Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study

Identifieur interne : 002902 ( Pmc/Corpus ); précédent : 002901; suivant : 002903

The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study

Auteurs : Stefan Flasche ; Mark Jit ; Isabel Rodríguez-Barraquer ; Laurent Coudeville ; Mario Recker ; Katia Koelle ; George Milne ; Thomas J. Hladish ; T. Alex Perkins ; Derek A. T. Cummings ; Ilaria Dorigatti ; Daniel J. Laydon ; Guido Espa A ; Joel Kelso ; Ira Longini ; Jose Lourenco ; Carl A. B. Pearson ; Robert C. Reiner ; Luis Mier-Y-Terán-Romero ; Kirsten Vannice ; Neil Ferguson

Source :

RBID : PMC:5127514

Abstract

Background

Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine.

Methods and Findings

The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials.

All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%–25% (all simulations: –3%–34%) and in high-transmission settings (SP9 ≥ 70%) by 13%–25% (all simulations: 10%– 34%). These endemicity levels are representative of the participating sites in both Phase III trials. In contrast, in settings with low transmission intensity (SP9 ≤ 30%), the models predicted that vaccination could lead to a substantial increase in hospitalisation because of dengue. Modelling reduced vaccine coverage or the addition of catch-up campaigns showed that the impact of vaccination scaled approximately linearly with the number of people vaccinated. In assessing the optimal age of vaccination, we found that targeting older children could increase the net benefit of vaccination in settings with moderate transmission intensity (SP9 = 50%). Overall, vaccination was predicted to be potentially cost-effective in most endemic settings if priced competitively.

The results are based on the assumption that the vaccine acts similarly to natural infection. This assumption is consistent with the available trial results but cannot be directly validated in the absence of additional data. Furthermore, uncertainties remain regarding the level of protection provided against disease versus infection and the rate at which vaccine-induced protection declines.

Conclusions

Dengvaxia has the potential to reduce the burden of dengue disease in areas of moderate to high dengue endemicity. However, the potential risks of vaccination in areas with limited exposure to dengue as well as the local costs and benefits of routine vaccination are important considerations for the inclusion of Dengvaxia into existing immunisation programmes. These results were important inputs into WHO global policy for use of this licensed dengue vaccine.


Url:
DOI: 10.1371/journal.pmed.1002181
PubMed: 27898668
PubMed Central: 5127514

Links to Exploration step

PMC:5127514

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study</title>
<author>
<name sortKey="Flasche, Stefan" sort="Flasche, Stefan" uniqKey="Flasche S" first="Stefan" last="Flasche">Stefan Flasche</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>London School of Hygiene and Tropical Medicine, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jit, Mark" sort="Jit, Mark" uniqKey="Jit M" first="Mark" last="Jit">Mark Jit</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>London School of Hygiene and Tropical Medicine, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Barraquer, Isabel" sort="Rodriguez Barraquer, Isabel" uniqKey="Rodriguez Barraquer I" first="Isabel" last="Rodríguez-Barraquer">Isabel Rodríguez-Barraquer</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coudeville, Laurent" sort="Coudeville, Laurent" uniqKey="Coudeville L" first="Laurent" last="Coudeville">Laurent Coudeville</name>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Sanofi Pasteur, Lyon, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Recker, Mario" sort="Recker, Mario" uniqKey="Recker M" first="Mario" last="Recker">Mario Recker</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>University of Exeter, Exeter, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Koelle, Katia" sort="Koelle, Katia" uniqKey="Koelle K" first="Katia" last="Koelle">Katia Koelle</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Duke University, Durham, North Carolina, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Milne, George" sort="Milne, George" uniqKey="Milne G" first="George" last="Milne">George Milne</name>
<affiliation>
<nlm:aff id="aff006">
<addr-line>University of Western Australia, Crawley, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hladish, Thomas J" sort="Hladish, Thomas J" uniqKey="Hladish T" first="Thomas J." last="Hladish">Thomas J. Hladish</name>
<affiliation>
<nlm:aff id="aff007">
<addr-line>University of Florida, Gainesville, Gainesville, Florida, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perkins, T Alex" sort="Perkins, T Alex" uniqKey="Perkins T" first="T. Alex" last="Perkins">T. Alex Perkins</name>
<affiliation>
<nlm:aff id="aff008">
<addr-line>University of Notre Dame, Notre Dame, Indiana, United States</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cummings, Derek A T" sort="Cummings, Derek A T" uniqKey="Cummings D" first="Derek A. T." last="Cummings">Derek A. T. Cummings</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff007">
<addr-line>University of Florida, Gainesville, Gainesville, Florida, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dorigatti, Ilaria" sort="Dorigatti, Ilaria" uniqKey="Dorigatti I" first="Ilaria" last="Dorigatti">Ilaria Dorigatti</name>
<affiliation>
<nlm:aff id="aff009">
<addr-line>Imperial College London, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Laydon, Daniel J" sort="Laydon, Daniel J" uniqKey="Laydon D" first="Daniel J." last="Laydon">Daniel J. Laydon</name>
<affiliation>
<nlm:aff id="aff009">
<addr-line>Imperial College London, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Espa A, Guido" sort="Espa A, Guido" uniqKey="Espa A G" first="Guido" last="Espa A">Guido Espa A</name>
<affiliation>
<nlm:aff id="aff008">
<addr-line>University of Notre Dame, Notre Dame, Indiana, United States</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kelso, Joel" sort="Kelso, Joel" uniqKey="Kelso J" first="Joel" last="Kelso">Joel Kelso</name>
<affiliation>
<nlm:aff id="aff006">
<addr-line>University of Western Australia, Crawley, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Longini, Ira" sort="Longini, Ira" uniqKey="Longini I" first="Ira" last="Longini">Ira Longini</name>
<affiliation>
<nlm:aff id="aff007">
<addr-line>University of Florida, Gainesville, Gainesville, Florida, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lourenco, Jose" sort="Lourenco, Jose" uniqKey="Lourenco J" first="Jose" last="Lourenco">Jose Lourenco</name>
<affiliation>
<nlm:aff id="aff010">
<addr-line>University of Oxford, Oxford, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pearson, Carl A B" sort="Pearson, Carl A B" uniqKey="Pearson C" first="Carl A. B." last="Pearson">Carl A. B. Pearson</name>
<affiliation>
<nlm:aff id="aff007">
<addr-line>University of Florida, Gainesville, Gainesville, Florida, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reiner, Robert C" sort="Reiner, Robert C" uniqKey="Reiner R" first="Robert C." last="Reiner">Robert C. Reiner</name>
<affiliation>
<nlm:aff id="aff011">
<addr-line>Indiana University, Bloomington, Indiana, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mier Y Teran Romero, Luis" sort="Mier Y Teran Romero, Luis" uniqKey="Mier Y Teran Romero L" first="Luis" last="Mier-Y-Terán-Romero">Luis Mier-Y-Terán-Romero</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vannice, Kirsten" sort="Vannice, Kirsten" uniqKey="Vannice K" first="Kirsten" last="Vannice">Kirsten Vannice</name>
<affiliation>
<nlm:aff id="aff012">
<addr-line>World Health Organization, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ferguson, Neil" sort="Ferguson, Neil" uniqKey="Ferguson N" first="Neil" last="Ferguson">Neil Ferguson</name>
<affiliation>
<nlm:aff id="aff009">
<addr-line>Imperial College London, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27898668</idno>
<idno type="pmc">5127514</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127514</idno>
<idno type="RBID">PMC:5127514</idno>
<idno type="doi">10.1371/journal.pmed.1002181</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">002902</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002902</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study</title>
<author>
<name sortKey="Flasche, Stefan" sort="Flasche, Stefan" uniqKey="Flasche S" first="Stefan" last="Flasche">Stefan Flasche</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>London School of Hygiene and Tropical Medicine, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jit, Mark" sort="Jit, Mark" uniqKey="Jit M" first="Mark" last="Jit">Mark Jit</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>London School of Hygiene and Tropical Medicine, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Barraquer, Isabel" sort="Rodriguez Barraquer, Isabel" uniqKey="Rodriguez Barraquer I" first="Isabel" last="Rodríguez-Barraquer">Isabel Rodríguez-Barraquer</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coudeville, Laurent" sort="Coudeville, Laurent" uniqKey="Coudeville L" first="Laurent" last="Coudeville">Laurent Coudeville</name>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Sanofi Pasteur, Lyon, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Recker, Mario" sort="Recker, Mario" uniqKey="Recker M" first="Mario" last="Recker">Mario Recker</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>University of Exeter, Exeter, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Koelle, Katia" sort="Koelle, Katia" uniqKey="Koelle K" first="Katia" last="Koelle">Katia Koelle</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Duke University, Durham, North Carolina, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Milne, George" sort="Milne, George" uniqKey="Milne G" first="George" last="Milne">George Milne</name>
<affiliation>
<nlm:aff id="aff006">
<addr-line>University of Western Australia, Crawley, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hladish, Thomas J" sort="Hladish, Thomas J" uniqKey="Hladish T" first="Thomas J." last="Hladish">Thomas J. Hladish</name>
<affiliation>
<nlm:aff id="aff007">
<addr-line>University of Florida, Gainesville, Gainesville, Florida, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perkins, T Alex" sort="Perkins, T Alex" uniqKey="Perkins T" first="T. Alex" last="Perkins">T. Alex Perkins</name>
<affiliation>
<nlm:aff id="aff008">
<addr-line>University of Notre Dame, Notre Dame, Indiana, United States</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cummings, Derek A T" sort="Cummings, Derek A T" uniqKey="Cummings D" first="Derek A. T." last="Cummings">Derek A. T. Cummings</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff007">
<addr-line>University of Florida, Gainesville, Gainesville, Florida, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dorigatti, Ilaria" sort="Dorigatti, Ilaria" uniqKey="Dorigatti I" first="Ilaria" last="Dorigatti">Ilaria Dorigatti</name>
<affiliation>
<nlm:aff id="aff009">
<addr-line>Imperial College London, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Laydon, Daniel J" sort="Laydon, Daniel J" uniqKey="Laydon D" first="Daniel J." last="Laydon">Daniel J. Laydon</name>
<affiliation>
<nlm:aff id="aff009">
<addr-line>Imperial College London, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Espa A, Guido" sort="Espa A, Guido" uniqKey="Espa A G" first="Guido" last="Espa A">Guido Espa A</name>
<affiliation>
<nlm:aff id="aff008">
<addr-line>University of Notre Dame, Notre Dame, Indiana, United States</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kelso, Joel" sort="Kelso, Joel" uniqKey="Kelso J" first="Joel" last="Kelso">Joel Kelso</name>
<affiliation>
<nlm:aff id="aff006">
<addr-line>University of Western Australia, Crawley, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Longini, Ira" sort="Longini, Ira" uniqKey="Longini I" first="Ira" last="Longini">Ira Longini</name>
<affiliation>
<nlm:aff id="aff007">
<addr-line>University of Florida, Gainesville, Gainesville, Florida, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lourenco, Jose" sort="Lourenco, Jose" uniqKey="Lourenco J" first="Jose" last="Lourenco">Jose Lourenco</name>
<affiliation>
<nlm:aff id="aff010">
<addr-line>University of Oxford, Oxford, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pearson, Carl A B" sort="Pearson, Carl A B" uniqKey="Pearson C" first="Carl A. B." last="Pearson">Carl A. B. Pearson</name>
<affiliation>
<nlm:aff id="aff007">
<addr-line>University of Florida, Gainesville, Gainesville, Florida, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reiner, Robert C" sort="Reiner, Robert C" uniqKey="Reiner R" first="Robert C." last="Reiner">Robert C. Reiner</name>
<affiliation>
<nlm:aff id="aff011">
<addr-line>Indiana University, Bloomington, Indiana, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mier Y Teran Romero, Luis" sort="Mier Y Teran Romero, Luis" uniqKey="Mier Y Teran Romero L" first="Luis" last="Mier-Y-Terán-Romero">Luis Mier-Y-Terán-Romero</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vannice, Kirsten" sort="Vannice, Kirsten" uniqKey="Vannice K" first="Kirsten" last="Vannice">Kirsten Vannice</name>
<affiliation>
<nlm:aff id="aff012">
<addr-line>World Health Organization, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ferguson, Neil" sort="Ferguson, Neil" uniqKey="Ferguson N" first="Neil" last="Ferguson">Neil Ferguson</name>
<affiliation>
<nlm:aff id="aff009">
<addr-line>Imperial College London, London, United Kingdom</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Medicine</title>
<idno type="ISSN">1549-1277</idno>
<idno type="eISSN">1549-1676</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="sec001">
<title>Background</title>
<p>Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine.</p>
</sec>
<sec id="sec002">
<title>Methods and Findings</title>
<p>The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials.</p>
<p>All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%–25% (all simulations: –3%–34%) and in high-transmission settings (SP9 ≥ 70%) by 13%–25% (all simulations: 10%– 34%). These endemicity levels are representative of the participating sites in both Phase III trials. In contrast, in settings with low transmission intensity (SP9 ≤ 30%), the models predicted that vaccination could lead to a substantial increase in hospitalisation because of dengue. Modelling reduced vaccine coverage or the addition of catch-up campaigns showed that the impact of vaccination scaled approximately linearly with the number of people vaccinated. In assessing the optimal age of vaccination, we found that targeting older children could increase the net benefit of vaccination in settings with moderate transmission intensity (SP9 = 50%). Overall, vaccination was predicted to be potentially cost-effective in most endemic settings if priced competitively.</p>
<p>The results are based on the assumption that the vaccine acts similarly to natural infection. This assumption is consistent with the available trial results but cannot be directly validated in the absence of additional data. Furthermore, uncertainties remain regarding the level of protection provided against disease versus infection and the rate at which vaccine-induced protection declines.</p>
</sec>
<sec id="sec003">
<title>Conclusions</title>
<p>Dengvaxia has the potential to reduce the burden of dengue disease in areas of moderate to high dengue endemicity. However, the potential risks of vaccination in areas with limited exposure to dengue as well as the local costs and benefits of routine vaccination are important considerations for the inclusion of Dengvaxia into existing immunisation programmes. These results were important inputs into WHO global policy for use of this licensed dengue vaccine.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Stanaway, Jd" uniqKey="Stanaway J">JD Stanaway</name>
</author>
<author>
<name sortKey="Shepard, Ds" uniqKey="Shepard D">DS Shepard</name>
</author>
<author>
<name sortKey="Undurraga, Ea" uniqKey="Undurraga E">EA Undurraga</name>
</author>
<author>
<name sortKey="Halasa, Ya" uniqKey="Halasa Y">YA Halasa</name>
</author>
<author>
<name sortKey="Coffeng, Le" uniqKey="Coffeng L">LE Coffeng</name>
</author>
<author>
<name sortKey="Brady, Oj" uniqKey="Brady O">OJ Brady</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhatt, S" uniqKey="Bhatt S">S Bhatt</name>
</author>
<author>
<name sortKey="Gething, Pw" uniqKey="Gething P">PW Gething</name>
</author>
<author>
<name sortKey="Brady, Oj" uniqKey="Brady O">OJ Brady</name>
</author>
<author>
<name sortKey="Messina, Jp" uniqKey="Messina J">JP Messina</name>
</author>
<author>
<name sortKey="Farlow, Aw" uniqKey="Farlow A">AW Farlow</name>
</author>
<author>
<name sortKey="Moyes, Cl" uniqKey="Moyes C">CL Moyes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reich, Ng" uniqKey="Reich N">NG Reich</name>
</author>
<author>
<name sortKey="Shrestha, S" uniqKey="Shrestha S">S Shrestha</name>
</author>
<author>
<name sortKey="King, Aa" uniqKey="King A">AA King</name>
</author>
<author>
<name sortKey="Rohani, P" uniqKey="Rohani P">P Rohani</name>
</author>
<author>
<name sortKey="Lessler, J" uniqKey="Lessler J">J Lessler</name>
</author>
<author>
<name sortKey="Kalayanarooj, S" uniqKey="Kalayanarooj S">S Kalayanarooj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gibbons, R V" uniqKey="Gibbons R">R V Gibbons</name>
</author>
<author>
<name sortKey="Kalanarooj, S" uniqKey="Kalanarooj S">S Kalanarooj</name>
</author>
<author>
<name sortKey="Jarman, Rg" uniqKey="Jarman R">RG Jarman</name>
</author>
<author>
<name sortKey="Nisalak, A" uniqKey="Nisalak A">A Nisalak</name>
</author>
<author>
<name sortKey="Vaughn, Dw" uniqKey="Vaughn D">DW Vaughn</name>
</author>
<author>
<name sortKey="Endy, Tp" uniqKey="Endy T">TP Endy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Endy, Tp" uniqKey="Endy T">TP Endy</name>
</author>
<author>
<name sortKey="Yoon, I K" uniqKey="Yoon I">I-K Yoon</name>
</author>
<author>
<name sortKey="Mammen, Mp" uniqKey="Mammen M">MP Mammen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burke, Ds" uniqKey="Burke D">DS Burke</name>
</author>
<author>
<name sortKey="Nisalak, A" uniqKey="Nisalak A">A Nisalak</name>
</author>
<author>
<name sortKey="Johnson, De" uniqKey="Johnson D">DE Johnson</name>
</author>
<author>
<name sortKey="Scott, Rmcn" uniqKey="Scott R">RMcN Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nisalak, A" uniqKey="Nisalak A">A Nisalak</name>
</author>
<author>
<name sortKey="Endy, Tp" uniqKey="Endy T">TP Endy</name>
</author>
<author>
<name sortKey="Nimmannitya, S" uniqKey="Nimmannitya S">S Nimmannitya</name>
</author>
<author>
<name sortKey="Kalayanarooj, S" uniqKey="Kalayanarooj S">S Kalayanarooj</name>
</author>
<author>
<name sortKey="Thisayakorn, U" uniqKey="Thisayakorn U">U Thisayakorn</name>
</author>
<author>
<name sortKey="Scott, Rm" uniqKey="Scott R">RM Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Capeding, Mr" uniqKey="Capeding M">MR Capeding</name>
</author>
<author>
<name sortKey="Tran, Nh" uniqKey="Tran N">NH Tran</name>
</author>
<author>
<name sortKey="Hadinegoro, Srs" uniqKey="Hadinegoro S">SRS Hadinegoro</name>
</author>
<author>
<name sortKey="Ismail, Hihm" uniqKey="Ismail H">HIHM Ismail</name>
</author>
<author>
<name sortKey="Chotpitayasunondh, T" uniqKey="Chotpitayasunondh T">T Chotpitayasunondh</name>
</author>
<author>
<name sortKey="Chua, Mn" uniqKey="Chua M">MN Chua</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Villar, L" uniqKey="Villar L">L Villar</name>
</author>
<author>
<name sortKey="Dayan, Gh" uniqKey="Dayan G">GH Dayan</name>
</author>
<author>
<name sortKey="Arredondo Garcia, Jl" uniqKey="Arredondo Garcia J">JL Arredondo-García</name>
</author>
<author>
<name sortKey="Rivera, Dm" uniqKey="Rivera D">DM Rivera</name>
</author>
<author>
<name sortKey="Cunha, R" uniqKey="Cunha R">R Cunha</name>
</author>
<author>
<name sortKey="Deseda, C" uniqKey="Deseda C">C Deseda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hadinegoro, Sr" uniqKey="Hadinegoro S">SR Hadinegoro</name>
</author>
<author>
<name sortKey="Arredondo Garcia, Jl" uniqKey="Arredondo Garcia J">JL Arredondo-García</name>
</author>
<author>
<name sortKey="Capeding, Mr" uniqKey="Capeding M">MR Capeding</name>
</author>
<author>
<name sortKey="Deseda, C" uniqKey="Deseda C">C Deseda</name>
</author>
<author>
<name sortKey="Chotpitayasunondh, T" uniqKey="Chotpitayasunondh T">T Chotpitayasunondh</name>
</author>
<author>
<name sortKey="Dietze, R" uniqKey="Dietze R">R Dietze</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pang, T" uniqKey="Pang T">T Pang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilder Smith, A" uniqKey="Wilder Smith A">A Wilder-Smith</name>
</author>
<author>
<name sortKey="Vannice, Ks" uniqKey="Vannice K">KS Vannice</name>
</author>
<author>
<name sortKey="Hombach, J" uniqKey="Hombach J">J Hombach</name>
</author>
<author>
<name sortKey="Farrar, J" uniqKey="Farrar J">J Farrar</name>
</author>
<author>
<name sortKey="Nolan, T" uniqKey="Nolan T">T Nolan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagao, Y" uniqKey="Nagao Y">Y Nagao</name>
</author>
<author>
<name sortKey="Koelle, K" uniqKey="Koelle K">K Koelle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lourenco, J" uniqKey="Lourenco J">J Lourenco</name>
</author>
<author>
<name sortKey="Recker, M" uniqKey="Recker M">M Recker</name>
</author>
<author>
<name sortKey="Pascual, M" uniqKey="Pascual M">M Pascual</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lourenco, J" uniqKey="Lourenco J">J Lourenço</name>
</author>
<author>
<name sortKey="Recker, M" uniqKey="Recker M">M Recker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Barraquer, I" uniqKey="Rodriguez Barraquer I">I Rodriguez-Barraquer</name>
</author>
<author>
<name sortKey="Mier Y Teran Romero, L" uniqKey="Mier Y Teran Romero L">L Mier-y-Teran-Romero</name>
</author>
<author>
<name sortKey="Schwartz, Ib" uniqKey="Schwartz I">IB Schwartz</name>
</author>
<author>
<name sortKey="Burke, Ds" uniqKey="Burke D">DS Burke</name>
</author>
<author>
<name sortKey="Cummings, Dat" uniqKey="Cummings D">DAT Cummings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Barraquer, I" uniqKey="Rodriguez Barraquer I">I Rodriguez-Barraquer</name>
</author>
<author>
<name sortKey="Mier Y Teran Romero, L" uniqKey="Mier Y Teran Romero L">L Mier-y-Teran-Romero</name>
</author>
<author>
<name sortKey="Burke, Ds" uniqKey="Burke D">DS Burke</name>
</author>
<author>
<name sortKey="Cummings, Dat" uniqKey="Cummings D">DAT Cummings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coudeville, L" uniqKey="Coudeville L">L Coudeville</name>
</author>
<author>
<name sortKey="Baurin, N" uniqKey="Baurin N">N Baurin</name>
</author>
<author>
<name sortKey="Vergu, E" uniqKey="Vergu E">E Vergu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hladish, Tj" uniqKey="Hladish T">TJ Hladish</name>
</author>
<author>
<name sortKey="Pearson, Cab" uniqKey="Pearson C">CAB Pearson</name>
</author>
<author>
<name sortKey="Chao, Dl" uniqKey="Chao D">DL Chao</name>
</author>
<author>
<name sortKey="Rojas, Dp" uniqKey="Rojas D">DP Rojas</name>
</author>
<author>
<name sortKey="Recchia, Gl" uniqKey="Recchia G">GL Recchia</name>
</author>
<author>
<name sortKey="G Mez Dantes, H" uniqKey="G Mez Dantes H">H Gómez-Dantés</name>
</author>
<author>
<name sortKey="Carvalho, Ms" uniqKey="Carvalho M">MS Carvalho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karl, S" uniqKey="Karl S">S Karl</name>
</author>
<author>
<name sortKey="Halder, N" uniqKey="Halder N">N Halder</name>
</author>
<author>
<name sortKey="Kelso, Jk" uniqKey="Kelso J">JK Kelso</name>
</author>
<author>
<name sortKey="Ritchie, S A" uniqKey="Ritchie S">S a. Ritchie</name>
</author>
<author>
<name sortKey="Milne, Gj" uniqKey="Milne G">GJ Milne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Rodriguez Barraquer, I" uniqKey="Rodriguez Barraquer I">I Rodriguez-Barraquer</name>
</author>
<author>
<name sortKey="Dorigatti, I" uniqKey="Dorigatti I">I Dorigatti</name>
</author>
<author>
<name sortKey="Mier Y Teran Romero, L" uniqKey="Mier Y Teran Romero L">L Mier-y-Teran-Romero</name>
</author>
<author>
<name sortKey="Laydon, Dj" uniqKey="Laydon D">DJ Laydon</name>
</author>
<author>
<name sortKey="Cummings, Dat" uniqKey="Cummings D">DAT Cummings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perkins, Ta" uniqKey="Perkins T">TA Perkins</name>
</author>
<author>
<name sortKey="Reiner, Rc" uniqKey="Reiner R">RC Reiner</name>
</author>
<author>
<name sortKey="Ten Bosch, Qa" uniqKey="Ten Bosch Q">QA ten Bosch</name>
</author>
<author>
<name sortKey="Espana, G" uniqKey="Espana G">G Espana</name>
</author>
<author>
<name sortKey="Verma, A" uniqKey="Verma A">A Verma</name>
</author>
<author>
<name sortKey="Liebman, Ka" uniqKey="Liebman K">KA Liebman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guy, B" uniqKey="Guy B">B Guy</name>
</author>
<author>
<name sortKey="Jackson, N" uniqKey="Jackson N">N Jackson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="L Zou, M" uniqKey="L Zou M">M L’Azou</name>
</author>
<author>
<name sortKey="Moureau, A" uniqKey="Moureau A">A Moureau</name>
</author>
<author>
<name sortKey="Sarti, E" uniqKey="Sarti E">E Sarti</name>
</author>
<author>
<name sortKey="Nealon, J" uniqKey="Nealon J">J Nealon</name>
</author>
<author>
<name sortKey="Zambrano, B" uniqKey="Zambrano B">B Zambrano</name>
</author>
<author>
<name sortKey="Wartel, Ta" uniqKey="Wartel T">TA Wartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Braga, C" uniqKey="Braga C">C Braga</name>
</author>
<author>
<name sortKey="Luna, Cf" uniqKey="Luna C">CF Luna</name>
</author>
<author>
<name sortKey="Martelli, Cmt" uniqKey="Martelli C">CMT Martelli</name>
</author>
<author>
<name sortKey="De Souza, Wv" uniqKey="De Souza W">WV de Souza</name>
</author>
<author>
<name sortKey="Cordeiro, Mtt" uniqKey="Cordeiro M">MTT Cordeiro</name>
</author>
<author>
<name sortKey="Alexander, N" uniqKey="Alexander N">N Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Barraquer, I" uniqKey="Rodriguez Barraquer I">I Rodríguez-Barraquer</name>
</author>
<author>
<name sortKey="Buathong, R" uniqKey="Buathong R">R Buathong</name>
</author>
<author>
<name sortKey="Iamsirithaworn, S" uniqKey="Iamsirithaworn S">S Iamsirithaworn</name>
</author>
<author>
<name sortKey="Nisalak, A" uniqKey="Nisalak A">A Nisalak</name>
</author>
<author>
<name sortKey="Lessler, J" uniqKey="Lessler J">J Lessler</name>
</author>
<author>
<name sortKey="Jarman, Rg" uniqKey="Jarman R">RG Jarman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amaya Larios, Iy" uniqKey="Amaya Larios I">IY Amaya-Larios</name>
</author>
<author>
<name sortKey="Martinez Vega, Ra" uniqKey="Martinez Vega R">RA Martinez-Vega</name>
</author>
<author>
<name sortKey="Mayer, S V" uniqKey="Mayer S">S V Mayer</name>
</author>
<author>
<name sortKey="Galeana Hernandez, M" uniqKey="Galeana Hernandez M">M Galeana-Hernandez</name>
</author>
<author>
<name sortKey="Comas Garcia, A" uniqKey="Comas Garcia A">A Comas-Garcia</name>
</author>
<author>
<name sortKey="Sepulveda Salinas, Kj" uniqKey="Sepulveda Salinas K">KJ Sepulveda-Salinas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Barraquer, I" uniqKey="Rodriguez Barraquer I">I Rodríguez-Barraquer</name>
</author>
<author>
<name sortKey="Solomon, Ss" uniqKey="Solomon S">SS Solomon</name>
</author>
<author>
<name sortKey="Kuganantham, P" uniqKey="Kuganantham P">P Kuganantham</name>
</author>
<author>
<name sortKey="Srikrishnan, Ak" uniqKey="Srikrishnan A">AK Srikrishnan</name>
</author>
<author>
<name sortKey="Vasudevan, Ck" uniqKey="Vasudevan C">CK Vasudevan</name>
</author>
<author>
<name sortKey="Iqbal, Sh" uniqKey="Iqbal S">SH Iqbal</name>
</author>
<author>
<name sortKey="Kittayapong, P" uniqKey="Kittayapong P">P Kittayapong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siqueira, Jb" uniqKey="Siqueira J">JB Siqueira</name>
</author>
<author>
<name sortKey="Vinhal, Lc" uniqKey="Vinhal L">LC Vinhal</name>
</author>
<author>
<name sortKey="Said, Rfc" uniqKey="Said R">RFC Said</name>
</author>
<author>
<name sortKey="Hoffmann, Jl" uniqKey="Hoffmann J">JL Hoffmann</name>
</author>
<author>
<name sortKey="Martins, J" uniqKey="Martins J">J Martins</name>
</author>
<author>
<name sortKey="Barbiratto, Sb" uniqKey="Barbiratto S">SB Barbiratto</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cafferata, Ml" uniqKey="Cafferata M">ML Cafferata</name>
</author>
<author>
<name sortKey="Bardach, A" uniqKey="Bardach A">A Bardach</name>
</author>
<author>
<name sortKey="Rey Ares, L" uniqKey="Rey Ares L">L Rey-Ares</name>
</author>
<author>
<name sortKey="Alcaraz, A" uniqKey="Alcaraz A">A Alcaraz</name>
</author>
<author>
<name sortKey="Cormick, G" uniqKey="Cormick G">G Cormick</name>
</author>
<author>
<name sortKey="Gibbons, L" uniqKey="Gibbons L">L Gibbons</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koopmanschap, Ma" uniqKey="Koopmanschap M">MA Koopmanschap</name>
</author>
<author>
<name sortKey="Rutten, Ffh" uniqKey="Rutten F">FFH Rutten</name>
</author>
<author>
<name sortKey="Van Ineveld, Bm" uniqKey="Van Ineveld B">BM van Ineveld</name>
</author>
<author>
<name sortKey="Van Roijen, L" uniqKey="Van Roijen L">L van Roijen</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martelli, Cmt" uniqKey="Martelli C">CMT Martelli</name>
</author>
<author>
<name sortKey="Siqueira, Jb" uniqKey="Siqueira J">JB Siqueira</name>
</author>
<author>
<name sortKey="Parente, Mppd" uniqKey="Parente M">MPPD Parente</name>
</author>
<author>
<name sortKey="De Sa Zara, Al" uniqKey="De Sa Zara A">AL de SA Zara</name>
</author>
<author>
<name sortKey="Oliveira, Cs" uniqKey="Oliveira C">CS Oliveira</name>
</author>
<author>
<name sortKey="Braga, C" uniqKey="Braga C">C Braga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edillo, Fe" uniqKey="Edillo F">FE Edillo</name>
</author>
<author>
<name sortKey="Halasa, Ya" uniqKey="Halasa Y">YA Halasa</name>
</author>
<author>
<name sortKey="Largo, Fm" uniqKey="Largo F">FM Largo</name>
</author>
<author>
<name sortKey="Erasmo Jn, V" uniqKey="Erasmo Jn V">V Erasmo JN</name>
</author>
<author>
<name sortKey="Amoin, Nb" uniqKey="Amoin N">NB Amoin</name>
</author>
<author>
<name sortKey="Alera, Mtp" uniqKey="Alera M">MTP Alera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyet, Mn" uniqKey="Nguyet M">MN Nguyet</name>
</author>
<author>
<name sortKey="Duong, Thk" uniqKey="Duong T">THK Duong</name>
</author>
<author>
<name sortKey="Trung, Vt" uniqKey="Trung V">VT Trung</name>
</author>
<author>
<name sortKey="Nguyen, Tthq" uniqKey="Nguyen T">TTHQ Nguyen</name>
</author>
<author>
<name sortKey="Tran, Cnb" uniqKey="Tran C">CNB Tran</name>
</author>
<author>
<name sortKey="Long, Vt" uniqKey="Long V">VT Long</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duong, V" uniqKey="Duong V">V Duong</name>
</author>
<author>
<name sortKey="Lambrechts, L" uniqKey="Lambrechts L">L Lambrechts</name>
</author>
<author>
<name sortKey="Paul, Re" uniqKey="Paul R">RE Paul</name>
</author>
<author>
<name sortKey="Ly, S" uniqKey="Ly S">S Ly</name>
</author>
<author>
<name sortKey="Lay, Rs" uniqKey="Lay R">RS Lay</name>
</author>
<author>
<name sortKey="Long, Kc" uniqKey="Long K">KC Long</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Med</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Med</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosmed</journal-id>
<journal-title-group>
<journal-title>PLoS Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1549-1277</issn>
<issn pub-type="epub">1549-1676</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27898668</article-id>
<article-id pub-id-type="pmc">5127514</article-id>
<article-id pub-id-type="doi">10.1371/journal.pmed.1002181</article-id>
<article-id pub-id-type="publisher-id">PMEDICINE-D-16-01203</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Vaccination and Immunization</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Vaccination and Immunization</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Public and Occupational Health</subject>
<subj-group>
<subject>Preventive Medicine</subject>
<subj-group>
<subject>Vaccination and Immunization</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Vaccination and Immunization</subject>
<subj-group>
<subject>Vaccines</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Vaccination and Immunization</subject>
<subj-group>
<subject>Vaccines</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Public and Occupational Health</subject>
<subj-group>
<subject>Preventive Medicine</subject>
<subj-group>
<subject>Vaccination and Immunization</subject>
<subj-group>
<subject>Vaccines</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Public and Occupational Health</subject>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and Analysis Methods</subject>
<subj-group>
<subject>Simulation and Modeling</subject>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Social Sciences</subject>
<subj-group>
<subject>Economics</subject>
<subj-group>
<subject>Economic Analysis</subject>
<subj-group>
<subject>Cost-Effectiveness Analysis</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Tropical Diseases</subject>
<subj-group>
<subject>Neglected Tropical Diseases</subject>
<subj-group>
<subject>Dengue Fever</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Infectious Diseases</subject>
<subj-group>
<subject>Viral Diseases</subject>
<subj-group>
<subject>Dengue Fever</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Vaccination and Immunization</subject>
<subj-group>
<subject>Vaccines</subject>
<subj-group>
<subject>Recombinant Vaccines</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Vaccination and Immunization</subject>
<subj-group>
<subject>Vaccines</subject>
<subj-group>
<subject>Recombinant Vaccines</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Public and Occupational Health</subject>
<subj-group>
<subject>Preventive Medicine</subject>
<subj-group>
<subject>Vaccination and Immunization</subject>
<subj-group>
<subject>Vaccines</subject>
<subj-group>
<subject>Recombinant Vaccines</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Social Sciences</subject>
<subj-group>
<subject>Economics</subject>
<subj-group>
<subject>Health Economics</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Health Care</subject>
<subj-group>
<subject>Health Economics</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study</article-title>
<alt-title alt-title-type="running-head">Modelling the Public Health Impact of Dengvaxia</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-5808-2606</contrib-id>
<name>
<surname>Flasche</surname>
<given-names>Stefan</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Jit</surname>
<given-names>Mark</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor001">*</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Rodríguez-Barraquer</surname>
<given-names>Isabel</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Coudeville</surname>
<given-names>Laurent</given-names>
</name>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0001-9489-1315</contrib-id>
<name>
<surname>Recker</surname>
<given-names>Mario</given-names>
</name>
<xref ref-type="aff" rid="aff004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Koelle</surname>
<given-names>Katia</given-names>
</name>
<xref ref-type="aff" rid="aff005">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Milne</surname>
<given-names>George</given-names>
</name>
<xref ref-type="aff" rid="aff006">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0003-1819-6235</contrib-id>
<name>
<surname>Hladish</surname>
<given-names>Thomas J.</given-names>
</name>
<xref ref-type="aff" rid="aff007">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Perkins</surname>
<given-names>T. Alex</given-names>
</name>
<xref ref-type="aff" rid="aff008">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-9437-1907</contrib-id>
<name>
<surname>Cummings</surname>
<given-names>Derek A. T.</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff007">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0001-9959-0706</contrib-id>
<name>
<surname>Dorigatti</surname>
<given-names>Ilaria</given-names>
</name>
<xref ref-type="aff" rid="aff009">
<sup>9</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0003-4270-3321</contrib-id>
<name>
<surname>Laydon</surname>
<given-names>Daniel J.</given-names>
</name>
<xref ref-type="aff" rid="aff009">
<sup>9</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-9915-8056</contrib-id>
<name>
<surname>España</surname>
<given-names>Guido</given-names>
</name>
<xref ref-type="aff" rid="aff008">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0001-9814-6435</contrib-id>
<name>
<surname>Kelso</surname>
<given-names>Joel</given-names>
</name>
<xref ref-type="aff" rid="aff006">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Longini</surname>
<given-names>Ira</given-names>
</name>
<xref ref-type="aff" rid="aff007">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lourenco</surname>
<given-names>Jose</given-names>
</name>
<xref ref-type="aff" rid="aff010">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pearson</surname>
<given-names>Carl A. B.</given-names>
</name>
<xref ref-type="aff" rid="aff007">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Reiner</surname>
<given-names>Robert C.</given-names>
</name>
<xref ref-type="aff" rid="aff011">
<sup>11</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mier-y-Terán-Romero</surname>
<given-names>Luis</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vannice</surname>
<given-names>Kirsten</given-names>
</name>
<xref ref-type="aff" rid="aff012">
<sup>12</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-1154-8093</contrib-id>
<name>
<surname>Ferguson</surname>
<given-names>Neil</given-names>
</name>
<xref ref-type="aff" rid="aff009">
<sup>9</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>London School of Hygiene and Tropical Medicine, London, United Kingdom</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America</addr-line>
</aff>
<aff id="aff003">
<label>3</label>
<addr-line>Sanofi Pasteur, Lyon, France</addr-line>
</aff>
<aff id="aff004">
<label>4</label>
<addr-line>University of Exeter, Exeter, United Kingdom</addr-line>
</aff>
<aff id="aff005">
<label>5</label>
<addr-line>Duke University, Durham, North Carolina, United States of America</addr-line>
</aff>
<aff id="aff006">
<label>6</label>
<addr-line>University of Western Australia, Crawley, Australia</addr-line>
</aff>
<aff id="aff007">
<label>7</label>
<addr-line>University of Florida, Gainesville, Gainesville, Florida, United States of America</addr-line>
</aff>
<aff id="aff008">
<label>8</label>
<addr-line>University of Notre Dame, Notre Dame, Indiana, United States</addr-line>
</aff>
<aff id="aff009">
<label>9</label>
<addr-line>Imperial College London, London, United Kingdom</addr-line>
</aff>
<aff id="aff010">
<label>10</label>
<addr-line>University of Oxford, Oxford, United Kingdom</addr-line>
</aff>
<aff id="aff011">
<label>11</label>
<addr-line>Indiana University, Bloomington, Indiana, United States of America</addr-line>
</aff>
<aff id="aff012">
<label>12</label>
<addr-line>World Health Organization, Geneva, Switzerland</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>von Seidlein</surname>
<given-names>Lorenz</given-names>
</name>
<role>Academic Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Mahidol-Oxford Tropical Medicine Research Unit, THAILAND</addr-line>
</aff>
<author-notes>
<fn fn-type="COI-statement" id="coi001">
<p>I have read the journal's policy and the authors of this manuscript have the following competing interests: LC is employed by Sanofi Pasteur. KV is a staff member of the World Health Organization. TAP and GE receive support from GlaxoSmithKline for unrelated work on dengue vaccine modelling. IL, TJH, and CABP have received travel support from Sanofi Pasteur to present other work on dengue vaccine modelling. Sanofi Pasteur has not funded any of their research and was not involved in any research decisions related to their work presented. NF gave advice to Sanofi-Pasteur and the World Health Organization on the efficacy profile and potential public health impact of Dengvaxia. He is also collaborating with Sanofi-Pasteur on secondary analyses of Dengvaxia clinical trial data. He has received no remuneration, grant income, expense payments or in-kind benefit from Sanofi-Pasteur. DATC and IRB have advised WHO on the use of the Sanofi vaccine in a number of meetings and as part of a consortium of modelers who estimated the potential impact of the vaccine. On occasion they received travel expenses for visits to WHO. They have also advised Sanofi Pasteur Ltd. on the implications their work has for use of their vaccine. They have not received any financial or in-kind payment from Sanofi. All other authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>
<list list-type="simple">
<list-item>
<p>
<bold>Conceptualization:</bold>
SF MJ KV NF.</p>
</list-item>
<list-item>
<p>
<bold>Data curation:</bold>
SF MJ.</p>
</list-item>
<list-item>
<p>
<bold>Formal analysis:</bold>
SF MJ IRB LC MR KK GM TJH TAP DATC ID GE JK DJL IL JL CABP RCR LMTR KV NF.</p>
</list-item>
<list-item>
<p>
<bold>Investigation:</bold>
SF MJ IRB LC MR KK GM TJH TAP DATC ID GE JK DJL IL JL CABP RCR LMTR KV NF.</p>
</list-item>
<list-item>
<p>
<bold>Methodology:</bold>
SF MJ IRB LC MR KK GM TJH TAP DATC ID GE JK DJL IL JL CABP RCR LMTR KV NF.</p>
</list-item>
<list-item>
<p>
<bold>Project administration:</bold>
SF MJ KV NF.</p>
</list-item>
<list-item>
<p>
<bold>Resources:</bold>
SF MJ IRB LC MR KK GM TJH TAP DATC ID GE JK DJL IL JL CABP RCR LMTR KV NF.</p>
</list-item>
<list-item>
<p>
<bold>Software:</bold>
SF MJ IRB LC MR KK GM TJH TAP DATC ID GE JK DJL IL JL CABP RCR LMTR KV NF.</p>
</list-item>
<list-item>
<p>
<bold>Supervision:</bold>
NF.</p>
</list-item>
<list-item>
<p>
<bold>Validation:</bold>
SF MJ IRB LC MR KK GM TJH TAP DATC ID GE JK DJL IL JL CABP RCR LMTR KV NF.</p>
</list-item>
<list-item>
<p>
<bold>Visualization:</bold>
SF.</p>
</list-item>
<list-item>
<p>
<bold>Writing – original draft:</bold>
SF MJ IRB LC MR KK NF.</p>
</list-item>
<list-item>
<p>
<bold>Writing – review & editing:</bold>
SF MJ IRB LC MR KK GM TJH TAP DATC ID GE JK DJL IL JL CABP RCR LMTR KV NF.</p>
</list-item>
</list>
</p>
</fn>
<corresp id="cor001">* E-mail:
<email>Mark.Jit@lshtm.ac.uk</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>29</day>
<month>11</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<month>11</month>
<year>2016</year>
</pub-date>
<volume>13</volume>
<issue>11</issue>
<elocation-id>e1002181</elocation-id>
<history>
<date date-type="received">
<day>13</day>
<month>4</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>10</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© 2016 Flasche et al</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Flasche et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="pmed.1002181.pdf"></self-uri>
<related-article id="d35e687" related-article-type="companion" ext-link-type="doi" xlink:href="10.1371/journal.pmed.1002182">
<article-title>The Dengue Vaccine Dilemma: Balancing the Individual and Population Risks and Benefits</article-title>
</related-article>
<abstract>
<sec id="sec001">
<title>Background</title>
<p>Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine.</p>
</sec>
<sec id="sec002">
<title>Methods and Findings</title>
<p>The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials.</p>
<p>All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%–25% (all simulations: –3%–34%) and in high-transmission settings (SP9 ≥ 70%) by 13%–25% (all simulations: 10%– 34%). These endemicity levels are representative of the participating sites in both Phase III trials. In contrast, in settings with low transmission intensity (SP9 ≤ 30%), the models predicted that vaccination could lead to a substantial increase in hospitalisation because of dengue. Modelling reduced vaccine coverage or the addition of catch-up campaigns showed that the impact of vaccination scaled approximately linearly with the number of people vaccinated. In assessing the optimal age of vaccination, we found that targeting older children could increase the net benefit of vaccination in settings with moderate transmission intensity (SP9 = 50%). Overall, vaccination was predicted to be potentially cost-effective in most endemic settings if priced competitively.</p>
<p>The results are based on the assumption that the vaccine acts similarly to natural infection. This assumption is consistent with the available trial results but cannot be directly validated in the absence of additional data. Furthermore, uncertainties remain regarding the level of protection provided against disease versus infection and the rate at which vaccine-induced protection declines.</p>
</sec>
<sec id="sec003">
<title>Conclusions</title>
<p>Dengvaxia has the potential to reduce the burden of dengue disease in areas of moderate to high dengue endemicity. However, the potential risks of vaccination in areas with limited exposure to dengue as well as the local costs and benefits of routine vaccination are important considerations for the inclusion of Dengvaxia into existing immunisation programmes. These results were important inputs into WHO global policy for use of this licensed dengue vaccine.</p>
</sec>
</abstract>
<abstract abstract-type="toc">
<p>Mark Jit and colleagues report findings from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia).</p>
</abstract>
<abstract abstract-type="summary">
<title>Author Summary</title>
<sec id="sec004">
<title>Why Was This Study Done?</title>
<list list-type="bullet">
<list-item>
<p>Dengvaxia, the first vaccine against all dengue serotypes, has recently been licensed in several countries.</p>
</list-item>
<list-item>
<p>The World Health Organization initiated this study to inform its official position on the use of Dengvaxia.</p>
</list-item>
</list>
</sec>
<sec id="sec005">
<title>What Did the Researchers Do and Find?</title>
<list list-type="bullet">
<list-item>
<p>We used dynamical models with differences in how dengue epidemiology is reflected but common assumptions on vaccine effects, informed by trial observations, to predict the impact and cost-effectiveness of Dengvaxia in a variety of situations.</p>
</list-item>
<list-item>
<p>The results showed that Dengvaxia has the potential to reduce the number of hospitalisations because of dengue by 13%–25% and be cost effective in settings where dengue is common.</p>
</list-item>
<list-item>
<p>However, in settings with low dengue prevalence, vaccination may increase the incidence of severe illness.</p>
</list-item>
</list>
</sec>
<sec id="sec006">
<title>What Do These Findings Mean?</title>
<list list-type="bullet">
<list-item>
<p>WHO has now recommended countries consider the use of Dengvaxia in settings with high dengue endemicity.</p>
</list-item>
<list-item>
<p>Our results can guide countries on the general suitability of Dengvaxia introduction; however, local demographics, heterogeneities in endemicity, and health system costs will need to be taken into account.</p>
</list-item>
</list>
</sec>
</abstract>
<funding-group>
<funding-statement>SF and MJ received funding from WHO and Gavi, the Vaccine Alliance, to conduct this work. LC is a paid employee at Sanofi Pasteur. GM and JK were funded by the University of Western Australia, with computing resources provided by the Pawsey Supercomputing Centre, which is funded by the Australian Government and the Government of Western Australia. MR is funded by a Royal Society University Research Fellowship. NF, ID and DJL received research funding from the UK Medical Research Council, the UK NIHR under the Health Protection Research Unit initiative, NIGMS under the MIDAS initiative, and the Bill and Melinda Gates Foundation. IRB and DATC were funded by MIDAS Center Grant NIH/NIGMS U54-GM088491 and the Bill and Melinda Gates Foundation. DATC was also supported by NIH/NIAID R01-AI114703. TJH, IL, and CABP were funded by a Dengue Vaccine Initiative Grant to IL, NIH/NIAID R37 AI32042. THJ, IL, and KK were funded by MIDAS Center Grant NIH/NIGMS 1135 U54 GM111274. All other authors have received no specific funding to conduct this work. The funders had no role in the study design, data analyses, decision to publish or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="6"></fig-count>
<table-count count="2"></table-count>
<page-count count="19"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All relevant data are within the paper and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All relevant data are within the paper and its Supporting Information files.</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec007">
<title>Introduction</title>
<p>Recent estimates indicate that dengue virus (DENV) causes at least 50 million cases of symptomatic disease per year [
<xref rid="pmed.1002181.ref001" ref-type="bibr">1</xref>
,
<xref rid="pmed.1002181.ref002" ref-type="bibr">2</xref>
]. DENV is prevalent across the tropics and subtropics, but transmission intensity is highly spatiotemporally variable. Infection with one of the four serotypes (DENV1–4) appears to provide long-lived immunity to that serotype (homologous protection) and induces temporary cross-reactive immunity to other serotypes (heterologous protection) [
<xref rid="pmed.1002181.ref003" ref-type="bibr">3</xref>
,
<xref rid="pmed.1002181.ref004" ref-type="bibr">4</xref>
]. Because of the short-lived nature of heterologous protection, individuals can experience multiple DENV infections over their lifetimes. The first (primary) DENV infection typically causes no or mild disease, but secondary DENV infection carries a substantially increased risk of severe disease [
<xref rid="pmed.1002181.ref005" ref-type="bibr">5</xref>
], thought to be a result of antibody-dependent enhancement (ADE). Postsecondary infections that result in severe disease are rarely observed and hence believed to be generally mild [
<xref rid="pmed.1002181.ref004" ref-type="bibr">4</xref>
,
<xref rid="pmed.1002181.ref006" ref-type="bibr">6</xref>
,
<xref rid="pmed.1002181.ref007" ref-type="bibr">7</xref>
].</p>
<p>Sanofi Pasteur recently completed Phase III trials of a recombinant, live-attenuated dengue vaccine (CYD-TDV; Dengvaxia) in Latin America and Southeast Asia [
<xref rid="pmed.1002181.ref008" ref-type="bibr">8</xref>
,
<xref rid="pmed.1002181.ref009" ref-type="bibr">9</xref>
] which by late 2016 has been approved in several countries. Over the 25-mo active surveillance phase of the trials, average efficacy against virologically confirmed clinical dengue of a three-dose regimen administered at 6 mo intervals was 60.3% (95% CI: 55.7% to 64.5%) in children between 2 and 16 y. Efficacy varied by age, serotype, and country and was about twice as high in children who were dengue seropositive (i.e., who have had at least one prior infection with any dengue serotype) at the time of vaccination compared to those who were seronegative.</p>
<p>Hospital-based detection of cases has continued and will provide long-term follow-up information during the 4 y following the active phase. The first year of long-term follow-up showed that the vaccine remained protective in all age-groups except among 2- to 5-y-old children. In this age group, vaccinees had a higher incidence of hospitalisation with virologically confirmed DENV than unvaccinated controls [
<xref rid="pmed.1002181.ref010" ref-type="bibr">10</xref>
]. In addition, vaccine efficacy among all age groups was found to be lower during the hospital-based phase than during the active phase, suggesting waning of vaccine-induced protection.</p>
<p>In April 2015, WHO initiated an open call for mathematical modellers to participate in a consortium called “Comparative modelling of dengue vaccine public health impact” (CMDVI) [
<xref rid="pmed.1002181.ref011" ref-type="bibr">11</xref>
,
<xref rid="pmed.1002181.ref012" ref-type="bibr">12</xref>
]. The purpose of the consortium was to generate model-based predictions of the long-term public health impact of Dengvaxia, reflecting the balance of safety, population-level effectiveness, and economic considerations. The participation of multiple modelling groups with transparent assumptions enhances the value of the outputs for policy-making. WHO’s independent expert advisory committee, the Strategic Advisory Group of Experts (SAGE) on Immunization, incorporated the results of this model comparison into their recommendations for appropriate use of the vaccine [
<xref rid="pmed.1002181.ref013" ref-type="bibr">13</xref>
<xref rid="pmed.1002181.ref017" ref-type="bibr">17</xref>
]; here, we report our detailed methods, results, and their wider implications.</p>
</sec>
<sec sec-type="materials|methods" id="sec008">
<title>Methods</title>
<sec id="sec009">
<title>Consortium Formation</title>
<p>Ten groups responded to the open call by WHO for consortium participation [
<xref rid="pmed.1002181.ref011" ref-type="bibr">11</xref>
,
<xref rid="pmed.1002181.ref012" ref-type="bibr">12</xref>
]. Of these, two groups withdrew subsequently because of time constraints, leaving the following eight groups as participants: Duke University (Duke), University of Exeter/University of Oxford (Exeter/Oxford), Johns Hopkins University/University of Florida (Hopkins/UF), Imperial College London (Imperial), University of Notre Dame (Notre Dame), Sanofi Pasteur, University of Florida (UF), and University of Western Australia (UWA). All groups agreed to run epidemiological scenarios using a common set of assumptions about vaccine action (with varying parameterisation) that were mutually agreed on in discussions with the SAGE Working Group on Dengue Vaccines and Vaccination [
<xref rid="pmed.1002181.ref018" ref-type="bibr">18</xref>
].</p>
</sec>
<sec id="sec010">
<title>Transmission Models</title>
<p>Details of the transmission models used have been published elsewhere [
<xref rid="pmed.1002181.ref019" ref-type="bibr">19</xref>
<xref rid="pmed.1002181.ref028" ref-type="bibr">28</xref>
], but concise descriptions are provided in
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
. All models simulated infections by all four serotypes and most included cross-protection between serotypes (all except Exeter/Oxford) and explicitly represented vector population dynamics (all except Duke). All models used demographic parameters typical of dengue-endemic middle-income countries (
<xref ref-type="table" rid="pmed.1002181.t001">Table 1</xref>
and
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
). Half of the models were deterministic compartmental models (Sanofi Pasteur, Hopkins/UF, Imperial, Duke), while the other half were stochastic simulation models (Exeter/Oxford, Notre Dame, UF, UWA). The epidemiological and vaccine parameters used by the four deterministic models were based on empirical literature estimates and on estimates derived from fitting to published aggregated data from the active and hospital phases of the Dengvaxia Phase III trials [
<xref rid="pmed.1002181.ref008" ref-type="bibr">8</xref>
,
<xref rid="pmed.1002181.ref009" ref-type="bibr">9</xref>
]. The Sanofi Pasteur model was fitted to active phase data alone but also made use of unpublished disaggregated data from the trials [
<xref rid="pmed.1002181.ref024" ref-type="bibr">24</xref>
] and hence was able to estimate serotype-specific differences in efficacy and epidemiological differences between countries. After initial fitting, parameters of the Sanofi model were later tuned to better represent the results of the first year of long-term follow-up. The stochastic models used a combination of parameters from the literature, from the deterministic model fits, and/or from fitting to dengue transmission in sites other than the trial sites.</p>
<table-wrap id="pmed.1002181.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1002181.t001</object-id>
<label>Table 1</label>
<caption>
<title>Comparison of models contributing to the exercise and overview of main differences.</title>
<p>Further details are provided in
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Chapter 1 and Tables C and D.</p>
</caption>
<alternatives>
<graphic id="pmed.1002181.t001g" xlink:href="pmed.1002181.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="center" rowspan="1" colspan="1">Group</th>
<th align="center" rowspan="1" colspan="1">Model type</th>
<th align="center" rowspan="1" colspan="1">Model fitted to Phase III trials?</th>
<th align="center" rowspan="1" colspan="1">Uncertainties represented</th>
<th align="center" rowspan="1" colspan="1">Seasonality</th>
<th align="center" rowspan="1" colspan="1">Demography</th>
</tr>
</thead>
<tbody>
<tr>
<td align="right" style="background-color:#E7E6E6" rowspan="1" colspan="1">Sanofi Pasteur</td>
<td align="center" rowspan="4" colspan="1">Deterministic, nonspatial</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Yes</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Parameters and initial conditions</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Biting rate, vector density</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Brazil-like</td>
</tr>
<tr>
<td align="right" rowspan="1" colspan="1">Hopkins/UF</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Initial conditions</td>
<td align="center" rowspan="1" colspan="1">Transmission</td>
<td align="center" rowspan="1" colspan="1">Brazil-like</td>
</tr>
<tr>
<td align="right" style="background-color:#E7E6E6" rowspan="1" colspan="1">Imperial</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Yes</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Parameters and initial conditions</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Transmission</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Brazil-like</td>
</tr>
<tr>
<td align="right" rowspan="1" colspan="1">Duke</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Parameters</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Brazil-like</td>
</tr>
<tr>
<td align="right" style="background-color:#E7E6E6" rowspan="1" colspan="1">UF</td>
<td align="center" rowspan="4" style="background-color:#E7E6E6" colspan="1">Stochastic, spatial</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">No</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Parameters, stochasticity, and initial conditions</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Vector density, incubation period</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Mexico</td>
</tr>
<tr>
<td align="right" rowspan="1" colspan="1">UWA</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Stochasticity</td>
<td align="center" rowspan="1" colspan="1">Vector density, incubation period</td>
<td align="center" rowspan="1" colspan="1">Thailand</td>
</tr>
<tr>
<td align="right" style="background-color:#E7E6E6" rowspan="1" colspan="1">Notre Dame</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">No</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Parameters and stochasticity</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">No</td>
<td align="center" style="background-color:#E7E6E6" rowspan="1" colspan="1">Peru</td>
</tr>
<tr>
<td align="right" rowspan="1" colspan="1">Exeter/Oxford</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Stochasticity</td>
<td align="center" rowspan="1" colspan="1">Vector density</td>
<td align="center" rowspan="1" colspan="1">Generic (67.5 y mean lifespan)</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>The models differed in assumptions and parameters relating to the natural history and ecology of dengue in both humans and mosquitoes as well as in the host demographics assumed. In addition, the models varied in what sources of uncertainty they incorporate (
<xref ref-type="table" rid="pmed.1002181.t001">Table 1</xref>
and
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
).</p>
</sec>
<sec id="sec011">
<title>Model of Vaccine Action</title>
<p>The groups assumed a consistent model of vaccine action: vaccination mimics a silent (asymptomatic) natural infection in providing short-lived heterologous protection (all except UWA, who assumed a serotype-specific probability of life-long protection in seropositives) and modifying the probabilities of symptomatic and severe disease outcomes in subsequent natural infections in the same manner that a natural infection would have done (
<xref ref-type="fig" rid="pmed.1002181.g001">Fig 1</xref>
). This vaccine model provides a parsimonious explanation of the active phase and long-term follow-up results reported in the Phase III trials [
<xref rid="pmed.1002181.ref027" ref-type="bibr">27</xref>
,
<xref rid="pmed.1002181.ref029" ref-type="bibr">29</xref>
]. Details of the specific assumptions for all models are provided in
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Chapter 1 and Table A.</p>
<fig id="pmed.1002181.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1002181.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Illustration of the assumed vaccine mode of action.</title>
<p>Without vaccination (top row), an individual will (by definition) experience a primary infection first, followed by a secondary infection, and then postsecondary infections. For vaccinees seronegative at the time of vaccination (middle row), their first natural infection behaves immunologically as a second natural infection would. Subsequent infections would immunologically behave as postsecondary infections. For vaccinees seropositive at the time of vaccination, any subsequent infection would immunologically behave as a postsecondary infection. The bottom row depicts such a case, in which the vaccinated individual has previously experienced only a single dengue infection. Because all postsecondary infections are assumed to have the same risk of disease, vaccination of individuals who have already had two infections would not modulate the risk of disease for subsequent infections. Boxes are color-coded according to the level of disease risk thought to be associated with primary, secondary, and postsecondary infections. The specific risks of developing dengue disease differ by modelling group (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Tables B and C).</p>
</caption>
<graphic xlink:href="pmed.1002181.g001"></graphic>
</fig>
</sec>
<sec id="sec012">
<title>Trial Simulation</title>
<p>To simulate the Southeast Asian Phase III trial (CYD14), all models represented a single setting in which the vaccine was delivered in a three-dose schedule at low coverage to children between 2 and 14 y old. The simulation was run for 3 y postvaccination, representing the 2-y active monitoring phase and the first year of passive follow-up. The models assume that all cases of symptomatic dengue and hospitalised dengue in trial participants were reported during that period. Predictions were compared with aggregated trial results on (i) age-stratified seropositivity at time of vaccine receipt, (ii/iii) age- and serostatus-stratified attack rates for virologically confirmed dengue in both the vaccine and the control arms during the active phase, and (iv) age-stratified hospitalisation rates for dengue in both the vaccine and the control arms during the first year of the long-term follow-up. Some models used the simulations to fit their models to the observed data (aggregated over all countries), and the remaining models used those parameter estimates for their simulations (Compare
<xref ref-type="table" rid="pmed.1002181.t001">Table 1</xref>
and
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table B). With the exception of the transmission intensity, parameter values obtained from fitting or calibrating the trial simulations to the trial data were used in predicting the long-term impact of routine vaccination. No ethics approval was required for the secondary analyses of these published data.</p>
</sec>
<sec id="sec013">
<title>Routine Vaccination and Transmission Scenarios</title>
<p>The default policy considered was routine vaccination of 9-y-old children in a three-dose schedule, in which doses were administered 6 mo apart. Perfect compliance of the three-dose schedule was assumed with a coverage of 80%. Alternative strategies examined 50% coverage, addition of a three-dose catch-up campaign in 10- to 17-y-olds at 80% vaccine coverage in the first year of vaccine introduction, and alternative ages of vaccine administration between 10 and 18 y.</p>
<p>These vaccination strategies were modelled for a variety of levels of dengue endemicity (i.e., transmission intensity). Transmission intensity was characterised by the average proportion of 9-y-olds who are seropositive prior to vaccine introduction (labelled SP9), and models were run for the following transmission scenarios: 10% (very low transmission intensity), 30% (low), 50% (moderate), 70% (high), and 90% (very high). For comparison, the baseline seropositivity rate in children 9 to 12 y old in the trial settings in Asia and Latin America was between 48% (Mexico) and 91% (Colombia) [
<xref rid="pmed.1002181.ref030" ref-type="bibr">30</xref>
]. Other studies of dengue seroprevalence (i.e., the proportion of individuals who have experienced at least one infection with any dengue serotype) in endemic areas have found values of SP9 in the range of 40% to 81% [
<xref rid="pmed.1002181.ref031" ref-type="bibr">31</xref>
<xref rid="pmed.1002181.ref034" ref-type="bibr">34</xref>
].</p>
<p>For each combination of vaccination strategy and transmission intensity, we examined the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, and deaths over a 10- and 30-y period after vaccine introduction. Case definitions for symptomatic dengue and hospitalised dengue were chosen in accordance with the Phase III trials.</p>
<p>The Phase III trials did not report any dengue-associated deaths and were not powered to look at the impact of vaccination on mortality. We therefore assumed that vaccine efficacy against death was the same as that against hospitalised dengue disease. Specifically, each model assumed that a fixed proportion of hospitalised cases will die. The probability of death was assumed to be in the range of 0.03% to 0.09% for symptomatic dengue cases (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table B), based on a review of surveillance data and published studies from Latin American countries [
<xref rid="pmed.1002181.ref001" ref-type="bibr">1</xref>
,
<xref rid="pmed.1002181.ref035" ref-type="bibr">35</xref>
<xref rid="pmed.1002181.ref038" ref-type="bibr">38</xref>
].</p>
</sec>
<sec id="sec014">
<title>Health Economic Evaluation</title>
<p>The cost-effectiveness of vaccine introduction was evaluated following WHO guidelines [
<xref rid="pmed.1002181.ref039" ref-type="bibr">39</xref>
]. Health effects were measured in terms of disability-adjusted life years (DALYs). A time horizon of 30 y was used, but benefits from averted mortality were accrued over the entire lifetime of the individual. Costs and health effects were discounted at 3% per year. Treatment costs were selected to broadly reflect an upper-middle-income Latin American country and were inflated to 2014 $USD. A public health care payer perspective was used (i.e., we did not include societal costs such as payment for private sector care in the analyses). Sensitivity analyses were conducted using (i) a societal perspective (using the friction cost approach to calculate the economic consequences of premature mortality [
<xref rid="pmed.1002181.ref040" ref-type="bibr">40</xref>
]), (ii) no discounting for health effects, or (iii) alternative cost parameters broadly reflecting a lower middle-income Southeast Asian country. Additionally, parameters governing costs and DALYs associated with fatal and nonfatal dengue cases, respectively, varied by ±50%.</p>
<p>As both vaccine procurement and delivery costs are unknown, outcomes are presented in terms of the threshold cost per fully vaccinated person for vaccination to be cost-effective (i.e., the maximum amount that can be paid to fully vaccinate one person while remaining cost-effective). DALYs averted were monetized using values ranging from US$0 to US$10,000 that allowed comparison to other interventions but with a rate of US$2,000 for each DALY averted in the base case (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table C).</p>
<p>Unit costs for treatment and DALYs incurred as a result of dengue were estimated from the literature (see
<xref ref-type="table" rid="pmed.1002181.t002">Table 2</xref>
; details in
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table C). The results broadly indicate the regional cost-effectiveness of vaccination on average and should not be interpreted as the cost-effectiveness in any particular country, which would require a more focused study that evaluated local costs and disease burden.</p>
<table-wrap id="pmed.1002181.t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1002181.t002</object-id>
<label>Table 2</label>
<caption>
<title>Overview of assumed DALYs and costs used in health economic analysis, together with references that were used to estimate (after rounding) these values.</title>
</caption>
<alternatives>
<graphic id="pmed.1002181.t002g" xlink:href="pmed.1002181.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">Middle income Latin American–like setting</th>
<th align="center" rowspan="1" colspan="1">Lower middle income Southeast Asian–like setting</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" style="background-color:#F2F2F2" rowspan="1" colspan="1">
<bold>DALYs incurred</bold>
</td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1"></td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="right" rowspan="1" colspan="1">Symptomatic dengue</td>
<td align="center" rowspan="1" colspan="1">0.006 [
<xref rid="pmed.1002181.ref041" ref-type="bibr">41</xref>
]</td>
<td align="center" rowspan="1" colspan="1">0.006 [
<xref rid="pmed.1002181.ref041" ref-type="bibr">41</xref>
]</td>
</tr>
<tr>
<td align="right" style="background-color:#F2F2F2" rowspan="1" colspan="1">Severe dengue</td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1">0.02 [
<xref rid="pmed.1002181.ref041" ref-type="bibr">41</xref>
]</td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1">0.02 [
<xref rid="pmed.1002181.ref041" ref-type="bibr">41</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Costs from public payer perspective ($USD)</bold>
</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="right" style="background-color:#F2F2F2" rowspan="1" colspan="1">Symptomatic case</td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1">60 [
<xref rid="pmed.1002181.ref042" ref-type="bibr">42</xref>
]</td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1">20 [
<xref rid="pmed.1002181.ref010" ref-type="bibr">10</xref>
,
<xref rid="pmed.1002181.ref043" ref-type="bibr">43</xref>
]</td>
</tr>
<tr>
<td align="right" rowspan="1" colspan="1">Hospitalised case</td>
<td align="center" rowspan="1" colspan="1">200 [
<xref rid="pmed.1002181.ref009" ref-type="bibr">9</xref>
,
<xref rid="pmed.1002181.ref042" ref-type="bibr">42</xref>
]</td>
<td align="center" rowspan="1" colspan="1">400 [
<xref rid="pmed.1002181.ref008" ref-type="bibr">8</xref>
,
<xref rid="pmed.1002181.ref043" ref-type="bibr">43</xref>
]</td>
</tr>
<tr>
<td align="left" style="background-color:#F2F2F2" rowspan="1" colspan="1">
<bold>Costs from societal perspective ($USD)</bold>
</td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1"></td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="right" rowspan="1" colspan="1">Symptomatic case</td>
<td align="center" rowspan="1" colspan="1">200 [
<xref rid="pmed.1002181.ref008" ref-type="bibr">8</xref>
,
<xref rid="pmed.1002181.ref009" ref-type="bibr">9</xref>
]</td>
<td align="center" rowspan="1" colspan="1">40 [
<xref rid="pmed.1002181.ref008" ref-type="bibr">8</xref>
,
<xref rid="pmed.1002181.ref009" ref-type="bibr">9</xref>
]</td>
</tr>
<tr>
<td align="right" style="background-color:#F2F2F2" rowspan="1" colspan="1">Hospitalised case</td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1">500 [
<xref rid="pmed.1002181.ref008" ref-type="bibr">8</xref>
,
<xref rid="pmed.1002181.ref009" ref-type="bibr">9</xref>
]</td>
<td align="center" style="background-color:#F2F2F2" rowspan="1" colspan="1">500 [
<xref rid="pmed.1002181.ref008" ref-type="bibr">8</xref>
,
<xref rid="pmed.1002181.ref009" ref-type="bibr">9</xref>
]</td>
</tr>
<tr>
<td align="right" rowspan="1" colspan="1">Fatal case</td>
<td align="center" rowspan="1" colspan="1">11,000</td>
<td align="center" rowspan="1" colspan="1">3,000</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</sec>
</sec>
<sec sec-type="results" id="sec015">
<title>Results</title>
<sec id="sec016">
<title>Trial Simulation</title>
<p>All models matched the aggregate data well, with modelled point estimates generally overlapping the confidence intervals of the observed data (
<xref ref-type="fig" rid="pmed.1002181.g002">Fig 2</xref>
). Most models captured qualitatively the increased risk for hospitalisation in vaccinated 2- to 5-y-olds during the first year of the long-term follow-up; however, they predict it to be substantially lower than the observed point estimate (
<xref ref-type="fig" rid="pmed.1002181.g002">Fig 2</xref>
and
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure M). Conversely, all models predict the vaccine efficacy for the 12–14 y age group to be lower than the observed point estimate.</p>
<fig id="pmed.1002181.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1002181.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Comparison of aggregated CYD14 Phase III and long-term follow-up trial results with model predictions.</title>
<p>For the data, (black) dots report mean estimates and error bars report 95% binomial confidence intervals. For model predictions, dots report mean estimates and error bars report the 95% range of simulations.</p>
</caption>
<graphic xlink:href="pmed.1002181.g002"></graphic>
</fig>
</sec>
<sec id="sec017">
<title>Transmission Dynamics in the Absence of Vaccination</title>
<p>In the absence of vaccination—and despite differences in realisations of underlying demographics—all models generated similar age distributions of disease incidence (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure A) and seroprevalence (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure B). In settings with very low transmission intensity (SP9 = 10%), the burden of DENV disease was fairly evenly distributed among age groups in the absence of vaccination. At higher transmission intensities, disease burden shifted towards childhood, with 35% to 70% of all dengue hospitalisations predicted to occur in children younger than 9 y.</p>
</sec>
<sec id="sec018">
<title>Population Impact of Routine Vaccination of 9-Y-Olds</title>
<p>In high-transmission settings (SP9 ≥ 70%), models consistently predicted that routine vaccination of 9-y-olds at 80% vaccine coverage would reduce symptomatic and hospitalised dengue incidence, with the magnitude of mean reduction varying by model between 13% and 25% (range of all simulations: 8%–34%) over the first 30 y of the policy (
<xref ref-type="fig" rid="pmed.1002181.g003">Fig 3</xref>
and
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table D). In settings with very low transmission intensity (SP9 around 10%), most models predicted an increase in symptomatic DENV cases, while two models (Duke and Exeter/Oxford) predicted a decrease. These two models predicted a beneficial effect of vaccination on reducing symptomatic infections because routine vaccination of 9-y-olds at 80% coverage in a setting with low prevalence resulted in an appreciable herd immunity effect, thereby reducing dengue circulation and the overall number of infections and cases (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure G). All models predicted an increase in DENV hospitalisations at this very low transmission intensity following vaccine introduction. This included the Duke and Exeter/Oxford models, for which the reduction in the overall number of infections was not sufficiently large to offset the increased severity of “secondary-like” breakthrough dengue infections in vaccine recipients. In our assumed vaccine mode of action, vaccination immunologically primes seronegative recipients, causing their first natural dengue infection to have the higher severity associated with secondary infection in unvaccinated individuals. This leads to overall increases in the incidence of hospitalised infection in settings where transmission is low enough for a substantial proportion of the population to not be expected to experience secondary infection in the absence of vaccination.</p>
<fig id="pmed.1002181.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1002181.g003</object-id>
<label>Fig 3</label>
<caption>
<title>The proportion of symptomatic and hospitalised DENV cases (rows) averted within 30 y after vaccine introduction in the reference scenario for the range of transmission intensities (columns).</title>
<p>The bars represent the mean and the error bars represent the 95% range over multiple simulations for each model (values are provided in
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table D).</p>
</caption>
<graphic xlink:href="pmed.1002181.g003"></graphic>
</fig>
<p>In settings with low to moderate transmission intensity (SP9 = 30%–50%), predictions were more variable between models. At SP9 = 30%, models differed over whether the impact of vaccination on hospitalised DENV cases was predicted to be detrimental or beneficial. The four models that showed the most favourable vaccine effect among 2- to 5-y-olds in first year of the long-term follow-up of the trials (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure M) predicted a positive impact of vaccination at age nine on hospitalisations in this setting, while the other four predicted a negative impact. Similarly, the latter four models predicted a lower impact of vaccination at age nine on hospitalisations at SP9 = 50%, although all models predicted a decrease in hospitalisation risk following vaccination in this setting.</p>
<p>In settings with SP9 ≥ 50%, the cumulative number of averted DENV cases was predicted to accrue almost linearly over time (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure E). This is due to the fact that, in most models, the main impact from vaccination is due to direct protection of vaccines rather than indirect effects on transmission (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure G)—a result of the only transient protection against dengue infection provided by the vaccine. In contrast, any potential increase in either symptomatic cases or hospitalisations following vaccination in the SP9 ≤ 30% settings was only visible after a honeymoon period of about 10 y (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure E).</p>
<p>Vaccination was found to impact only moderately on dengue transmission and the proportion of seropositive children at time of vaccination in subsequent years (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure C), with less than a 22% reduction in the hospitalisation rate of children too young to be vaccinated in all scenarios (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure G). Transient protection against infection following vaccination had limited effect on transmission, except in settings with very low transmission intensity in some models (see models by Duke and Exeter/Oxford). However, those models which assumed higher transmissibility of secondary infections (Sanofi Pasteur, Hopkins/UF, Imperial UF;
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table B) predicted that in moderate- to high-transmission settings, where many of such secondary infections with high transmissibility are averted, up to 20% of hospitalisations of children too young to be vaccinated could be averted.</p>
</sec>
<sec id="sec019">
<title>Individual-Level Impact of Routine Vaccination of 9-Y-Olds</title>
<p>Since the trial results suggest that serostatus (i.e., whether an individual has experienced at least one dengue infection with any serotype in the past) is a key driver of vaccine efficacy, we further examined the impact of vaccination and its relationship to an individual’s serostatus. For this, the first vaccinated cohort was followed over 30 y postvaccination. In each transmission setting, vaccination substantially reduced the risk of symptomatic or hospitalised disease in recipients who were seropositive at the time of vaccination. Conversely, seronegative individuals were predicted to be at increased risk for hospitalisation in settings with low to moderate dengue endemicity (SP9 ≤ 30) (
<xref ref-type="fig" rid="pmed.1002181.g004">Fig 4</xref>
and
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table E), with the increased risk persisting into settings with moderate and high endemicity for some models.</p>
<fig id="pmed.1002181.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1002181.g004</object-id>
<label>Fig 4</label>
<caption>
<title>The number of symptomatic and hospitalised DENV cases averted per 100,000 population in the first vaccinated cohort within 30 y after vaccination.</title>
<p>The effects of vaccination are shown for three groups: the complete first vaccine-eligible cohort, those individuals who were seronegative at time of vaccination, and those who were seropositive at time of vaccination (values are provided in
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table E).</p>
</caption>
<graphic xlink:href="pmed.1002181.g004"></graphic>
</fig>
</sec>
<sec id="sec020">
<title>Effect of Varying Vaccination Coverage</title>
<p>Reducing vaccine coverage from 80% to 50% reduced the impact of vaccination proportionately, both for instances in which the vaccine is predicted to be beneficial and in which it is predicted to increase the risk for symptomatic dengue or hospitalisation. As a consequence, the proportion of cases averted per vaccine dose given is similar for 50% and 80% uptake (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure H).</p>
</sec>
<sec id="sec021">
<title>Impact of Catch-Up Campaigns</title>
<p>Adding a one-off, three-dose catch-up campaign among 10- to 17-y-olds at 80% coverage in the first year of introduction to the default policy of routine vaccination of 9-y-olds increased the impact of vaccination. The impact of such a one-off campaign was most visible in the first few years. The transient protection against DENV infection induced by the catch-up campaign in a large proportion of school age children led to a temporary reduction in transmission, followed by a rebound in incidence in some of the models, dependent on the transmission setting and breadth of the catch-up campaign (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure J). However, over the long term, most models predicted that a one-off catch-up campaign prevented a similar number of DENV hospitalisations per dose of vaccine delivered as the baseline routine vaccination strategy (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure I).</p>
</sec>
<sec id="sec022">
<title>Effect of Changing Age for Routine Vaccination</title>
<p>Alternative ages for routine vaccination were explored in the range of 9–18 y (
<xref ref-type="fig" rid="pmed.1002181.g005">Fig 5</xref>
and
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table F). In the highest transmission setting (SP9 = 90%), vaccination at age 9 gave the largest impact on symptomatic and hospitalised cases, leading to a range of mean reduction in hospitalised cases of 13%–25% (range of all simulations: 8%–31%) compared to a 5%–12% (range of all simulations: 3%–16%) reduction if 16-y-olds were vaccinated. Varying the age of routine vaccination between 9 y and 18 y in settings with SP9 = 50% or 70% showed that the maximal difference in the proportion of hospitalised cases averted is smaller than 5% for most models. Although the predicted optimal age of vaccination varied, in most models this was 10 y–14 y for SP9 = 70% and at the maximum age of evaluation for SP9 = 50%. In low-transmission settings (SP9 = 30%), all models predicted that the highest impact was achieved when vaccinating at the highest age examined. In settings with SP9 ≥ 30%, all models predicted a beneficial population impact on both symptomatic and hospitalised cases if vaccination is targeted at individuals 14 y of age or older (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table F).</p>
<fig id="pmed.1002181.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1002181.g005</object-id>
<label>Fig 5</label>
<caption>
<title>The proportion of symptomatic and hospitalised DENV cases averted in the 30 y after vaccine introduction.</title>
<p>Each point represents a mean across model realization at a given age of vaccine introduction (values are provided in
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table F).</p>
</caption>
<graphic xlink:href="pmed.1002181.g005"></graphic>
</fig>
</sec>
<sec id="sec023">
<title>Cost-Effectiveness</title>
<p>Using base case economic assumptions (3% discounting of costs and DALYs, threshold cost per DALY averted of US$2,000, public health care provider perspective and middle-income Latin American country–like costs), the range of mean threshold cost per vaccinated person across models in the 50%–90% seroprevalence setting was predicted to be US$11–US$44 (range of all simulations: US$8–US$52) (
<xref ref-type="fig" rid="pmed.1002181.g006">Fig 6</xref>
and
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table G). Generally, vaccination was most cost-effective for SP9 = 70%. In low-transmission-intensity settings (SP9 = 30%), all models predicted a threshold cost per fully vaccinated person below US$16.</p>
<fig id="pmed.1002181.g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1002181.g006</object-id>
<label>Fig 6</label>
<caption>
<title>Threshold cost per fully vaccinated person for the base case and sensitivity analyses.</title>
<p>Upper panel: Threshold costs per fully vaccinated person in reference to thresholds of the cost of averting a DALY. Cost and health outcomes are calculated for 30 y after the introduction of Dengvaxia to 9-y-olds with 80% coverage and without a catch-up campaign. The public health care provider’s perspective is taken, and both health and costs are discounted at 3%. Lower panel: Sensitivity analyses on the threshold costs per fully vaccinated person in a highly endemic setting (SP9 = 70%), assuming the threshold costs of averting a DALY are US$2,000 (values are provided in
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Table G).</p>
</caption>
<graphic xlink:href="pmed.1002181.g006"></graphic>
</fig>
<p>For most models, the threshold cost per fully vaccinated person changed by less than 50% if leaving health effects undiscounted, using Southeast Asian costs, or varying costs and DALYs associated with fatal or nonfatal cases. The range of predicted mean threshold costs across models rose to US$26–US$115 (range of all simulations: US$18–US$156) and US$28–US$104 (range of all simulations: US$21–US$117) per fully vaccinated person in settings with SP9 ≥ 50% if the threshold cost per DALY averted under base case economic assumptions was increased to US$10,000 or a societal perspective was adopted (
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Fig K).</p>
<p>In line with the model predictions for health impacts, cost-effectiveness was maintained (or even improved) for later ages of vaccination, except in the 90% seroprevalence setting. The incremental cost-effectiveness of a one-off catch-up policy was found to be similar to that of vaccinating 9-y-olds routinely in moderate-transmission settings but lower in the highest (SP9 = 90%) transmission intensity setting.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec024">
<title>Discussion</title>
<p>The results from this comparative modelling study indicate that Dengvaxia has the potential to reduce the burden of dengue disease in moderate- to high-transmission-intensity settings (SP9 ≥ 50%). This range of transmission intensity includes most sites selected for the Phase III trials of Dengvaxia. The greatest impact of vaccination was predicted for high-transmission-intensity settings (SP9 ≥ 70%), where routine vaccination of 9-y-olds at 80% coverage was predicted to reduce DENV-related hospitalisations by between 13% to 25% over the first 30 y following vaccination introduction. However, in settings with low transmission intensity (SP9 ≤ 30%), we predict that vaccination could increase the incidence of dengue-related hospitalisations. The per-dose impact of vaccination was similar when reduced vaccine coverage and the impact of a catch-up campaign were examined. Targeting older children could increase the net benefit of vaccination in settings with low and moderate transmission intensity. Overall, vaccination was predicted to be potentially cost-effective at a threshold of US$2,000 per DALY across all models in moderate- to high-transmission settings if the costs of vaccinating an individual could be kept well below approximately US$50 (from a provider perspective) or US$100 (from a societal perspective).</p>
<p>These findings are based on the assumption that the vaccine mimics a natural and clinically silent infection. While only longer-term follow-up will show if these assumptions hold, at present they present a parsimonious explanation of the observed results from Phase IIb and III trials. Under these assumptions, in low-transmission settings, where most individuals are typically dengue naïve at the age of 9 y, any breakthrough natural infection following vaccination would result in a secondary-like infection outcome, including an elevated risk of disease and hospitalization. In those settings, vaccination at an older age may mitigate some of these effects by allowing more time for children to experience their first natural infection prior to vaccination. In settings with higher transmission intensities, most children will have had exposure to dengue prior to vaccination and hence vaccination would bypass the dengue infection associated with the highest disease risk (as these individuals’ next infection would act as a postsecondary infection). Furthermore, in these highly endemic settings, even children who are seronegative at time of vaccination are highly likely to experience at least two natural infections in their life, so the net effect of vaccination is just to lower the age at which they experience a “secondary-like” infection rather than to increase the overall incidence of such infections. However, in children who have already experienced two or more infections at time of vaccination, the vaccine-preventable burden of disease is small because postsecondary infections only rarely result in severe clinical manifestations. Hence, in settings with extremely high transmission intensity, the impact of vaccination of 9-y-olds is likely to be smaller than in the scenario of highest endemicity that we explored.</p>
<p>While model consensus on these qualitative features is strong, there is some discrepancy on the level of transmission intensity where Dengvaxia transitions from a detrimental to a beneficial impact on dengue disease. Those models that include a better efficacy of Dengvaxia against hospitalisation of 2- to 5-y-old vaccine recipients in the first year of the long-term follow-up predict a beneficial net impact of a routine vaccination programme at lower transmission intensity.</p>
<p>All models predicted that routine use of Dengvaxia in populations who are largely dengue naïve may increase the burden of dengue disease. This indicates that national decisions on the implementation of vaccination programmes for dengue will need to identify regions of high transmission intensity and the appropriate population to target for vaccination. We chose the seroprevalence at nine years of age as a proxy measure for transmission intensity. Considering that such data are not available at a sufficient subnational resolution in most endemic countries, other proxy measures, including existing syndromic surveillance, may be able to be used. However, the translation between those proxies and seroprevalence will need further evaluation.</p>
<p>With the implementation of new vaccines, safety monitoring should be in place to detect adverse events which are too infrequent to be detectable in trials. The results reported here suggest that a potential safety concern of Dengvaxia is an increased risk of dengue-related hospitalisation for vaccinees who were dengue naïve at time of vaccination, which may only be observable years after vaccination, particularly in low-transmission settings. Routine safety monitoring systems are insufficient to capture this unique risk, and carefully designed Phase IV studies that can account for interseason variability of dengue incidence are needed to assess whether vaccine rollout leads to increases in the incidence of symptomatic or hospitalised dengue in parts of the population.</p>
<p>At a threshold cost per DALY averted of US$2,000, most of the benefit of vaccination in all the models came from averting health care costs rather than DALYs. However, at a threshold cost per DALY averted of US$10,000, the value of DALYs averted became more important than health care costs averted. The number of deaths prevented by vaccination is particularly uncertain because dengue case fatality risks vary widely by setting; vaccine impact on dengue mortality is not directly informed from trials, and case fatality risks tend to be higher in young children, an age group likely to benefit little from Dengvaxia. Hence, the uncertainty around estimates with a high threshold cost per DALY averted is greater than when the threshold cost per DALY averted is at US$2,000.</p>
<p>All models adopted biological assumptions regarding vaccine action that the SAGE Working Group on Dengue Vaccines and Vaccination agreed best reflected current understanding. However, current limitations of the available trial data mean uncertainties remain regarding the level of protection provided against disease versus infection and the rate at which vaccine-induced protection declines. In particular, the assumption that vaccination acts in a similar way to natural infection is consistent with the phase III trial results but cannot be directly validated given the lack of information on the impact on asymptomatic infections or baseline serostatus in the vast majority of trial participants. Similarly, there is no information about the impact of a postvaccination infection on the immune state of a seronegative vaccinee; all models made the plausible, but optimistic, assumption that such individuals would have immunity comparable to that of someone who had experienced two natural infections [
<xref rid="pmed.1002181.ref029" ref-type="bibr">29</xref>
], but there are no data available to compare this and other plausible scenarios.</p>
<p>Analyses of trial data stratified by both age and serostatus have indicated that serostatus is a more important driver of vaccine efficacy than age. Nevertheless, we cannot rule out there might be intrinsic variation in vaccine efficacy with age, independent of serostatus; if efficacy is higher in older recipients, vaccine impacts are likely to be larger than presented here (or less detrimental in low-seroprevalence settings). Vaccine efficacy may also vary by serotype (independent of serostatus); only the Sanofi Pasteur model was able to explore this in detail, as trial data disaggregated by both country and serotype (needed to fit to serotype-specific efficacies) are not currently publically available.</p>
<p>Important limitations also derive from the data used to calibrate the models against. The long-term follow-up has not yet been completed, is based on passive surveillance, and was not designed to assess vaccine efficacy. As a consequence, conclusions drawn from it rely on a limited number of dengue cases. Also, the trials only provide data from settings with a seroprevalence of 9- to 12-y-olds of at least 48%.</p>
<p>Furthermore, underlying uncertainties about dengue epidemiology also affected our predictions. Perhaps the most pertinent to the predictions of vaccine impact shown is the relationship between symptoms and infectiousness. Whereas many of the models assumed that symptomatically infected individuals were substantially more infectious than those who were asymptomatic, several others assumed that symptoms did not alter infectiousness. Empirical evidence for a relationship between symptoms and infectiousness is mixed [
<xref rid="pmed.1002181.ref044" ref-type="bibr">44</xref>
,
<xref rid="pmed.1002181.ref045" ref-type="bibr">45</xref>
]. If infectiousness is not correlated with disease, the positive impact of vaccination in the respective models in the high-transmission settings is likely to be slightly lower than the impact predicted here by these models, while the predicted negative impact in low-transmission settings could equally be reduced.</p>
<p>The results from the second year of long-term follow-up have recently become available. In particular, they show that in year 2 of the long-term follow-up in the Southeast Asian trial, children vaccinated at 6–11 y old were at higher risk for hospitalisation because of dengue than their unvaccinated controls (although this finding was not seen in the Latin American trial). Including this additional data did not significantly alter our parameter estimates and, hence, our prediction of the impact of routine vaccination (see
<xref ref-type="supplementary-material" rid="pmed.1002181.s001">S1 Appendix</xref>
Figure N). However, none of the models were able to reproduce the elevated risks in 6- to 11-y-old vaccinees. A possible explanation is waning of protection in seropositive recipients; all models presented here assumed such protection to be lifelong. If protection in seropositive recipients does wane, our predictions of vaccine impact presented here may be overoptimistic. However, additional data from year 3 of the long-term follow-up are needed to test this and other hypotheses on vaccine action.</p>
<sec id="sec025">
<title>Conclusion</title>
<p>Informed by the results of this work, the WHO SAGE committee recommended countries consider introduction of Dengvaxia only in national or subnational settings with high endemicity—as defined by seroprevalence of approximately 70% or more in the targeted age group—and recommended against its use in age groups with seroprevalence <50% [
<xref rid="pmed.1002181.ref013" ref-type="bibr">13</xref>
,
<xref rid="pmed.1002181.ref015" ref-type="bibr">15</xref>
]. Decisions at the country level for vaccine introduction may be informed by this work but should also take into account local dengue epidemiology, predicted impact, and cost-effectiveness, with country-specific inputs as well as local priorities, affordability, and capacity for introduction and postlicensure monitoring. To complement a rigorous review of clinical trial data, mathematical modelling provides an important opportunity to predict the impact of vaccination programs that is otherwise difficult to anticipate using clinical trial data when vaccine performance is variable by host or setting characteristics.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="sec026">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pmed.1002181.s001">
<label>S1 Appendix</label>
<caption>
<title>Additional information on individual models, additional results, and tabulated outcomes.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pmed.1002181.s001.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We are grateful to Celina Martelli, Dagna Constenla, Don Shepard, Vittal Mogasale, and Yot Teerawattananon for advice on the health economic evaluation; Sarah Cox for help deriving economic parameters; Joachim Hombach and Raymond Hutubessy for their support and valuable advice during CMDVI; and members of the SAGE Working Group on Dengue Vaccines and Vaccination who provided frequent feedback on model assumptions and introduction scenarios of interest, members of the Immunization and vaccines related implementation research advisory committee (IVIR-AC), and, in particular, Philippe Beutels for their technical review of both process and results. The UWA authors thank Nilimesh Halder for his assistance with the UWA model software. The ND authors made extensive use of computing resources at the ND Center for Research Computing. The UF authors acknowledge University of Florida Research Computing for providing computational resources and support that have contributed to the research results reported in this publication.</p>
<p>KV is responsible for the views expressed in this publication and they do not necessarily represent the decisions or policies of the World Health Organization.</p>
</ack>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>ADE</term>
<def>
<p>antibody-dependent enhancement</p>
</def>
</def-item>
<def-item>
<term>CMDVI</term>
<def>
<p>comparative modelling of dengue vaccine public health impact</p>
</def>
</def-item>
<def-item>
<term>DALY</term>
<def>
<p>disability-adjusted life year</p>
</def>
</def-item>
<def-item>
<term>DENV</term>
<def>
<p>dengue virus</p>
</def>
</def-item>
<def-item>
<term>SAGE</term>
<def>
<p>Strategic Advisory Group of Experts</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list>
<title>References</title>
<ref id="pmed.1002181.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Stanaway</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Shepard</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Undurraga</surname>
<given-names>EA</given-names>
</name>
,
<name>
<surname>Halasa</surname>
<given-names>YA</given-names>
</name>
,
<name>
<surname>Coffeng</surname>
<given-names>LE</given-names>
</name>
,
<name>
<surname>Brady</surname>
<given-names>OJ</given-names>
</name>
,
<etal>et al</etal>
<article-title>The global burden of dengue: an analysis from the Global Burden of Disease Study 2013</article-title>
.
<source>Lancet Infect Dis</source>
.
<year>2016</year>
E-pub ahead of print.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S1473-3099(16)00026-8">10.1016/S1473-3099(16)00026-8</ext-link>
</comment>
<pub-id pub-id-type="pmid">26874619</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bhatt</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Gething</surname>
<given-names>PW</given-names>
</name>
,
<name>
<surname>Brady</surname>
<given-names>OJ</given-names>
</name>
,
<name>
<surname>Messina</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Farlow</surname>
<given-names>AW</given-names>
</name>
,
<name>
<surname>Moyes</surname>
<given-names>CL</given-names>
</name>
,
<etal>et al</etal>
<article-title>The global distribution and burden of dengue</article-title>
.
<source>Nature. Nature Publishing Group</source>
;
<year>2013</year>
;
<volume>496</volume>
:
<fpage>504</fpage>
<lpage>7</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/nature12060">10.1038/nature12060</ext-link>
</comment>
<pub-id pub-id-type="pmid">23563266</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reich</surname>
<given-names>NG</given-names>
</name>
,
<name>
<surname>Shrestha</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>King</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Rohani</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Lessler</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Kalayanarooj</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
<article-title>Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity</article-title>
.
<source>J R Soc Interface</source>
.
<year>2013</year>
;
<volume>10</volume>
:
<fpage>20130414</fpage>
<lpage>20130414</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1098/rsif.2013.0414">10.1098/rsif.2013.0414</ext-link>
</comment>
<pub-id pub-id-type="pmid">23825116</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gibbons</surname>
<given-names>R V</given-names>
</name>
.,
<name>
<surname>Kalanarooj</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Jarman</surname>
<given-names>RG</given-names>
</name>
,
<name>
<surname>Nisalak</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Vaughn</surname>
<given-names>DW</given-names>
</name>
,
<name>
<surname>Endy</surname>
<given-names>TP</given-names>
</name>
,
<etal>et al</etal>
<article-title>Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences</article-title>
.
<source>Am J Trop Med Hyg</source>
.
<year>2007</year>
;
<volume>77</volume>
:
<fpage>910</fpage>
<lpage>3</lpage>
.
<pub-id pub-id-type="pmid">17984352</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Endy</surname>
<given-names>TP</given-names>
</name>
,
<name>
<surname>Yoon</surname>
<given-names>I-K</given-names>
</name>
,
<name>
<surname>Mammen</surname>
<given-names>MP</given-names>
</name>
.
<article-title>Prospective Cohort Studies of Dengue Viral Transmission and Severity of Disease</article-title>
.
<source>Curr Top Microbiol Immunol</source>
.
<year>2010</year>
;
<volume>338</volume>
:
<fpage>1</fpage>
<lpage>13</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/978-3-642-02215-9_1">10.1007/978-3-642-02215-9_1</ext-link>
</comment>
<pub-id pub-id-type="pmid">19802574</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Burke</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Nisalak</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Johnson</surname>
<given-names>DE</given-names>
</name>
,
<name>
<surname>Scott</surname>
<given-names>RMcN</given-names>
</name>
.
<article-title>A prospective study of dengue infections in Bangkok</article-title>
.
<source>Am J Trop Med Hyg</source>
.
<year>1988</year>
;
<volume>38</volume>
:
<fpage>172</fpage>
<lpage>180</lpage>
.
<pub-id pub-id-type="pmid">3341519</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nisalak</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Endy</surname>
<given-names>TP</given-names>
</name>
,
<name>
<surname>Nimmannitya</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Kalayanarooj</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Thisayakorn</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Scott</surname>
<given-names>RM</given-names>
</name>
,
<etal>et al</etal>
<article-title>Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999</article-title>
.
<source>Am J Trop Med Hyg</source>
.
<year>2003</year>
;
<volume>68</volume>
:
<fpage>191</fpage>
<lpage>202</lpage>
.
<pub-id pub-id-type="pmid">12641411</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Capeding</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Tran</surname>
<given-names>NH</given-names>
</name>
,
<name>
<surname>Hadinegoro</surname>
<given-names>SRS</given-names>
</name>
,
<name>
<surname>Ismail</surname>
<given-names>HIHM</given-names>
</name>
,
<name>
<surname>Chotpitayasunondh</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Chua</surname>
<given-names>MN</given-names>
</name>
,
<etal>et al</etal>
<article-title>Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: A phase 3, randomised, observer-masked, placebo-controlled trial</article-title>
.
<source>Lancet</source>
.
<year>2014</year>
;
<volume>384</volume>
:
<fpage>1358</fpage>
<lpage>1365</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0140-6736(14)61060-6">10.1016/S0140-6736(14)61060-6</ext-link>
</comment>
<pub-id pub-id-type="pmid">25018116</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Villar</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Dayan</surname>
<given-names>GH</given-names>
</name>
,
<name>
<surname>Arredondo-García</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Rivera</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Cunha</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Deseda</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
<article-title>Efficacy of a Tetravalent Dengue Vaccine in Children in Latin America</article-title>
.
<source>N Engl J Med</source>
.
<year>2015</year>
;
<volume>372</volume>
:
<fpage>113</fpage>
<lpage>123</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1056/NEJMoa1411037">10.1056/NEJMoa1411037</ext-link>
</comment>
<pub-id pub-id-type="pmid">25365753</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hadinegoro</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>Arredondo-García</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Capeding</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Deseda</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Chotpitayasunondh</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Dietze</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
<article-title>Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease</article-title>
.
<source>N Engl J Med</source>
.
<year>2015</year>
;
<volume>373</volume>
:
<fpage>1195</fpage>
<lpage>1206</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1056/NEJMoa1506223">10.1056/NEJMoa1506223</ext-link>
</comment>
<pub-id pub-id-type="pmid">26214039</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref011">
<label>11</label>
<mixed-citation publication-type="other">World Health Organization. Open call for Comparative dengue vaccine impact modelling. 2015.
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/immunization/research/meetings_workshops/Open_call_dengue_vaccine_impact_modelling.pdf?ua=1">http://www.who.int/immunization/research/meetings_workshops/Open_call_dengue_vaccine_impact_modelling.pdf?ua=1</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref012">
<label>12</label>
<mixed-citation publication-type="other">World Health Organisation. WHO Consultation on comparative mathematical modelling of dengue vaccine public health impact. 2016 [cited 22 Apr 2016].
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/immunization/research/meetings_workshops/comparative_mathmodelling_dengue_20jan2016/en/">http://www.who.int/immunization/research/meetings_workshops/comparative_mathmodelling_dengue_20jan2016/en/</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref013">
<label>13</label>
<mixed-citation publication-type="other">World Health Organization. SAGE meeting of APRIL 2016. 2016 [cited 30 Mar 2016].
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/immunization/sage/meetings/2016/april/presentations_background_docs/en/">http://www.who.int/immunization/sage/meetings/2016/april/presentations_background_docs/en/</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref014">
<label>14</label>
<mixed-citation publication-type="other">Meeting of the Strategic Advisory Group of Experts on immunization, April 2016 –conclusions and recommendations. Relev épidémiologique Hebd / Sect d’hygiène du Secrétariat la Société des Nations = Wkly Epidemiol Rec / Heal Sect Secr Leag Nations. 2016;91: 266–84.</mixed-citation>
</ref>
<ref id="pmed.1002181.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<collab>World Health Organization</collab>
.
<article-title>Dengue vaccine: WHO position paper—July 2016</article-title>
.
<source>Wkly Epidemiol Rec</source>
.
<year>2016</year>
;
<volume>30</volume>
:
<fpage>349</fpage>
<lpage>364</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1002181.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pang</surname>
<given-names>T</given-names>
</name>
.
<article-title>SAGE committee advice on dengue vaccine</article-title>
.
<source>Lancet Infect Dis</source>
.
<year>2016</year>
;
<volume>16</volume>
:
<fpage>880</fpage>
<lpage>882</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S1473-3099(16)30167-0">10.1016/S1473-3099(16)30167-0</ext-link>
</comment>
<pub-id pub-id-type="pmid">27477966</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wilder-Smith</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Vannice</surname>
<given-names>KS</given-names>
</name>
,
<name>
<surname>Hombach</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Farrar</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Nolan</surname>
<given-names>T</given-names>
</name>
.
<article-title>Population Perspectives and World Health Organization Recommendations for CYD-TDV Dengue Vaccine</article-title>
.
<source>J Infect Dis</source>
.
<year>2016</year>
; jiw341. E-pub ahead of print.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/infdis/jiw341">10.1093/infdis/jiw341</ext-link>
</comment>
<pub-id pub-id-type="pmid">27496977</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref018">
<label>18</label>
<mixed-citation publication-type="other">World Health Organisation. SAGE Working Group on Dengue Vaccines and Vaccination. 2016 [cited 7 Apr 2016].
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/immunization/policy/sage/sage_wg_dengue_mar2015/en/">http://www.who.int/immunization/policy/sage/sage_wg_dengue_mar2015/en/</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nagao</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Koelle</surname>
<given-names>K</given-names>
</name>
.
<article-title>Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever</article-title>
.
<source>Proc Natl Acad Sci</source>
.
<year>2008</year>
;
<volume>105</volume>
:
<fpage>2238</fpage>
<lpage>2243</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.0709029105">10.1073/pnas.0709029105</ext-link>
</comment>
<pub-id pub-id-type="pmid">18250338</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lourenco</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Recker</surname>
<given-names>M</given-names>
</name>
.
<article-title>Natural, Persistent Oscillations in a Spatial Multi-Strain Disease System with Application to Dengue</article-title>
.
<name>
<surname>Pascual</surname>
<given-names>M</given-names>
</name>
, editor.
<source>PLoS Comput Biol. Public Library of Science</source>
;
<year>2013</year>
;
<volume>9</volume>
:
<fpage>e1003308</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pcbi.1003308">10.1371/journal.pcbi.1003308</ext-link>
</comment>
<pub-id pub-id-type="pmid">24204241</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lourenço</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Recker</surname>
<given-names>M</given-names>
</name>
.
<article-title>Dengue serotype immune-interactions and their consequences for vaccine impact predictions</article-title>
.
<source>Epidemics</source>
.
<year>2016</year>
;
<volume>16</volume>
:
<fpage>40</fpage>
<lpage>48</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.epidem.2016.05.003">10.1016/j.epidem.2016.05.003</ext-link>
</comment>
<pub-id pub-id-type="pmid">27663790</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rodriguez-Barraquer</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Mier-y-Teran-Romero</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Schwartz</surname>
<given-names>IB</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>DAT</given-names>
</name>
.
<article-title>Potential opportunities and perils of imperfect dengue vaccines</article-title>
.
<source>Vaccine</source>
.
<year>2014</year>
;
<volume>32</volume>
:
<fpage>514</fpage>
<lpage>20</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.vaccine.2013.11.020">10.1016/j.vaccine.2013.11.020</ext-link>
</comment>
<pub-id pub-id-type="pmid">24269318</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rodriguez-Barraquer</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Mier-y-Teran-Romero</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>DAT</given-names>
</name>
.
<article-title>Challenges in the interpretation of dengue vaccine trial results</article-title>
.
<source>PLoS Negl Trop Dis</source>
.
<year>2013</year>
;
<volume>7</volume>
:
<fpage>e2126</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pntd.0002126">10.1371/journal.pntd.0002126</ext-link>
</comment>
<pub-id pub-id-type="pmid">24009782</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Coudeville</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Baurin</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Vergu</surname>
<given-names>E</given-names>
</name>
.
<article-title>Estimation of parameters related to vaccine efficacy and dengue transmission from two large phase III studies</article-title>
.
<source>Vaccine</source>
.
<year>2015</year>
;
<fpage>1</fpage>
<lpage>9</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.vaccine.2015.11.023">10.1016/j.vaccine.2015.11.023</ext-link>
</comment>
<pub-id pub-id-type="pmid">26614588</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hladish</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Pearson</surname>
<given-names>CAB</given-names>
</name>
,
<name>
<surname>Chao</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Rojas</surname>
<given-names>DP</given-names>
</name>
,
<name>
<surname>Recchia</surname>
<given-names>GL</given-names>
</name>
,
<name>
<surname>Gómez-Dantés</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
<article-title>Projected Impact of Dengue Vaccination in Yucatán, Mexico</article-title>
.
<name>
<surname>Carvalho</surname>
<given-names>MS</given-names>
</name>
, editor.
<source>PLoS Negl Trop Dis</source>
.
<year>2016</year>
;
<volume>10</volume>
:
<fpage>e0004661</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pntd.0004661">10.1371/journal.pntd.0004661</ext-link>
</comment>
<pub-id pub-id-type="pmid">27227883</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Karl</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Halder</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Kelso</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Ritchie</surname>
<given-names>S a.</given-names>
</name>
,
<name>
<surname>Milne</surname>
<given-names>GJ</given-names>
</name>
.
<article-title>A spatial simulation model for dengue virus infection in urban areas</article-title>
.
<source>BMC Infect Dis</source>
.
<year>2014</year>
;
<volume>14</volume>
:
<fpage>447</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1471-2334-14-447">10.1186/1471-2334-14-447</ext-link>
</comment>
<pub-id pub-id-type="pmid">25139524</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
,
<name>
<surname>Rodriguez-Barraquer</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Dorigatti</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Mier-y-Teran-Romero</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Laydon</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>DAT</given-names>
</name>
.
<article-title>Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment</article-title>
.
<source>Science</source>
.
<year>2016</year>
;
<volume>353</volume>
:
<fpage>1033</fpage>
<lpage>1036</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1126/science.aaf9590">10.1126/science.aaf9590</ext-link>
</comment>
<pub-id pub-id-type="pmid">27701113</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Perkins</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Reiner</surname>
<given-names>RC</given-names>
</name>
,
<name>
<surname>ten Bosch</surname>
<given-names>QA</given-names>
</name>
,
<name>
<surname>Espana</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Verma</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Liebman</surname>
<given-names>KA</given-names>
</name>
,
<etal>et al</etal>
<article-title>Statistical and biological uncertainties associated with vaccine efficacy estimates and their implications for dengue vaccine impact projections</article-title>
.
<source>bioRxiv</source>
.
<year>2016</year>
Preprint.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1101/082396">http://dx.doi.org/10.1101/082396</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Guy</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Jackson</surname>
<given-names>N</given-names>
</name>
.
<article-title>Dengue vaccine: hypotheses to understand CYD-TDV-induced protection</article-title>
.
<source>Nat Rev Microbiol. Nature Publishing Group</source>
;
<year>2015</year>
;
<volume>14</volume>
:
<fpage>45</fpage>
<lpage>54</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/nrmicro.2015.2">10.1038/nrmicro.2015.2</ext-link>
</comment>
<pub-id pub-id-type="pmid">26639777</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>L’Azou</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Moureau</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sarti</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Nealon</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Zambrano</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Wartel</surname>
<given-names>TA</given-names>
</name>
,
<etal>et al</etal>
<article-title>Symptomatic Dengue in Children in 10 Asian and Latin American Countries</article-title>
.
<source>N Engl J Med</source>
.
<year>2016</year>
;
<volume>374</volume>
:
<fpage>1155</fpage>
<lpage>1166</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1056/NEJMoa1503877">10.1056/NEJMoa1503877</ext-link>
</comment>
<pub-id pub-id-type="pmid">27007959</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Braga</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Luna</surname>
<given-names>CF</given-names>
</name>
,
<name>
<surname>Martelli</surname>
<given-names>CMT</given-names>
</name>
,
<name>
<surname>de Souza</surname>
<given-names>WV</given-names>
</name>
,
<name>
<surname>Cordeiro</surname>
<given-names>MTT</given-names>
</name>
,
<name>
<surname>Alexander</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
<article-title>Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil</article-title>
.
<source>Acta Trop</source>
.
<year>2010</year>
;
<volume>113</volume>
:
<fpage>234</fpage>
<lpage>240</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.actatropica.2009.10.021">10.1016/j.actatropica.2009.10.021</ext-link>
</comment>
<pub-id pub-id-type="pmid">19896921</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rodríguez-Barraquer</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Buathong</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Iamsirithaworn</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Nisalak</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Lessler</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Jarman</surname>
<given-names>RG</given-names>
</name>
,
<etal>et al</etal>
<article-title>Revisiting Rayong: Shifting Seroprofiles of Dengue in Thailand and Their Implications for Transmission and Control</article-title>
.
<source>Am J Epidemiol</source>
.
<year>2014</year>
;
<volume>179</volume>
:
<fpage>353</fpage>
<lpage>360</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/aje/kwt256">10.1093/aje/kwt256</ext-link>
</comment>
<pub-id pub-id-type="pmid">24197388</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Amaya-Larios</surname>
<given-names>IY</given-names>
</name>
,
<name>
<surname>Martinez-Vega</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Mayer</surname>
<given-names>S V</given-names>
</name>
.,
<name>
<surname>Galeana-Hernandez</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Comas-Garcia</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sepulveda-Salinas</surname>
<given-names>KJ</given-names>
</name>
,
<etal>et al</etal>
<article-title>Seroprevalence of Neutralizing Antibodies Against Dengue Virus in Two Localities in the State of Morelos, Mexico</article-title>
.
<source>Am J Trop Med Hyg</source>
.
<year>2014</year>
;
<volume>91</volume>
:
<fpage>1057</fpage>
<lpage>1065</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.4269/ajtmh.14-0145">10.4269/ajtmh.14-0145</ext-link>
</comment>
<pub-id pub-id-type="pmid">25294613</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rodríguez-Barraquer</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Solomon</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Kuganantham</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Srikrishnan</surname>
<given-names>AK</given-names>
</name>
,
<name>
<surname>Vasudevan</surname>
<given-names>CK</given-names>
</name>
,
<name>
<surname>Iqbal</surname>
<given-names>SH</given-names>
</name>
,
<etal>et al</etal>
<article-title>The Hidden Burden of Dengue and Chikungunya in Chennai, India</article-title>
.
<name>
<surname>Kittayapong</surname>
<given-names>P</given-names>
</name>
, editor.
<source>PLoS Negl Trop Dis</source>
.
<year>2015</year>
;
<volume>9</volume>
:
<fpage>e0003906</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pntd.0003906">10.1371/journal.pntd.0003906</ext-link>
</comment>
<pub-id pub-id-type="pmid">26181441</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref035">
<label>35</label>
<mixed-citation publication-type="book">
<name>
<surname>Siqueira</surname>
<given-names>JB</given-names>
<suffix>Jr</suffix>
</name>
,
<name>
<surname>Vinhal</surname>
<given-names>LC</given-names>
</name>
,
<name>
<surname>Said</surname>
<given-names>RFC</given-names>
</name>
,
<name>
<surname>Hoffmann</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Martins</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Barbiratto</surname>
<given-names>SB</given-names>
</name>
,
<etal>et al</etal>
<chapter-title>Dengue no Brasil: tendências e mudanças na epidemiologia, com ênfase nas epidemias de 2008 e 2010</chapter-title>
In:
<source>Saúde Brasil 2010: uma análise da situação de saúde e de evidências selecionadas de impacto de ações de vigilância em saúde</source>
.
<publisher-loc>Brasília</publisher-loc>
:
<publisher-name>Ministério da Saúde</publisher-name>
;
<year>2011</year>
pp.
<fpage>159</fpage>
<lpage>171</lpage>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref036">
<label>36</label>
<mixed-citation publication-type="other">PAHO. Number of Reported Cases of Dengue and Severe Dengue (SD) in the Americas, by Country. 2016 [cited 16 Mar 2016].
<ext-link ext-link-type="uri" xlink:href="http://www.paho.org/hq/index.php?option=com_topics&view=rdmore&cid=6290&Itemid=40734">http://www.paho.org/hq/index.php?option=com_topics&view=rdmore&cid=6290&Itemid=40734</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref037">
<label>37</label>
<mixed-citation publication-type="other">Salud S de. Sistema Nacional de Vigilancia Epidemiologica. Panorama epidemiológico de fiebre por dengue y fiebre hemorrágica por dengue. 2016.
<ext-link ext-link-type="uri" xlink:href="http://www.inegi.org.mx">www.inegi.org.mx</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cafferata</surname>
<given-names>ML</given-names>
</name>
,
<name>
<surname>Bardach</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Rey-Ares</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Alcaraz</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Cormick</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Gibbons</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
<article-title>Dengue Epidemiology and Burden of Disease in Latin America and the Caribbean: A Systematic Review of the Literature and Meta-Analysis</article-title>
.
<source>Value Heal Reg Issues. Elsevier</source>
;
<year>2013</year>
;
<volume>2</volume>
:
<fpage>347</fpage>
<lpage>356</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.vhri.2013.10.002">10.1016/j.vhri.2013.10.002</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref039">
<label>39</label>
<mixed-citation publication-type="other">World Health Organisation. Making choices in health: WHO guide to cost-effectiveness. 2003 [cited 1 Apr 2016]. Available:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/choice/publications/p_2003_generalised_cea.pdf">http://www.who.int/choice/publications/p_2003_generalised_cea.pdf</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Koopmanschap</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Rutten</surname>
<given-names>FFH</given-names>
</name>
,
<name>
<surname>van Ineveld</surname>
<given-names>BM</given-names>
</name>
,
<name>
<surname>van Roijen</surname>
<given-names>L</given-names>
</name>
.
<article-title>The friction cost method for measuring indirect costs of disease</article-title>
.
<source>J Health Econ. Institute for Medical Technology Assessment, Erasmus University, Rotterdam, The Netherlands</source>
;
<year>1995</year>
;
<volume>14</volume>
:
<fpage>171</fpage>
<lpage>189</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/0167-6296(94)00044-5">10.1016/0167-6296(94)00044-5</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref041">
<label>41</label>
<mixed-citation publication-type="other">World Health Organization. The Global Burden of Disease: 2004 Update. 2008. 10.1038/npp.2011.85</mixed-citation>
</ref>
<ref id="pmed.1002181.ref042">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Martelli</surname>
<given-names>CMT</given-names>
</name>
,
<name>
<surname>Siqueira</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>Parente</surname>
<given-names>MPPD</given-names>
</name>
,
<name>
<surname>de SA Zara</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Oliveira</surname>
<given-names>CS</given-names>
</name>
,
<name>
<surname>Braga</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
<article-title>Economic Impact of Dengue: Multicenter Study across Four Brazilian Regions</article-title>
.
<source>PLoS Negl Trop Dis</source>
.
<year>2015</year>
;
<volume>9</volume>
:
<fpage>e0004042</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pntd.0004042">10.1371/journal.pntd.0004042</ext-link>
</comment>
<pub-id pub-id-type="pmid">26402905</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Edillo</surname>
<given-names>FE</given-names>
</name>
,
<name>
<surname>Halasa</surname>
<given-names>YA</given-names>
</name>
,
<name>
<surname>Largo</surname>
<given-names>FM</given-names>
</name>
,
<name>
<surname>Erasmo JN</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Amoin</surname>
<given-names>NB</given-names>
</name>
,
<name>
<surname>Alera</surname>
<given-names>MTP</given-names>
</name>
,
<etal>et al</etal>
<article-title>Economic cost and burden of dengue in the Philippines</article-title>
.
<source>Am J Trop Med Hyg</source>
.
<year>2015</year>
;
<volume>92</volume>
:
<fpage>360</fpage>
<lpage>366</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.4269/ajtmh.14-0139">10.4269/ajtmh.14-0139</ext-link>
</comment>
<pub-id pub-id-type="pmid">25510723</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref044">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nguyet</surname>
<given-names>MN</given-names>
</name>
,
<name>
<surname>Duong</surname>
<given-names>THK</given-names>
</name>
,
<name>
<surname>Trung</surname>
<given-names>VT</given-names>
</name>
,
<name>
<surname>Nguyen</surname>
<given-names>TTHQ</given-names>
</name>
,
<name>
<surname>Tran</surname>
<given-names>CNB</given-names>
</name>
,
<name>
<surname>Long</surname>
<given-names>VT</given-names>
</name>
,
<etal>et al</etal>
<article-title>Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2013</year>
;
<volume>110</volume>
:
<fpage>9072</fpage>
<lpage>7</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.1303395110">10.1073/pnas.1303395110</ext-link>
</comment>
<pub-id pub-id-type="pmid">23674683</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1002181.ref045">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Duong</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Lambrechts</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Paul</surname>
<given-names>RE</given-names>
</name>
,
<name>
<surname>Ly</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Lay</surname>
<given-names>RS</given-names>
</name>
,
<name>
<surname>Long</surname>
<given-names>KC</given-names>
</name>
,
<etal>et al</etal>
<article-title>Asymptomatic humans transmit dengue virus to mosquitoes</article-title>
.
<source>Proc Natl Acad Sci</source>
.
<year>2015</year>
;
<volume>112</volume>
:
<fpage>14688</fpage>
<lpage>14693</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.1508114112">10.1073/pnas.1508114112</ext-link>
</comment>
<pub-id pub-id-type="pmid">26553981</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002902 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002902 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5127514
   |texte=   The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27898668" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024