsteI2.3 [
<xref rid="pntd.0005791.ref030" ref-type="bibr">30</xref>
] (VectorBase,
<ext-link ext-link-type="uri" xlink:href="http://www.vectorbase.org">www.vectorbase.org</ext-link>
[
<xref rid="pntd.0005791.ref031" ref-type="bibr">31</xref>
]), and a modified version of the common Repository of Adventitious Proteins (v.2012.01.01, The Global Proteome Machine,
<ext-link ext-link-type="uri" xlink:href="http://www.thegpm.org/cRAP">www.thegpm.org/cRAP</ext-link>
) with the Sigma Universal Standard Proteins removed and the LC calibration standard peptide [Glu-1] fibrinopeptide B appended. Decoy proteins with the residues between tryptic residues randomly shuffled were generated using a tool included in the TPP and interleaved among the real entries.
<italic>P</italic>
.
<italic>falciparum</italic>
protein annotations were updated from PlasmoDB v.32.</p>
</sec>
<sec id="sec009">
<title>Compiling a reference proteome</title>
<p>A protein database containing sequence polymorphisms of
<italic>P</italic>
.
<italic>vivax</italic>
proteins occurring in Thailand was created by aligning DNA-seq and RNA-seq reads from field isolates to the
<italic>P</italic>
.
<italic>vivax</italic>
Sal-1 genome [
<xref rid="pntd.0005791.ref032" ref-type="bibr">32</xref>
] (PlasmoDB v.26). DNA-seq reads from 19 Thai field isolates were obtained from
<ext-link ext-link-type="uri" xlink:href="http://www.plasmodb.org">www.plasmodb.org</ext-link>
and aligned using Burrows Wheeler Aligner (v.0.7.12) and SNVs were called using the Genome Analysis Toolkit (v.3.6). RNA-seq reads for 13 isolates [
<xref rid="pntd.0005791.ref033" ref-type="bibr">33</xref>
] (obtained from
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/bioproject/">https://www.ncbi.nlm.nih.gov/bioproject/</ext-link>
, accession number PRJNA376620) were aligned using STAR (v.2.5) and SNVs were called using the Genome Analysis Toolkit (v.3.6). All proteins with sequences different from the Sal-1 reference proteome were compiled (
<xref ref-type="supplementary-material" rid="pntd.0005791.s002">S2 File</xref>
) and added to a database comprising
<italic>P</italic>
.
<italic>vivax</italic>
Sal-1 [
<xref rid="pntd.0005791.ref032" ref-type="bibr">32</xref>
] (PlasmoDB v.31),
<italic>P</italic>
.
<italic>vivax</italic>
P01 [
<xref rid="pntd.0005791.ref034" ref-type="bibr">34</xref>
] (PlasmoDB v.31),
<italic>Anopheles stephensi</italic>
Indian AsteI2.3 [
<xref rid="pntd.0005791.ref030" ref-type="bibr">30</xref>
] (VectorBase), and the modified version of the cRAP proteins described above. Decoy proteins were generated as above. Mass spectra from the two whole-proteome samples and the two surface-labeled samples were searched against the database with Comet as described above and the resulting PSMs were analyzed with PeptideProphet and iProphet as described above except that the NSP model was enabled in iProphet. All
<italic>P</italic>
.
<italic>vivax</italic>
peptides identified with iProphet probabilities corresponding to a model-estimated FDR less than 1.0% were aligned against the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome. A new
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome was assembled incorporating polymorphism-bearing peptides identified by the above-described search. If a detected peptide was associated with a given
<italic>P</italic>
.
<italic>vivax</italic>
protein in at least one of the field isolates but did not align with the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference sequence due to sequence polymorphisms, the variant peptide sequence was appended to the end of the reference protein sequence entry in the fasta database. This modified
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome was added to the
<italic>An</italic>
.
<italic>stephensi</italic>
and cRAP databases described above. Additionally, the entry for CSP (PVP01_0835600), which contains the tandem repeat region specific to the VK210 haplotype, was appended with the sequence of the VK247 tandem repeat region [
<xref rid="pntd.0005791.ref035" ref-type="bibr">35</xref>
]. Decoys were generated as above. This database was used for all subsequent analysis of the MS data.
<italic>P</italic>
.
<italic>vivax</italic>
protein annotations were updated from PlasmoDB v.32.</p>
</sec>
<sec id="sec010">
<title>Protein quantification</title>
<p>Relative protein abundance within and between samples was estimated using a label-free proteomics method based on spectral counting. Extended method details are provided in
<xref ref-type="supplementary-material" rid="pntd.0005791.s001">S1 File</xref>
. The spectral counts for a protein were taken as the total number of high-quality PSMs (identified at a PeptideProphet probability corresponding to an FDR less than 1.0%) that identified the protein. PSMs from degenerate peptides (peptides whose sequences were found in multiple proteins in the database) were split among proteins containing that peptide in a weighted fashion [
<xref rid="pntd.0005791.ref036" ref-type="bibr">36</xref>
,
<xref rid="pntd.0005791.ref037" ref-type="bibr">37</xref>
]. Relative protein abundance within samples was ranked using the normalized spectral abundance factor. The spectral abundance factor (SAF) for a given protein was calculated as the quotient of the total PSMs identifying that protein and the protein's length. The SAF for each
<italic>Plasmodium</italic>
protein was normalized to the sum of all
<italic>Plasmodium</italic>
SAF values obtained from the same sample, and this normalized SAF (NSAF) was natural log-transformed to ln(NSAF) [
<xref rid="pntd.0005791.ref038" ref-type="bibr">38</xref>
,
<xref rid="pntd.0005791.ref039" ref-type="bibr">39</xref>
]. The population of ln(NSAF) values for each sample assumed a normal distribution, as did the population of log-transformed protein abundance fold-change ratios between samples, calculated as ln(NSAF)
<sub>A</sub>
-ln(NSAF)
<sub>B</sub>
where A and B are two different samples in which the same protein was observed. Each of these distributions was fit with a Gaussian curve in Microsoft Excel using minimum residual sum of squares and goodness-of-fit was evaluated with the R
<sup>2</sup>
coefficient of determination (
<xref ref-type="supplementary-material" rid="pntd.0005791.s003">S1</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s004">S2</xref>
Figs). To assess the relative abundance of proteins between the two samples, PSM counts for all proteins were first increased by 1 in order to assign non-zero values to proteins detected in one sample but not the other [
<xref rid="pntd.0005791.ref040" ref-type="bibr">40</xref>
]. These adjusted spectral counts were then normalized so that the sum of all PSMs was the same in both samples. The abundance ratio for a given protein between a two samples was then calculated as
<disp-formula id="pntd.0005791.e001">
<alternatives>
<graphic xlink:href="pntd.0005791.e001.jpg" id="pntd.0005791.e001g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M1">
<mml:mrow>
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mrow>
<mml:mi>A</mml:mi>
<mml:mo>:</mml:mo>
<mml:mi>B</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>A</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>B</mml:mi>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:math>
</alternatives>
</disp-formula>
Where
<italic>R</italic>
<sub>
<italic>A</italic>
:
<italic>B</italic>
</sub>
is the protein abundance ratio of a protein between sample A and sample B and
<italic>c</italic>
<sub>
<italic>A</italic>
</sub>
and
<italic>c</italic>
<sub>
<italic>B</italic>
</sub>
are the adjusted and normalized spectral counts for the protein in sample A and sample B, respectively. In order to assess the error in spuriously large protein ratios obtained from proteins with low spectral counts, the G-test of significance was applied to the adjusted and normalized spectral counts for each protein pair as
<disp-formula id="pntd.0005791.e002">
<alternatives>
<graphic xlink:href="pntd.0005791.e002.jpg" id="pntd.0005791.e002g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M2">
<mml:mrow>
<mml:mi>G</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>2</mml:mn>
<mml:mrow>
<mml:mo>[</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>A</mml:mi>
</mml:msub>
<mml:mi>l</mml:mi>
<mml:mi>n</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>A</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>A</mml:mi>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>B</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:mfrac>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>B</mml:mi>
</mml:msub>
<mml:mi>l</mml:mi>
<mml:mi>n</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>B</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>A</mml:mi>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mi>c</mml:mi>
<mml:mi>B</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:mfrac>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mo>]</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math>
</alternatives>
</disp-formula>
and a
<italic>p</italic>
-value was assigned by calculating the probability that a
<italic>χ</italic>
<sup>2</sup>
distribution with one degree of freedom was more extreme than the G statistic [
<xref rid="pntd.0005791.ref040" ref-type="bibr">40</xref>
]. The distribution of the
<italic>log</italic>
<sub>2</sub>
(
<italic>R</italic>
<sub>
<italic>A</italic>
:
<italic>B</italic>
</sub>
) values of all proteins detected in both samples was fit with a Gaussian curve as above. Protein abundance ratios were corrected for systematic bias by subtracting the mean of this distribution (which was near 0 in all cases) from each log-transformed protein ratio. In order to assess the probability that a protein ratio was more extreme than the normal distribution of protein ratios, a
<italic>p</italic>
-value was calculated for each ratio using the complementary error function as
<disp-formula id="pntd.0005791.e003">
<alternatives>
<graphic xlink:href="pntd.0005791.e003.jpg" id="pntd.0005791.e003g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M3">
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi>E</mml:mi>
<mml:mi>R</mml:mi>
<mml:mi>F</mml:mi>
<mml:mi>C</mml:mi>
<mml:mrow>
<mml:mo>|</mml:mo>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mi>l</mml:mi>
<mml:mi>o</mml:mi>
<mml:msub>
<mml:mi>g</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mrow>
<mml:mi>A</mml:mi>
<mml:mo>:</mml:mo>
<mml:mi>B</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo></mml:mo>
<mml:mo>μ</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>σ</mml:mi>
<mml:msqrt>
<mml:mn>2</mml:mn>
</mml:msqrt>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
<mml:mo>|</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math>
</alternatives>
</disp-formula>
where
<italic>μ</italic>
is the mean and
<italic>σ</italic>
is the standard deviation of the fit Gaussian. The FDR arising from multiple hypothesis testing was assessed by the Benjamini-Hochberg method for both tests independently, and protein ratios with an FDR less than 5.0% by both the G-test and ERFC were considered significant.</p>
</sec>
<sec id="sec011">
<title>Identifying phosphorylated proteins</title>
<p>Phosphorylated peptides were identified by searching the MS data with the same parameters listed above with the additional potential modification mass of +79.966331 Da at Ser, Thr, and Tyr. The PSMs generated from these searches were analyzed separately by PeptideProphet as above, except that the DECOYPROBS option was used so that decoy peptides were assigned probabilities and included in the output. Decoy peptides were used to calculate an FDR among the subset of PSMs exhibiting phosphorylation. Due to the infrequent occurrence of phosphopeptides in these un-enriched samples, the decoy-estimated FDR for phosphopeptide PSMs was as high as 24% in the VK210 sample and 19% in the VK247 sample at the probabilities corresponding to a 1.0% decoy-estimated FDR for the entire population of PSMs. The more stringent cut-off to achieve 1.0% FDR among phosphopeptide PSMs was used to identify high-confidence phosphopeptides. Phosphopeptide PSMs within each sample were only counted if the phosphopeptide was identified by at least one PSM at the high-stringency cut-off and by at least two PSMs in the population-level cut-off. The number of PSMs identifying a phosphopeptide and the number of PSMs identifying the same peptide in un-phosphorylated form were used to estimate the percentage of that peptide that was phosphorylated in the sample. Localization of phosphate groups within phosphopeptides was confirmed and/or corrected using a development version of PTMProphet (source code available at
<ext-link ext-link-type="uri" xlink:href="https://sourceforge.net/p/sashimi">https://sourceforge.net/p/sashimi</ext-link>
, SVN revision number 7584. See
<xref ref-type="supplementary-material" rid="pntd.0005791.s001">S1 File</xref>
for complete parameters).</p>
</sec>
<sec id="sec012">
<title>Prioritizing proteins identified from surface labeling</title>
<p>Experimental and theoretical evidence was used to identify high-confidence putatively surface-exposed proteins from among those
<italic>P</italic>
.
<italic>vivax</italic>
proteins identified by surface labeling live sporozoites with the biotin tag. Proteins were taken for further consideration if they were identified by at least two peptides and three PSMs in at least one of the two labeled samples. Proteins were considered high-quality candidates if they possessed predicted characteristics of a surface protein, i.e., transmembrane (TM) domain(s), a signal peptide, or a glycophosphatidylinositol (GPI) anchor, or if they exhibited spectral evidence for incorporation of the biotin label. Theoretical evidence for presence of surface protein characteristics was determined from protein primary sequences using established tools: the number of predicted TM domains was obtained from THMM2 [
<xref rid="pntd.0005791.ref041" ref-type="bibr">41</xref>
] via PlasmoDB.org (
<italic>P</italic>
.
<italic>vivax</italic>
P01 v.31), presence of a signal peptide was predicted by SignalP version 4.1 [
<xref rid="pntd.0005791.ref042" ref-type="bibr">42</xref>
] (
<ext-link ext-link-type="uri" xlink:href="http://www.cbs.dtu.dk/services/SignalP/">http://www.cbs.dtu.dk/services/SignalP/</ext-link>
) and presence of a glycosylphosphatidylinositol (GPI) anchor was predicted using PredGPI [
<xref rid="pntd.0005791.ref043" ref-type="bibr">43</xref>
] (
<ext-link ext-link-type="uri" xlink:href="http://gpcr2.biocomp.unibo.it/gpipe/index.htm">http://gpcr2.biocomp.unibo.it/gpipe/index.htm</ext-link>
). A protein was considered to have spectral evidence for labeling if a non-degenerate component peptide displaying the addition of the biotin tag was identified from at least one high-quality PSM (PeptideProphet probability corresponding to an FDR less than 1.0%). Non-specific binding to the streptavidin beads was assessed by comparing the VK247 labeled and unlabeled samples, which were split from the same sample and processed in parallel with or without labeling. In order to identify those proteins with the highest value as potentially surface-exposed targets based on the theoretical and experimental evidence, proteins were assigned priority tiers (1 being highest) as follows: 1) possessing predicted TM domain(s), signal peptide or GPI anchor
<italic>and</italic>
exhibiting spectral evidence of incorporation of the biotin tag; 2) exhibiting spectral evidence of incorporation of the biotin tag but lacking predicted TM domain(s), signal peptide or GPI anchor; 3) possessing predicted TM domain(s), signal peptide or GPI anchor but lacking spectral evidence of incorporation of the biotin tag; 4) lacking predicted TM domain(s), signal peptide or GPI anchor as well as lacking spectral evidence of incorporation of the biotin tag. Tiers one, two and three were considered high-quality candidate surface proteins. Proteins identified from fewer than two peptides and three PSMs in at least one sample were not assigned priority tiers.</p>
</sec>
</sec>
<sec sec-type="results" id="sec013">
<title>Results</title>
<sec id="sec014">
<title>Proteomic analysis of
<italic>P</italic>
.
<italic>vivax</italic>
field isolate-derived salivary gland sporozoites</title>
<p>MS-based proteomics was used to survey the proteins present in
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites. Two independent sporozoite samples were obtained from mosquitoes fed on blood obtained from volunteers who presented with clinical malaria at treatment centers in Thailand. Peptide spectrum matches were analyzed using the Trans-Proteomic Pipeline [
<xref rid="pntd.0005791.ref024" ref-type="bibr">24</xref>
]. Proteins identified with scores corresponding to an FDR less than 1.0% were reported. A total of 1711
<italic>P</italic>
.
<italic>vivax</italic>
proteins were identified from 3.5 × 10
<sup>6</sup>
sporozoites bearing the VK210 haplotype of circumsporozoite protein (CSP), of which 1492 (87.2%) were identified by at least two non-degenerate peptides. A total of 1747
<italic>P</italic>
.
<italic>vivax</italic>
proteins were identified from 4.5 × 10
<sup>6</sup>
sporozoites bearing the VK247 CSP haplotype, of which 1572 (90.0%) were identified by at least two non-degenerate peptides. A combined total of 1970
<italic>P</italic>
.
<italic>vivax</italic>
proteins were identified from the two samples, of which 1733 (88.0%) were identified from at least two non-degenerate peptides in at least one of the samples. Of the combined 1970
<italic>P</italic>
.
<italic>vivax</italic>
proteins identified, 1488 (75.5%) were identified in both samples (
<xref ref-type="supplementary-material" rid="pntd.0005791.s012">S2 Table</xref>
). Label-free protein quantification based on spectral counts was used to compare protein abundance between the two samples. NSAF, a technique that normalizes spectral counts for protein length and sample complexity, was used to compare relative protein abundance within and between the two samples, while protein abundance ratios between the two samples were tested for significance using the G-test as well as information extracted from the normal distribution of protein ratios. Comparing the protein abundances showed largely similar protein composition and protein abundance (
<xref ref-type="fig" rid="pntd.0005791.g001">Fig 1</xref>
). The proteins identified in both samples included all of the proteins in the top quartile of abundance in each sample and 968 of 983 proteins (98.5%) in the upper half of abundance in each sample. Furthermore, 218 of 223 (97.8%) of the proteins unique to the VK210 sample were in the lower half of abundance, with 155 (69.5%) in the bottom quartile. Likewise, of the proteins unique to the VK247 sample, 249 of 259 (96.1%) were in the lower half of abundance, with 192 (74.1%) in the bottom quartile. These results suggest that differences in proteins detected between the two samples arose primarily from technical issues affecting limit-of-detection rather than unique protein expression in one sample or the other. Likewise, observed differences in relative protein abundance observed between the two samples were likely predominantly technical in origin rather than biological. The populations of ln(NSAF) values from the two field isolate samples could be fitted with Gaussian curves with similar means and variance, and the population of log-transformed abundance ratios for proteins detected in both samples assumed a normal distribution with a mean near zero, i.e., a protein ratio of essentially 1:1 (
<xref ref-type="supplementary-material" rid="pntd.0005791.s003">S1 Fig</xref>
). Fitting the population of ratios to a Gaussian allowed measurement of the deviation from the mean of 1:1, which was low (less than one standard deviation) for high-abundance proteins and generally increased at lower protein abundances (
<xref ref-type="fig" rid="pntd.0005791.g001">Fig 1A</xref>
), a known phenomenon of spectral counting [
<xref rid="pntd.0005791.ref039" ref-type="bibr">39</xref>
,
<xref rid="pntd.0005791.ref044" ref-type="bibr">44</xref>
]. To identify proteins with significantly different abundances between the two samples, a likelihood ratio test (G-test) was applied to the protein ratios obtained from comparing spectral counts of each protein as observed in the two samples [
<xref rid="pntd.0005791.ref040" ref-type="bibr">40</xref>
]. All spectral counts were increased by 1 in order to obtain ratios for proteins observed in only one sample [
<xref rid="pntd.0005791.ref040" ref-type="bibr">40</xref>
]. Additionally, a Gaussian curve was fit to the distribution of log-transformed abundance ratios for proteins observed in both samples (
<xref ref-type="fig" rid="pntd.0005791.g001">Fig 1B</xref>
) and the complementary error function was used to obtain a
<italic>p</italic>
-value indicating the probability that the normal distribution was more extreme than any give protein ratio. Combining these two tests identified protein ratios that deviated significantly from the mean while accounting for the increased quantification error at low spectral counts (
<xref ref-type="fig" rid="pntd.0005791.g001">Fig 1C</xref>
). After correcting for multiple hypothesis testing by the Benjamini-Hochberg procedure, 119 proteins were identified with
<italic>p</italic>
-values corresponding to an FDR less than 5.0% by both methods. Of these, 35 were identified in both samples (2.4% of all proteins identified in both samples) and 84 were identified only in one sample or the other (17% of all proteins identified in only one of the two samples;
<xref ref-type="supplementary-material" rid="pntd.0005791.s012">S2 Table</xref>
).</p>
<fig id="pntd.0005791.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0005791.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Quantitative comparison of protein expression between two
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoite field isolates.</title>
<p>(A) Protein abundances based on spectral counts were estimated using the normalized spectral abundance factor (NSAF). Each point represents the natural log-transformed NSAF value of a protein, comparing its ln(NSAF) value in either sample. Deciles of relative abundance within each sample are shown (dashed gray lines). For each protein observed in both of the two
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoite samples, the natural log of the protein ratio of the NSAF values observed in the VK210 sample and the VK247 sample was calculated as ln(NASF)
<sub>VK210</sub>
-ln(NSAF)
<sub>VK247</sub>
. The population of these values produced a normal distribution centered near zero, corresponding to a mean ratio of 1:1 (
<xref ref-type="supplementary-material" rid="pntd.0005791.s003">S1 Fig</xref>
). Proteins identified in both samples are color-coded to indicate the deviation of their log-transformed protein ratio
<italic>R</italic>
from the population mean as determined from the fit curve. Deviation from the mean was low at high abundances and increased with decreasing spectral counts. The cyan and orange points represent proteins identified in only one isolate or the other. (B) Protein ratios were calculated based on the adjusted and normalized spectral counts used to calculate the G statistic. The population of log-transformed protein ratios of proteins detected in both samples assumed a Gaussian distribution with a mean near zero. The mean and standard deviation from this distribution were used to calculate
<italic>p</italic>
-values using the complementary error function (ERFC). (C) The protein ratios of all proteins detected in either sample are plotted with respect to the sum of the adjusted and normalized PSM from both samples used to calculate the ratio for each protein. Points in red are proteins with that were not significant at a 5.0% false discovery rate (FDR) according to the G-test. Points in green are proteins with ratios that were not significant at a 5.0% FDR according to the ERFC. Points in blue are proteins ratios that were significant by both cut-offs. Points inside of dashed boxes represent proteins detected in only one sample or the other. Protein ratios were estimated for these proteins by increasing all spectral counts by one in order to give all proteins non-zero values.</p>
</caption>
<graphic xlink:href="pntd.0005791.g001"></graphic>
</fig>
<p>In order to compare salivary gland sporozoite proteomes of
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
, a previously published proteomic analysis of
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
] was re-analyzed with the same informatics pipeline used here, identifying 2010 proteins, of which 1798 (89.5%) were identified by at least two peptides (
<xref ref-type="supplementary-material" rid="pntd.0005791.s013">S3 Table</xref>
). The same quantitative approach described above was used to compare the relative abundance of protein orthologs between the two species. The spectral counting methods were expected to be less accurate when comparing orthologs between species than when comparing the same proteins detected in different samples of the same species because, all else being equal, two protein orthologs with sufficiently different sequences could produce different numbers of PSMs due to differences in the number of tryptic peptides produced and the detectability of these peptides by LC-MS determined by sequence-specific chemical properties. Nonetheless, there was a large overlap in both protein detection and relative protein abundance between protein orthologs detected in the
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
samples (
<xref ref-type="fig" rid="pntd.0005791.g002">Fig 2</xref>
). Of the all the proteins detected in either of the
<italic>P</italic>
.
<italic>vivax</italic>
samples or the
<italic>P</italic>
.
<italic>falciparum</italic>
sample, 2314 had annotated orthologs in both
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
, and 1609 of these (69.5%) were detected in the sporozoite samples of both species analyzed here. As with the comparison between the two
<italic>P</italic>
.
<italic>vivax</italic>
samples, the population of log-transformed ratios of proteins identified in both
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
had a mean near 1:1 with little deviation from the mean among the high-abundance proteins and increasing deviation at low spectral counts. Most of the protein orthologs identified in one species and not the other were low-abundance proteins. Of the 332 orthologs not detected in the
<italic>P</italic>
.
<italic>falciparum</italic>
sample, 300 (90.4%) were in the lower half of abundance and 189 (56.9%) were in the bottom quartile of abundance. Of the 373 orthologs not detected in the
<italic>P</italic>
.
<italic>vivax</italic>
samples, 325 (87.1%) were in the lower half of abundance and 224 (60.1%) were in the bottom quartile of abundance (
<xref ref-type="supplementary-material" rid="pntd.0005791.s013">S3 Table</xref>
,
<xref ref-type="fig" rid="pntd.0005791.g002">Fig 2A</xref>
). The most highly abundant proteins detected in the
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites were also highly abundant in
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites, including several with critical roles in invasion, e.g., CSP, thrombospondin-related anonymous protein (TRAP; PVP01_1218700, PF3D7_1335900), gamete egress and sporozoite traversal protein (GEST; PVP01_1258000, PF3D7_1449000), cell traversal protein for ookinetes and sporozoites (CelTOS; PVP01_1435400, PF3D7_1216600), apical membrane antigen 1 (AMA1; PVP01_0934200, PF3D7_1133400), sporozoite invasion-associated protein 1 (SIAP1; PVP01_0307900, PF3D7_0408600), and sporozoite protein essential for cell traversal (SPECT1 PVP01_1212300, PF3D7_1342500) (
<xref ref-type="table" rid="pntd.0005791.t001">Table 1</xref>
). Even so, a number of high-abundance proteins were identified that were of significantly higher abundance in one species than the other (
<xref ref-type="supplementary-material" rid="pntd.0005791.s013">S3 Table</xref>
). For example, PVP01_0314600 (conserved
<italic>Plasmodium</italic>
protein, unknown function) was in the top decile of abundance in both
<italic>P</italic>
.
<italic>vivax</italic>
sporozoite samples, while its syntenic ortholog PF3D7_0718900 (conserved
<italic>Plasmodium</italic>
protein, unknown function) was not detected in the
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoite sample, or for that matter, in any of the
<italic>P</italic>
.
<italic>falciparum</italic>
proteomics datasets on PlasmoDB spanning the entire
<italic>P</italic>
.
<italic>falciparum</italic>
lifecycle. In the
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoite sample, two conserved
<italic>Plasmodium</italic>
proteins of unknown function, PF3D7_0215200 and PF3D7_0410500, were in the top decile of protein abundance but not detected at all in either
<italic>P</italic>
.
<italic>vivax</italic>
sample. Both proteins are up-regulated in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites based on transcriptomic and proteomic data compiled at PlasmoDB.org. In addition to differentially expressed orthologs, a number of identified proteins had no orthologs in the other species compared. Of the combined 1970
<italic>P</italic>
.
<italic>vivax</italic>
proteins identified, 29 (1.47%) had no
<italic>P</italic>
.
<italic>falciparum</italic>
ortholog. These included three proteins annotated as PIR proteins (
<italic>Plasmodium</italic>
interspersed repeats, species-specific immunovariant proteins [
<xref rid="pntd.0005791.ref034" ref-type="bibr">34</xref>
,
<xref rid="pntd.0005791.ref045" ref-type="bibr">45</xref>
]) and 17 unannotated proteins (i.e., “conserved
<italic>Plasmodium</italic>
protein, unknown function”). The most abundant
<italic>P</italic>
.
<italic>vivax</italic>
protein with no
<italic>P</italic>
.
<italic>falciparum</italic>
ortholog identified in the samples was a putative 6-Cys domain protein (PVP01_0303900). This protein was in the top decile of abundance in both
<italic>P</italic>
.
<italic>vivax</italic>
samples, and is putatively surface-exposed on salivary gland sporozoites (discussed below).</p>
<fig id="pntd.0005791.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0005791.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Quantitative comparison of protein expression between
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites.</title>
<p>(A) Protein abundances based on spectral counts were estimated using the normalized spectral abundance factor (NSAF). Each point represents the natural log-transformed NSAF value of a protein, comparing its ln(NSAF) value in either sample.
<italic>P</italic>
.
<italic>vivax</italic>
ln(NSAF) values are the average of the values observed in the two field isolate samples. Deciles of relative abundance within each sample are shown (dashed gray lines). For each protein with orthologs detected in both
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites, the natural log of the protein ratio of the NSAF values observed in the
<italic>P</italic>
.
<italic>falciparum</italic>
sample and the
<italic>P</italic>
.
<italic>vivax</italic>
sample was calculated as ln(NASF)
<sub>
<italic>P</italic>
.
<italic>falciparum</italic>
</sub>
-ln(NSAF)
<sub>
<italic>P</italic>
.
<italic>vivax</italic>
</sub>
. The population of these values produced a normal distribution centered near zero, corresponding to a mean ratio of 1:1 (
<xref ref-type="supplementary-material" rid="pntd.0005791.s004">S2 Fig</xref>
). Protein orthologs detected in both species are color-coded to indicate the deviation of their log-transformed protein ratio
<italic>R</italic>
from the population mean as determined from the fit curve. Deviation from the mean was low at high abundances and increased with decreasing spectral counts. The cyan and orange points represent protein orthologs identified in only one species or the other. Diamond points represent proteins with no ortholog in the other species. (B) Protein ratios were calculated based on the adjusted and normalized spectral counts used to calculate the G statistic. The population of log-transformed protein ratios of proteins detected in both samples assumed a Gaussian distribution with a mean near zero. The mean and standard deviation from this distribution were used to calculate
<italic>p</italic>
-values using the complementary error function (ERFC). (C) The protein ratios of all protein orthologs detected in either species are plotted with respect to the sum of the adjusted and normalized PSM from both samples used to calculate the ratio for each protein. Points in red are proteins with that were not significant at a 5.0% false discovery rate (FDR) according to the G-test. Points in green are proteins with ratios that were not significant at a 5.0% FDR according to the ERFC. Points in blue are proteins ratios that were significant by both cut-offs. Points inside of dashed boxes represent protein orthologs detected in only one species or the other. Protein ratios were estimated for these proteins by increasing all spectral counts by one in order to give all proteins non-zero values.</p>
</caption>
<graphic xlink:href="pntd.0005791.g002"></graphic>
</fig>
<table-wrap id="pntd.0005791.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0005791.t001</object-id>
<label>Table 1</label>
<caption>
<title>Highly abundant proteins identified in
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites.</title>
</caption>
<alternatives>
<graphic id="pntd.0005791.t001g" xlink:href="pntd.0005791.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Abundance rank (of 1970)
<xref ref-type="table-fn" rid="t001fn001">
<sup>a</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">Gene ID</th>
<th align="left" rowspan="1" colspan="1">Protein</th>
<th align="left" rowspan="1" colspan="1">Description</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
.
<italic>falciparum</italic>
ortholog
<xref ref-type="table-fn" rid="t001fn002">
<sup>b</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
.
<italic>falciparum</italic>
abundance rank (of 2010)
<xref ref-type="table-fn" rid="t001fn003">
<sup>c</sup>
</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">PVP01_0905800</td>
<td align="left" rowspan="1" colspan="1">H4</td>
<td align="left" rowspan="1" colspan="1">histone H4, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1105000</td>
<td align="left" rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">PVP01_1218700</td>
<td align="left" rowspan="1" colspan="1">TRAP</td>
<td align="left" rowspan="1" colspan="1">thrombospondin-related anonymous protein, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1335900</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0518800</td>
<td align="left" rowspan="1" colspan="1">HSP20</td>
<td align="left" rowspan="1" colspan="1">small heat shock protein HSP20, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0816500</td>
<td align="left" rowspan="1" colspan="1">8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">PVP01_0808400</td>
<td align="left" rowspan="1" colspan="1">null</td>
<td align="left" rowspan="1" colspan="1">tubulin beta chain, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1008700</td>
<td align="left" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">PVP01_1244000</td>
<td align="left" rowspan="1" colspan="1">GAPDH</td>
<td align="left" rowspan="1" colspan="1">glyceraldehyde-3-phosphate dehydrogenase, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1462800</td>
<td align="left" rowspan="1" colspan="1">11</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">PVP01_0835600</td>
<td align="left" rowspan="1" colspan="1">CSP</td>
<td align="left" rowspan="1" colspan="1">circumsporozoite (CS) protein</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0304600</td>
<td align="left" rowspan="1" colspan="1">6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">PVP01_1463200</td>
<td align="left" rowspan="1" colspan="1">ACT1</td>
<td align="left" rowspan="1" colspan="1">actin</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1246200</td>
<td align="left" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">PVP01_0905900</td>
<td align="left" rowspan="1" colspan="1">H2B</td>
<td align="left" rowspan="1" colspan="1">histone 2B, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1105100</td>
<td align="left" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">PVP01_0717700</td>
<td align="left" rowspan="1" colspan="1">TrxL1</td>
<td align="left" rowspan="1" colspan="1">thioredoxin-like protein 1, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0919300</td>
<td align="left" rowspan="1" colspan="1">17</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">PVP01_1114800, PVP01_1114900</td>
<td align="left" rowspan="1" colspan="1">null</td>
<td align="left" rowspan="1" colspan="1">elongation factor 1-alpha, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1357000, PF3D7_1357100</td>
<td align="left" rowspan="1" colspan="1">7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">PVP01_1258000</td>
<td align="left" rowspan="1" colspan="1">GEST</td>
<td align="left" rowspan="1" colspan="1">gamete egress and sporozoite traversal protein, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1449000</td>
<td align="left" rowspan="1" colspan="1">12</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">PVP01_0517100</td>
<td align="left" rowspan="1" colspan="1">14-3-3I</td>
<td align="left" rowspan="1" colspan="1">14-3-3 protein, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0818200</td>
<td align="left" rowspan="1" colspan="1">14</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="left" rowspan="1" colspan="1">PVP01_1311000</td>
<td align="left" rowspan="1" colspan="1">PfpUB</td>
<td align="left" rowspan="1" colspan="1">polyubiquitin 5, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1211800</td>
<td align="left" rowspan="1" colspan="1">N/A
<xref ref-type="table-fn" rid="t001fn004">
<sup>d</sup>
</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">PVP01_1030500</td>
<td align="left" rowspan="1" colspan="1">ADF1</td>
<td align="left" rowspan="1" colspan="1">actin-depolymerizing factor 1, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0503400</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">PVP01_0934200</td>
<td align="left" rowspan="1" colspan="1">AMA1</td>
<td align="left" rowspan="1" colspan="1">apical membrane antigen 1</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1133400</td>
<td align="left" rowspan="1" colspan="1">20</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">PVP01_1020600</td>
<td align="left" rowspan="1" colspan="1">PNP</td>
<td align="left" rowspan="1" colspan="1">purine nucleoside phosphorylase, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0513300</td>
<td align="left" rowspan="1" colspan="1">29</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">PVP01_1435400</td>
<td align="left" rowspan="1" colspan="1">CelTOS</td>
<td align="left" rowspan="1" colspan="1">cell traversal protein for ookinetes and sporozoites</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1216600</td>
<td align="left" rowspan="1" colspan="1">91</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">PVP01_0307900</td>
<td align="left" rowspan="1" colspan="1">SIAP1</td>
<td align="left" rowspan="1" colspan="1">sporozoite invasion-associated protein 1, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0408600</td>
<td align="left" rowspan="1" colspan="1">23</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">PVP01_1262200</td>
<td align="left" rowspan="1" colspan="1">FBPA</td>
<td align="left" rowspan="1" colspan="1">fructose 1,6-bisphosphate aldolase, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1444800</td>
<td align="left" rowspan="1" colspan="1">25</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">PVP01_0702100</td>
<td align="left" rowspan="1" colspan="1">null</td>
<td align="left" rowspan="1" colspan="1">alpha tubulin 1, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0903700</td>
<td align="left" rowspan="1" colspan="1">15</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">PVP01_1008000</td>
<td align="left" rowspan="1" colspan="1">IMC1g</td>
<td align="left" rowspan="1" colspan="1">inner membrane complex protein 1g, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0525800</td>
<td align="left" rowspan="1" colspan="1">60</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">PVP01_1212300</td>
<td align="left" rowspan="1" colspan="1">SPECT1</td>
<td align="left" rowspan="1" colspan="1">sporozoite protein essential for cell traversal, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1342500</td>
<td align="left" rowspan="1" colspan="1">68</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">PVP01_1425700</td>
<td align="left" rowspan="1" colspan="1">null</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0814600</td>
<td align="left" rowspan="1" colspan="1">24</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">PVP01_1444500</td>
<td align="left" rowspan="1" colspan="1">HAD2</td>
<td align="left" rowspan="1" colspan="1">haloacid dehalogenase-like hydrolase, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1226300</td>
<td align="left" rowspan="1" colspan="1">97</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="left" rowspan="1" colspan="1">PVP01_0920700</td>
<td align="left" rowspan="1" colspan="1">PGM1</td>
<td align="left" rowspan="1" colspan="1">phosphoglycerate mutase, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1120100</td>
<td align="left" rowspan="1" colspan="1">26</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="left" rowspan="1" colspan="1">PVP01_0938800</td>
<td align="left" rowspan="1" colspan="1">SPELD</td>
<td align="left" rowspan="1" colspan="1">sporozoite surface protein essential for liver stage development, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1137800</td>
<td align="left" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">PVP01_0918300</td>
<td align="left" rowspan="1" colspan="1">RAN</td>
<td align="left" rowspan="1" colspan="1">GTP-binding nuclear protein RAN/TC4, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1117700</td>
<td align="left" rowspan="1" colspan="1">61</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1">PVP01_0505600</td>
<td align="left" rowspan="1" colspan="1">GAMA</td>
<td align="left" rowspan="1" colspan="1">GPI-anchored micronemal antigen</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0828800</td>
<td align="left" rowspan="1" colspan="1">79</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="left" rowspan="1" colspan="1">PVP01_1229700</td>
<td align="left" rowspan="1" colspan="1">LDH</td>
<td align="left" rowspan="1" colspan="1">L-lactate dehydrogenase</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1324900</td>
<td align="left" rowspan="1" colspan="1">21</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">PVP01_0728100</td>
<td align="left" rowspan="1" colspan="1">null</td>
<td align="left" rowspan="1" colspan="1">G2 protein, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0929600</td>
<td align="left" rowspan="1" colspan="1">30</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">31</td>
<td align="left" rowspan="1" colspan="1">PVP01_1306500</td>
<td align="left" rowspan="1" colspan="1">null</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1207400</td>
<td align="left" rowspan="1" colspan="1">37</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="left" rowspan="1" colspan="1">PVP01_0819300</td>
<td align="left" rowspan="1" colspan="1">H2A.Z</td>
<td align="left" rowspan="1" colspan="1">histone H2A.Z, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0320900</td>
<td align="left" rowspan="1" colspan="1">39</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33</td>
<td align="left" rowspan="1" colspan="1">PVP01_1454700</td>
<td align="left" rowspan="1" colspan="1">null</td>
<td align="left" rowspan="1" colspan="1">p25-alpha family protein, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1236600</td>
<td align="left" rowspan="1" colspan="1">56</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="left" rowspan="1" colspan="1">PVP01_1212200</td>
<td align="left" rowspan="1" colspan="1">MyoA</td>
<td align="left" rowspan="1" colspan="1">myosin A, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1342600</td>
<td align="left" rowspan="1" colspan="1">18</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">PVP01_1411700</td>
<td align="left" rowspan="1" colspan="1">null</td>
<td align="left" rowspan="1" colspan="1">RNA-binding protein, putative</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1310700</td>
<td align="left" rowspan="1" colspan="1">46</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t001fn001">
<p>
<sup>a)</sup>
Proteins ranked in order of decreasing abundance using the normalized spectral abundance factor.</p>
</fn>
<fn id="t001fn002">
<p>
<sup>b)</sup>
Syntenic orthologs in
<italic>P</italic>
.
<italic>falciparum</italic>
as annotated in PlasmoDB.</p>
</fn>
<fn id="t001fn003">
<p>
<sup>c)</sup>
Protein abundance ranks from proteomic analysis of
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
] re-analyzed with the same software and parameters used here.</p>
</fn>
<fn id="t001fn004">
<p>
<sup>d)</sup>
Polyubiquitin (PF3D7_1211800) has extensive regions of identical sequence with ubiquitin-60S ribosomal protein L40 (PF3D7_1365900). In the
<italic>P</italic>
.
<italic>falciparum</italic>
sample, all peptides identifying polyubiquitin were shared with L40. Peptides specific to L40 but none specific to polyubiquitin were identified, so by the parsimony rules of ProteinProphet, all identifying spectra were assigned to L40 (giving it an abundance rank of 19) and polyubiquitin was not considered identified. Non-degenerate peptides unique to both orthologs were identified in the
<italic>P</italic>
.
<italic>vivax</italic>
samples (
<xref ref-type="supplementary-material" rid="pntd.0005791.s012">S2</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s013">S3</xref>
Tables).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Mass spectra were searched against the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome [
<xref rid="pntd.0005791.ref034" ref-type="bibr">34</xref>
] (PlasmoDB v.31[
<xref rid="pntd.0005791.ref029" ref-type="bibr">29</xref>
]). Current high-throughput MS approaches require a precise knowledge of the genome of the organism under study; a protein can only be identified if its exact sequence is contained in the database against which the mass spectra are searched. Because the samples were obtained from field isolates and not laboratory strains, they were expected to contain protein sequence polymorphisms that would not be represented in the reference proteome. In order to increase the likelihood of identifying isolate-specific polymorphisms, the
<italic>P</italic>
.
<italic>vivax</italic>
protein database against which the mass spectra were searched was augmented with potential polymorphisms obtained from genomic and transcriptomic analyses of Thai
<italic>P</italic>
.
<italic>vivax</italic>
field isolates. A total of 13 RNA-seq and 19 DNA-seq data sets were aligned against the
<italic>P</italic>
.
<italic>vivax</italic>
Sal1 reference genome and a reference proteome was generated containing any protein with an amino acid sequence differing from the reference. Only 22% of the proteins in the reference proteome had completely conserved sequences across all 33 datasets (the 32 field isolates plus the reference genome). Over 50% of the proteins had four or more unique amino acid sequences arising from various combinations of sequence polymorphisms, and 10% had 15 or more unique sequences. One protein, RNA pseudouridylate synthase (PVX_080660) had a unique sequence in all 33 genomes aligned (
<xref ref-type="supplementary-material" rid="pntd.0005791.s014">S4 Table</xref>
). These
<italic>P</italic>
.
<italic>vivax</italic>
Sal-1 variants and the
<italic>P</italic>
.
<italic>vivax</italic>
Sal-1 reference proteome were appended to the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome and used to identify polymorphisms in the analyzed samples. A total of 301 identified
<italic>P</italic>
.
<italic>vivax</italic>
proteins contained polymorphisms that were not present in the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome (
<xref ref-type="supplementary-material" rid="pntd.0005791.s015">S5 Table</xref>
). The four identified
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoite proteins exhibiting the most polymorphisms not present in the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome were surface proteins: AMA1 (PVP01_0934200), TRAP-like protein (TLP; PVP01_1132600), TRAP (PVP01_1218700) and GPI-anchored micronemal protein (GAMA; PVP01_0505600). Each of these proteins also exhibited a high degree of polymorphism in the compared field isolate genomes (95
<sup>th</sup>
, 89
<sup>th</sup>
, 98
<sup>th</sup>
, and 97
<sup>th</sup>
percentiles, respectively, of the number of unique protein sequences arising from polymorphisms among the compared genomes). Except for seven proteins identified from a single peptide, all of these polymorphism-bearing proteins could be detected without the additional knowledge of polymorphisms obtained from the field isolates. However, failing to detect peptides would have led to increased errors in protein quantification by spectral counts. Furthermore, knowledge of non-synonymous substitutions in the
<italic>P</italic>
.
<italic>vivax</italic>
genome was critical to accurately characterizing proteins detected in the samples. For example, the
<italic>P</italic>
.
<italic>vivax</italic>
haplotype designations VK210 and VK247 are based on differences in the sequence of the repeat region of CSP. The VK210 haplotype bears tandem repeats of the sequence GDRA(D/A)GQPA, while the VK247 haplotype bears tandem repeats of the sequence ANGA(G/D)(N/D)QPG. In the VK247 whole proteome analyzed here, the repeat region of CSP was poorly detected due to a lack of Lys or Arg residues that would result in tryptic peptides. However, hundreds of PSMs identified a tryptic peptide at the C-terminal end of the tandem repeat region which is distinct in VK247 [
<xref rid="pntd.0005791.ref035" ref-type="bibr">35</xref>
], and no independent evidence was observed for VK210-specific peptides (
<xref ref-type="supplementary-material" rid="pntd.0005791.s005">S3 Fig</xref>
,
<xref ref-type="supplementary-material" rid="pntd.0005791.s015">S5 Table</xref>
). Conversely, in the VK210 sample, peptides covering the entire CSP tandem repeat region were identified from hundreds of PSMs, owing to the presence of regularly interspersed Arg tryptic cleavage sites. Interestingly, the VK210 sample appeared to contain a mixed infection of at least two distinct field isolates. The same discriminating peptide at the C-terminal end of the tandem repeat region was identified by hundreds of PSMs for semi-tryptic fragments of various lengths containing the VK210-specific sequence found in the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome. However, a semi-tryptic variant of the peptide found in the
<italic>P</italic>
.
<italic>vivax</italic>
Sal-1 version of CSP was also identified, as were semi-tryptic peptides matching portions of the VK247 version of the peptide. There was not enough independent evidence to determine if the VK247 haplotype was present in the sample (
<xref ref-type="supplementary-material" rid="pntd.0005791.s005">S3 Fig</xref>
,
<xref ref-type="supplementary-material" rid="pntd.0005791.s015">S5 Table</xref>
). Evidence for a mixed infection was also found in TRAP. Seven sequence polymorphisms not present in the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome were identified in TRAP in the samples analyzed, four of which were present in the
<italic>P</italic>
.
<italic>vivax</italic>
Sal-1 reference proteome and three of which were only found in field isolates. As was observed for CSP, the VK247 sample appeared to contain a single haplotype of TRAP, while there were at least two haplotypes of TRAP in the VK210 sample (
<xref ref-type="supplementary-material" rid="pntd.0005791.s006">S4 Fig</xref>
,
<xref ref-type="supplementary-material" rid="pntd.0005791.s015">S5 Table</xref>
). In addition to accurate quantification and correct characterization of proteins, knowledge of sample-specific polymorphisms was critical to identifying post-translational modifications (discussed below).</p>
</sec>
<sec id="sec015">
<title>Post-translational modifications</title>
<p>It was recently shown that CSP and TRAP are glycosylated in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. Here we report that these proteins are similarly modified in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites. The motif CX
<sub>2-3</sub>
(S/T)CXXG in thrombospondin repeat (TSR) domains can be modified with an O-linked fucose at the Ser/Thr [
<xref rid="pntd.0005791.ref046" ref-type="bibr">46</xref>
], and this fucose can be further modified with glucose to produce a β1,3-linked disaccharide [
<xref rid="pntd.0005791.ref047" ref-type="bibr">47</xref>
,
<xref rid="pntd.0005791.ref048" ref-type="bibr">48</xref>
]. Additionally, the WXXW and WXXC motifs of TSR domains can be modified with a C-linked mannose at Trp [
<xref rid="pntd.0005791.ref049" ref-type="bibr">49</xref>
,
<xref rid="pntd.0005791.ref050" ref-type="bibr">50</xref>
]. These potential glycosylation motifs are present in the TSR domains of both CSP and TRAP in all
<italic>Plasmodium</italic>
species. The TSR domain of
<italic>P</italic>
.
<italic>vivax</italic>
CSP contains the tryptic peptide ATVGTEWTPCSVTCGVGVR with potential O-fucosylation and C-mannosylation sites. Modification of the peptide with O-linked glycans could not be directly detected by the spectral search engines due to the fact that O-linked glycans are highly labile in the gas phase [
<xref rid="pntd.0005791.ref051" ref-type="bibr">51</xref>
,
<xref rid="pntd.0005791.ref052" ref-type="bibr">52</xref>
] and are lost during collision-induced dissociation (CID) used to generate the identifying fragment spectra. However, as was previously demonstrated with
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
], it was possible to infer the presence of the O-linked glycan through manual interpretation of the mass spectra (
<xref ref-type="supplementary-material" rid="pntd.0005791.s007">S5</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s008">S6</xref>
Figs). The analysis showed that this peptide was modified with a mass matching that of an O-linked deoxyhexose. No evidence for C-mannose was observed (
<xref ref-type="fig" rid="pntd.0005791.g003">Fig 3</xref>
). While neither the identity of the deoxyhexose nor its attachment site in the peptide could be determined from the data, we presume it to be a fucose attached to the C-terminal Thr based on knowledge of the sugars and enzymes present in
<italic>Plasmodium</italic>
[
<xref rid="pntd.0005791.ref053" ref-type="bibr">53</xref>
], TSR domains in other species, and the fact that this residue has been shown to be O-fucosylated in crystal structures of
<italic>Pf</italic>
CSP expressed in mammalian cells [
<xref rid="pntd.0005791.ref054" ref-type="bibr">54</xref>
]. Evidence for O-fucosylation of CSP was observed in both samples. Based on the signal intensity of the LC peaks, it appears that the majority of CSP (~90%) was glycosylated while a portion was unmodified (
<xref ref-type="supplementary-material" rid="pntd.0005791.s007">S5</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s008">S6</xref>
Figs). In
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites, the majority of CSP was also observed to be modified with a single deoxyhexose while a small portion was unmodified, though some CSP was also observed to be further modified with an additional hexose, consistent with O-linked fucose-β1,3-glucose [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. No evidence for modification of CSP with a disaccharide was observed in these
<italic>P</italic>
.
<italic>vivax</italic>
sporozoite samples.</p>
<fig id="pntd.0005791.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0005791.g003</object-id>
<label>Fig 3</label>
<caption>
<title>Glycosylation of CSP and TRAP in
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites.</title>
<p>The glycosylated portions of the conserved thrombospondin repeat (TSR) domains of
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
CSP and TRAP are aligned. The conserved glycosylation motif is highlighted. Residues that are putatively glycosylated according to the MS evidence are colored as shown in the legend. Information on glycosylation of
<italic>P</italic>
.
<italic>falciparum</italic>
is from [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. Only TRAP in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites exhibited evidence for C-mannosylation. Both CSP and TRAP exhibited evidence for O-fucosylation in both species. In
<italic>P</italic>
.
<italic>falciparum</italic>
, a portion of CSP and TRAP also showed evidence for modification with a fucose-glucose disaccharide. No evidence for the disaccharide was observed in the
<italic>P</italic>
.
<italic>vivax</italic>
samples.</p>
</caption>
<graphic xlink:href="pntd.0005791.g003"></graphic>
</fig>
<p>The TSR domain of
<italic>P</italic>
.
<italic>vivax</italic>
TRAP contains the tryptic peptide VANCGPWDPWTACSVTCGR which includes potential O-fucosylation and C-mannosylation motifs. Critically, the TRAP in the VK247 sample and some of the TRAP in the mixed-infection VK210 sample exhibited an Arg→Lys substitution at this peptide. Knowledge of this polymorphism was only obtained from the field isolate genomes, so lacking that data would have prevented detecting glycosylation in the samples bearing the substitution. As with CSP, TRAP was observed to be modified with a gas-phase labile modification (
<xref ref-type="supplementary-material" rid="pntd.0005791.s009">S7</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s010">S8</xref>
Figs) which was presumed to be O-fucose attached at the C-terminal Thr, again based on the TSR motif as well as crystal structures of
<italic>Pv</italic>
TRAP and
<italic>Pf</italic>
TRAP expressed in mammalian cells [
<xref rid="pntd.0005791.ref055" ref-type="bibr">55</xref>
]. C-mannosylation of the WDPWTAC sequence was not observed (
<xref ref-type="fig" rid="pntd.0005791.g001">Fig 1</xref>
), even though in
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites the C-terminal Trp of WDEWSPC was modified with a mass matching that of hexose, likely C-mannose [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. Based on chromatographic peak areas, virtually all TRAP in both samples was completely glycosylated (
<xref ref-type="supplementary-material" rid="pntd.0005791.s009">S7</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s010">S8</xref>
Figs).</p>
<p>The MS data were further analyzed for evidence of protein phosphorylation, a reversible PTM that is often involved in signaling and control of cellular function. Proteomic analysis of phosphoproteins has been performed for asexual stages of
<italic>P</italic>
.
<italic>falciparum</italic>
[
<xref rid="pntd.0005791.ref056" ref-type="bibr">56</xref>
<xref rid="pntd.0005791.ref060" ref-type="bibr">60</xref>
] but not sporozoites. Typical phosphoproteomic analyses employ affinity techniques to enrich for phosphorylated peptides prior to LC-MS. While that approach was not feasible for this study due to the limited sample material available, it was still possible to detect the presence of this modification in proteins that were highly abundant and/or heavily modified in the samples. Evidence for phosphorylation was found for a total of 139 proteins in either or both of the samples (
<xref ref-type="supplementary-material" rid="pntd.0005791.s016">S6</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s017">S7</xref>
Tables). Among the detected phosphoproteins with GO terms, the most prevalent functional class was proteins with DNA or RNA-binding activity (21.6% of the phosphoproteins) and the second most prevalent class was proteins with ATP activity, e.g., ATP binders, kinases and phosphatase (20.9% of the phosphoproteins). Also well-represented were components of the gliding machinery, including Myosin A (MyoA; PVP01_1212200), the glideosome-associated proteins GAP40 (PVP01_1018200), GAP45 (PVP01_1440900) and GAPM2 (PVP01_0532000), several inner membrane complex (IMC) proteins, and the calcium-dependent protein kinase CDPK1 (PVP01_0407500). The
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoite data were searched in the same fashion, identifying 91 phosphorylated proteins (
<xref ref-type="supplementary-material" rid="pntd.0005791.s016">S6</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s018">S8</xref>
Tables). All but four of these had syntenic orthologs in
<italic>P</italic>
.
<italic>vivax</italic>
, and 48 of these (55%) were among the phosphoproteins identified from the
<italic>P</italic>
.
<italic>vivax</italic>
samples. The list of sporozoite phosphoproteins was compared against thirteen proteomic analyses of
<italic>P</italic>
.
<italic>falciparum</italic>
blood-stage parasites [
<xref rid="pntd.0005791.ref016" ref-type="bibr">16</xref>
,
<xref rid="pntd.0005791.ref056" ref-type="bibr">56</xref>
<xref rid="pntd.0005791.ref066" ref-type="bibr">66</xref>
] (including five analyses of phosphopeptides enriched from blood-stage parasites [
<xref rid="pntd.0005791.ref056" ref-type="bibr">56</xref>
<xref rid="pntd.0005791.ref060" ref-type="bibr">60</xref>
]) and three proteomic analyses of
<italic>P</italic>
.
<italic>vivax</italic>
blood-stage parasites [
<xref rid="pntd.0005791.ref061" ref-type="bibr">61</xref>
,
<xref rid="pntd.0005791.ref067" ref-type="bibr">67</xref>
,
<xref rid="pntd.0005791.ref068" ref-type="bibr">68</xref>
] available on PlasmoDB.org. The majority (74%) of phosphoproteins identified from either
<italic>P</italic>
.
<italic>vivax</italic>
or
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites were also identified in phosphorylated form in
<italic>P</italic>
.
<italic>falciparum</italic>
blood stages (
<xref ref-type="supplementary-material" rid="pntd.0005791.s016">S6 Table</xref>
).
<xref ref-type="table" rid="pntd.0005791.t002">Table 2</xref>
lists 16
<italic>P</italic>
.
<italic>vivax</italic>
sporozoite phosphoproteins whose orthologs were identified in
<italic>P</italic>
.
<italic>falciparum</italic>
blood stages but for which no evidence of phosphorylation was observed, potentially representing sporozoite-specific phosphorylation.
<xref ref-type="table" rid="pntd.0005791.t003">Table 3</xref>
lists 18
<italic>P</italic>
.
<italic>vivax</italic>
sporozoite phosphoproteins that were not detected at all (either phosphorylated or unphosphorylated) in proteomic analyses of
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
blood stages, representing known and potentially novel proteins specific to the sporozoite stage.</p>
<table-wrap id="pntd.0005791.t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0005791.t002</object-id>
<label>Table 2</label>
<caption>
<title>Proteins phosphorylated in sporozoites but not in blood stages
<xref ref-type="table-fn" rid="t002fn001">
<sup>a</sup>
</xref>
.</title>
</caption>
<alternatives>
<graphic id="pntd.0005791.t002g" xlink:href="pntd.0005791.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Gene ID</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
.
<italic>falciparum</italic>
ortholog</th>
<th align="left" rowspan="1" colspan="1">Protein</th>
<th align="left" rowspan="1" colspan="1">Protein description</th>
<th align="left" rowspan="1" colspan="1">Phospho in
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites?
<xref ref-type="table-fn" rid="t002fn002">
<sup>b</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">Upregulated in sporozoites?
<xref ref-type="table-fn" rid="t002fn003">
<sup>c</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">Annotated function
<xref ref-type="table-fn" rid="t002fn004">
<sup>d</sup>
</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1310200</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1211000</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">kinesin-7, putative</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">ATP binding, ATPase activity, microtubule motor activity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0836200</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0304000</td>
<td align="left" rowspan="1" colspan="1">IMC1a</td>
<td align="left" rowspan="1" colspan="1">inner membrane complex protein 1a, putative</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1128100</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0621400</td>
<td align="left" rowspan="1" colspan="1">ALV7</td>
<td align="left" rowspan="1" colspan="1">inner membrane complex protein 1j, putative</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1341000</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1407700</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1225100</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1329400</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">AMP deaminase, putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">AMP deaminase activity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0211800</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0102900</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">aspartate—tRNA ligase, putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">ATP binding, aspartate-tRNA ligase activity, nucleic acid binding</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0215600</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0729900</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">dynein heavy chain, putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">ATP binding, ATPase activity, microtubule motor activity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0702400</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0904000</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">GTPase-activating protein, putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">Rab GTPase activator activity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0420400</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0204700</td>
<td align="left" rowspan="1" colspan="1">HT</td>
<td align="left" rowspan="1" colspan="1">hexose transporter</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">substrate-specific transmembrane transporter activity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1212000</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1342800</td>
<td align="left" rowspan="1" colspan="1">PEPCK</td>
<td align="left" rowspan="1" colspan="1">phosphoenolpyruvate carboxykinase, putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">ATP binding, phosphoenolpyruvate carboxykinase (ATP) activity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0505000</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0829400</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">prolyl 4-hydroxylase subunit alpha, putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">L-ascorbic acid binding, iron ion binding, oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1102300</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1369700</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">U2 small nuclear ribonucleoprotein A', putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">protein binding</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1249600</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1457300</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">binding</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0811600</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1011500</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1454300</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1236200</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">protein binding</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1411500</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1310500</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">carbohydrate binding</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t002fn001">
<p>
<sup>a)</sup>
A combined total of 139
<italic>P</italic>
.
<italic>vivax</italic>
proteins were identified with evidence for phosphorylation from proteomic analyses of two different salivary gland sporozoite samples. Presented in this table are the 16 proteins whose orthologs were not detected in phosphorylated form in any of six published phosphoproteomic analyses of
<italic>P</italic>
.
<italic>falciparum</italic>
blood stages [
<xref rid="pntd.0005791.ref056" ref-type="bibr">56</xref>
<xref rid="pntd.0005791.ref060" ref-type="bibr">60</xref>
] available from PlasmoDB and yet were still detectable in
<italic>P</italic>
.
<italic>falciparum</italic>
blood stages in any of the 13 proteomic analyses [
<xref rid="pntd.0005791.ref016" ref-type="bibr">16</xref>
,
<xref rid="pntd.0005791.ref056" ref-type="bibr">56</xref>
<xref rid="pntd.0005791.ref066" ref-type="bibr">66</xref>
] available from PlasmoDB. The complete list of detected phosphoproteins is provided in
<xref ref-type="supplementary-material" rid="pntd.0005791.s016">S6 Table</xref>
, and the complete list of detected phosphopeptides is provided in
<xref ref-type="supplementary-material" rid="pntd.0005791.s017">S7</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s018">S8</xref>
Tables.</p>
</fn>
<fn id="t002fn002">
<p>
<sup>b)</sup>
“YES” indicates that the protein was also detected with phosphorylation in the re-analysis of the previously published
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoite proteome presented here.</p>
</fn>
<fn id="t002fn003">
<p>
<sup>c)</sup>
“YES” indicates that the protein is annotated as up-regulated in salivary gland sporozoites in PlasmoDB, either identified as up-regulated in the Winzeler OPI gene expression data or identified as a Sporozoite Conserved Orthologous Transcript (SCOT).</p>
</fn>
<fn id="t002fn004">
<p>
<sup>d)</sup>
Protein functions are annotated and/or predicted GO terms obtained from PlasmoDB v.32.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="pntd.0005791.t003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0005791.t003</object-id>
<label>Table 3</label>
<caption>
<title>Phosphorylated sporozoite-specific proteins
<xref ref-type="table-fn" rid="t003fn001">
<sup>a</sup>
</xref>
.</title>
</caption>
<alternatives>
<graphic id="pntd.0005791.t003g" xlink:href="pntd.0005791.t003"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Gene ID</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
.
<italic>falciparum</italic>
ortholog</th>
<th align="left" rowspan="1" colspan="1">Protein</th>
<th align="left" rowspan="1" colspan="1">Protein description</th>
<th align="left" rowspan="1" colspan="1">Phospho in
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites?
<xref ref-type="table-fn" rid="t003fn002">
<sup>b</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">Upregulated in sporozoites?
<xref ref-type="table-fn" rid="t003fn003">
<sup>c</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">Annotated function
<xref ref-type="table-fn" rid="t003fn004">
<sup>d</sup>
</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1015000</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0518900</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1439700</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1221400</td>
<td align="left" rowspan="1" colspan="1">IMC1h</td>
<td align="left" rowspan="1" colspan="1">inner membrane complex protein 1h, putative</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0518800</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0816500</td>
<td align="left" rowspan="1" colspan="1">HSP20</td>
<td align="left" rowspan="1" colspan="1">small heat shock protein HSP20, putative</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1427900</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0812300</td>
<td align="left" rowspan="1" colspan="1">SSP3</td>
<td align="left" rowspan="1" colspan="1">sporozoite surface protein 3, putative</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0938800</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1137800</td>
<td align="left" rowspan="1" colspan="1">SPELD</td>
<td align="left" rowspan="1" colspan="1">sporozoite surface protein essential for liver stage development, putative</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0945700</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1145000</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">ATP binding, actin binding, calmodulin binding, motor activity, sequence-specific DNA binding, sequence-specific DNA binding transcription factor activity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0415300</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0209500</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">GTP binding, GTPase activity, translation initiation factor activity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1032700</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0502300</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1259500</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1447500</td>
<td align="left" rowspan="1" colspan="1">IMC20</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1432200</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1213400</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1218700</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1335900</td>
<td align="left" rowspan="1" colspan="1">TRAP</td>
<td align="left" rowspan="1" colspan="1">thrombospondin-related anonymous protein, putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">YES</td>
<td align="left" rowspan="1" colspan="1">host cell surface receptor binding</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1448500</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1230300</td>
<td align="left" rowspan="1" colspan="1">SPM2</td>
<td align="left" rowspan="1" colspan="1">subpellicular microtubule protein 2, putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">transferase activity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1132600</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0616500</td>
<td align="left" rowspan="1" colspan="1">TLP</td>
<td align="left" rowspan="1" colspan="1">TRAP-like protein, putative</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1124700</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0624800</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">ATP binding</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0813500</td>
<td align="left" rowspan="1" colspan="1">PF3D7_1013400</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">ATP binding</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_1425600</td>
<td align="left" rowspan="1" colspan="1">PF3D7_0814700</td>
<td align="left" rowspan="1" colspan="1">null</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0947000</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PVP01_0609000</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t003fn001">
<p>
<sup>a)</sup>
A combined total of 139
<italic>P</italic>
.
<italic>vivax</italic>
proteins were identified with evidence for phosphorylation from proteomic analyses of two different salivary gland sporozoite samples. Presented in this table are the 18 proteins that were not detected in any of the of the 13 proteomic analyses of blood stage
<italic>P</italic>
.
<italic>falciparum</italic>
[
<xref rid="pntd.0005791.ref016" ref-type="bibr">16</xref>
,
<xref rid="pntd.0005791.ref056" ref-type="bibr">56</xref>
<xref rid="pntd.0005791.ref066" ref-type="bibr">66</xref>
] available from PlasmoDB.org. The complete list of detected phosphoproteins is provided in
<xref ref-type="supplementary-material" rid="pntd.0005791.s016">S6 Table</xref>
, and the complete list of detected phosphopeptides is provided in
<xref ref-type="supplementary-material" rid="pntd.0005791.s017">S7</xref>
and
<xref ref-type="supplementary-material" rid="pntd.0005791.s018">S8</xref>
Tables.</p>
</fn>
<fn id="t003fn002">
<p>
<sup>b)</sup>
“YES” indicates that the protein was also detected with phosphorylation in the re-analysis of the previously published
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoite proteome presented here.</p>
</fn>
<fn id="t003fn003">
<p>
<sup>c)</sup>
“YES” indicates that the protein is annotated as up-regulated in salivary gland sporozoites in PlasmoDB.org, either identified as up-regulated in the Winzeler OPI gene expression data or identified as a Sporozoite Conserved Orthologous Transcript (SCOT).</p>
</fn>
<fn id="t003fn004">
<p>
<sup>d)</sup>
Protein functions are annotated and/or predicted GO terms obtained from PlasmoDB v.32.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="sec016">
<title>Identification of surface-exposed proteins</title>
<p>In order to identify surface-exposed proteins on
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites, a chemical labeling approach was employed based on the recent analyses of the
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoite surface proteome [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
,
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. Live sporozoites were labeled with a membrane-impermeable, amine-reactive tag that covalently labeled solvent-exposed lysines with a biotin tag. The parasites were then lysed and labeled proteins were recovered with streptavidin beads. Two parasite samples were analyzed, one containing 2 × 10
<sup>6</sup>
sporozoites bearing the VK210 CSP haplotype and one containing 1.8 × 10
<sup>7</sup>
sporozoites bearing the VK247 CSP haplotype. The VK247 sample was split in two and half was left unlabeled in order to assess non-specific binding. A total of 90
<italic>Plasmodium</italic>
proteins were identified from the VK210 sample, of which 61 (68%) were identified from two or more peptides, and 221
<italic>Plasmodium</italic>
proteins were identified from the labeled VK247 sample, of which 147 (67%) were identified from two or more peptides. The combined samples identified 239
<italic>Plasmodium</italic>
proteins, of which 72 (30%) were identified in both samples. The 129 proteins identified from two or more peptides and three or more PSM in at least one sample were taken for further analysis. Some proteins could be seen to exhibit direct evidence for incorporation of the biotin label in the identifying mass spectra. Absence of spectral evidence for labeling does not mean that the protein was not labeled [
<xref rid="pntd.0005791.ref069" ref-type="bibr">69</xref>
], but observing labeling in highly abundant sporozoite surface proteins such as CSP and TRAP provides evidence that the labeling and enrichment protocol successfully identified surface-exposed proteins. The non-specific binding was very low—only eight
<italic>Plasmodium</italic>
proteins were identified from the unlabeled sporozoites (five identified from two or more peptides) compared to the 221
<italic>Plasmodium</italic>
proteins identified from an equal number of labeled sporozoites from the same sample. The eight
<italic>Plasmodium</italic>
proteins in the control were identified by 49 PSMs, more than 30-fold fewer than the 1604 PSMs obtained from the labeled sample (
<xref ref-type="supplementary-material" rid="pntd.0005791.s019">S9 Table</xref>
). The labeled and unlabeled VK247 sporozoites were split from the same batch of purified sporozoites and, except for the labeling steps, were processed identically in parallel along with the labeled VK210 sample, including lysis, capture on magnetic biotin beads, washes, elution, SDS-PAGE and in-gel digestion, and all three samples were analyzed by LC-MS one after the other on the same column. As such, the raw number of spectral counts gives the best estimate of relative abundance when comparing the relative abundance of a protein identified in both the labeled and unlabeled VK247 samples. Seven of the eight proteins identified from the unlabeled control were also identified in the labeled sample. Although there was insufficient data to assess statistically significant enrichment of labeled versus unlabeled proteins, all seven proteins were at least two-fold more abundant in the labeled sample based on the number of PSM. Proteins identified in the unlabeled control included the known sporozoite surface proteins TRAP and sporozoite surface protein essential for liver stage development (SPELD; PVP01_0938800) [
<xref rid="pntd.0005791.ref070" ref-type="bibr">70</xref>
], as well as actin (PVP01_1463200), which has been detected on the surface of ookinetes [
<xref rid="pntd.0005791.ref071" ref-type="bibr">71</xref>
]. These proteins exhibited direct evidence from the identifying mass spectra that they had been labeled with the biotin tag the labeled samples. They were also among the most abundant proteins in the sporozoite proteome (top 2%), so their presence among non-specifically binding proteins is not surprising. Given the above, the contribution of non-specific binding to the proteins identified in both samples was assumed to be minimal. In order to rule out low-confidence identifications, only proteins identified from two or more peptides and three or more PSM were taken for further analysis.</p>
<p>Although the biotin tag for surface labeling is putatively membrane-impermeable [
<xref rid="pntd.0005791.ref072" ref-type="bibr">72</xref>
], based on previous work, some portion of sporozoites were assumed to have compromised plasma membranes, resulting in labeling of intracellular proteins [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
,
<xref rid="pntd.0005791.ref073" ref-type="bibr">73</xref>
]. Therefore, combined theoretical and experimental evidence were used to identify the strongest candidates for surface-exposed proteins from among all those identified by the surface protein enrichment strategy. Proteins that were identified with high confidence as described above were assigned a priority tier (1 being highest) as follows: Tier 1) possessing predicted transmembrane (TM) domain(s), signal peptide or glycophosphatidylinositol (GPI) anchor
<italic>and</italic>
exhibiting spectral evidence of incorporation of the biotin tag; 2) exhibiting spectral evidence of incorporation of the biotin tag but lacking predicted TM domain(s), signal peptide or GPI anchor; 3) possessing predicted TM domain(s), signal peptide or GPI anchor but lacking spectral evidence of incorporation of the biotin tag; 4) lacking predicted TM domain(s), signal peptide or GPI anchor as well as lacking spectral evidence of incorporation of the biotin tag. These criteria produced a list of 36 high-quality candidate surface proteins (
<xref ref-type="table" rid="pntd.0005791.t004">Table 4</xref>
). Of these, 31 orthologs were also detected by similar analyses of putatively surface-exposed proteins on
<italic>P</italic>
.
<italic>falciparum</italic>
[
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
] or
<italic>P</italic>
.
<italic>yoelii</italic>
[
<xref rid="pntd.0005791.ref074" ref-type="bibr">74</xref>
] salivary gland sporozoites. Several of these are known to be secreted and/or surface-exposed on sporozoites, including CSP, TRAP, SPELD [
<xref rid="pntd.0005791.ref070" ref-type="bibr">70</xref>
], GEST, sporozoite surface protein 3 (SSP3; PVP01_1427900), hexose transporter (HT; PVP01_0420400) and CelTOS.</p>
<table-wrap id="pntd.0005791.t004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0005791.t004</object-id>
<label>Table 4</label>
<caption>
<title>Putatively surface-exposed proteins on
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites.</title>
</caption>
<alternatives>
<graphic id="pntd.0005791.t004g" xlink:href="pntd.0005791.t004"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Tier
<xref ref-type="table-fn" rid="t004fn001">
<sup>a</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">Gene ID</th>
<th align="left" rowspan="1" colspan="1">Protein</th>
<th align="left" rowspan="1" colspan="1">Protein Description</th>
<th align="left" rowspan="1" colspan="1">Samples ID'd
<xref ref-type="table-fn" rid="t004fn002">
<sup>b</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
.
<italic>vivax</italic>
evidence
<xref ref-type="table-fn" rid="t004fn003">
<sup>c</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
.
<italic>falciparum</italic>
evidence
<xref ref-type="table-fn" rid="t004fn004">
<sup>d</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
.
<italic>yoelii</italic>
evidence
<xref ref-type="table-fn" rid="t004fn005">
<sup>e</sup>
</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">PVP01_0835600</td>
<td align="left" rowspan="1" colspan="1">CSP</td>
<td align="left" rowspan="1" colspan="1">circumsporozoite (CS) protein</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled, Signal, GPI</td>
<td align="left" rowspan="1" colspan="1">Enriched, Labeled</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">PVP01_0938800</td>
<td align="left" rowspan="1" colspan="1">SPELD</td>
<td align="left" rowspan="1" colspan="1">sporozoite surface protein essential for liver stage development, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled, TM</td>
<td align="left" rowspan="1" colspan="1">Enriched, Labeled</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">PVP01_1218700</td>
<td align="left" rowspan="1" colspan="1">TRAP</td>
<td align="left" rowspan="1" colspan="1">thrombospondin-related anonymous protein, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled, TM, Signal</td>
<td align="left" rowspan="1" colspan="1">Enriched, Labeled</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">PVP01_1258000</td>
<td align="left" rowspan="1" colspan="1">GEST</td>
<td align="left" rowspan="1" colspan="1">gamete egress and sporozoite traversal protein, putative</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">Labeled, Signal</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">PVP01_1463200</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">actin</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled</td>
<td align="left" rowspan="1" colspan="1">Enriched, Labeled</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">PVP01_1227100</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">PVP01_0602700</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">PVP01_1212200</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">myosin A, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled</td>
<td align="left" rowspan="1" colspan="1">Enriched, Labeled</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">PVP01_1311000</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">polyubiquitin 5, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">PVP01_0518800</td>
<td align="left" rowspan="1" colspan="1">HSP20</td>
<td align="left" rowspan="1" colspan="1">small heat shock protein HSP20, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">PVP01_1268100</td>
<td align="left" rowspan="1" colspan="1">TPx1</td>
<td align="left" rowspan="1" colspan="1">thioredoxin peroxidase 1, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Labeled</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0303900</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">6-cysteine protein, putative, pseudogene</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Signal, GPI</td>
<td align="left" rowspan="1" colspan="1">NO ORTHOLOG</td>
<td align="left" rowspan="1" colspan="1">NO ORTHOLOG</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0621700</td>
<td align="left" rowspan="1" colspan="1">ADT</td>
<td align="left" rowspan="1" colspan="1">ADP/ATP transporter on adenylate translocase, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">3 TMs</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0934200</td>
<td align="left" rowspan="1" colspan="1">AMA1</td>
<td align="left" rowspan="1" colspan="1">apical membrane antigen 1</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">TM</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1435400</td>
<td align="left" rowspan="1" colspan="1">CelTOS</td>
<td align="left" rowspan="1" colspan="1">cell traversal protein for ookinetes and sporozoites</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">TM</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0532000</td>
<td align="left" rowspan="1" colspan="1">GAPM2</td>
<td align="left" rowspan="1" colspan="1">glideosome associated protein with multiple membrane spans 2, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">5 TMs</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1341900</td>
<td align="left" rowspan="1" colspan="1">GAPM3</td>
<td align="left" rowspan="1" colspan="1">glideosome associated protein with multiple membrane spans 3, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">6 TMs</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1018200</td>
<td align="left" rowspan="1" colspan="1">GAP40</td>
<td align="left" rowspan="1" colspan="1">glideosome-associated protein 40, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">9 TMs</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0716400</td>
<td align="left" rowspan="1" colspan="1">GAP50</td>
<td align="left" rowspan="1" colspan="1">glideosome-associated protein 50, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">TM, Signal</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0505600</td>
<td align="left" rowspan="1" colspan="1">GAMA</td>
<td align="left" rowspan="1" colspan="1">GPI-anchored micronemal antigen</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Signal, GPI</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0716300</td>
<td align="left" rowspan="1" colspan="1">HSP70-2</td>
<td align="left" rowspan="1" colspan="1">heat shock protein 70, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Signal</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0420400</td>
<td align="left" rowspan="1" colspan="1">HT</td>
<td align="left" rowspan="1" colspan="1">hexose transporter</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">12 TMs</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1229700</td>
<td align="left" rowspan="1" colspan="1">LDH</td>
<td align="left" rowspan="1" colspan="1">L-lactate dehydrogenase</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">TM</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0308000</td>
<td align="left" rowspan="1" colspan="1">PLP1</td>
<td align="left" rowspan="1" colspan="1">perforin-like protein 1</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">TM</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1255000</td>
<td align="left" rowspan="1" colspan="1">RON2</td>
<td align="left" rowspan="1" colspan="1">rhoptry neck protein 2</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">TM, Signal</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0307900</td>
<td align="left" rowspan="1" colspan="1">SIAP1</td>
<td align="left" rowspan="1" colspan="1">sporozoite invasion-associated protein 1, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Signal</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1427900</td>
<td align="left" rowspan="1" colspan="1">SSP3</td>
<td align="left" rowspan="1" colspan="1">sporozoite surface protein 3, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">TM, Signal</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0714500</td>
<td align="left" rowspan="1" colspan="1">TRX3</td>
<td align="left" rowspan="1" colspan="1">thioredoxin 3, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">TM</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1132600</td>
<td align="left" rowspan="1" colspan="1">TLP</td>
<td align="left" rowspan="1" colspan="1">TRAP-like protein, putative</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">TM, Signal</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1339600</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">conserved Plasmodium protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">4 TMs</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1455800</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">conserved protein, unknown function</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">5 TMs, GPI</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0710400</td>
<td align="left" rowspan="1" colspan="1">ICP</td>
<td align="left" rowspan="1" colspan="1">inhibitor of cysteine proteases, putative</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">Signal</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_1025800</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">longevity-assurance (LAG1) protein, putative</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">6 TMs</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0948400</td>
<td align="left" rowspan="1" colspan="1">MAEBL</td>
<td align="left" rowspan="1" colspan="1">membrane associated erythrocyte binding-like protein, putative</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">TM, Signal</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">Detected</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0317900</td>
<td align="left" rowspan="1" colspan="1">RALP1</td>
<td align="left" rowspan="1" colspan="1">rhoptry-associated leucine zipper-like protein 1</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">Signal</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PVP01_0929700</td>
<td align="left" rowspan="1" colspan="1">SpdSyn</td>
<td align="left" rowspan="1" colspan="1">spermidine synthase, putative</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">TM</td>
<td align="left" rowspan="1" colspan="1">Enriched</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t004fn001">
<p>
<sup>(a)</sup>
Proteins were assigned priority tiers (1 is highest) based on experimental and theoretical evidence. Tier 1 = protein had predicted characteristics of a surface protein (transmembrane domain (TM), signal peptide, or glycophosphatidylinositol (GPI) anchor) and evidence for incorporation of the biotin label was observed in the identifying mass spectra. Tier 2 = spectral evidence for label only. Tier 3 = TM, signal peptide, or GPI anchor only.</p>
</fn>
<fn id="t004fn002">
<p>
<sup>(b)</sup>
Indicates if protein was identified in one or both of the surface labeled replicate samples.</p>
</fn>
<fn id="t004fn003">
<p>
<sup>(c)</sup>
Evidence used to assign tiers in (a). “Labeled” indicates evidence for incorporation of the biotin label was observed in the identifying mass spectra. Predicted characteristics of surface proteins are listed: transmembrane domain (TM), signal peptide, or glycophosphatidylinositol anchor (GPI).</p>
</fn>
<fn id="t004fn004">
<p>
<sup>(d)</sup>
Evidence for the protein being surface-exposed in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. “Enriched” indicates the protein was significantly more abundant in labeled samples versus unlabeled controls based on statistical analysis from multiple biological replicates. “Detected” indicates that the protein was detected but was not significantly enriched. “-” indicates there is an annotated
<italic>P</italic>
.
<italic>vivax</italic>
ortholog that was not detected.</p>
</fn>
<fn id="t004fn005">
<p>
<sup>(e)</sup>
Evidence for the protein being surface exposed in
<italic>P</italic>
.
<italic>yoelii</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref074" ref-type="bibr">74</xref>
]. “Detected” indicates the protein was detected in either of two biological replicates. Evidence for labeling was not assessed in that experiment. “-” indicates there is an annotated
<italic>P</italic>
.
<italic>vivax</italic>
ortholog that was not detected.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
</sec>
<sec sec-type="conclusions" id="sec017">
<title>Discussion</title>
<p>The sole function of a
<italic>Plasmodium</italic>
sporozoite injected into the skin of the host during a mosquito bite is to find its way to the liver and initiate liver stage development. To achieve this aim, the parasite must be mobile, traverse various tissue barriers, and finally recognize and infect a hepatocyte in the liver. These complex processes rely on interaction of various parasite proteins with the host tissues and represent a bottleneck of
<italic>Plasmodium</italic>
infection, as only small fraction of sporozoites produced in a mosquito makes it to the host liver. Impediment of the parasite-host interaction presents an opportunity to interfere with the parasite life cycle.</p>
<p>Presented here is an effort to identify and characterize the proteins in
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites. While the total number of proteins identified with high confidence is comparable to the most comprehensive analyses of its kind performed on
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>yoelii</italic>
sporozoites [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
], the list of identified proteins presented here is not assumed to be complete. The shotgun proteomics methods for high-throughput proteomic profiling employed here are inherently biased toward highly abundant proteins and are affected by sample complexity and the dynamic range of protein concentrations. These limitations are especially pronounced when analyzing mosquito-stage
<italic>Plasmodium</italic>
parasites. Obtaining sufficient sample material for analysis is difficult, as it requires dissecting hundreds of mosquitoes and extracting the sporozoites from the salivary glands. There is unavoidable loss of sporozoites during the purification process, but this step is absolutely critical, otherwise the signal from contaminating mosquito proteins masks parasite peptides in the mass spectrometer. Assuming that there are more proteins present in sporozoites than detected here, the identification of these proteins will likely require further improvements in techniques for purifying large numbers of sporozoites along with continued improvements in mass spectrometer detection limit and duty cycle.</p>
<p>Previous efforts to catalogue the protein complement of
<italic>Plasmodium</italic>
sporozoites have used laboratory strains, whereas the sporozoites analyzed in this work were obtained from clinical samples isolated from natural infections. Because of the scarcity of the samples, each of the four samples analyzed here (two whole-proteome and two surface-enriched) were different field isolates of
<italic>P</italic>
.
<italic>vivax</italic>
. To account for expected polymorphism among field isolates, the mass spectra were searched against a reference proteome supplemented with protein sequences bearing polymorphisms observed in 32 different Thai field isolates. This analysis showed that 301 proteins in the samples exhibited sequence polymorphisms not found in the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteome. While nearly all of these of proteins could have been identified from conserved peptides present in the reference proteome, knowledge of polymorphisms gained from genomic and transcriptomic analyses of field isolates was critical for accurate analysis of the samples. At a qualitative level, the VK210 and VK247 haplotypes of CSP could be confirmed, and the VK210 whole proteome sample appeared to have contained a mixed infection of at least two different VK210 field isolates. Additionally, it was not possible to detect O-fucosylation of TRAP in some of the samples without the knowledge that the TRAP peptide containing the O-fucosylated Thr can contain an Arg→Lys substitution, a polymorphism that was present in a third of the analyzed field isolate genomes but in neither the
<italic>P</italic>
.
<italic>vivax</italic>
Sal-1 nor the
<italic>P</italic>
.
<italic>vivax</italic>
P01 reference proteomes. Protein quantification by spectral counting revealed important information about the relative abundance of proteins within and between salivary gland sporozoite samples of the same species and across species. The high-throughput proteomics methods employed here require exact knowledge of the protein sequence in order to detect component peptides, thus accurate quantification of proteins bearing amino acid substitutions required knowledge of protein sequence polymorphisms that were not reflected in the reference proteome.</p>
<p>Label-free protein quantification based on spectral counting was used to compare relative protein abundance within and among samples. In addition to comparing the two
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoite proteomes to each other, a union list of identified
<italic>P</italic>
.
<italic>vivax</italic>
proteins was compared with a
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoite dataset obtained from re-analysis of published proteomic data [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
]. The quantitative data was useful for identifying general trends, e.g., highly abundant proteins that were identified in all datasets or proteins that were abundant in one species but whose orthologs were conspicuously absent in another. Identifying a protein in one sample and not the other when comparing two similar samples is common in MS-based proteomics; a protein may not be detected because it is truly absent in the sample, because it is below the detection limit of the instrument, or due to some technical issue such as interference from some other species in the sample or the stochastic sampling of the ion stream by the mass analyzer [
<xref rid="pntd.0005791.ref075" ref-type="bibr">75</xref>
]. In the comparison of the two
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoite samples, the proteins identified in one sample but not the other were primarily low-abundance, suggesting that detection limit was the primary source of differences in proteome coverage between the two samples. Likewise, when the relative abundance of any given protein was compared between the two samples, high-abundance samples showed little deviation from the population mean of a 1:1 ratio, while the deviation tended to increase at lower concentrations. This increasing deviation with decreasing spectral counts is a known phenomenon in spectral counting methods [
<xref rid="pntd.0005791.ref039" ref-type="bibr">39</xref>
,
<xref rid="pntd.0005791.ref044" ref-type="bibr">44</xref>
]. Statistical tests based on independent assessment of protein ratios as well as the population of protein abundances in the samples were used to identify proteins with significantly different protein abundance between samples. When biological replicates are feasible, it is common to employ a paired t-test of protein abundance ratios obtained from spectral counts [
<xref rid="pntd.0005791.ref038" ref-type="bibr">38</xref>
]. When biological replicates are not available, a conservative likelihood ratio test, the G-test, can be applied to the pooled spectral counts from LC-MS technical replicates [
<xref rid="pntd.0005791.ref040" ref-type="bibr">40</xref>
,
<xref rid="pntd.0005791.ref044" ref-type="bibr">44</xref>
]. The advantage of this test for spectral counting is that at low spectral counts where quantification error is high, only the largest protein ratios achieve significance. However, at high spectral counts, even protein ratios near 1:1 can be assigned significance. Based on the observation that the population of log-transformed abundance ratios of proteins detected in both samples was Gaussian, it could be assumed that only proteins at the extreme ends of the distribution were truly significant, and the complementary error function provided a
<italic>p</italic>
-value as a metric for this deviation. In conjunction with the G-test to eliminate spuriously large protein ratios obtained from low spectral counts, it was possible to identify a small number of proteins that may have had truly different protein expression between the two
<italic>P</italic>
.
<italic>vivax</italic>
samples (though technical sources of variance cannot be ruled out). Conversely, the analysis showed that the majority of identified proteins exhibited similar protein expression levels in the field isolates examined. Such observations are of value when considering targets for novel vaccines or therapeutics. The same quantitative approach used to compare the two
<italic>P</italic>
.
<italic>vivax</italic>
samples also enabled comparison of the
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
samples and demonstrated that for most proteins identified in one species, the ortholog was identified at a similar relative abundance in the other species, especially among high-abundance proteins. In addition to proteins identified in each species for which there is no annotated ortholog in the other species, the significance thresholds provided by the statistical tests identified a number of proteins with putatively different expression in the two species that warrant further exploration, including proteins identified in one species whose ortholog was not detected at all in the other. Further investigation will be required to determine if these sorts of proteins are truly expressed at greater levels in
<italic>P</italic>
.
<italic>vivax</italic>
compared to
<italic>P</italic>
.
<italic>falciparum</italic>
and whether they may play a specialized role in
<italic>P</italic>
.
<italic>vivax</italic>
biology.</p>
<p>Examining the curated functional annotation of the
<italic>Plasmodium</italic>
proteome revealed that many of the proteins that are known or predicted to be involved in invasion in blood stages or in sporozoites of different
<italic>Plasmodium</italic>
species are also expressed in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites. Multiple annotation sources were combined in order to compile a list of dense granule, microneme, rhoptry, rhoptry neck, and glideosome proteins, and protein detection was compared between
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites (
<xref ref-type="fig" rid="pntd.0005791.g004">Fig 4</xref>
,
<xref ref-type="supplementary-material" rid="pntd.0005791.s020">S10 Table</xref>
). There was a very high overlap in the invasion-related proteins detected in the two species, and the handful of proteins detected in only one species or the other were detected only at low abundance. For example, the most abundant of these invasion-related proteins identified in
<italic>P</italic>
.
<italic>vivax</italic>
but not
<italic>P</italic>
.
<italic>falciparum</italic>
was the micronemal protein merozoite TRAP-like protein (MTRAP; PVP01_0613800). This protein was confidently identified in both of the
<italic>P</italic>
.
<italic>vivax</italic>
samples analyzed here, though only in the second quartile of relative abundance. Its syntenic ortholog (PF3D7_1028700) was not among the 2010 proteins identified from
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites, but the transcript of MTRAP has previously been detected in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref076" ref-type="bibr">76</xref>
], suggesting that the failure to detect this protein by proteomics may reflect limit of detection rather than true biological difference between the two
<italic>Plasmodium</italic>
species.</p>
<fig id="pntd.0005791.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0005791.g004</object-id>
<label>Fig 4</label>
<caption>
<title>Comparison Invasion-related proteins identified in
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites.</title>
<p>Proteins identified from proteomic analyses of
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites were compared against a compendium of known and putative invasion-related
<italic>Plasmodium</italic>
proteins (
<xref ref-type="supplementary-material" rid="pntd.0005791.s020">S10 Table</xref>
). Proportional Venn diagrams show the number of proteins in each category identified only in
<italic>P</italic>
.
<italic>vivax</italic>
(cyan), only in
<italic>P</italic>
.
<italic>falciparum</italic>
(orange), in both species (green) and neither species (gray). The total number of proteins identified in each species and the total number of proteins in the category are listed below each diagram.</p>
</caption>
<graphic xlink:href="pntd.0005791.g004"></graphic>
</fig>
<p>In addition to detecting the proteins present in
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites, the data were analyzed for evidence of post-translational modifications, specifically phosphorylation and glycosylation. Protein phosphorylation is of interest for development of antimalarial drugs [
<xref rid="pntd.0005791.ref077" ref-type="bibr">77</xref>
,
<xref rid="pntd.0005791.ref078" ref-type="bibr">78</xref>
] because the reversible modification is involved in regulation of essentially every aspect of the complex
<italic>Plasmodium</italic>
life cycle, yet the parasite and the mammalian host are sufficiently phylogenetically divergent that many
<italic>Plasmodium</italic>
protein kinases can, in theory, be selectively inhibited [
<xref rid="pntd.0005791.ref078" ref-type="bibr">78</xref>
,
<xref rid="pntd.0005791.ref079" ref-type="bibr">79</xref>
]. Although the limited amount of starting material available for this work precluded phosphopeptide enrichment, 139 proteins were identified with evidence of phosphorylation, and the orthologs of 48 of these were also phosphorylated in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites. The most prevalent functional class of proteins exhibiting phosphorylation was proteins involved in transcriptional and translational regulation, including DNA- and RNA-binding proteins and transcription and translation factors, suggesting active phosphorylation-mediated regulation of gene expression in this stage. Many of these proteins were also among the other prevalent class of proteins, those with ATP binding activity. Components of the gliding motility machinery were also well-represented among the observed phosphoproteins, including MyoA, the glideosome-associated proteins GAP40 and GAP45, several inner membrane complex (IMC) proteins, and the calcium-dependent protein kinase CDPK1. A phosphoproteomic analysis of
<italic>P</italic>
.
<italic>falciparum</italic>
schizonts [
<xref rid="pntd.0005791.ref058" ref-type="bibr">58</xref>
] found evidence that phosphorylation helps to regulate the glideosome machinery, and
<italic>in vitro</italic>
work confirmed that GAP45, MyoA, and CDPK1, which are proteins important for motility of the merozoites that emerge from blood-stage schizonts, are substrates of protein kinase A. That these proteins are also phosphorylated in sporozoites suggests that phosphorylation also plays a role in regulating gliding motility in sporozoites. Recently, a glideosome-associated connector (GAC) protein has been identified which links the adhesin MIC2 (the
<italic>Toxoplasma gondii</italic>
ortholog of
<italic>Plasmodium</italic>
TRAP) to F-actin and is essential for motility and invasion [
<xref rid="pntd.0005791.ref080" ref-type="bibr">80</xref>
].
<italic>P</italic>
.
<italic>vivax</italic>
GAC (PVP01_1110200) was in the top decile of protein abundance in the samples analyzed here. Over half of the GAC in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites was phosphorylated at Ser10 or Ser15 on the protein N-terminus, and approximately 30% of the protein was phosphorylated at Ser1495 or Ser1496 on a section bearing homology to a protein-binding armadillo-type fold (ARM). Ser1496 on the same peptide in
<italic>P</italic>
.
<italic>falciparum</italic>
was approximately 38% phosphorylated in the salivary gland sporozoite data analyzed here. Previous phosphoproteomic analyses identified eight different phosphosites on GAC in
<italic>P</italic>
.
<italic>falciparum</italic>
blood stages [
<xref rid="pntd.0005791.ref056" ref-type="bibr">56</xref>
<xref rid="pntd.0005791.ref060" ref-type="bibr">60</xref>
], several of them on regions of conserved sequence between
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
. The ARM phosphosite seen in
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites was also observed in
<italic>P</italic>
.
<italic>falciparum</italic>
blood stages, but the N-terminal phosphosites were not. AMA1 plays a role in adhesion of merozoites to erythrocytes, though its role is dispensable for rodent
<italic>Plasmodium</italic>
sporozoite invasion of hepatocytes [
<xref rid="pntd.0005791.ref081" ref-type="bibr">81</xref>
]. The role of AMA1 in human-infecting
<italic>Plasmodium</italic>
sporozoites is currently undetermined. The protein has a single transmembrane domain near its C-terminus that serves as an anchor to the parasite plasma membrane. Previous proteomic analyses have shown that several residues on the cytoplasmic tail of AMA1 are phosphorylated in blood stage parasites [
<xref rid="pntd.0005791.ref056" ref-type="bibr">56</xref>
<xref rid="pntd.0005791.ref060" ref-type="bibr">60</xref>
], and mutating these residues to prevent phosphorylation resulted in a defect in invasion of erythrocytes [
<xref rid="pntd.0005791.ref082" ref-type="bibr">82</xref>
]. AMA1 in
<italic>P</italic>
.
<italic>falciparum</italic>
shares an identical sequence with
<italic>P</italic>
.
<italic>vivax</italic>
at the C-terminus. In the
<italic>P</italic>
.
<italic>vivax</italic>
sporozoite samples analyzed here, the cytoplasmic tail of AMA1 was observed with a single phosphorylation at Ser551, Thr553 or Thr554 (corresponding to Ser610, Thr612 and Thr613 in
<italic>P</italic>
.
<italic>falciparum</italic>
). In the
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoite data re-analyzed here, nearby Ser588 on the cytoplasmic tail was phosphorylated. In the
<italic>P</italic>
.
<italic>falciparum</italic>
and both
<italic>P</italic>
.
<italic>vivax</italic>
sporozoite samples, the peptides containing the respective phosphosites were never observed in unmodified form, suggesting AMA1 is constitutively phosphorylated in salivary gland sporozoites. These conserved residues have been observed to be variably phosphorylated in AMA1 in
<italic>P</italic>
.
<italic>falciparum</italic>
blood stages [
<xref rid="pntd.0005791.ref056" ref-type="bibr">56</xref>
,
<xref rid="pntd.0005791.ref059" ref-type="bibr">59</xref>
,
<xref rid="pntd.0005791.ref060" ref-type="bibr">60</xref>
]. These results suggest that phosphorylation of AMA1 plays a role in regulating the protein’s function in sporozoites, perhaps by mediating attachment to the glideosome.</p>
<p>Importantly, many of the phosphoproteins identified in the sporozoite samples have not been observed to be phosphorylated in the handful of blood-stage phosphoproteomes published to-date, including several proteins known to be specific to the sporozoite stage. Among these stage-specific phosphoproteins are proteins known to be located on the sporozoite surface. For example, it has been previously determined that sporozoite surface protein 3 (SSP3; PVP01_1427900, PF3D7_0812300) is found on the surface of
<italic>P</italic>
.
<italic>yoelii</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
,
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
,
<xref rid="pntd.0005791.ref083" ref-type="bibr">83</xref>
], and here we show that it is likely surface-exposed in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites as well. The role of SSP3 is not fully understood, but initial work suggests that it plays a role in gliding motility [
<xref rid="pntd.0005791.ref083" ref-type="bibr">83</xref>
]. Approximately 30% of SSP3 in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites was phosphorylated at Ser440 near the C-terminus of the protein. A single predicted transmembrane domain at residues 402–424 is likely the point where the protein is anchored to the membrane, placing the phosphosite on the cytosolic portion of the protein. Approximately 40% of SSP3 in
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites was similarly phosphorylated at the C-terminal cytoplasmic tail at either or both of two Ser residues, Ser456 (the
<italic>P</italic>
.
<italic>falciparum</italic>
counterpart of the
<italic>P</italic>
.
<italic>vivax</italic>
S440 phosphosite) or nearby Ser459. Further experimentation will be required to elucidate any role phosphorylation might play in the function of this and other phosphorylated sporozoite surface proteins, as well any effect on their antigenicity.</p>
<p>It has been recently shown that the major sporozoite surface proteins CSP and TRAP are glycosylated at their TSR domains in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
] and the data presented here now show that these proteins are also glycosylated in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites. Strikingly, both CSP and TRAP in
<italic>P</italic>
.
<italic>vivax</italic>
were modified only with a single deoxyhexose (presumably O-fucose), whereas in
<italic>P</italic>
.
<italic>falciparum</italic>
, CSP was observed with either a deoxyhexose or a deoxyhexose-hexose disaccharide (likely O-fucose-β-1,3-glucose), and TRAP was observed with the O-linked mono- or disaccharide as well as with a C-linked hexose (likely C-mannose). The reason for this difference is not immediately clear. The monosaccharide-modified versions of TRAP and CSP were the dominant forms in both
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites, and a putative O-fucosyltransferase POFUT2 (PF3D7_0909200, PVP01_0707700), which could hypothetically add O-fucose to TSR domains, was observed to be expressed in sporozoites of both species. In
<italic>P</italic>
.
<italic>falciparum</italic>
sporozoites, the dissacharide-modified versions of CSP and TRAP were present at lower abundance than the monosaccharide-modified versions, so it is conceivable that in the
<italic>P</italic>
.
<italic>vivax</italic>
samples the disaccharide-modified versions were present but at concentrations below the detection limit. It is also possible that the necessary glycosyltransferase was not expressed. While no putative β-1,3-glucosyltransferase for adding glucose to O-fucose has been identified in
<italic>Plasmodium</italic>
, PfPIESP1 (PF3D7_0310400) has been identified as having sequence homology with human β-1,3-glucosyltransferase and possesses putative glycosyltransferase domains [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. PIESP1 was expressed in
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites [
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
], but its
<italic>P</italic>
.
<italic>vivax</italic>
homolog (PVP01_0829800) was barely detected in the
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites analyzed here (identified by a only two PSMs in one sample and not at all in the other). The absence of C-linked hexose on TRAP in the
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites analyzed here was unequivocal. Unlike O-linked glycans, C-mannose is not gas-phase labile and withstands collision-induced dissociation, giving rise to peptide fragment ions that precisely identify the residue to which the modification is attached. Furthermore, some portion of the C-mannose undergoes cross-ring fragmentation that gives rise to neutral loss species that further corroborate the identity of the C-mannose [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
]. The glycosylated TRAP peptide was identified by dozens of spectra in the
<italic>P</italic>
.
<italic>vivax</italic>
samples, none of which contained evidence for modified Trp. A putative C-mannosyltransferase (PF3D7_0806200, PVP01_0114300) that could hypothetically add C-mannose to TSR domains was expressed in both
<italic>P</italic>
.
<italic>falciparum</italic>
[
<xref rid="pntd.0005791.ref019" ref-type="bibr">19</xref>
] and
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites, though this function has yet to be verified experimentally. Interestingly, this disparity in glycosylation was also observed in TRAP expressed in mammalian cells:
<italic>Pf</italic>
TRAP was C-mannosylated but
<italic>Pv</italic>
TRAP was not [
<xref rid="pntd.0005791.ref055" ref-type="bibr">55</xref>
]. It is notable that in
<italic>Pv</italic>
TRAP, the sequence where it would be expected to find C-mannosylation contains prolines that could affect the secondary structure of the motif and disrupt recognition by the glycosyltransferase. Further studies will be required to determine whether the observed differences in CSP and TRAP glycosylation between
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
are due to differences in enzyme function or some other technical or biological reason. Importantly for design of vaccine antigens, O-fucosylation of CSP and TRAP almost certainly affect antigenicity of the proteins. Structural studies of these proteins have shown that the glycans project above the protein surface and yet have structurally constrained orientations [
<xref rid="pntd.0005791.ref054" ref-type="bibr">54</xref>
,
<xref rid="pntd.0005791.ref055" ref-type="bibr">55</xref>
,
<xref rid="pntd.0005791.ref084" ref-type="bibr">84</xref>
], and studies of the conserved TSR domain in other species have shown that fucosylated amino acids may be viewed as surrogate amino acids [
<xref rid="pntd.0005791.ref085" ref-type="bibr">85</xref>
], so the protein and carbohydrate elements create unique combinatorial epitopes.</p>
<p>A chemical labeling approach was used to enrich proteins that are surface-exposed on salivary gland sporozoites. As previously discussed [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
,
<xref rid="pntd.0005791.ref073" ref-type="bibr">73</xref>
], this surface biotinylation approach is known to produce spurious results due to labeling of cytosolic proteins presumably arising from a portion of sporozoites that exhibit compromised plasma membranes, an inevitable byproduct of the excessive sample handling involved in dissecting, purifying, and labeling the parasites. The data presented here were curated with theoretical and experimental information to select those identified proteins that are the most likely to be truly surface-exposed and proteins were assigned priority tiers based on this evidence in order to identify high-quality candidates for future efforts to validate and test these proteins as vaccine antigens. This approach is supported by the fact that the list of high-quality candidates includes several known sporozoite surface proteins, including CSP, TRAP, SSP3, and SPELD. Additionally, cross-referencing the results with similar analyses of
<italic>P</italic>
.
<italic>falciparum</italic>
[
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
] and
<italic>P</italic>
.
<italic>yoelii</italic>
[
<xref rid="pntd.0005791.ref074" ref-type="bibr">74</xref>
] salivary gland sporozoites revealed a large overlap in the proteins that the technique identified across species. A notable exception was a 6-Cys protein (PVP01_0303900) that has no ortholog in
<italic>P</italic>
.
<italic>falciparum</italic>
or
<italic>P</italic>
.
<italic>yoelii</italic>
but does have syntenic orthologs in the more closely related malaria parasites
<italic>P</italic>
.
<italic>knowlesi</italic>
and
<italic>P</italic>
.
<italic>cynomolgi</italic>
. In other
<italic>Plasmodium</italic>
species, other 6-cys proteins are known to be found on the sporozoite surface and to play a role in liver invasion [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
,
<xref rid="pntd.0005791.ref086" ref-type="bibr">86</xref>
]. Future studies will determine what role this putative surface protein may have in sporozoites and if it will be useful as a vivax-specific antigen.</p>
<p>The putatively surface-exposed proteins identified here as well as in
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>yoelii</italic>
sporozoites included known cytosolic proteins. While there remains the possibility that these results represent experimental artifact as discussed, there is increasing evidence that cytosolic proteins can have “moonlighting” roles and be found on the cell surface of
<italic>Plasmodium</italic>
and other organisms. For example, the chaperone HSP70-2 (BiP) has been shown to localize at the surface of certain cell types in other organisms [
<xref rid="pntd.0005791.ref087" ref-type="bibr">87</xref>
], and HSP70-2/BiP (PVP01_0716300, PF3D7_0917900) was identified as putatively surface-exposed in both
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites. Another protein classified as a heat shock protein, HSP20, has been identified by biotinylation of sporozoite surface proteins in both
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites. This protein has been demonstrated to be surface-exposed in
<italic>P</italic>
.
<italic>berghei</italic>
salivary gland sporozoites by immunoelectron microscopy [
<xref rid="pntd.0005791.ref088" ref-type="bibr">88</xref>
]. Other intracellular proteins repeatedly identified as surface-exposed by the surface labeling technique include components of the gliding motility machinery, including actin, MyoA, glideosome-associated proteins (GAP), and inner membrane complex (IMC) proteins. Immunofluorescence assays of un-permeabilized
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites showed that the glideosome proteins GAP45 and MTIP were accessible to antibodies during gliding [
<xref rid="pntd.0005791.ref020" ref-type="bibr">20</xref>
], though whether this was due to relocation of the proteins to the sporozoite surface or permeability of the plasma membrane in gliding sporozoites is not known. Similarly, immunofluorescence identified actin, which is part of the gliding machinery, at the ookinete surface [
<xref rid="pntd.0005791.ref071" ref-type="bibr">71</xref>
]. Another glideosome-associated protein, GAP50, has been shown to relocate to the surface of gametes where it binds complement regulator proteins and inactivates human complement in the blood meal that would otherwise induce lysis of the parasite [
<xref rid="pntd.0005791.ref089" ref-type="bibr">89</xref>
]. Taken together, this information suggests that even “known” intracellular proteins identified by this surface labeling method can reflect truly surface-exposed proteins and warrant further investigation.</p>
<p>In conclusion, the MS-based proteomics methods employed here enabled the most comprehensive identification to-date of proteins and their post-translational modifications present in
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites. Combined with the identification of putatively surface-exposed proteins of
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites, these results suggest that the complement of surface-exposed proteins on salivary gland sporozoites may contain many unexpected as well as post-translationally modified proteins that warrant further experimentation to verify their localization and assess their suitability as vaccine antigens.</p>
</sec>
<sec sec-type="supplementary-material" id="sec018">
<title>Supporting information</title>
<supplementary-material content-type="local-data" id="pntd.0005791.s001">
<label>S1 File</label>
<caption>
<title>Extended methods.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pntd.0005791.s001.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s002">
<label>S2 File</label>
<caption>
<title>
<italic>P</italic>
.
<italic>vivax</italic>
Sal-1 proteins with variant sequences.</title>
<p>All
<italic>P</italic>
.
<italic>vivax</italic>
proteins identified from DNA-seq and RNA-seq analyses of Thai field isolates whose protein sequences differ from the
<italic>P</italic>
.
<italic>vivax</italic>
Sal-1 reference proteome. File is in protein fasta format.</p>
<p>(ZIP)</p>
</caption>
<media xlink:href="pntd.0005791.s002.zip">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s003">
<label>S1 Fig</label>
<caption>
<title>Distributions of NSAF values of identified
<italic>P</italic>
.
<italic>vivax</italic>
proteins.</title>
<p>(PDF)</p>
</caption>
<media xlink:href="pntd.0005791.s003.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s004">
<label>S2 Fig</label>
<caption>
<title>Distributions of NSAF values of identified
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
proteins.</title>
<p>(PDF)</p>
</caption>
<media xlink:href="pntd.0005791.s004.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s005">
<label>S3 Fig</label>
<caption>
<title>Mass spectral evidence for circumsporozoite protein (CSP) haplotype.</title>
<p>(PDF)</p>
</caption>
<media xlink:href="pntd.0005791.s005.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s006">
<label>S4 Fig</label>
<caption>
<title>Mass spectrometry reveals sequence polymorphisms in thrombospondin-related anonymous protein (TRAP).</title>
<p>(PDF)</p>
</caption>
<media xlink:href="pntd.0005791.s006.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s007">
<label>S5 Fig</label>
<caption>
<title>Evidence for glycosylation of CSP in
<italic>P</italic>
.
<italic>vivax</italic>
VK210 salivary gland sporozoites.</title>
<p>(PDF)</p>
</caption>
<media xlink:href="pntd.0005791.s007.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s008">
<label>S6 Fig</label>
<caption>
<title>Evidence for glycosylation of CSP in
<italic>P</italic>
.
<italic>vivax</italic>
VK247 salivary gland sporozoites.</title>
<p>(PDF)</p>
</caption>
<media xlink:href="pntd.0005791.s008.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s009">
<label>S7 Fig</label>
<caption>
<title>Evidence for glycosylation of TRAP in
<italic>P</italic>
.
<italic>vivax</italic>
VK210 salivary gland sporozoites.</title>
<p>(PDF)</p>
</caption>
<media xlink:href="pntd.0005791.s009.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s010">
<label>S8 Fig</label>
<caption>
<title>Evidence for glycosylation of TRAP in
<italic>P</italic>
.
<italic>vivax</italic>
VK247 salivary gland sporozoites.</title>
<p>(PDF)</p>
</caption>
<media xlink:href="pntd.0005791.s010.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s011">
<label>S1 Table</label>
<caption>
<title>Extended LC-MS methods parameters.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s011.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s012">
<label>S2 Table</label>
<caption>
<title>Proteins identified from whole proteome analysis of
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s012.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s013">
<label>S3 Table</label>
<caption>
<title>Comparison of proteins identified from whole proteome analysis of
<italic>P</italic>
.
<italic>falciparum</italic>
and
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s013.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s014">
<label>S4 Table</label>
<caption>
<title>Frequency of protein sequence polymorphisms in Thai
<italic>P</italic>
.
<italic>vivax</italic>
strains.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s014.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s015">
<label>S5 Table</label>
<caption>
<title>Protein sequence variants detected in
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s015.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s016">
<label>S6 Table</label>
<caption>
<title>Phosphoproteins identified in
<italic>P</italic>
.
<italic>vivax</italic>
and
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s016.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s017">
<label>S7 Table</label>
<caption>
<title>Phosphorylated peptides identified from mass spectrometric analysis of
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s017.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s018">
<label>S8 Table</label>
<caption>
<title>Phosphorylated peptides identified from mass spectrometric analysis of
<italic>P</italic>
.
<italic>falciparum</italic>
salivary gland sporozoites.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s018.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s019">
<label>S9 Table</label>
<caption>
<title>All proteins identified from surface labeling of live
<italic>P</italic>
.
<italic>vivax</italic>
salivary gland sporozoites with biotin.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s019.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0005791.s020">
<label>S10 Table</label>
<caption>
<title>Identification of invasion proteins in salivary gland sporozoites.</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pntd.0005791.s020.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We would like to thank the dedicated field sample collection and insectary staff at Mahidol Vivax Research Center for providing
<italic>P</italic>
.
<italic>vivax</italic>
sporozoites, and Matt Fishbaugher for assistance with mosquito dissection and sporozoite purification.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pntd.0005791.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Adekunle</surname>
<given-names>AI</given-names>
</name>
,
<name>
<surname>Pinkevych</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>McGready</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Luxemburger</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>White</surname>
<given-names>LJ</given-names>
</name>
,
<name>
<surname>Nosten</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
<article-title>Modeling the dynamics of Plasmodium vivax infection and hypnozoite reactivation in vivo</article-title>
.
<source>PLoS Negl Trop Dis</source>
.
<year>2015</year>
;
<volume>9</volume>
(
<issue>3</issue>
):
<fpage>e0003595</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.pntd.0003595">10.1371/journal.pntd.0003595</ext-link>
</comment>
<pub-id pub-id-type="pmid">25780913</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>NJ</given-names>
</name>
.
<article-title>Determinants of relapse periodicity in Plasmodium vivax malaria</article-title>
.
<source>Malar</source>
J.
<year>2011</year>
;
<volume>10</volume>
:
<fpage>297</fpage>
Epub 2011/10/13.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/1475-2875-10-297">10.1186/1475-2875-10-297</ext-link>
</comment>
<pub-id pub-id-type="pmid">21989376</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Price</surname>
<given-names>RN</given-names>
</name>
,
<name>
<surname>Douglas</surname>
<given-names>NM</given-names>
</name>
,
<name>
<surname>Anstey</surname>
<given-names>NM</given-names>
</name>
.
<article-title>New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance</article-title>
.
<source>Curr Opin Infect Dis</source>
.
<year>2009</year>
;
<volume>22</volume>
(
<issue>5</issue>
):
<fpage>430</fpage>
<lpage>5</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1097/QCO.0b013e32832f14c1">10.1097/QCO.0b013e32832f14c1</ext-link>
</comment>
<pub-id pub-id-type="pmid">19571748</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>NJ</given-names>
</name>
,
<name>
<surname>Imwong</surname>
<given-names>M</given-names>
</name>
.
<article-title>Relapse</article-title>
.
<source>Advances in parasitology</source>
.
<year>2012</year>
;
<volume>80</volume>
:
<fpage>113</fpage>
<lpage>50</lpage>
. Epub 2012/12/04.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/B978-0-12-397900-1.00002-5">10.1016/B978-0-12-397900-1.00002-5</ext-link>
</comment>
<pub-id pub-id-type="pmid">23199487</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bousema</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Drakeley</surname>
<given-names>C</given-names>
</name>
.
<article-title>Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination</article-title>
.
<source>Clin Microbiol Rev</source>
.
<year>2011</year>
;
<volume>24</volume>
(
<issue>2</issue>
):
<fpage>377</fpage>
<lpage>410</lpage>
. Epub 2011/04/13.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/CMR.00051-10">10.1128/CMR.00051-10</ext-link>
</comment>
<pub-id pub-id-type="pmid">21482730</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wells</surname>
<given-names>TN</given-names>
</name>
,
<name>
<surname>Burrows</surname>
<given-names>JN</given-names>
</name>
,
<name>
<surname>Baird</surname>
<given-names>JK</given-names>
</name>
.
<article-title>Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination</article-title>
.
<source>Trends in parasitology</source>
.
<year>2010</year>
;
<volume>26</volume>
(
<issue>3</issue>
):
<fpage>145</fpage>
<lpage>51</lpage>
. Epub 2010/02/06.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.pt.2009.12.005">10.1016/j.pt.2009.12.005</ext-link>
</comment>
<pub-id pub-id-type="pmid">20133198</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Baird</surname>
<given-names>JK</given-names>
</name>
.
<article-title>Eliminating malaria—all of them</article-title>
.
<source>Lancet</source>
.
<year>2010</year>
;
<volume>376</volume>
(
<issue>9756</issue>
):
<fpage>1883</fpage>
<lpage>5</lpage>
. Epub 2010/11/03.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/S0140-6736(10)61494-8">10.1016/S0140-6736(10)61494-8</ext-link>
</comment>
<pub-id pub-id-type="pmid">21035840</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>John</surname>
<given-names>GK</given-names>
</name>
,
<name>
<surname>Douglas</surname>
<given-names>NM</given-names>
</name>
,
<name>
<surname>von Seidlein</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Nosten</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Baird</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>White</surname>
<given-names>NJ</given-names>
</name>
,
<etal>et al</etal>
<article-title>Primaquine radical cure of Plasmodium vivax: a critical review of the literature</article-title>
.
<source>Malar J</source>
.
<year>2012</year>
;
<volume>11</volume>
:
<fpage>280</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/1475-2875-11-280">10.1186/1475-2875-11-280</ext-link>
</comment>
<pub-id pub-id-type="pmid">22900786</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bennett</surname>
<given-names>JW</given-names>
</name>
,
<name>
<surname>Pybus</surname>
<given-names>BS</given-names>
</name>
,
<name>
<surname>Yadava</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Tosh</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Sousa</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>McCarthy</surname>
<given-names>WF</given-names>
</name>
,
<etal>et al</etal>
<article-title>Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria</article-title>
.
<source>N Engl J Med</source>
.
<year>2013</year>
;
<volume>369</volume>
(
<issue>14</issue>
):
<fpage>1381</fpage>
<lpage>2</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1056/NEJMc1301936">10.1056/NEJMc1301936</ext-link>
</comment>
<pub-id pub-id-type="pmid">24088113</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Doolan</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Hoffman</surname>
<given-names>SL</given-names>
</name>
.
<article-title>Pre-erythrocytic-stage immune effector mechanisms in Plasmodium spp. infections</article-title>
.
<source>Philosophical transactions of the Royal Society of London Series B, Biological sciences</source>
.
<year>1997</year>
;
<volume>352</volume>
(
<issue>1359</issue>
):
<fpage>1361</fpage>
<lpage>7</lpage>
. Epub 1997/11/14.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1098/rstb.1997.0121">10.1098/rstb.1997.0121</ext-link>
</comment>
<pub-id pub-id-type="pmid">9355128</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Arevalo-Herrera</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Vasquez-Jimenez</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Lopez-Perez</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Vallejo</surname>
<given-names>AF</given-names>
</name>
,
<name>
<surname>Amado-Garavito</surname>
<given-names>AB</given-names>
</name>
,
<name>
<surname>Cespedes</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
<article-title>Protective Efficacy of Plasmodium vivax Radiation-Attenuated Sporozoites in Colombian Volunteers: A Randomized Controlled Trial</article-title>
.
<source>PLoS neglected tropical diseases</source>
.
<year>2016</year>
;
<volume>10</volume>
(
<issue>10</issue>
):
<fpage>e0005070</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.pntd.0005070">10.1371/journal.pntd.0005070</ext-link>
</comment>
<pub-id pub-id-type="pmid">27760143</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Regules</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>JF</given-names>
</name>
,
<name>
<surname>Ockenhouse</surname>
<given-names>CF</given-names>
</name>
.
<article-title>The RTS,S vaccine candidate for malaria</article-title>
.
<source>Expert Rev Vaccines</source>
.
<year>2011</year>
;
<volume>10</volume>
(
<issue>5</issue>
):
<fpage>589</fpage>
<lpage>99</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1586/erv.11.57">10.1586/erv.11.57</ext-link>
</comment>
<pub-id pub-id-type="pmid">21604980</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bennett</surname>
<given-names>JW</given-names>
</name>
,
<name>
<surname>Yadava</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Tosh</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Sattabongkot</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Komisar</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Ware</surname>
<given-names>LA</given-names>
</name>
,
<etal>et al</etal>
<article-title>Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy</article-title>
.
<source>PLoS neglected tropical diseases</source>
.
<year>2016</year>
;
<volume>10</volume>
(
<issue>2</issue>
):
<fpage>e0004423</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.pntd.0004423">10.1371/journal.pntd.0004423</ext-link>
</comment>
<pub-id pub-id-type="pmid">26919472</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Amino</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Mueller</surname>
<given-names>I</given-names>
</name>
.
<article-title>Theoretical Implications of a Pre-Erythrocytic Plasmodium vivax Vaccine for Preventing Relapses</article-title>
.
<source>Trends Parasitol</source>
.
<year>2017</year>
;
<volume>33</volume>
(
<issue>4</issue>
):
<fpage>260</fpage>
<lpage>3</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.pt.2016.12.011">10.1016/j.pt.2016.12.011</ext-link>
</comment>
<pub-id pub-id-type="pmid">28077251</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yadava</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Waters</surname>
<given-names>NC</given-names>
</name>
.
<article-title>Rationale for Further Development of a Vaccine Based on the Circumsporozoite Protein of Plasmodium vivax</article-title>
.
<source>PLoS Negl Trop Dis</source>
.
<year>2017</year>
;
<volume>11</volume>
(
<issue>1</issue>
):
<fpage>e0005164</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.pntd.0005164">10.1371/journal.pntd.0005164</ext-link>
</comment>
<pub-id pub-id-type="pmid">28081149</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Florens</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Washburn</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Raine</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Anthony</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>Grainger</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Haynes</surname>
<given-names>JD</given-names>
</name>
,
<etal>et al</etal>
<article-title>A proteomic view of the Plasmodium falciparum life cycle</article-title>
.
<source>Nature</source>
.
<year>2002</year>
;
<volume>419</volume>
(
<issue>6906</issue>
):
<fpage>520</fpage>
<lpage>6</lpage>
. Epub 2002/10/09.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/nature01107">10.1038/nature01107</ext-link>
</comment>
<pub-id pub-id-type="pmid">12368866</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lasonder</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Janse</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>van Gemert</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Mair</surname>
<given-names>GR</given-names>
</name>
,
<name>
<surname>Vermunt</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Douradinha</surname>
<given-names>BG</given-names>
</name>
,
<etal>et al</etal>
<article-title>Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity</article-title>
.
<source>PLoS Pathog</source>
.
<year>2008</year>
;
<volume>4</volume>
(
<issue>10</issue>
):
<fpage>e1000195</fpage>
Epub 2008/11/01.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.ppat.1000195">10.1371/journal.ppat.1000195</ext-link>
</comment>
<pub-id pub-id-type="pmid">18974882</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hall</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Karras</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Raine</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Carlton</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Kooij</surname>
<given-names>TW</given-names>
</name>
,
<name>
<surname>Berriman</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses</article-title>
.
<source>Science</source>
.
<year>2005</year>
;
<volume>307</volume>
(
<issue>5706</issue>
):
<fpage>82</fpage>
<lpage>6</lpage>
. Epub 2005/01/08.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1126/science.1103717">10.1126/science.1103717</ext-link>
</comment>
<pub-id pub-id-type="pmid">15637271</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lindner</surname>
<given-names>SE</given-names>
</name>
,
<name>
<surname>Swearingen</surname>
<given-names>KE</given-names>
</name>
,
<name>
<surname>Harupa</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Vaughan</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Sinnis</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Moritz</surname>
<given-names>RL</given-names>
</name>
,
<etal>et al</etal>
<article-title>Total and putative surface proteomics of malaria parasite salivary gland sporozoites</article-title>
.
<source>Mol Cell Proteomics</source>
.
<year>2013</year>
;
<volume>12</volume>
(
<issue>5</issue>
):
<fpage>1127</fpage>
<lpage>43</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/mcp.M112.024505">10.1074/mcp.M112.024505</ext-link>
</comment>
<pub-id pub-id-type="pmid">23325771</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Swearingen</surname>
<given-names>KE</given-names>
</name>
,
<name>
<surname>Lindner</surname>
<given-names>SE</given-names>
</name>
,
<name>
<surname>Shi</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Shears</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Harupa</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Hopp</surname>
<given-names>CS</given-names>
</name>
,
<etal>et al</etal>
<article-title>Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics</article-title>
.
<source>PLoS Pathog</source>
.
<year>2016</year>
;
<volume>12</volume>
(
<issue>4</issue>
):
<fpage>e1005606</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.ppat.1005606">10.1371/journal.ppat.1005606</ext-link>
</comment>
<pub-id pub-id-type="pmid">27128092</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kennedy</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Fishbaugher</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Vaughan</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Patrapuvich</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Boonhok</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Yimamnuaychok</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
<article-title>A rapid and scalable density gradient purification method for Plasmodium sporozoites</article-title>
.
<source>Malar J</source>
.
<year>2012</year>
;
<volume>11</volume>
:
<fpage>421</fpage>
Epub 2012/12/19.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/1475-2875-11-421">10.1186/1475-2875-11-421</ext-link>
</comment>
<pub-id pub-id-type="pmid">23244590</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kessner</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Chambers</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Agus</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Mallick</surname>
<given-names>P</given-names>
</name>
.
<article-title>ProteoWizard: open source software for rapid proteomics tools development</article-title>
.
<source>Bioinformatics</source>
.
<year>2008</year>
;
<volume>24</volume>
(
<issue>21</issue>
):
<fpage>2534</fpage>
<lpage>6</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/bioinformatics/btn323">10.1093/bioinformatics/btn323</ext-link>
</comment>
<pub-id pub-id-type="pmid">18606607</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Eng</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Jahan</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Hoopmann</surname>
<given-names>MR</given-names>
</name>
.
<article-title>Comet: an open-source MS/MS sequence database search tool</article-title>
.
<source>Proteomics</source>
.
<year>2013</year>
;
<volume>13</volume>
(
<issue>1</issue>
):
<fpage>22</fpage>
<lpage>4</lpage>
. Epub 2012/11/14.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/pmic.201200439">10.1002/pmic.201200439</ext-link>
</comment>
<pub-id pub-id-type="pmid">23148064</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Deutsch</surname>
<given-names>EW</given-names>
</name>
,
<name>
<surname>Mendoza</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Shteynberg</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Slagel</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Moritz</surname>
<given-names>RL</given-names>
</name>
.
<article-title>Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics</article-title>
.
<source>Proteomics Clin Appl</source>
.
<year>2015</year>
Epub 2015/01/30.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/prca.201400164">10.1002/prca.201400164</ext-link>
</comment>
<pub-id pub-id-type="pmid">25631240</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Keller</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Nesvizhskii</surname>
<given-names>AI</given-names>
</name>
,
<name>
<surname>Kolker</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Aebersold</surname>
<given-names>R</given-names>
</name>
.
<article-title>Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search</article-title>
.
<source>Anal Chem</source>
.
<year>2002</year>
;
<volume>74</volume>
(
<issue>20</issue>
):
<fpage>5383</fpage>
<lpage>92</lpage>
. Epub 2002/10/31.
<pub-id pub-id-type="pmid">12403597</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shteynberg</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Nesvizhskii</surname>
<given-names>AI</given-names>
</name>
,
<name>
<surname>Moritz</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Deutsch</surname>
<given-names>EW</given-names>
</name>
.
<article-title>Combining results of multiple search engines in proteomics</article-title>
.
<source>Mol Cell Proteomics</source>
.
<year>2013</year>
;
<volume>12</volume>
(
<issue>9</issue>
):
<fpage>2383</fpage>
<lpage>93</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/mcp.R113.027797">10.1074/mcp.R113.027797</ext-link>
</comment>
<pub-id pub-id-type="pmid">23720762</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nesvizhskii</surname>
<given-names>AI</given-names>
</name>
,
<name>
<surname>Keller</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kolker</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Aebersold</surname>
<given-names>R</given-names>
</name>
.
<article-title>A statistical model for identifying proteins by tandem mass spectrometry</article-title>
.
<source>Anal Chem</source>
.
<year>2003</year>
;
<volume>75</volume>
(
<issue>17</issue>
):
<fpage>4646</fpage>
<lpage>58</lpage>
. Epub 2003/11/25.
<pub-id pub-id-type="pmid">14632076</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gardner</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Hall</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Fung</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>White</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Berriman</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hyman</surname>
<given-names>RW</given-names>
</name>
,
<etal>et al</etal>
<article-title>Genome sequence of the human malaria parasite Plasmodium falciparum</article-title>
.
<source>Nature</source>
.
<year>2002</year>
;
<volume>419</volume>
(
<issue>6906</issue>
):
<fpage>498</fpage>
<lpage>511</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/nature01097">10.1038/nature01097</ext-link>
</comment>
<pub-id pub-id-type="pmid">12368864</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aurrecoechea</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Brestelli</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Brunk</surname>
<given-names>BP</given-names>
</name>
,
<name>
<surname>Dommer</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Fischer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Gajria</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
<article-title>PlasmoDB: a functional genomic database for malaria parasites</article-title>
.
<source>Nucleic Acids Res</source>
.
<year>2009</year>
;
<volume>37</volume>
(
<issue>Database issue</issue>
):
<fpage>D539</fpage>
<lpage>43</lpage>
. Epub 2008/10/30.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/nar/gkn814">10.1093/nar/gkn814</ext-link>
</comment>
<pub-id pub-id-type="pmid">18957442</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jiang</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Peery</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Hall</surname>
<given-names>AB</given-names>
</name>
,
<name>
<surname>Sharma</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>XG</given-names>
</name>
,
<name>
<surname>Waterhouse</surname>
<given-names>RM</given-names>
</name>
,
<etal>et al</etal>
<article-title>Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi</article-title>
.
<source>Genome Biol</source>
.
<year>2014</year>
;
<volume>15</volume>
(
<issue>9</issue>
):
<fpage>459</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/s13059-014-0459-2">10.1186/s13059-014-0459-2</ext-link>
</comment>
<pub-id pub-id-type="pmid">25244985</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Giraldo-Calderon</surname>
<given-names>GI</given-names>
</name>
,
<name>
<surname>Emrich</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>MacCallum</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>Maslen</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Dialynas</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Topalis</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
<article-title>VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases</article-title>
.
<source>Nucleic Acids Res</source>
.
<year>2015</year>
;
<volume>43</volume>
(
<issue>Database issue</issue>
):
<fpage>D707</fpage>
<lpage>13</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/nar/gku1117">10.1093/nar/gku1117</ext-link>
</comment>
<pub-id pub-id-type="pmid">25510499</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Carlton</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Adams</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Silva</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Bidwell</surname>
<given-names>SL</given-names>
</name>
,
<name>
<surname>Lorenzi</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Caler</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
<article-title>Comparative genomics of the neglected human malaria parasite Plasmodium vivax</article-title>
.
<source>Nature</source>
.
<year>2008</year>
;
<volume>455</volume>
(
<issue>7214</issue>
):
<fpage>757</fpage>
<lpage>63</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/nature07327">10.1038/nature07327</ext-link>
</comment>
<pub-id pub-id-type="pmid">18843361</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jex</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mueller</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Kappe</surname>
<given-names>SHI</given-names>
</name>
,
<name>
<surname>Mikolajczak</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Sattabongkot</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Patrapuvich</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
<article-title>Integrated transcriptomic, proteomic and epigenomic analysis of Plasmodium vivax salivary-gland sporozoites</article-title>
.
<source>bioRxiv</source>
.
<year>2017</year>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1101/145250">10.1101/145250</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Auburn</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bohme</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Steinbiss</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Trimarsanto</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Hostetler</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Sanders</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes</article-title>
.
<source>Wellcome Open Res</source>
.
<year>2016</year>
;
<volume>1</volume>
:
<fpage>4</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.12688/wellcomeopenres.9876.1">10.12688/wellcomeopenres.9876.1</ext-link>
</comment>
<pub-id pub-id-type="pmid">28008421</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>TS</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>HH</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Oh</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Choi</surname>
<given-names>KM</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
<article-title>Molecular cloning and expression of the VK247 circumsporozoite protein for serodiagnosis of variant form Plasmodium vivax</article-title>
.
<source>Parasitol Res</source>
.
<year>2011</year>
;
<volume>108</volume>
(
<issue>5</issue>
):
<fpage>1275</fpage>
<lpage>82</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1007/s00436-010-2177-3">10.1007/s00436-010-2177-3</ext-link>
</comment>
<pub-id pub-id-type="pmid">21318386</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fermin</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Basrur</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Yocum</surname>
<given-names>AK</given-names>
</name>
,
<name>
<surname>Nesvizhskii</surname>
<given-names>AI</given-names>
</name>
.
<article-title>Abacus: a computational tool for extracting and pre-processing spectral count data for label-free quantitative proteomic analysis</article-title>
.
<source>Proteomics</source>
.
<year>2011</year>
;
<volume>11</volume>
(
<issue>7</issue>
):
<fpage>1340</fpage>
<lpage>5</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/pmic.201000650">10.1002/pmic.201000650</ext-link>
</comment>
<pub-id pub-id-type="pmid">21360675</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Wen</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Washburn</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Florens</surname>
<given-names>L</given-names>
</name>
.
<article-title>Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins</article-title>
.
<source>Anal Chem</source>
.
<year>2010</year>
;
<volume>82</volume>
(
<issue>6</issue>
):
<fpage>2272</fpage>
<lpage>81</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1021/ac9023999">10.1021/ac9023999</ext-link>
</comment>
<pub-id pub-id-type="pmid">20166708</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zybailov</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Mosley</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Sardiu</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Coleman</surname>
<given-names>MK</given-names>
</name>
,
<name>
<surname>Florens</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Washburn</surname>
<given-names>MP</given-names>
</name>
.
<article-title>Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae</article-title>
.
<source>J Proteome Res</source>
.
<year>2006</year>
;
<volume>5</volume>
(
<issue>9</issue>
):
<fpage>2339</fpage>
<lpage>47</lpage>
. Epub 2006/09/02.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1021/pr060161n">10.1021/pr060161n</ext-link>
</comment>
<pub-id pub-id-type="pmid">16944946</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gokce</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Shuford</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Franck</surname>
<given-names>WL</given-names>
</name>
,
<name>
<surname>Dean</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Muddiman</surname>
<given-names>DC</given-names>
</name>
.
<article-title>Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows</article-title>
.
<source>J Am Soc Mass Spectrom</source>
.
<year>2011</year>
;
<volume>22</volume>
(
<issue>12</issue>
):
<fpage>2199</fpage>
<lpage>208</lpage>
. Epub 2011/09/29.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1007/s13361-011-0237-2">10.1007/s13361-011-0237-2</ext-link>
</comment>
<pub-id pub-id-type="pmid">21952779</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hendrickson</surname>
<given-names>EL</given-names>
</name>
,
<name>
<surname>Xia</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Leigh</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Hackett</surname>
<given-names>M</given-names>
</name>
.
<article-title>Comparison of spectral counting and metabolic stable isotope labeling for use with quantitative microbial proteomics</article-title>
.
<source>Analyst</source>
.
<year>2006</year>
;
<volume>131</volume>
(
<issue>12</issue>
):
<fpage>1335</fpage>
<lpage>41</lpage>
. Epub 2006/11/25.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1039/b610957h">10.1039/b610957h</ext-link>
</comment>
<pub-id pub-id-type="pmid">17124542</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Krogh</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Larsson</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>von Heijne</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Sonnhammer</surname>
<given-names>EL</given-names>
</name>
.
<article-title>Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes</article-title>
.
<source>J Mol Biol</source>
.
<year>2001</year>
;
<volume>305</volume>
(
<issue>3</issue>
):
<fpage>567</fpage>
<lpage>80</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1006/jmbi.2000.4315">10.1006/jmbi.2000.4315</ext-link>
</comment>
<pub-id pub-id-type="pmid">11152613</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref042">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Petersen</surname>
<given-names>TN</given-names>
</name>
,
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>von Heijne</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Nielsen</surname>
<given-names>H</given-names>
</name>
.
<article-title>SignalP 4.0: discriminating signal peptides from transmembrane regions</article-title>
.
<source>Nat Methods</source>
.
<year>2011</year>
;
<volume>8</volume>
(
<issue>10</issue>
):
<fpage>785</fpage>
<lpage>6</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/nmeth.1701">10.1038/nmeth.1701</ext-link>
</comment>
<pub-id pub-id-type="pmid">21959131</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pierleoni</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Martelli</surname>
<given-names>PL</given-names>
</name>
,
<name>
<surname>Casadio</surname>
<given-names>R</given-names>
</name>
.
<article-title>PredGPI: a GPI-anchor predictor</article-title>
.
<source>BMC Bioinformatics</source>
.
<year>2008</year>
;
<volume>9</volume>
:
<fpage>392</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/1471-2105-9-392">10.1186/1471-2105-9-392</ext-link>
</comment>
<pub-id pub-id-type="pmid">18811934</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref044">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Old</surname>
<given-names>WM</given-names>
</name>
,
<name>
<surname>Meyer-Arendt</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Aveline-Wolf</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Pierce</surname>
<given-names>KG</given-names>
</name>
,
<name>
<surname>Mendoza</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sevinsky</surname>
<given-names>JR</given-names>
</name>
,
<etal>et al</etal>
<article-title>Comparison of label-free methods for quantifying human proteins by shotgun proteomics</article-title>
.
<source>Mol Cell Proteomics</source>
.
<year>2005</year>
;
<volume>4</volume>
(
<issue>10</issue>
):
<fpage>1487</fpage>
<lpage>502</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/mcp.M500084-MCP200">10.1074/mcp.M500084-MCP200</ext-link>
</comment>
<pub-id pub-id-type="pmid">15979981</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref045">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>del Portillo</surname>
<given-names>HA</given-names>
</name>
,
<name>
<surname>Fernandez-Becerra</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Bowman</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Oliver</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Preuss</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Sanchez</surname>
<given-names>CP</given-names>
</name>
,
<etal>et al</etal>
<article-title>A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax</article-title>
.
<source>Nature</source>
.
<year>2001</year>
;
<volume>410</volume>
(
<issue>6830</issue>
):
<fpage>839</fpage>
<lpage>42</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/35071118">10.1038/35071118</ext-link>
</comment>
<pub-id pub-id-type="pmid">11298455</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref046">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hofsteenge</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Huwiler</surname>
<given-names>KG</given-names>
</name>
,
<name>
<surname>Macek</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Hess</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Lawler</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Mosher</surname>
<given-names>DF</given-names>
</name>
,
<etal>et al</etal>
<article-title>C-mannosylation and O-fucosylation of the thrombospondin type 1 module</article-title>
.
<source>J Biol Chem</source>
.
<year>2001</year>
;
<volume>276</volume>
(
<issue>9</issue>
):
<fpage>6485</fpage>
<lpage>98</lpage>
. Epub 2000/11/09.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/jbc.M008073200">10.1074/jbc.M008073200</ext-link>
</comment>
<pub-id pub-id-type="pmid">11067851</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref047">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sato</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Sato</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kiyohara</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Sogabe</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Shikanai</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Kikuchi</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
<article-title>Molecular cloning and characterization of a novel human beta1,3-glucosyltransferase, which is localized at the endoplasmic reticulum and glucosylates O-linked fucosylglycan on thrombospondin type 1 repeat domain</article-title>
.
<source>Glycobiology</source>
.
<year>2006</year>
;
<volume>16</volume>
(
<issue>12</issue>
):
<fpage>1194</fpage>
<lpage>206</lpage>
. Epub 2006/08/11.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/glycob/cwl035">10.1093/glycob/cwl035</ext-link>
</comment>
<pub-id pub-id-type="pmid">16899492</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref048">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kozma</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Keusch</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Hegemann</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Luther</surname>
<given-names>KB</given-names>
</name>
,
<name>
<surname>Klein</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Hess</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
<article-title>Identification and characterization of abeta1,3-glucosyltransferase that synthesizes the Glc-beta1,3-Fuc disaccharide on thrombospondin type 1 repeats</article-title>
.
<source>J Biol Chem</source>
.
<year>2006</year>
;
<volume>281</volume>
(
<issue>48</issue>
):
<fpage>36742</fpage>
<lpage>51</lpage>
. Epub 2006/10/13.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/jbc.M605912200">10.1074/jbc.M605912200</ext-link>
</comment>
<pub-id pub-id-type="pmid">17032646</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref049">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hofsteenge</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Muller</surname>
<given-names>DR</given-names>
</name>
,
<name>
<surname>de Beer</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Loffler</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Richter</surname>
<given-names>WJ</given-names>
</name>
,
<name>
<surname>Vliegenthart</surname>
<given-names>JF</given-names>
</name>
.
<article-title>New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us</article-title>
.
<source>Biochemistry</source>
.
<year>1994</year>
;
<volume>33</volume>
(
<issue>46</issue>
):
<fpage>13524</fpage>
<lpage>30</lpage>
. Epub 1994/11/22.
<pub-id pub-id-type="pmid">7947762</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref050">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Julenius</surname>
<given-names>K</given-names>
</name>
.
<article-title>NetCGlyc 1.0: prediction of mammalian C-mannosylation sites</article-title>
.
<source>Glycobiology</source>
.
<year>2007</year>
;
<volume>17</volume>
(
<issue>8</issue>
):
<fpage>868</fpage>
<lpage>76</lpage>
. Epub 2007/05/12.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/glycob/cwm050">10.1093/glycob/cwm050</ext-link>
</comment>
<pub-id pub-id-type="pmid">17494086</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref051">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Macek</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Hofsteenge</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Peter-Katalinic</surname>
<given-names>J</given-names>
</name>
.
<article-title>Direct determination of glycosylation sites in O-fucosylated glycopeptides using nano-electrospray quadrupole time-of-flight mass spectrometry</article-title>
.
<source>Rapid Commun Mass Spectrom</source>
.
<year>2001</year>
;
<volume>15</volume>
(
<issue>10</issue>
):
<fpage>771</fpage>
<lpage>7</lpage>
. Epub 2001/05/10.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/rcm.298">10.1002/rcm.298</ext-link>
</comment>
<pub-id pub-id-type="pmid">11344537</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref052">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>LW</given-names>
</name>
,
<name>
<surname>Leonhard-Melief</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Haltiwanger</surname>
<given-names>RS</given-names>
</name>
,
<name>
<surname>Apte</surname>
<given-names>SS</given-names>
</name>
.
<article-title>Post-translational modification of thrombospondin type-1 repeats in ADAMTS-like 1/punctin-1 by C-mannosylation of tryptophan</article-title>
.
<source>J Biol Chem</source>
.
<year>2009</year>
;
<volume>284</volume>
(
<issue>44</issue>
):
<fpage>30004</fpage>
<lpage>15</lpage>
. Epub 2009/08/13.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/jbc.M109.038059">10.1074/jbc.M109.038059</ext-link>
</comment>
<pub-id pub-id-type="pmid">19671700</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref053">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cova</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Rodrigues</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>TK</given-names>
</name>
,
<name>
<surname>Izquierdo</surname>
<given-names>L</given-names>
</name>
.
<article-title>Sugar activation and glycosylation in Plasmodium</article-title>
.
<source>Malar J</source>
.
<year>2015</year>
;
<volume>14</volume>
:
<fpage>427</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/s12936-015-0949-z">10.1186/s12936-015-0949-z</ext-link>
</comment>
<pub-id pub-id-type="pmid">26520586</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref054">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Doud</surname>
<given-names>MB</given-names>
</name>
,
<name>
<surname>Koksal</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Mi</surname>
<given-names>LZ</given-names>
</name>
,
<name>
<surname>Song</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Springer</surname>
<given-names>TA</given-names>
</name>
.
<article-title>Unexpected fold in the circumsporozoite protein target of malaria vaccines</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2012</year>
;
<volume>109</volume>
(
<issue>20</issue>
):
<fpage>7817</fpage>
<lpage>22</lpage>
. Epub 2012/05/02.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1073/pnas.1205737109">10.1073/pnas.1205737109</ext-link>
</comment>
<pub-id pub-id-type="pmid">22547819</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref055">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Song</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Koksal</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Springer</surname>
<given-names>TA</given-names>
</name>
.
<article-title>Shape change in the receptor for gliding motility in Plasmodium sporozoites</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2012</year>
;
<volume>109</volume>
(
<issue>52</issue>
):
<fpage>21420</fpage>
<lpage>5</lpage>
. Epub 2012/12/14.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1073/pnas.1218581109">10.1073/pnas.1218581109</ext-link>
</comment>
<pub-id pub-id-type="pmid">23236185</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref056">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Treeck</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Sanders</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Elias</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Boothroyd</surname>
<given-names>JC</given-names>
</name>
.
<article-title>The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries</article-title>
.
<source>Cell Host Microbe</source>
.
<year>2011</year>
;
<volume>10</volume>
(
<issue>4</issue>
):
<fpage>410</fpage>
<lpage>9</lpage>
. Epub 2011/10/25.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.chom.2011.09.004">10.1016/j.chom.2011.09.004</ext-link>
</comment>
<pub-id pub-id-type="pmid">22018241</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref057">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Solyakov</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Halbert</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Alam</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Semblat</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Dorin-Semblat</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Reininger</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
<article-title>Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum</article-title>
.
<source>Nat Commun</source>
.
<year>2011</year>
;
<volume>2</volume>
:
<fpage>565</fpage>
Epub 2011/12/01.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/ncomms1558">10.1038/ncomms1558</ext-link>
</comment>
<pub-id pub-id-type="pmid">22127061</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref058">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lasonder</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Green</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Camarda</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Talabani</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Holder</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Langsley</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
<article-title>The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling</article-title>
.
<source>J Proteome Res</source>
.
<year>2012</year>
;
<volume>11</volume>
(
<issue>11</issue>
):
<fpage>5323</fpage>
<lpage>37</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1021/pr300557m">10.1021/pr300557m</ext-link>
</comment>
<pub-id pub-id-type="pmid">23025827</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref059">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pease</surname>
<given-names>BN</given-names>
</name>
,
<name>
<surname>Huttlin</surname>
<given-names>EL</given-names>
</name>
,
<name>
<surname>Jedrychowski</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Talevich</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Harmon</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Dillman</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
<article-title>Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development</article-title>
.
<source>J Proteome Res</source>
.
<year>2013</year>
;
<volume>12</volume>
(
<issue>9</issue>
):
<fpage>4028</fpage>
<lpage>45</lpage>
. Epub 2013/08/07.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1021/pr400394g">10.1021/pr400394g</ext-link>
</comment>
<pub-id pub-id-type="pmid">23914800</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref060">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lasonder</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Green</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Grainger</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Langsley</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Holder</surname>
<given-names>AA</given-names>
</name>
.
<article-title>Extensive differential protein phosphorylation as intraerythrocytic Plasmodium falciparum schizonts develop into extracellular invasive merozoites</article-title>
.
<source>Proteomics</source>
.
<year>2015</year>
;
<volume>15</volume>
(
<issue>15</issue>
):
<fpage>2716</fpage>
<lpage>29</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/pmic.201400508">10.1002/pmic.201400508</ext-link>
</comment>
<pub-id pub-id-type="pmid">25886026</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref061">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Acharya</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Pallavi</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Chandran</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Chakravarti</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Middha</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Acharya</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
<article-title>A glimpse into the clinical proteome of human malaria parasites Plasmodium falciparum and Plasmodium vivax</article-title>
.
<source>Proteomics Clin Appl</source>
.
<year>2009</year>
;
<volume>3</volume>
(
<issue>11</issue>
):
<fpage>1314</fpage>
<lpage>25</lpage>
. Epub 2010/12/08.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/prca.200900090">10.1002/prca.200900090</ext-link>
</comment>
<pub-id pub-id-type="pmid">21136953</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref062">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Oehring</surname>
<given-names>SC</given-names>
</name>
,
<name>
<surname>Woodcroft</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Moes</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Wetzel</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Dietz</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Pulfer</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum</article-title>
.
<source>Genome Biol</source>
.
<year>2012</year>
;
<volume>13</volume>
(
<issue>11</issue>
):
<fpage>R108</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/gb-2012-13-11-r108">10.1186/gb-2012-13-11-r108</ext-link>
</comment>
<pub-id pub-id-type="pmid">23181666</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref063">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lasonder</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Rijpma</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>van Schaijk</surname>
<given-names>BC</given-names>
</name>
,
<name>
<surname>Hoeijmakers</surname>
<given-names>WA</given-names>
</name>
,
<name>
<surname>Kensche</surname>
<given-names>PR</given-names>
</name>
,
<name>
<surname>Gresnigt</surname>
<given-names>MS</given-names>
</name>
,
<etal>et al</etal>
<article-title>Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression</article-title>
.
<source>Nucleic Acids Res</source>
.
<year>2016</year>
;
<volume>44</volume>
(
<issue>13</issue>
):
<fpage>6087</fpage>
<lpage>101</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/nar/gkw536">10.1093/nar/gkw536</ext-link>
</comment>
<pub-id pub-id-type="pmid">27298255</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref064">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Silvestrini</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Lasonder</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Olivieri</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Camarda</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>van Schaijk</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Sanchez</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum</article-title>
.
<source>Mol Cell Proteomics</source>
.
<year>2010</year>
;
<volume>9</volume>
(
<issue>7</issue>
):
<fpage>1437</fpage>
<lpage>48</lpage>
. Epub 2010/03/25.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/mcp.M900479-MCP200">10.1074/mcp.M900479-MCP200</ext-link>
</comment>
<pub-id pub-id-type="pmid">20332084</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref065">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Florens</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Schwartz</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Peglar</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes</article-title>
.
<source>Mol Biochem Parasitol</source>
.
<year>2004</year>
;
<volume>135</volume>
(
<issue>1</issue>
):
<fpage>1</fpage>
<lpage>11</lpage>
. Epub 2004/08/04.
<pub-id pub-id-type="pmid">15287581</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref066">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bowyer</surname>
<given-names>PW</given-names>
</name>
,
<name>
<surname>Simon</surname>
<given-names>GM</given-names>
</name>
,
<name>
<surname>Cravatt</surname>
<given-names>BF</given-names>
</name>
,
<name>
<surname>Bogyo</surname>
<given-names>M</given-names>
</name>
.
<article-title>Global profiling of proteolysis during rupture of Plasmodium falciparum from the host erythrocyte</article-title>
.
<source>Mol Cell Proteomics</source>
.
<year>2011</year>
;
<volume>10</volume>
(
<issue>5</issue>
):M110 001636.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/mcp.M110.001636">10.1074/mcp.M110.001636</ext-link>
</comment>
<pub-id pub-id-type="pmid">20943600</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref067">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Moreno-Perez</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Degano</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Ibarrola</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Muro</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Patarroyo</surname>
<given-names>MA</given-names>
</name>
.
<article-title>Determining the Plasmodium vivax VCG-1 strain blood stage proteome</article-title>
.
<source>J Proteomics</source>
.
<year>2014</year>
;
<volume>113C</volume>
:
<fpage>268</fpage>
<lpage>80</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.jprot.2014.10.003">10.1016/j.jprot.2014.10.003</ext-link>
</comment>
<pub-id pub-id-type="pmid">25316051</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref068">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>Roobsoong</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Roytrakul</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Sattabongkot</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Udomsangpetch</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Cui</surname>
<given-names>L</given-names>
</name>
.
<article-title>Determination of the Plasmodium vivax schizont stage proteome</article-title>
.
<source>J Proteomics</source>
.
<year>2011</year>
;
<volume>74</volume>
(
<issue>9</issue>
):
<fpage>1701</fpage>
<lpage>10</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.jprot.2011.03.035">10.1016/j.jprot.2011.03.035</ext-link>
</comment>
<pub-id pub-id-type="pmid">21515433</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref069">
<label>69</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schiapparelli</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>McClatchy</surname>
<given-names>DB</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>HH</given-names>
</name>
,
<name>
<surname>Sharma</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Yates</surname>
<given-names>JR</given-names>
<suffix>3rd</suffix>
</name>
,
<name>
<surname>Cline</surname>
<given-names>HT</given-names>
</name>
.
<article-title>Direct detection of biotinylated proteins by mass spectrometry</article-title>
.
<source>J Proteome Res</source>
.
<year>2014</year>
;
<volume>13</volume>
(
<issue>9</issue>
):
<fpage>3966</fpage>
<lpage>78</lpage>
. Epub 2014/08/15.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1021/pr5002862">10.1021/pr5002862</ext-link>
</comment>
<pub-id pub-id-type="pmid">25117199</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref070">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Al-Nihmi</surname>
<given-names>FM</given-names>
</name>
,
<name>
<surname>Kolli</surname>
<given-names>SK</given-names>
</name>
,
<name>
<surname>Reddy</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>Mastan</surname>
<given-names>BS</given-names>
</name>
,
<name>
<surname>Togiri</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Maruthi</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>A Novel and Conserved Plasmodium Sporozoite Membrane Protein SPELD is Required for Maturation of Exo-erythrocytic Forms</article-title>
.
<source>Sci Rep</source>
.
<year>2017</year>
;
<volume>7</volume>
:
<fpage>40407</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/srep40407">10.1038/srep40407</ext-link>
</comment>
<pub-id pub-id-type="pmid">28067322</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref071">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hernandez-Romano</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Rodriguez</surname>
<given-names>MH</given-names>
</name>
,
<name>
<surname>Pando</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Torres-Monzon</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Alvarado-Delgado</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Lecona Valera</surname>
<given-names>AN</given-names>
</name>
,
<etal>et al</etal>
<article-title>Conserved peptide sequences bind to actin and enolase on the surface of Plasmodium berghei ookinetes</article-title>
.
<source>Parasitology</source>
.
<year>2011</year>
;
<volume>138</volume>
(
<issue>11</issue>
):
<fpage>1341</fpage>
<lpage>53</lpage>
. Epub 2011/08/06.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1017/S0031182011001296">10.1017/S0031182011001296</ext-link>
</comment>
<pub-id pub-id-type="pmid">21816124</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref072">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>Staros</surname>
<given-names>JV</given-names>
</name>
.
<article-title>N-hydroxysulfosuccinimide active esters: bis(N-hydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers</article-title>
.
<source>Biochemistry</source>
.
<year>1982</year>
;
<volume>21</volume>
(
<issue>17</issue>
):
<fpage>3950</fpage>
<lpage>5</lpage>
. Epub 1982/08/17.
<pub-id pub-id-type="pmid">7126526</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref073">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wass</surname>
<given-names>MN</given-names>
</name>
,
<name>
<surname>Stanway</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Blagborough</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Lal</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Prieto</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Raine</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
<article-title>Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls</article-title>
.
<source>Parasitology</source>
.
<year>2012</year>
;
<volume>139</volume>
(
<issue>9</issue>
):
<fpage>1131</fpage>
<lpage>45</lpage>
. Epub 2012/02/18.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1017/S0031182012000133">10.1017/S0031182012000133</ext-link>
</comment>
<pub-id pub-id-type="pmid">22336136</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref074">
<label>74</label>
<mixed-citation publication-type="journal">
<name>
<surname>El-Manzalawy</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Munoz</surname>
<given-names>EE</given-names>
</name>
,
<name>
<surname>Lindner</surname>
<given-names>SE</given-names>
</name>
,
<name>
<surname>Honavar</surname>
<given-names>V</given-names>
</name>
.
<article-title>PlasmoSEP: Predicting surface-exposed proteins on the malaria parasite using semisupervised self-training and expert-annotated data</article-title>
.
<source>Proteomics</source>
.
<year>2016</year>
;
<volume>16</volume>
(
<issue>23</issue>
):
<fpage>2967</fpage>
<lpage>76</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/pmic.201600249">10.1002/pmic.201600249</ext-link>
</comment>
<pub-id pub-id-type="pmid">27714937</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref075">
<label>75</label>
<mixed-citation publication-type="journal">
<name>
<surname>Karpievitch</surname>
<given-names>YV</given-names>
</name>
,
<name>
<surname>Dabney</surname>
<given-names>AR</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>RD</given-names>
</name>
.
<article-title>Normalization and missing value imputation for label-free LC-MS analysis</article-title>
.
<source>BMC Bioinformatics</source>
.
<year>2012</year>
;
<volume>13</volume>
<issue>Suppl 16</issue>
:
<fpage>S5</fpage>
Epub 2012/11/28.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/1471-2105-13-S16-S5">10.1186/1471-2105-13-S16-S5</ext-link>
</comment>
<pub-id pub-id-type="pmid">23176322</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref076">
<label>76</label>
<mixed-citation publication-type="journal">
<name>
<surname>Le Roch</surname>
<given-names>KG</given-names>
</name>
,
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Blair</surname>
<given-names>PL</given-names>
</name>
,
<name>
<surname>Grainger</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Moch</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Haynes</surname>
<given-names>JD</given-names>
</name>
,
<etal>et al</etal>
<article-title>Discovery of gene function by expression profiling of the malaria parasite life cycle</article-title>
.
<source>Science</source>
.
<year>2003</year>
;
<volume>301</volume>
(
<issue>5639</issue>
):
<fpage>1503</fpage>
<lpage>8</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1126/science.1087025">10.1126/science.1087025</ext-link>
</comment>
<pub-id pub-id-type="pmid">12893887</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref077">
<label>77</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>VM</given-names>
</name>
,
<name>
<surname>Chavchich</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Waters</surname>
<given-names>NC</given-names>
</name>
.
<article-title>Targeting protein kinases in the malaria parasite: update of an antimalarial drug target</article-title>
.
<source>Curr Top Med Chem</source>
.
<year>2012</year>
;
<volume>12</volume>
(
<issue>5</issue>
):
<fpage>456</fpage>
<lpage>72</lpage>
. Epub 2012/01/17.
<pub-id pub-id-type="pmid">22242850</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref078">
<label>78</label>
<mixed-citation publication-type="journal">
<name>
<surname>Doerig</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Abdi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Bland</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Eschenlauer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Dorin-Semblat</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Fennell</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
<article-title>Malaria: targeting parasite and host cell kinomes</article-title>
.
<source>Biochim Biophys Acta</source>
.
<year>2010</year>
;
<volume>1804</volume>
(
<issue>3</issue>
):
<fpage>604</fpage>
<lpage>12</lpage>
. Epub 2009/10/21.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.bbapap.2009.10.009">10.1016/j.bbapap.2009.10.009</ext-link>
</comment>
<pub-id pub-id-type="pmid">19840874</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref079">
<label>79</label>
<mixed-citation publication-type="journal">
<name>
<surname>Doerig</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Meijer</surname>
<given-names>L</given-names>
</name>
.
<article-title>Antimalarial drug discovery: targeting protein kinases</article-title>
.
<source>Expert Opin Ther Targets</source>
.
<year>2007</year>
;
<volume>11</volume>
(
<issue>3</issue>
):
<fpage>279</fpage>
<lpage>90</lpage>
. Epub 2007/02/15.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1517/14728222.11.3.279">10.1517/14728222.11.3.279</ext-link>
</comment>
<pub-id pub-id-type="pmid">17298288</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref080">
<label>80</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jacot</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Tosetti</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Pires</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Stock</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Graindorge</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Hung</surname>
<given-names>YF</given-names>
</name>
,
<etal>et al</etal>
<article-title>An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion</article-title>
.
<source>Cell Host Microbe</source>
.
<year>2016</year>
;
<volume>20</volume>
(
<issue>6</issue>
):
<fpage>731</fpage>
<lpage>43</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.chom.2016.10.020">10.1016/j.chom.2016.10.020</ext-link>
</comment>
<pub-id pub-id-type="pmid">27978434</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref081">
<label>81</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bargieri</surname>
<given-names>DY</given-names>
</name>
,
<name>
<surname>Andenmatten</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Lagal</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Thiberge</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Whitelaw</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Tardieux</surname>
<given-names>I</given-names>
</name>
,
<etal>et al</etal>
<article-title>Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion</article-title>
.
<source>Nat Commun</source>
.
<year>2013</year>
;
<volume>4</volume>
:
<fpage>2552</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/ncomms3552">10.1038/ncomms3552</ext-link>
</comment>
<pub-id pub-id-type="pmid">24108241</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref082">
<label>82</label>
<mixed-citation publication-type="journal">
<name>
<surname>Treeck</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Zacherl</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Herrmann</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cabrera</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kono</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Struck</surname>
<given-names>NS</given-names>
</name>
,
<etal>et al</etal>
<article-title>Functional analysis of the leading malaria vaccine candidate AMA-1 reveals an essential role for the cytoplasmic domain in the invasion process</article-title>
.
<source>PLoS Pathog</source>
.
<year>2009</year>
;
<volume>5</volume>
(
<issue>3</issue>
):
<fpage>e1000322</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.ppat.1000322">10.1371/journal.ppat.1000322</ext-link>
</comment>
<pub-id pub-id-type="pmid">19283086</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref083">
<label>83</label>
<mixed-citation publication-type="journal">
<name>
<surname>Harupa</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sack</surname>
<given-names>BK</given-names>
</name>
,
<name>
<surname>Lakshmanan</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Arang</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Douglass</surname>
<given-names>AN</given-names>
</name>
,
<name>
<surname>Oliver</surname>
<given-names>BG</given-names>
</name>
,
<etal>et al</etal>
<article-title>SSP3 is a novel Plasmodium yoelii sporozoite surface protein with a role in gliding motility</article-title>
.
<source>Infect Immun</source>
.
<year>2014</year>
;
<volume>82</volume>
(
<issue>11</issue>
):
<fpage>4643</fpage>
<lpage>53</lpage>
. Epub 2014/08/27.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/IAI.01800-14">10.1128/IAI.01800-14</ext-link>
</comment>
<pub-id pub-id-type="pmid">25156733</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref084">
<label>84</label>
<mixed-citation publication-type="journal">
<name>
<surname>Song</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Springer</surname>
<given-names>TA</given-names>
</name>
.
<article-title>Structures of the Toxoplasma gliding motility adhesin</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2014</year>
;
<volume>111</volume>
(
<issue>13</issue>
):
<fpage>4862</fpage>
<lpage>7</lpage>
. Epub 2014/03/19.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1073/pnas.1403059111">10.1073/pnas.1403059111</ext-link>
</comment>
<pub-id pub-id-type="pmid">24639528</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref085">
<label>85</label>
<mixed-citation publication-type="journal">
<name>
<surname>Luca</surname>
<given-names>VC</given-names>
</name>
,
<name>
<surname>Jude</surname>
<given-names>KM</given-names>
</name>
,
<name>
<surname>Pierce</surname>
<given-names>NW</given-names>
</name>
,
<name>
<surname>Nachury</surname>
<given-names>MV</given-names>
</name>
,
<name>
<surname>Fischer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Garcia</surname>
<given-names>KC</given-names>
</name>
.
<article-title>Structural biology. Structural basis for Notch1 engagement of Delta-like 4</article-title>
.
<source>Science</source>
.
<year>2015</year>
;
<volume>347</volume>
(
<issue>6224</issue>
):
<fpage>847</fpage>
<lpage>53</lpage>
. Epub 2015/02/24.
<pub-id pub-id-type="pmid">25700513</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref086">
<label>86</label>
<mixed-citation publication-type="journal">
<name>
<surname>Arredondo</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Cai</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Takayama</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>MacDonald</surname>
<given-names>NJ</given-names>
</name>
,
<name>
<surname>Anderson</surname>
<given-names>DE</given-names>
</name>
,
<name>
<surname>Aravind</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
<article-title>Structure of the Plasmodium 6-cysteine s48/45 domain</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2012</year>
;
<volume>109</volume>
(
<issue>17</issue>
):
<fpage>6692</fpage>
<lpage>7</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1073/pnas.1204363109">10.1073/pnas.1204363109</ext-link>
</comment>
<pub-id pub-id-type="pmid">22493233</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref087">
<label>87</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Ni</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Gill</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>AS</given-names>
</name>
.
<article-title>Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP</article-title>
.
<source>J Biol Chem</source>
.
<year>2010</year>
;
<volume>285</volume>
(
<issue>20</issue>
):
<fpage>15065</fpage>
<lpage>75</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/jbc.M109.087445">10.1074/jbc.M109.087445</ext-link>
</comment>
<pub-id pub-id-type="pmid">20208072</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref088">
<label>88</label>
<mixed-citation publication-type="journal">
<name>
<surname>Montagna</surname>
<given-names>GN</given-names>
</name>
,
<name>
<surname>Buscaglia</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Munter</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Goosmann</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Frischknecht</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Brinkmann</surname>
<given-names>V</given-names>
</name>
,
<etal>et al</etal>
<article-title>Critical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites</article-title>
.
<source>J Biol Chem</source>
.
<year>2012</year>
;
<volume>287</volume>
(
<issue>4</issue>
):
<fpage>2410</fpage>
<lpage>22</lpage>
. Epub 2011/12/06.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1074/jbc.M111.302109">10.1074/jbc.M111.302109</ext-link>
</comment>
<pub-id pub-id-type="pmid">22139844</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0005791.ref089">
<label>89</label>
<mixed-citation publication-type="journal">
<name>
<surname>Simon</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Lasonder</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Scheuermayer</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kuehn</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Tews</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Fischer</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
<article-title>Malaria parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito midgut</article-title>
.
<source>Cell Host Microbe</source>
.
<year>2013</year>
;
<volume>13</volume>
(
<issue>1</issue>
):
<fpage>29</fpage>
<lpage>41</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.chom.2012.11.013">10.1016/j.chom.2012.11.013</ext-link>
</comment>
<pub-id pub-id-type="pmid">23332154</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002920 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002920 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5552340
   |texte=   Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28759593" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024