Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002871 ( Pmc/Corpus ); précédent : 0028709; suivant : 0028720 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Disease-Causing 7.4 kb
<italic>Cis</italic>
-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the
<italic>FOXL2</italic>
Promotor: Implications for Mutation Screening</title>
<author>
<name sortKey="D Haene, Barbara" sort="D Haene, Barbara" uniqKey="D Haene B" first="Barbara" last="D'Haene">Barbara D'Haene</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Attanasio, Catia" sort="Attanasio, Catia" uniqKey="Attanasio C" first="Catia" last="Attanasio">Catia Attanasio</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beysen, Diane" sort="Beysen, Diane" uniqKey="Beysen D" first="Diane" last="Beysen">Diane Beysen</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dostie, Josee" sort="Dostie, Josee" uniqKey="Dostie J" first="Josée" last="Dostie">Josée Dostie</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lemire, Edmond" sort="Lemire, Edmond" uniqKey="Lemire E" first="Edmond" last="Lemire">Edmond Lemire</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Division of Medical Genetics, Royal University Hospital, Saskatoon, Saskatchewan, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bouchard, Philippe" sort="Bouchard, Philippe" uniqKey="Bouchard P" first="Philippe" last="Bouchard">Philippe Bouchard</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Reproductive Endocrine Unit, Hôpital Saint-Antoine, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Field, Michael" sort="Field, Michael" uniqKey="Field M" first="Michael" last="Field">Michael Field</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Royal North Shore Hospital, Sydney, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jones, Kristie" sort="Jones, Kristie" uniqKey="Jones K" first="Kristie" last="Jones">Kristie Jones</name>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lorenz, Birgit" sort="Lorenz, Birgit" uniqKey="Lorenz B" first="Birgit" last="Lorenz">Birgit Lorenz</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Department of Ophthalmology, Justus-Liebig-University Giessen, Universitaetsklinikum Giessen und Marburg GmbH Giessen Campus, Giessen, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Menten, Bjorn" sort="Menten, Bjorn" uniqKey="Menten B" first="Björn" last="Menten">Björn Menten</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Buysse, Karen" sort="Buysse, Karen" uniqKey="Buysse K" first="Karen" last="Buysse">Karen Buysse</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pattyn, Filip" sort="Pattyn, Filip" uniqKey="Pattyn F" first="Filip" last="Pattyn">Filip Pattyn</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Friedli, Marc" sort="Friedli, Marc" uniqKey="Friedli M" first="Marc" last="Friedli">Marc Friedli</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ucla, Catherine" sort="Ucla, Catherine" uniqKey="Ucla C" first="Catherine" last="Ucla">Catherine Ucla</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rossier, Colette" sort="Rossier, Colette" uniqKey="Rossier C" first="Colette" last="Rossier">Colette Rossier</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wyss, Carine" sort="Wyss, Carine" uniqKey="Wyss C" first="Carine" last="Wyss">Carine Wyss</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Speleman, Frank" sort="Speleman, Frank" uniqKey="Speleman F" first="Frank" last="Speleman">Frank Speleman</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Paepe, Anne" sort="De Paepe, Anne" uniqKey="De Paepe A" first="Anne" last="De Paepe">Anne De Paepe</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dekker, Job" sort="Dekker, Job" uniqKey="Dekker J" first="Job" last="Dekker">Job Dekker</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Antonarakis, Stylianos E" sort="Antonarakis, Stylianos E" uniqKey="Antonarakis S" first="Stylianos E." last="Antonarakis">Stylianos E. Antonarakis</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Baere, Elfride" sort="De Baere, Elfride" uniqKey="De Baere E" first="Elfride" last="De Baere">Elfride De Baere</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19543368</idno>
<idno type="pmc">2689649</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689649</idno>
<idno type="RBID">PMC:2689649</idno>
<idno type="doi">10.1371/journal.pgen.1000522</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">002871</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002871</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Disease-Causing 7.4 kb
<italic>Cis</italic>
-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the
<italic>FOXL2</italic>
Promotor: Implications for Mutation Screening</title>
<author>
<name sortKey="D Haene, Barbara" sort="D Haene, Barbara" uniqKey="D Haene B" first="Barbara" last="D'Haene">Barbara D'Haene</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Attanasio, Catia" sort="Attanasio, Catia" uniqKey="Attanasio C" first="Catia" last="Attanasio">Catia Attanasio</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beysen, Diane" sort="Beysen, Diane" uniqKey="Beysen D" first="Diane" last="Beysen">Diane Beysen</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dostie, Josee" sort="Dostie, Josee" uniqKey="Dostie J" first="Josée" last="Dostie">Josée Dostie</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lemire, Edmond" sort="Lemire, Edmond" uniqKey="Lemire E" first="Edmond" last="Lemire">Edmond Lemire</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Division of Medical Genetics, Royal University Hospital, Saskatoon, Saskatchewan, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bouchard, Philippe" sort="Bouchard, Philippe" uniqKey="Bouchard P" first="Philippe" last="Bouchard">Philippe Bouchard</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Reproductive Endocrine Unit, Hôpital Saint-Antoine, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Field, Michael" sort="Field, Michael" uniqKey="Field M" first="Michael" last="Field">Michael Field</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Royal North Shore Hospital, Sydney, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jones, Kristie" sort="Jones, Kristie" uniqKey="Jones K" first="Kristie" last="Jones">Kristie Jones</name>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lorenz, Birgit" sort="Lorenz, Birgit" uniqKey="Lorenz B" first="Birgit" last="Lorenz">Birgit Lorenz</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Department of Ophthalmology, Justus-Liebig-University Giessen, Universitaetsklinikum Giessen und Marburg GmbH Giessen Campus, Giessen, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Menten, Bjorn" sort="Menten, Bjorn" uniqKey="Menten B" first="Björn" last="Menten">Björn Menten</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Buysse, Karen" sort="Buysse, Karen" uniqKey="Buysse K" first="Karen" last="Buysse">Karen Buysse</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pattyn, Filip" sort="Pattyn, Filip" uniqKey="Pattyn F" first="Filip" last="Pattyn">Filip Pattyn</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Friedli, Marc" sort="Friedli, Marc" uniqKey="Friedli M" first="Marc" last="Friedli">Marc Friedli</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ucla, Catherine" sort="Ucla, Catherine" uniqKey="Ucla C" first="Catherine" last="Ucla">Catherine Ucla</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rossier, Colette" sort="Rossier, Colette" uniqKey="Rossier C" first="Colette" last="Rossier">Colette Rossier</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wyss, Carine" sort="Wyss, Carine" uniqKey="Wyss C" first="Carine" last="Wyss">Carine Wyss</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Speleman, Frank" sort="Speleman, Frank" uniqKey="Speleman F" first="Frank" last="Speleman">Frank Speleman</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Paepe, Anne" sort="De Paepe, Anne" uniqKey="De Paepe A" first="Anne" last="De Paepe">Anne De Paepe</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dekker, Job" sort="Dekker, Job" uniqKey="Dekker J" first="Job" last="Dekker">Job Dekker</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Antonarakis, Stylianos E" sort="Antonarakis, Stylianos E" uniqKey="Antonarakis S" first="Stylianos E." last="Antonarakis">Stylianos E. Antonarakis</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Baere, Elfride" sort="De Baere, Elfride" uniqKey="De Baere E" first="Elfride" last="De Baere">Elfride De Baere</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Genetics</title>
<idno type="ISSN">1553-7390</idno>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>To date, the contribution of disrupted potentially
<italic>cis</italic>
-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the
<italic>cis</italic>
-regulatory domain of
<italic>FOXL2</italic>
in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a
<italic>de novo</italic>
deletion as small as 7.4 kb was found at 283 kb 5′ to
<italic>FOXL2</italic>
. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA)
<italic>PISRT1</italic>
and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by
<italic>in vitro</italic>
luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding
<italic>FOXL2</italic>
in expressing cellular systems revealed physical interactions of three upstream fragments and the
<italic>FOXL2</italic>
core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Birney, E" uniqKey="Birney E">E Birney</name>
</author>
<author>
<name sortKey="Stamatoyannopoulos, Ja" uniqKey="Stamatoyannopoulos J">JA Stamatoyannopoulos</name>
</author>
<author>
<name sortKey="Dutta, A" uniqKey="Dutta A">A Dutta</name>
</author>
<author>
<name sortKey="Guigo, R" uniqKey="Guigo R">R Guigo</name>
</author>
<author>
<name sortKey="Gingeras, Tr" uniqKey="Gingeras T">TR Gingeras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dermitzakis, Et" uniqKey="Dermitzakis E">ET Dermitzakis</name>
</author>
<author>
<name sortKey="Reymond, A" uniqKey="Reymond A">A Reymond</name>
</author>
<author>
<name sortKey="Antonarakis, Se" uniqKey="Antonarakis S">SE Antonarakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dermitzakis, Et" uniqKey="Dermitzakis E">ET Dermitzakis</name>
</author>
<author>
<name sortKey="Reymond, A" uniqKey="Reymond A">A Reymond</name>
</author>
<author>
<name sortKey="Lyle, R" uniqKey="Lyle R">R Lyle</name>
</author>
<author>
<name sortKey="Scamuffa, N" uniqKey="Scamuffa N">N Scamuffa</name>
</author>
<author>
<name sortKey="Ucla, C" uniqKey="Ucla C">C Ucla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dermitzakis, Et" uniqKey="Dermitzakis E">ET Dermitzakis</name>
</author>
<author>
<name sortKey="Reymond, A" uniqKey="Reymond A">A Reymond</name>
</author>
<author>
<name sortKey="Scamuffa, N" uniqKey="Scamuffa N">N Scamuffa</name>
</author>
<author>
<name sortKey="Ucla, C" uniqKey="Ucla C">C Ucla</name>
</author>
<author>
<name sortKey="Kirkness, E" uniqKey="Kirkness E">E Kirkness</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pennacchio, La" uniqKey="Pennacchio L">LA Pennacchio</name>
</author>
<author>
<name sortKey="Ahituv, N" uniqKey="Ahituv N">N Ahituv</name>
</author>
<author>
<name sortKey="Moses, Am" uniqKey="Moses A">AM Moses</name>
</author>
<author>
<name sortKey="Prabhakar, S" uniqKey="Prabhakar S">S Prabhakar</name>
</author>
<author>
<name sortKey="Nobrega, Ma" uniqKey="Nobrega M">MA Nobrega</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woolfe, A" uniqKey="Woolfe A">A Woolfe</name>
</author>
<author>
<name sortKey="Goodson, M" uniqKey="Goodson M">M Goodson</name>
</author>
<author>
<name sortKey="Goode, Dk" uniqKey="Goode D">DK Goode</name>
</author>
<author>
<name sortKey="Snell, P" uniqKey="Snell P">P Snell</name>
</author>
<author>
<name sortKey="Mcewen, Gk" uniqKey="Mcewen G">GK McEwen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nobrega, Ma" uniqKey="Nobrega M">MA Nobrega</name>
</author>
<author>
<name sortKey="Ovcharenko, I" uniqKey="Ovcharenko I">I Ovcharenko</name>
</author>
<author>
<name sortKey="Afzal, V" uniqKey="Afzal V">V Afzal</name>
</author>
<author>
<name sortKey="Rubin, Em" uniqKey="Rubin E">EM Rubin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crisponi, L" uniqKey="Crisponi L">L Crisponi</name>
</author>
<author>
<name sortKey="Deiana, M" uniqKey="Deiana M">M Deiana</name>
</author>
<author>
<name sortKey="Loi, A" uniqKey="Loi A">A Loi</name>
</author>
<author>
<name sortKey="Chiappe, F" uniqKey="Chiappe F">F Chiappe</name>
</author>
<author>
<name sortKey="Uda, M" uniqKey="Uda M">M Uda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beysen, D" uniqKey="Beysen D">D Beysen</name>
</author>
<author>
<name sortKey="De Paepe, A" uniqKey="De Paepe A">A De Paepe</name>
</author>
<author>
<name sortKey="De Baere, E" uniqKey="De Baere E">E De Baere</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beysen, D" uniqKey="Beysen D">D Beysen</name>
</author>
<author>
<name sortKey="Raes, J" uniqKey="Raes J">J Raes</name>
</author>
<author>
<name sortKey="Leroy, Bp" uniqKey="Leroy B">BP Leroy</name>
</author>
<author>
<name sortKey="Lucassen, A" uniqKey="Lucassen A">A Lucassen</name>
</author>
<author>
<name sortKey="Yates, Jrw" uniqKey="Yates J">JRW Yates</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Baere, E" uniqKey="De Baere E">E De Baere</name>
</author>
<author>
<name sortKey="Fukushima, Y" uniqKey="Fukushima Y">Y Fukushima</name>
</author>
<author>
<name sortKey="Small, K" uniqKey="Small K">K Small</name>
</author>
<author>
<name sortKey="Udar, N" uniqKey="Udar N">N Udar</name>
</author>
<author>
<name sortKey="Van Camp, G" uniqKey="Van Camp G">G Van Camp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Praphanphoj, V" uniqKey="Praphanphoj V">V Praphanphoj</name>
</author>
<author>
<name sortKey="Goodman, Bk" uniqKey="Goodman B">BK Goodman</name>
</author>
<author>
<name sortKey="Thomas, Gh" uniqKey="Thomas G">GH Thomas</name>
</author>
<author>
<name sortKey="Niel, Km" uniqKey="Niel K">KM Niel</name>
</author>
<author>
<name sortKey="Toomes, C" uniqKey="Toomes C">C Toomes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nikic, S" uniqKey="Nikic S">S Nikic</name>
</author>
<author>
<name sortKey="Vaiman, D" uniqKey="Vaiman D">D Vaiman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pailhoux, E" uniqKey="Pailhoux E">E Pailhoux</name>
</author>
<author>
<name sortKey="Vigier, B" uniqKey="Vigier B">B Vigier</name>
</author>
<author>
<name sortKey="Chaffaux, S" uniqKey="Chaffaux S">S Chaffaux</name>
</author>
<author>
<name sortKey="Servel, N" uniqKey="Servel N">N Servel</name>
</author>
<author>
<name sortKey="Taourit, S" uniqKey="Taourit S">S Taourit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pannetier, M" uniqKey="Pannetier M">M Pannetier</name>
</author>
<author>
<name sortKey="Renault, L" uniqKey="Renault L">L Renault</name>
</author>
<author>
<name sortKey="Jolivet, G" uniqKey="Jolivet G">G Jolivet</name>
</author>
<author>
<name sortKey="Cotinot, C" uniqKey="Cotinot C">C Cotinot</name>
</author>
<author>
<name sortKey="Pailhoux, E" uniqKey="Pailhoux E">E Pailhoux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kleinjan, Da" uniqKey="Kleinjan D">DA Kleinjan</name>
</author>
<author>
<name sortKey="Van Heyningen, V" uniqKey="Van Heyningen V">V van Heyningen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benito Sanz, S" uniqKey="Benito Sanz S">S Benito-Sanz</name>
</author>
<author>
<name sortKey="Thomas, Ns" uniqKey="Thomas N">NS Thomas</name>
</author>
<author>
<name sortKey="Huber, C" uniqKey="Huber C">C Huber</name>
</author>
<author>
<name sortKey="Gorbenko Del Blanco, D" uniqKey="Gorbenko Del Blanco D">D Gorbenko del Blanco</name>
</author>
<author>
<name sortKey="Aza Carmona, M" uniqKey="Aza Carmona M">M Aza-Carmona</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lettice, La" uniqKey="Lettice L">LA Lettice</name>
</author>
<author>
<name sortKey="Hill, Ae" uniqKey="Hill A">AE Hill</name>
</author>
<author>
<name sortKey="Devenney, Ps" uniqKey="Devenney P">PS Devenney</name>
</author>
<author>
<name sortKey="Hill, Re" uniqKey="Hill R">RE Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benko, S" uniqKey="Benko S">S Benko</name>
</author>
<author>
<name sortKey="Fantes, Ja" uniqKey="Fantes J">JA Fantes</name>
</author>
<author>
<name sortKey="Amiel, J" uniqKey="Amiel J">J Amiel</name>
</author>
<author>
<name sortKey="Kleinjan, Dj" uniqKey="Kleinjan D">DJ Kleinjan</name>
</author>
<author>
<name sortKey="Thomas, S" uniqKey="Thomas S">S Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lettice, La" uniqKey="Lettice L">LA Lettice</name>
</author>
<author>
<name sortKey="Heaney, Sj" uniqKey="Heaney S">SJ Heaney</name>
</author>
<author>
<name sortKey="Purdie, La" uniqKey="Purdie L">LA Purdie</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="De Beer, P" uniqKey="De Beer P">P de Beer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furniss, D" uniqKey="Furniss D">D Furniss</name>
</author>
<author>
<name sortKey="Lettice, La" uniqKey="Lettice L">LA Lettice</name>
</author>
<author>
<name sortKey="Taylor, Ib" uniqKey="Taylor I">IB Taylor</name>
</author>
<author>
<name sortKey="Critchley, Ps" uniqKey="Critchley P">PS Critchley</name>
</author>
<author>
<name sortKey="Giele, H" uniqKey="Giele H">H Giele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, M" uniqKey="Sun M">M Sun</name>
</author>
<author>
<name sortKey="Ma, F" uniqKey="Ma F">F Ma</name>
</author>
<author>
<name sortKey="Zeng, X" uniqKey="Zeng X">X Zeng</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q Liu</name>
</author>
<author>
<name sortKey="Zhao, Xl" uniqKey="Zhao X">XL Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klopocki, E" uniqKey="Klopocki E">E Klopocki</name>
</author>
<author>
<name sortKey="Ott, Ce" uniqKey="Ott C">CE Ott</name>
</author>
<author>
<name sortKey="Benatar, N" uniqKey="Benatar N">N Benatar</name>
</author>
<author>
<name sortKey="Ullmann, R" uniqKey="Ullmann R">R Ullmann</name>
</author>
<author>
<name sortKey="Mundlos, S" uniqKey="Mundlos S">S Mundlos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, W" uniqKey="Gu W">W Gu</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F Zhang</name>
</author>
<author>
<name sortKey="Lupski, Jr" uniqKey="Lupski J">JR Lupski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Gr" uniqKey="Smith G">GR Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Vasquez, Km" uniqKey="Vasquez K">KM Vasquez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wells, Rd" uniqKey="Wells R">RD Wells</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lobachev, Ks" uniqKey="Lobachev K">KS Lobachev</name>
</author>
<author>
<name sortKey="Rattray, A" uniqKey="Rattray A">A Rattray</name>
</author>
<author>
<name sortKey="Narayanan, V" uniqKey="Narayanan V">V Narayanan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rahimov, F" uniqKey="Rahimov F">F Rahimov</name>
</author>
<author>
<name sortKey="Marazita, Ml" uniqKey="Marazita M">ML Marazita</name>
</author>
<author>
<name sortKey="Visel, A" uniqKey="Visel A">A Visel</name>
</author>
<author>
<name sortKey="Cooper, Me" uniqKey="Cooper M">ME Cooper</name>
</author>
<author>
<name sortKey="Hitchler, Mj" uniqKey="Hitchler M">MJ Hitchler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeong, Y" uniqKey="Jeong Y">Y Jeong</name>
</author>
<author>
<name sortKey="Leskow, Fc" uniqKey="Leskow F">FC Leskow</name>
</author>
<author>
<name sortKey="El Jaick, K" uniqKey="El Jaick K">K El-Jaick</name>
</author>
<author>
<name sortKey="Roessler, E" uniqKey="Roessler E">E Roessler</name>
</author>
<author>
<name sortKey="Muenke, M" uniqKey="Muenke M">M Muenke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Attanasio, C" uniqKey="Attanasio C">C Attanasio</name>
</author>
<author>
<name sortKey="Reymond, A" uniqKey="Reymond A">A Reymond</name>
</author>
<author>
<name sortKey="Humbert, R" uniqKey="Humbert R">R Humbert</name>
</author>
<author>
<name sortKey="Lyle, R" uniqKey="Lyle R">R Lyle</name>
</author>
<author>
<name sortKey="Kuehn, Ms" uniqKey="Kuehn M">MS Kuehn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dekker, J" uniqKey="Dekker J">J Dekker</name>
</author>
<author>
<name sortKey="Rippe, K" uniqKey="Rippe K">K Rippe</name>
</author>
<author>
<name sortKey="Dekker, M" uniqKey="Dekker M">M Dekker</name>
</author>
<author>
<name sortKey="Kleckner, N" uniqKey="Kleckner N">N Kleckner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poulin, F" uniqKey="Poulin F">F Poulin</name>
</author>
<author>
<name sortKey="Nobrega, Ma" uniqKey="Nobrega M">MA Nobrega</name>
</author>
<author>
<name sortKey="Plajzer Frick, I" uniqKey="Plajzer Frick I">I Plajzer-Frick</name>
</author>
<author>
<name sortKey="Holt, A" uniqKey="Holt A">A Holt</name>
</author>
<author>
<name sortKey="Afzal, V" uniqKey="Afzal V">V Afzal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roessler, E" uniqKey="Roessler E">E Roessler</name>
</author>
<author>
<name sortKey="Belloni, E" uniqKey="Belloni E">E Belloni</name>
</author>
<author>
<name sortKey="Gaudenz, K" uniqKey="Gaudenz K">K Gaudenz</name>
</author>
<author>
<name sortKey="Jay, P" uniqKey="Jay P">P Jay</name>
</author>
<author>
<name sortKey="Berta, P" uniqKey="Berta P">P Berta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qian, X" uniqKey="Qian X">X Qian</name>
</author>
<author>
<name sortKey="Shu, A" uniqKey="Shu A">A Shu</name>
</author>
<author>
<name sortKey="Qin, W" uniqKey="Qin W">W Qin</name>
</author>
<author>
<name sortKey="Xing, Q" uniqKey="Xing Q">Q Xing</name>
</author>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, Cl" uniqKey="Bennett C">CL Bennett</name>
</author>
<author>
<name sortKey="Brunkow, Me" uniqKey="Brunkow M">ME Brunkow</name>
</author>
<author>
<name sortKey="Ramsdell, F" uniqKey="Ramsdell F">F Ramsdell</name>
</author>
<author>
<name sortKey="O Briant, Kc" uniqKey="O Briant K">KC O'Briant</name>
</author>
<author>
<name sortKey="Zhu, Q" uniqKey="Zhu Q">Q Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Jm" uniqKey="Chen J">JM Chen</name>
</author>
<author>
<name sortKey="Ferec, C" uniqKey="Ferec C">C Ferec</name>
</author>
<author>
<name sortKey="Cooper, Dn" uniqKey="Cooper D">DN Cooper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abelson, Jf" uniqKey="Abelson J">JF Abelson</name>
</author>
<author>
<name sortKey="Kwan, Ky" uniqKey="Kwan K">KY Kwan</name>
</author>
<author>
<name sortKey="O Roak, Bj" uniqKey="O Roak B">BJ O'Roak</name>
</author>
<author>
<name sortKey="Baek, Dy" uniqKey="Baek D">DY Baek</name>
</author>
<author>
<name sortKey="Stillman, Aa" uniqKey="Stillman A">AA Stillman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Firth, Hv" uniqKey="Firth H">HV Firth</name>
</author>
<author>
<name sortKey="Richards, Sm" uniqKey="Richards S">SM Richards</name>
</author>
<author>
<name sortKey="Bevan, Ap" uniqKey="Bevan A">AP Bevan</name>
</author>
<author>
<name sortKey="Clayton, S" uniqKey="Clayton S">S Clayton</name>
</author>
<author>
<name sortKey="Corpas, M" uniqKey="Corpas M">M Corpas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iafrate, Aj" uniqKey="Iafrate A">AJ Iafrate</name>
</author>
<author>
<name sortKey="Feuk, L" uniqKey="Feuk L">L Feuk</name>
</author>
<author>
<name sortKey="Rivera, Mn" uniqKey="Rivera M">MN Rivera</name>
</author>
<author>
<name sortKey="Listewnik, Ml" uniqKey="Listewnik M">ML Listewnik</name>
</author>
<author>
<name sortKey="Donahoe, Pk" uniqKey="Donahoe P">PK Donahoe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiegler, H" uniqKey="Fiegler H">H Fiegler</name>
</author>
<author>
<name sortKey="Carr, P" uniqKey="Carr P">P Carr</name>
</author>
<author>
<name sortKey="Douglas, Ej" uniqKey="Douglas E">EJ Douglas</name>
</author>
<author>
<name sortKey="Burford, Dc" uniqKey="Burford D">DC Burford</name>
</author>
<author>
<name sortKey="Hunt, S" uniqKey="Hunt S">S Hunt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menten, B" uniqKey="Menten B">B Menten</name>
</author>
<author>
<name sortKey="Buysse, K" uniqKey="Buysse K">K Buysse</name>
</author>
<author>
<name sortKey="Vandesompele, J" uniqKey="Vandesompele J">J Vandesompele</name>
</author>
<author>
<name sortKey="De Smet, E" uniqKey="De Smet E">E De Smet</name>
</author>
<author>
<name sortKey="De Paepe, A" uniqKey="De Paepe A">A De Paepe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menten, B" uniqKey="Menten B">B Menten</name>
</author>
<author>
<name sortKey="Pattyn, F" uniqKey="Pattyn F">F Pattyn</name>
</author>
<author>
<name sortKey="De Preter, K" uniqKey="De Preter K">K De Preter</name>
</author>
<author>
<name sortKey="Robbrecht, P" uniqKey="Robbrecht P">P Robbrecht</name>
</author>
<author>
<name sortKey="Michels, E" uniqKey="Michels E">E Michels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoebeeck, J" uniqKey="Hoebeeck J">J Hoebeeck</name>
</author>
<author>
<name sortKey="Speleman, F" uniqKey="Speleman F">F Speleman</name>
</author>
<author>
<name sortKey="Vandesompele, J" uniqKey="Vandesompele J">J Vandesompele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hellemans, J" uniqKey="Hellemans J">J Hellemans</name>
</author>
<author>
<name sortKey="Mortier, G" uniqKey="Mortier G">G Mortier</name>
</author>
<author>
<name sortKey="De Paepe, A" uniqKey="De Paepe A">A De Paepe</name>
</author>
<author>
<name sortKey="Speleman, F" uniqKey="Speleman F">F Speleman</name>
</author>
<author>
<name sortKey="Vandesompele, J" uniqKey="Vandesompele J">J Vandesompele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giardine, B" uniqKey="Giardine B">B Giardine</name>
</author>
<author>
<name sortKey="Elnitski, L" uniqKey="Elnitski L">L Elnitski</name>
</author>
<author>
<name sortKey="Riemer, C" uniqKey="Riemer C">C Riemer</name>
</author>
<author>
<name sortKey="Makalowska, I" uniqKey="Makalowska I">I Makalowska</name>
</author>
<author>
<name sortKey="Schwartz, S" uniqKey="Schwartz S">S Schwartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blanchette, M" uniqKey="Blanchette M">M Blanchette</name>
</author>
<author>
<name sortKey="Kent, Wj" uniqKey="Kent W">WJ Kent</name>
</author>
<author>
<name sortKey="Riemer, C" uniqKey="Riemer C">C Riemer</name>
</author>
<author>
<name sortKey="Elnitski, L" uniqKey="Elnitski L">L Elnitski</name>
</author>
<author>
<name sortKey="Smit, Af" uniqKey="Smit A">AF Smit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siepel, A" uniqKey="Siepel A">A Siepel</name>
</author>
<author>
<name sortKey="Bejerano, G" uniqKey="Bejerano G">G Bejerano</name>
</author>
<author>
<name sortKey="Pedersen, Js" uniqKey="Pedersen J">JS Pedersen</name>
</author>
<author>
<name sortKey="Hinrichs, As" uniqKey="Hinrichs A">AS Hinrichs</name>
</author>
<author>
<name sortKey="Hou, M" uniqKey="Hou M">M Hou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howald, C" uniqKey="Howald C">C Howald</name>
</author>
<author>
<name sortKey="Merla, G" uniqKey="Merla G">G Merla</name>
</author>
<author>
<name sortKey="Digilio, Mc" uniqKey="Digilio M">MC Digilio</name>
</author>
<author>
<name sortKey="Amenta, S" uniqKey="Amenta S">S Amenta</name>
</author>
<author>
<name sortKey="Lyle, R" uniqKey="Lyle R">R Lyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larkin, Ma" uniqKey="Larkin M">MA Larkin</name>
</author>
<author>
<name sortKey="Blackshields, G" uniqKey="Blackshields G">G Blackshields</name>
</author>
<author>
<name sortKey="Brown, Np" uniqKey="Brown N">NP Brown</name>
</author>
<author>
<name sortKey="Chenna, R" uniqKey="Chenna R">R Chenna</name>
</author>
<author>
<name sortKey="Mcgettigan, Pa" uniqKey="Mcgettigan P">PA McGettigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altschul, Sf" uniqKey="Altschul S">SF Altschul</name>
</author>
<author>
<name sortKey="Gish, W" uniqKey="Gish W">W Gish</name>
</author>
<author>
<name sortKey="Miller, W" uniqKey="Miller W">W Miller</name>
</author>
<author>
<name sortKey="Myers, Ew" uniqKey="Myers E">EW Myers</name>
</author>
<author>
<name sortKey="Lipman, Dj" uniqKey="Lipman D">DJ Lipman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tarailo Graovac, M" uniqKey="Tarailo Graovac M">M Tarailo-Graovac</name>
</author>
<author>
<name sortKey="Chen, N" uniqKey="Chen N">N Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolpakov, R" uniqKey="Kolpakov R">R Kolpakov</name>
</author>
<author>
<name sortKey="Bana, G" uniqKey="Bana G">G Bana</name>
</author>
<author>
<name sortKey="Kucherov, G" uniqKey="Kucherov G">G Kucherov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jurka, J" uniqKey="Jurka J">J Jurka</name>
</author>
<author>
<name sortKey="Klonowski, P" uniqKey="Klonowski P">P Klonowski</name>
</author>
<author>
<name sortKey="Dagman, V" uniqKey="Dagman V">V Dagman</name>
</author>
<author>
<name sortKey="Pelton, P" uniqKey="Pelton P">P Pelton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stothard, P" uniqKey="Stothard P">P Stothard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abeysinghe, Ss" uniqKey="Abeysinghe S">SS Abeysinghe</name>
</author>
<author>
<name sortKey="Chuzhanova, N" uniqKey="Chuzhanova N">N Chuzhanova</name>
</author>
<author>
<name sortKey="Krawczak, M" uniqKey="Krawczak M">M Krawczak</name>
</author>
<author>
<name sortKey="Ball, Ev" uniqKey="Ball E">EV Ball</name>
</author>
<author>
<name sortKey="Cooper, Dn" uniqKey="Cooper D">DN Cooper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pang, Kc" uniqKey="Pang K">KC Pang</name>
</author>
<author>
<name sortKey="Stephen, S" uniqKey="Stephen S">S Stephen</name>
</author>
<author>
<name sortKey="Dinger, Me" uniqKey="Dinger M">ME Dinger</name>
</author>
<author>
<name sortKey="Engstrom, Pg" uniqKey="Engstrom P">PG Engstrom</name>
</author>
<author>
<name sortKey="Lenhard, B" uniqKey="Lenhard B">B Lenhard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, Sd" uniqKey="Hsu S">SD Hsu</name>
</author>
<author>
<name sortKey="Chu, Ch" uniqKey="Chu C">CH Chu</name>
</author>
<author>
<name sortKey="Tsou, Ap" uniqKey="Tsou A">AP Tsou</name>
</author>
<author>
<name sortKey="Chen, Sj" uniqKey="Chen S">SJ Chen</name>
</author>
<author>
<name sortKey="Chen, Hc" uniqKey="Chen H">HC Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griffiths Jones, S" uniqKey="Griffiths Jones S">S Griffiths-Jones</name>
</author>
<author>
<name sortKey="Saini, Hk" uniqKey="Saini H">HK Saini</name>
</author>
<author>
<name sortKey="Van Dongen, S" uniqKey="Van Dongen S">S van Dongen</name>
</author>
<author>
<name sortKey="Enright, Aj" uniqKey="Enright A">AJ Enright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, S" uniqKey="He S">S He</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C Liu</name>
</author>
<author>
<name sortKey="Skogerbo, G" uniqKey="Skogerbo G">G Skogerbo</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H Zhao</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rozen, S" uniqKey="Rozen S">S Rozen</name>
</author>
<author>
<name sortKey="Skaletsky, H" uniqKey="Skaletsky H">H Skaletsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kel, Ae" uniqKey="Kel A">AE Kel</name>
</author>
<author>
<name sortKey="Gossling, E" uniqKey="Gossling E">E Gossling</name>
</author>
<author>
<name sortKey="Reuter, I" uniqKey="Reuter I">I Reuter</name>
</author>
<author>
<name sortKey="Cheremushkin, E" uniqKey="Cheremushkin E">E Cheremushkin</name>
</author>
<author>
<name sortKey="Kel Margoulis, Ov" uniqKey="Kel Margoulis O">OV Kel-Margoulis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matys, V" uniqKey="Matys V">V Matys</name>
</author>
<author>
<name sortKey="Fricke, E" uniqKey="Fricke E">E Fricke</name>
</author>
<author>
<name sortKey="Geffers, R" uniqKey="Geffers R">R Geffers</name>
</author>
<author>
<name sortKey="Gossling, E" uniqKey="Gossling E">E Gossling</name>
</author>
<author>
<name sortKey="Haubrock, M" uniqKey="Haubrock M">M Haubrock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Visel, A" uniqKey="Visel A">A Visel</name>
</author>
<author>
<name sortKey="Prabhakar, S" uniqKey="Prabhakar S">S Prabhakar</name>
</author>
<author>
<name sortKey="Akiyama, Ja" uniqKey="Akiyama J">JA Akiyama</name>
</author>
<author>
<name sortKey="Shoukry, M" uniqKey="Shoukry M">M Shoukry</name>
</author>
<author>
<name sortKey="Lewis, Kd" uniqKey="Lewis K">KD Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dekker, J" uniqKey="Dekker J">J Dekker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miele, A" uniqKey="Miele A">A Miele</name>
</author>
<author>
<name sortKey="Gheldof, N" uniqKey="Gheldof N">N Gheldof</name>
</author>
<author>
<name sortKey="Tabuchi, Tm" uniqKey="Tabuchi T">TM Tabuchi</name>
</author>
<author>
<name sortKey="Dostie, J" uniqKey="Dostie J">J Dostie</name>
</author>
<author>
<name sortKey="Dekker, J" uniqKey="Dekker J">J Dekker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishi, Y" uniqKey="Nishi Y">Y Nishi</name>
</author>
<author>
<name sortKey="Yanase, T" uniqKey="Yanase T">T Yanase</name>
</author>
<author>
<name sortKey="Mu, Y" uniqKey="Mu Y">Y Mu</name>
</author>
<author>
<name sortKey="Oba, K" uniqKey="Oba K">K Oba</name>
</author>
<author>
<name sortKey="Ichino, I" uniqKey="Ichino I">I Ichino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crisponi, L" uniqKey="Crisponi L">L Crisponi</name>
</author>
<author>
<name sortKey="Uda, M" uniqKey="Uda M">M Uda</name>
</author>
<author>
<name sortKey="Deiana, M" uniqKey="Deiana M">M Deiana</name>
</author>
<author>
<name sortKey="Loi, A" uniqKey="Loi A">A Loi</name>
</author>
<author>
<name sortKey="Nagaraja, R" uniqKey="Nagaraja R">R Nagaraja</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Genet</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Genet</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosgen</journal-id>
<journal-title-group>
<journal-title>PLoS Genetics</journal-title>
</journal-title-group>
<issn pub-type="ppub">1553-7390</issn>
<issn pub-type="epub">1553-7404</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19543368</article-id>
<article-id pub-id-type="pmc">2689649</article-id>
<article-id pub-id-type="publisher-id">09-PLGE-RA-0368R2</article-id>
<article-id pub-id-type="doi">10.1371/journal.pgen.1000522</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline">
<subject>Computational Biology/Comparative Sequence Analysis</subject>
<subject>Developmental Biology/Molecular Development</subject>
<subject>Genetics and Genomics/Bioinformatics</subject>
<subject>Genetics and Genomics/Genetics of Disease</subject>
<subject>Genetics and Genomics/Medical Genetics</subject>
<subject>Molecular Biology/Chromatin Structure</subject>
<subject>Ophthalmology/Inherited Eye Disorders</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Disease-Causing 7.4 kb
<italic>Cis</italic>
-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the
<italic>FOXL2</italic>
Promotor: Implications for Mutation Screening</article-title>
<alt-title alt-title-type="running-head">Pathogenic 7.4 kb Distant Deletion</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>D'haene</surname>
<given-names>Barbara</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Attanasio</surname>
<given-names>Catia</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Beysen</surname>
<given-names>Diane</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dostie</surname>
<given-names>Josée</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lemire</surname>
<given-names>Edmond</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bouchard</surname>
<given-names>Philippe</given-names>
</name>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Field</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jones</surname>
<given-names>Kristie</given-names>
</name>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lorenz</surname>
<given-names>Birgit</given-names>
</name>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Menten</surname>
<given-names>Björn</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Buysse</surname>
<given-names>Karen</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pattyn</surname>
<given-names>Filip</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Friedli</surname>
<given-names>Marc</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ucla</surname>
<given-names>Catherine</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rossier</surname>
<given-names>Colette</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wyss</surname>
<given-names>Carine</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Speleman</surname>
<given-names>Frank</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>De Paepe</surname>
<given-names>Anne</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dekker</surname>
<given-names>Job</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Antonarakis</surname>
<given-names>Stylianos E.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>De Baere</surname>
<given-names>Elfride</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Division of Medical Genetics, Royal University Hospital, Saskatoon, Saskatchewan, Canada</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>Reproductive Endocrine Unit, Hôpital Saint-Antoine, Paris, France</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<addr-line>Royal North Shore Hospital, Sydney, Australia</addr-line>
</aff>
<aff id="aff7">
<label>7</label>
<addr-line>Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, Australia</addr-line>
</aff>
<aff id="aff8">
<label>8</label>
<addr-line>Department of Ophthalmology, Justus-Liebig-University Giessen, Universitaetsklinikum Giessen und Marburg GmbH Giessen Campus, Giessen, Germany</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Horwitz</surname>
<given-names>Marshall S.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">University of Washington, United States of America</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>Elfride.DeBaere@UGent.be</email>
</corresp>
<fn fn-type="con">
<p>Conceived and designed the experiments: B. D'Haene, C. Attanasio, D. Beysen, S. Antonarakis, E. De Baere. Performed the experiments: B. D'Haene, C. Attanasio, D. Beysen, M. Friedli, C. Ucla, C. Rossier, C. Wyss. Analyzed the data: B. D'Haene, C. Attanasio, D. Beysen, J. Dostie, B. Menten, K. Buysee, F. Pattyn, M. Friedli, J. Dekker, E. De Baere. Contributed reagents/materials/analysis tools: B. D'Haene, J. Dostie, E. Lemire, P. Bouchard, M. Field, K. Jones, B. Lorenz, B. Menten, K. Buysee, F. Pattyn, F. Speleman, A. De Paepe, J. Dekker. Wrote the paper: B. D'Haene, C. Attanasio, D. Beysen, J. Dekker, E. De Baere. Experimental work (microsatellite analysis, aCGH, qPCR-3q23, characterization of 7.4 kb deletion, bio-informatics, cloning of human PISRT1 (RACE)): B. D'haene. Experimental work (qPCR-CNC, CNC sequencing, luciferase constructs and assays): C. Attanasio. Experimental work (3C): D. Beysen. Recruited individuals and families affected with BPES: E. De Baere.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>6</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="epub">
<day>19</day>
<month>6</month>
<year>2009</year>
</pub-date>
<volume>5</volume>
<issue>6</issue>
<elocation-id>e1000522</elocation-id>
<history>
<date date-type="received">
<day>9</day>
<month>3</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>5</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>D'haene et al.</copyright-statement>
<copyright-year>2009</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<abstract>
<p>To date, the contribution of disrupted potentially
<italic>cis</italic>
-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the
<italic>cis</italic>
-regulatory domain of
<italic>FOXL2</italic>
in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a
<italic>de novo</italic>
deletion as small as 7.4 kb was found at 283 kb 5′ to
<italic>FOXL2</italic>
. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA)
<italic>PISRT1</italic>
and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by
<italic>in vitro</italic>
luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding
<italic>FOXL2</italic>
in expressing cellular systems revealed physical interactions of three upstream fragments and the
<italic>FOXL2</italic>
core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular.</p>
</abstract>
<abstract abstract-type="summary">
<title>Author Summary</title>
<p>Long-range genetic control is an inherent feature of genes harbouring a highly complex spatiotemporal expression pattern, requiring a combined action of multiple
<italic>cis</italic>
-regulatory elements such as promoters, enhancers, and silencers. Consequently, disruption of the long-range genetic control of a target gene by genomic rearrangements of regulatory elements may lead to aberrant gene transcription and disease. To date, the contribution of mutated regulatory elements to human disease has not been studied frequently. Here, we explored the contribution of genetic changes in potentially
<italic>cis</italic>
-regulatory elements of the
<italic>FOXL2</italic>
gene in blepharophimosis syndrome (BPES), a developmental monogenic condition of the eyelids and ovaries. We identified a
<italic>de novo</italic>
very subtle deletion of 7.4 kb causing BPES. Moreover, we studied the functional capacities and chromosome conformation of the deleted region in
<italic>FOXL2</italic>
expressing cellular systems. Interestingly, the chromosome conformation analysis demonstrated the close proximity of the 7.4 kb deleted fragment and two other conserved regions with the
<italic>FOXL2</italic>
core promoter, and the necessity of their integrity for correct
<italic>FOXL2</italic>
expression. Finally, our study revealed the smallest distant deletion causing monogenic disease and emphasized the importance of mutation screening of
<italic>cis</italic>
-regulatory elements in human genetic disease.</p>
</abstract>
<counts>
<page-count count="13"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Many recent studies have provided insights into the biological relevance of the non protein-coding portion of the human genome, previously referred to as junk DNA. One of them is the ENCODE pilot study, which has revealed that the number of functional genomic elements is much higher than previously anticipated, and that the vast majority of elements regulating gene expression are contained in the non-protein coding portion of the genome. In addition, it shed light on the pervasively transcribed nature of the human genome
<xref rid="pgen.1000522-Birney1" ref-type="bibr">[1]</xref>
.</p>
<p>Comparative analysis of genomes is a major tool for the identification of regulatory elements. In this context, several arbitrary criteria have been used to define evolutionarily conserved elements, such as conserved non-coding sequences (CNCs) that were originally defined as elements sharing ≥70% homology over ≥100 bp of ungapped alignment of human and mouse sequences
<xref rid="pgen.1000522-Dermitzakis1" ref-type="bibr">[2]</xref>
<xref rid="pgen.1000522-Dermitzakis3" ref-type="bibr">[4]</xref>
. A fraction of them (i.e. the most conserved ones) have been shown to function as
<italic>cis</italic>
-regulatory elements, predominantly controlling the spatiotemporal expression of developmental genes
<xref rid="pgen.1000522-Pennacchio1" ref-type="bibr">[5]</xref>
<xref rid="pgen.1000522-Nobrega1" ref-type="bibr">[7]</xref>
. To date, the contribution of disrupted potentially regulatory CNCs to human genetic disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted in this respect. One of the reasons for this is the large extent of the regions to be investigated, as the regulatory domain of a gene can stretch beyond 1 Mb in both directions of its transcription unit. In addition, putative functional consequences of variations outside a transcription unit are difficult to assess.</p>
<p>An example of a developmental gene with a strictly regulated spatiotemporal expression pattern is
<italic>FOXL2</italic>
(NM_023067). It is known to be the disease-causing gene of blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) [MIM 110100], a rare autosomal dominant development disorder of the eyelids with (BPES type I) or without (BPES type II) premature ovarian failure (POF)
<xref rid="pgen.1000522-Crisponi1" ref-type="bibr">[8]</xref>
. Overall, sporadic and familial BPES can be explained by intragenic mutations and gene deletions in 71% and 11% of the patients respectively
<xref rid="pgen.1000522-Beysen1" ref-type="bibr">[9]</xref>
. Interestingly, we identified microdeletions upstream and downstream of
<italic>FOXL2</italic>
in 4% of BPES
<xref rid="pgen.1000522-Beysen1" ref-type="bibr">[9]</xref>
,
<xref rid="pgen.1000522-Beysen2" ref-type="bibr">[10]</xref>
. In addition, 3 translocation breakpoints upstream of
<italic>FOXL2</italic>
have been described
<xref rid="pgen.1000522-Crisponi1" ref-type="bibr">[8]</xref>
,
<xref rid="pgen.1000522-DeBaere1" ref-type="bibr">[11]</xref>
,
<xref rid="pgen.1000522-Praphanphoj1" ref-type="bibr">[12]</xref>
. Until now, there is no evidence for genetic heterogeneity of this condition. From the 5 reported microdeletions outside
<italic>FOXL2</italic>
, one is located 3′ to
<italic>FOXL2</italic>
, while the others are located 5′ to
<italic>FOXL2</italic>
and share a smallest region of deletion overlap (SRO) of 126 kb
<xref rid="pgen.1000522-Beysen2" ref-type="bibr">[10]</xref>
. This SRO is located 230 kb upstream of
<italic>FOXL2</italic>
, telomeric to the three previously characterized translocation breakpoints, and contains several CNCs, harbouring putative transcription factor binding sites. Moreover, the SRO contains the human orthologue of the Polled Intersex Syndrome (PIS) mutation in goat. The PIS goat is a natural animal model for BPES associating absence of horns (polledness) and intersexuality. The sex reversal exclusively affects female animals in a recessive manner, whereas the absence of horns is dominant in both sexes. The phenotype is caused by a regulatory 11.7 kb deletion located 280 kb upstream of goat
<italic>FOXL2</italic>
. It was shown that the deletion alters the transcription of at least three genes:
<italic>FOXL2</italic>
, the non-protein coding gene
<italic>PISRT1</italic>
(PIS-regulated transcript 1) (AF404302) and
<italic>PFOXic</italic>
(promoter
<italic>FoxL2</italic>
inverse complementary) (AY648048)
<xref rid="pgen.1000522-Nikic1" ref-type="bibr">[13]</xref>
<xref rid="pgen.1000522-Pannetier1" ref-type="bibr">[15]</xref>
. In agreement with the findings in the translocation patients and in the PIS goat, the distant microdeletions found in human BPES were hypothesized to disturb long-range transcriptional control of
<italic>FOXL2</italic>
expression through the disruption of one or more
<italic>cis</italic>
-acting regulatory elements. These findings added to an increasing number of long-range genetic defects in human development conditions
<xref rid="pgen.1000522-Kleinjan1" ref-type="bibr">[16]</xref>
<xref rid="pgen.1000522-Benko1" ref-type="bibr">[19]</xref>
.</p>
<p>Apart from translocations and microdeletions/duplications of
<italic>cis</italic>
-regulatory elements, subtle copy number variations (CNVs) or sequence variations of
<italic>cis</italic>
-regulators can also be associated with a phenotype in humans. These have been found in the long-range limb-specific
<italic>cis</italic>
-regulatory element ZRS of the
<italic>SHH</italic>
gene (NM_000193), leading to preaxial polydactyly (PPD) (PPD2, MIM 174500), isolated triphalangeal thumb (MIM 174500), and triphalangeal thumb-polysyndactyly (TPTPS) phenotypes (MIM 174500)
<xref rid="pgen.1000522-Lettice2" ref-type="bibr">[20]</xref>
<xref rid="pgen.1000522-Klopocki1" ref-type="bibr">[23]</xref>
. In addition, Benko et al. reported a heterozygous point mutation in a highly conserved non-coding conserved sequence located 1.44 Mb upstream of
<italic>SOX9</italic>
in a patient with Pierre Robin sequence (PRS, OMIM 261800)
<xref rid="pgen.1000522-Benko1" ref-type="bibr">[19]</xref>
.</p>
<p>To date, the underlying molecular defect remains unknown in 12% of BPES patients
<xref rid="pgen.1000522-Beysen1" ref-type="bibr">[9]</xref>
. Here, we focus on the contribution of previously unidentifiable and subtle deletions/duplications, and sequence variations in putative
<italic>cis</italic>
-regulatory elements surrounding
<italic>FOXL2</italic>
in BPES. We developed a combined strategy consisting of microarray based comparative genome hybridization (array CGH), high-resolution quantitative PCR (qPCR) and sequencing of CNCs located in the SRO 5′ to
<italic>FOXL2</italic>
. Samples from 57 BPES patients who do not carry an intragenic
<italic>FOXL2</italic>
mutation or gene deletion were studied, revealing a distant 7.4 kb deletion as the most prominent finding. The deletion harbours putative regulatory elements. Functional studies in cellular systems were performed to assess their regulatory potential. In addition, Chromosome Conformation Capture analysis (3C) was conducted to provide insights into the spatial organisation and interaction patterns of a normal and a disrupted
<italic>FOXL2</italic>
locus.</p>
</sec>
<sec id="s2">
<title>Results/Discussion</title>
<p>Comparative analysis of genomes is a major tool for the identification of regulatory elements
<xref rid="pgen.1000522-Dermitzakis1" ref-type="bibr">[2]</xref>
. In this context, a comparative analysis of the human and mouse orthologous regions spanning the SRO revealed 25 CNCs with an average length of 165 bp and average homology of 82.5% (
<xref ref-type="table" rid="pgen-1000522-t001">Table 1</xref>
). These identified CNCs were an important focus here. We included 57 patients with a diagnosis of BPES who tested negative for intragenic mutations and copy number changes of
<italic>FOXL2</italic>
. First, these patients were screened for copy number changes outside
<italic>FOXL2</italic>
, with special interest for the initial SRO region of upstream deletions. This was carried out by one or a combination of the following assays: microsatellite analysis, arrayCGH and two qPCR assays called qPCR-3q23 (
<xref ref-type="fig" rid="pgen-1000522-g001">Figure 1</xref>
) and qPCR-CNC (
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
) respectively. The use of different techniques can be explained by the availability of more convenient techniques in the course of the study. In a second step, the remaining negative patients were specifically screened for sequence variants of CNCs within the initial SRO (
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
). In addition, functional analyses (i.e. luciferase assays) were performed for wild type and variant CNCs in different cellular systems. Finally, the chromosome conformation of the
<italic>FOXL2</italic>
locus was investigated by 3C.</p>
<fig id="pgen-1000522-g001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1000522.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Human Genome Browser view of the
<italic>FOXL2</italic>
region.</title>
<p>The
<italic>FOXL2</italic>
region (chr3:138,720,000–143,780,300) with custom tracks showing the BACs and qPCR-3q23 amplicons used in the study. Locations and sizes of the novel deletions are indicated by horizontal bars. The red bars indicate the minimal deleted regions and the pink bars indicate the regions harbouring deletion breakpoints. Two tracks indicate the human orthologous regions of caprine
<italic>PISRT1</italic>
and the caprine PIS deletion based on BLAST searches. The last two tracks at the bottom represent the
<italic>Eco</italic>
RI restriction sites used for 3C and the 3C fragments interacting with the fragment containing the
<italic>FOXL2</italic>
promotor (in green). The figure was drawn according to the UCSC, Human Genome Browser, March 2006.</p>
</caption>
<graphic xlink:href="pgen.1000522.g001"></graphic>
</fig>
<fig id="pgen-1000522-g002" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1000522.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Human Genome Browser view of the initial and reduced SRO.</title>
<p>UCSC Genome Browser view of the SRO region (chr3:140,377,900–140,504,100) with: 25 CNCs mapping within the initial SRO; 3 amplicons of the qPCR-3q23 assay located in the initial SRO; 36 amplicons designed for the qPCR-CNC assay; the amplicons designed for sequencing analysis of CNCs and the two deletions delineated by qPCR-CNC (A,D). The red bars indicate the minimal deleted regions and the pink bars indicate the maximum deleted region. The next track indicates the delineation of deletion D at nucleotide level. The remaining tracks at the bottom display: unspliced ESTs in the reduced SRO; the human orthologue of caprine
<italic>PISRT1</italic>
based on BLAST searches; the human orthologue of the PIS deletion based on BLAST searches; the
<italic>Eco</italic>
RI restriction sites used for 3C; in green the 3C fragments (133, 158) interacting with the fragment containing the
<italic>FOXL2</italic>
promotor; the conservation profile of the region extracted from the UCSC genome browser (blue and brown). The figure was drawn according to the UCSC, Human Genome Browser, March 2006.</p>
</caption>
<graphic xlink:href="pgen.1000522.g002"></graphic>
</fig>
<table-wrap id="pgen-1000522-t001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1000522.t001</object-id>
<label>Table 1</label>
<caption>
<title>Mapped CNCs within the initial SRO.</title>
</caption>
<alternatives>
<graphic id="pgen-1000522-t001-1" xlink:href="pgen.1000522.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">CNC</td>
<td align="left" rowspan="1" colspan="1">#Chr</td>
<td align="left" rowspan="1" colspan="1">Start (hg18)</td>
<td align="left" rowspan="1" colspan="1">Stop (hg18)</td>
<td align="left" rowspan="1" colspan="1">Length (bp)</td>
<td align="left" rowspan="1" colspan="1">% id. Hs-Mm</td>
<td align="left" rowspan="1" colspan="1">% id. Hs-Galgal</td>
<td align="left" rowspan="1" colspan="1">Beysen et al. 2005
<xref rid="pgen.1000522-Beysen2" ref-type="bibr">[10]</xref>
</td>
<td align="left" rowspan="1" colspan="1">Crisponi et al. 2004
<xref rid="pgen.1000522-Crisponi2" ref-type="bibr">[69]</xref>
</td>
<td align="left" rowspan="1" colspan="1">Reduced SRO (
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
and
<xref ref-type="fig" rid="pgen-1000522-g004">4</xref>
)</td>
<td align="left" rowspan="1" colspan="1">3C (
<xref ref-type="fig" rid="pgen-1000522-g001">Figures 1</xref>
,
<xref ref-type="fig" rid="pgen-1000522-g002">2</xref>
and
<xref ref-type="fig" rid="pgen-1000522-g005">5</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1000522.s002">Figure S2</xref>
)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">CNC8</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140384474</td>
<td align="left" rowspan="1" colspan="1">140384783</td>
<td align="left" rowspan="1" colspan="1">310</td>
<td align="left" rowspan="1" colspan="1">82,3</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC9</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140387170</td>
<td align="left" rowspan="1" colspan="1">140387278</td>
<td align="left" rowspan="1" colspan="1">109</td>
<td align="left" rowspan="1" colspan="1">87,2</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC10</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140389814</td>
<td align="left" rowspan="1" colspan="1">140389935</td>
<td align="left" rowspan="1" colspan="1">122</td>
<td align="left" rowspan="1" colspan="1">76,2</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC11</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140404369</td>
<td align="left" rowspan="1" colspan="1">140404478</td>
<td align="left" rowspan="1" colspan="1">110</td>
<td align="left" rowspan="1" colspan="1">71,8</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC12</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140415708</td>
<td align="left" rowspan="1" colspan="1">140415847</td>
<td align="left" rowspan="1" colspan="1">140</td>
<td align="left" rowspan="1" colspan="1">80,0</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC1</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140430011</td>
<td align="left" rowspan="1" colspan="1">140430163</td>
<td align="left" rowspan="1" colspan="1">153</td>
<td align="left" rowspan="1" colspan="1">85,0</td>
<td align="left" rowspan="1" colspan="1">33,3</td>
<td align="left" rowspan="1" colspan="1">CNG3</td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC2</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140430359</td>
<td align="left" rowspan="1" colspan="1">140430589</td>
<td align="left" rowspan="1" colspan="1">231</td>
<td align="left" rowspan="1" colspan="1">75,8</td>
<td align="left" rowspan="1" colspan="1">50,2</td>
<td align="left" rowspan="1" colspan="1">CNG2</td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC3</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140431968</td>
<td align="left" rowspan="1" colspan="1">140432183</td>
<td align="left" rowspan="1" colspan="1">216</td>
<td align="left" rowspan="1" colspan="1">99,1</td>
<td align="left" rowspan="1" colspan="1">94,0</td>
<td align="left" rowspan="1" colspan="1">CNG4</td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1">7.4 kb deletion</td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC13</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140432327</td>
<td align="left" rowspan="1" colspan="1">140432425</td>
<td align="left" rowspan="1" colspan="1">99</td>
<td align="left" rowspan="1" colspan="1">80,8</td>
<td align="left" rowspan="1" colspan="1">few bases</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1">7.4 kb deletion</td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC4</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140434920</td>
<td align="left" rowspan="1" colspan="1">140435316</td>
<td align="left" rowspan="1" colspan="1">397</td>
<td align="left" rowspan="1" colspan="1">94,2</td>
<td align="left" rowspan="1" colspan="1">71,5</td>
<td align="left" rowspan="1" colspan="1">CNG5</td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1">7.4 kb deletion</td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC14</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140435755</td>
<td align="left" rowspan="1" colspan="1">140435885</td>
<td align="left" rowspan="1" colspan="1">131</td>
<td align="left" rowspan="1" colspan="1">80,2</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1">7.4 kb deletion</td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC5</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140436196</td>
<td align="left" rowspan="1" colspan="1">140436391</td>
<td align="left" rowspan="1" colspan="1">196</td>
<td align="left" rowspan="1" colspan="1">87,2</td>
<td align="left" rowspan="1" colspan="1">61,7</td>
<td align="left" rowspan="1" colspan="1">CNG6</td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1">7.4 kb deletion</td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC15</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140436467</td>
<td align="left" rowspan="1" colspan="1">140436614</td>
<td align="left" rowspan="1" colspan="1">148</td>
<td align="left" rowspan="1" colspan="1">72,3</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1">7.4 kb deletion</td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC6</td>
<td align="left" rowspan="1" colspan="1">Chr3</td>
<td align="left" rowspan="1" colspan="1">140438276</td>
<td align="left" rowspan="1" colspan="1">140438409</td>
<td align="left" rowspan="1" colspan="1">134</td>
<td align="left" rowspan="1" colspan="1">78,4</td>
<td align="left" rowspan="1" colspan="1">75,4</td>
<td align="left" rowspan="1" colspan="1">CNG7</td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1">7.4 kb deletion</td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC16</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140438782</td>
<td align="left" rowspan="1" colspan="1">140438885</td>
<td align="left" rowspan="1" colspan="1">104</td>
<td align="left" rowspan="1" colspan="1">80,8</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">9 kb conserved block</td>
<td align="left" rowspan="1" colspan="1">7.4 kb deletion</td>
<td align="left" rowspan="1" colspan="1">interacting fragment 133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC17</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140467213</td>
<td align="left" rowspan="1" colspan="1">140467325</td>
<td align="left" rowspan="1" colspan="1">113</td>
<td align="left" rowspan="1" colspan="1">85,0</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC18</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140469910</td>
<td align="left" rowspan="1" colspan="1">140470106</td>
<td align="left" rowspan="1" colspan="1">197</td>
<td align="left" rowspan="1" colspan="1">72,6</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC7</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140473283</td>
<td align="left" rowspan="1" colspan="1">140473397</td>
<td align="left" rowspan="1" colspan="1">115</td>
<td align="left" rowspan="1" colspan="1">92,2</td>
<td align="left" rowspan="1" colspan="1">73,9</td>
<td align="left" rowspan="1" colspan="1">CNG9</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC19</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140488450</td>
<td align="left" rowspan="1" colspan="1">140488549</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">86,0</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC20</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140491469</td>
<td align="left" rowspan="1" colspan="1">140491687</td>
<td align="left" rowspan="1" colspan="1">219</td>
<td align="left" rowspan="1" colspan="1">84,0</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC21</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140494100</td>
<td align="left" rowspan="1" colspan="1">140494210</td>
<td align="left" rowspan="1" colspan="1">111</td>
<td align="left" rowspan="1" colspan="1">86,5</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC22</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140494313</td>
<td align="left" rowspan="1" colspan="1">140494442</td>
<td align="left" rowspan="1" colspan="1">130</td>
<td align="left" rowspan="1" colspan="1">86,2</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC23</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140494476</td>
<td align="left" rowspan="1" colspan="1">140494759</td>
<td align="left" rowspan="1" colspan="1">284</td>
<td align="left" rowspan="1" colspan="1">91,9</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC24</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140496676</td>
<td align="left" rowspan="1" colspan="1">140496848</td>
<td align="left" rowspan="1" colspan="1">173</td>
<td align="left" rowspan="1" colspan="1">78,0</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CNC25</td>
<td align="left" rowspan="1" colspan="1">chr3</td>
<td align="left" rowspan="1" colspan="1">140499555</td>
<td align="left" rowspan="1" colspan="1">140499663</td>
<td align="left" rowspan="1" colspan="1">109</td>
<td align="left" rowspan="1" colspan="1">73,4</td>
<td align="left" rowspan="1" colspan="1">no match</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<label></label>
<p>All CNCs overlap with PhastCons (28 species, UCSC table, hg18).</p>
</fn>
<fn id="nt102">
<label></label>
<p>Abbreviations: chr.: chromosome; id.: identity; Hs:
<italic>Homo sapiens</italic>
; Mm:
<italic>Mus musculus</italic>
; Galgal:
<italic>Gallus gallus</italic>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>ArrayCGH revealed 1 novel extragenic deletion 5′ to
<italic>FOXL2</italic>
which was further delineated by qPCR-CNC at the centromeric end (Deletion A) (
<xref ref-type="fig" rid="pgen-1000522-g001">Figure 1</xref>
and
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
). In addition, qPCR-3q23 with 3 amplicons located in the SRO revealed 3 more novel extragenic deletions (Deletion B–D). Deletion B and C, both encompassing all 3 amplicons and identified in typical BPES patients, were subsequently further delineated using additional amplicons (
<xref ref-type="fig" rid="pgen-1000522-g001">Figure 1</xref>
). Deletions B and C were found to be 190 kb–478 kb and 1.12 Mb–2.3 Mb in size respectively (
<xref ref-type="fig" rid="pgen-1000522-g001">Figure 1</xref>
). Deletions A, B and C can be added to the previously described relatively large deletions 5′ to
<italic>FOXL2</italic>
, which were believed to be pathogenic through the deletion of
<italic>cis</italic>
-regulatory elements
<xref rid="pgen.1000522-Beysen2" ref-type="bibr">[10]</xref>
. Here, the
<italic>de novo</italic>
occurrence could be assessed for deletion C for which parental DNA was available.</p>
<p>Most remarkable, however, was the identification of the very subtle deletion D, which encompassed only 1 amplicon. Deletion D could be mapped to a region of minimum 6 kb and maximum 12.5 kb in size using qPCR-CNC. Subsequent long-range PCR and direct sequencing of the junction PCR fragment allowed us to define its extact size (7358 bp) and location (chr3:140,431,841-140,439,199), being 283 kb upstream of
<italic>FOXL2</italic>
(
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
). This deletion is entirely retained within the previously described SRO of 126 kb and thus defines a drastically reduced SRO. Furthermore, segregation analysis suggested a
<italic>de novo</italic>
occurrence of this small deletion, sustaining its pathogenic potential. Despite its small size, the deletion is presumed to lead to a classic BPES phenotype in a 7-year-old sporadic male.</p>
<p>The observation that all known and novel regulatory deletions do not show recurrent breakpoint regions argues against non-allelic homologous recombination (NAHR) as a possible mechanism underlying this subtle deletion
<xref rid="pgen.1000522-Gu1" ref-type="bibr">[24]</xref>
. Other models such as non-homologous end joining (NHEJ) or Forkhead Stalling and end Switching (FoSTeS) might explain the formation of the deletion, although there is no scar at the junction fragment
<xref rid="pgen.1000522-Gu1" ref-type="bibr">[24]</xref>
. To unravel the mechanism responsible for this deletion, bioinformatics analyses of the breakpoint junctions was performed. A 70 bp ClustalW alignment of the abnormal junction sequence with the reference genomic sequence from both breakpoint regions, did not reveal any significant homologies, although there is some minor sequence similarity. Similarly, BLAST2 analysis of the 2 kb breakpoint regions did not reveal any significant similarities either. Analysis with RepeatMasker indicated a 36-bp low complexity region at the centromeric end of the deletion, but no additional repetitive elements. At the telomeric end it revealed a LINE2 repeat in very close proximity of the breakpoint and at a larger distance a 25-bp simple repeat and a 123-bp low complexity region. Tandem repeats and palindromes were excluded in a region of 300 bp around the breakpoints using Mreps and Palindrome. In addition, the GC content of a 1-Mb region around the 7.4 deletion appeared not to be above average. Interestingly, with DNA Pattern Finder three motifs, known to be implicated in DNA rearrangements elsewhere, were identified in 70-bp regions surrounding the breakpoints, including one of the immunoglobulin heavy chain class switch repeats (
<named-content content-type="gene">GGGCT</named-content>
), a deletion hotspot consensus site (
<named-content content-type="gene">TG[AG][AG][GT][AC]</named-content>
) and a DNA polymerase α pause site core sequence
<named-content content-type="gene">GC [GC]</named-content>
. It cannot be excluded, however, that the occurrence of these motifs is coincidental. Manual inspection of the breakpoint regions and the junction fragment revealed a mirror repeat at the telomeric breakpoint. Such mirror repeats have the capacity to form noncanonical, three stranded structures referred to as H-DNA, being one of the non-B DNA structures
<xref rid="pgen.1000522-Smith1" ref-type="bibr">[25]</xref>
. H-DNA-forming sequences have previously been identified in regions that are prone to genomic rearrangements
<xref rid="pgen.1000522-Smith1" ref-type="bibr">[25]</xref>
<xref rid="pgen.1000522-Lobachev1" ref-type="bibr">[28]</xref>
. Interestingly, the pentanucleotide motif present in this mirror repeat is also seen on the reverse strand at the centromeric end of the deletion (
<xref ref-type="fig" rid="pgen-1000522-g003">Figure 3</xref>
). We thus hypothesize that a double-stranded break (DSB) at the telomeric side triggered the deletion, followed by a DSB repair mechanism guided by the formation of a knot loop between the reverse complement of the pentanucleotide motif at the centromeric end (
<xref ref-type="fig" rid="pgen-1000522-g003">Figure 3</xref>
).</p>
<fig id="pgen-1000522-g003" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1000522.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Characterization of 7.4 kb deletion.</title>
<p>Top: Sequence electropherogram of the junction fragment of deletion D. The dotted vertical line indicates the position of the junction. Bottom: Schematic representation of the proposed mechanism underlying the 7.4 kb deletion. The deleted fragment is delineated by the vertical lines and represented in red. The retained basepairs are formatted in bold. It is hypothesized that a double-stranded break (DSB) at the telomeric side triggered the deletion, followed by a DSB repair mechanism guided by the formation of a knot loop between the reverse complement of the pentanucleotide motif at the centromeric end.</p>
</caption>
<graphic xlink:href="pgen.1000522.g003"></graphic>
</fig>
<p>The drastically reduced SRO contains 8 out of 25 CNCs identified in the initial SRO. Moreover, 4 out of 8 are conserved up to chicken, adding weight to an assumed functional role (
<xref ref-type="table" rid="pgen-1000522-t001">Table 1</xref>
). According to several miRNA databases the reduced SRO does not contain any miRNAs. We also investigated the regulatory potential of the deleted region using regulatory tracks. Based on the currently available data, the region is devoid of CpG islands, transcription start sites, conserved transcription factor binding sites, miRNA regulatory sites, VISTA enhancers, regulatory elements from OregAnno,
<italic>DNase</italic>
I hypersensitivity sites and CTCF binding sites. While the new SRO is devoid of known human genes, it does contain 4 human ESTs. Three are unspliced ESTs from two testis cDNA libraries, sharing a common telomeric end position (
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
). BLASTn analysis with EST AI204197 as query sequence retrieved 51 hits, including a significant alignment with
<italic>Capra hircus PISRT1</italic>
mRNA and
<italic>Mus musculus Pisrt1</italic>
partial mRNA sequence.
<italic>PISRT1</italic>
is one of the genes affected by the causal PIS deletion in goat. The PIS goat is the only known natural animal model for BPES associated with absence of horns (polledness) and intersexuality, caused by a regulatory 11.7 kb deletion located 280 kb upstream of goat
<italic>FOXL2</italic>
. It was shown that the deletion does not contain, but alters the transcription of at least three genes:
<italic>FOXL2</italic>
, the non-protein coding gene
<italic>PISRT1</italic>
, and
<italic>PFOXic</italic>
<xref rid="pgen.1000522-Pailhoux1" ref-type="bibr">[14]</xref>
,
<xref rid="pgen.1000522-Pannetier1" ref-type="bibr">[15]</xref>
. Pailhoux et al. (2001) suggested that the PIS deletion harboured elements involved in long-range
<italic>cis</italic>
-regulation of goat
<italic>FOXL2</italic>
and
<italic>PISRT1</italic>
, as the expression of both genes is affected by the deletion
<xref rid="pgen.1000522-Pailhoux1" ref-type="bibr">[14]</xref>
. This was further supported by our previous findings, revealing that the initial 126 kb SRO 5′ to
<italic>FOXL2</italic>
contains the PIS locus
<xref rid="pgen.1000522-Beysen2" ref-type="bibr">[10]</xref>
. Here, the 7.4 kb deletion proved to contain the
<italic>PISRT1</italic>
orthologue, but not the PIS deletion (
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
). This suggests the existence of distinct interspecies
<italic>cis</italic>
-regulatory elements, which have similar effects when disrupted. Caprine
<italic>PISRT1</italic>
encodes a long non-coding transcript (ncRNA) of 1.5 kb that is highly expressed in adult testis
<xref rid="pgen.1000522-Nikic1" ref-type="bibr">[13]</xref>
. A full-length cDNA of 758 bp was identified by 5′ RACE PCR starting from the known testis ESTs containing a polyadenylation site (
<xref ref-type="supplementary-material" rid="pgen.1000522.s001">Figure S1</xref>
). These findings confirm its expression in human testis. In addition, no expression could be detected in fibroblasts, while a low
<italic>PISRT1</italic>
expression could be observed in KGN cells, indicating a co-expression of
<italic>PISRT1</italic>
and
<italic>FOXL2</italic>
in adult ovarian granulosa cells. These findings are consistent with expression profiles in goat and mice
<xref rid="pgen.1000522-Nikic1" ref-type="bibr">[13]</xref>
. The latter is in line with a presumed regulatory function of
<italic>PISRT1</italic>
, requiring a tissue and cell-type specific expression.</p>
<p>Apart from copy number analyses, the remaining negative patients were specifically screened for sequence variants of CNCs within the initial SRO (
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
). To date, there are only a few human phenotypes found to be associated with sequence variations within
<italic>cis</italic>
-regulators
<xref rid="pgen.1000522-Benko1" ref-type="bibr">[19]</xref>
,
<xref rid="pgen.1000522-Lettice2" ref-type="bibr">[20]</xref>
,
<xref rid="pgen.1000522-Rahimov1" ref-type="bibr">[29]</xref>
,
<xref rid="pgen.1000522-Jeong1" ref-type="bibr">[30]</xref>
. In this study, we identified 15 single nucleotide substitutions within CNCs or in flanking nucleotides and a 4-bp deletion mapping immediately upstream of CNC14 (
<xref ref-type="supplementary-material" rid="pgen.1000522.s003">Table S1</xref>
). Only 3 nucleotide substitutions were found in BPES patients exclusively. However, no parents were available of these particular patients for segregation analysis (
<xref ref-type="supplementary-material" rid="pgen.1000522.s003">Table S1</xref>
). Moreover, computational transcription factor binding site (TFBS) prediction on any of the wild type and variant CNCs did not support the creation or abolition of a TFBS.</p>
<p>Although comparative sequence analysis has been proven to be a powerful approach to identify regulatory elements, experimental studies are required to confirm their role in gene regulation. The ability to modulate expression of a linked minimal promoter element in transient cell transfections is a widely exploited
<italic>in vitro</italic>
test of
<italic>cis</italic>
-regulatory potential
<xref rid="pgen.1000522-Attanasio1" ref-type="bibr">[31]</xref>
. Thus, for 24/25 CNC identified in the original SRO,
<italic>in vitro</italic>
luciferase assays were conducted (CNC19 could not be cloned). In both the KGN and 293T cell line, 29% (7/24) of the tested CNCs showed a significant difference in luciferase activity compared to the basal activity of the vector itself (T-test, P value<0.05) (
<xref ref-type="fig" rid="pgen-1000522-g004">Figure 4</xref>
). Interestingly, cell-type specific regulatory potential could be observed among the constructs tested, three of which map within the 7.4 kb reduced SRO (CNC14, CNC5 and CNC15). This cell type specific regulatory activity supports that at least a fraction of the tested CNCs might be involved in the tissue-specific expression of
<italic>FOXL2</italic>
. We also addressed the putative functional impact of the identified nucleotide variants, but did not detect significant effects. A small quantitative and tissue-specific
<italic>cis</italic>
-regulatory effect of an individual CNC variation cannot be ruled out however. These results suggest that sequence variations within individual CNCs do not directly contribute to the molecular pathogenesis of BPES in our study.</p>
<fig id="pgen-1000522-g004" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1000522.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Regulatory activity of wild-type and variant CNCs in
<italic>FOXL2</italic>
expressing and non-expressing cells.</title>
<p>The 25 identified CNCs and their putative pathogenic variants were cloned into a luciferase reporter vector and assayed for their regulatory role into expressing KGN and non-expressing 293T (human kidney cells) cells. (A) Bar chart showing the regulatory activity of each independent wild type CNC (CNCwt) in KGN (brown bars) and 293T (blue bars) relative to the basal activity of the empty vector (pTAL). Significant changes (one sample T-test, p value<0.05) are highlighted by an asterisk. CNCs with a >2 fold-change in activity between cell lines and a significant p value are shown in red. (B) Bar chart of wtCNCs and variant CNCs (CNCmut) regulatory activity in 293T and KGN cell lines respectively. Each CNC activity is first normalised to the basal activity of the empty vector and significant changes between wt and mut were then assessed by a two-samples T-test. No significant p values were found for any assayed construct (P value<0.05).</p>
</caption>
<graphic xlink:href="pgen.1000522.g004"></graphic>
</fig>
<p>As an additional experimental tool, 3C was conducted for a large region of 625 kb flanking the
<italic>FOXL2</italic>
gene. Using 3C, physical interactions between regulatory elements and their target genes can be demonstrated
<xref rid="pgen.1000522-Dekker1" ref-type="bibr">[32]</xref>
. In the
<italic>FOXL2</italic>
expressing KGN cell line, the
<italic>FOXL2</italic>
core promoter containing
<italic>Eco</italic>
RI fragment 58 proved to come in close vicinity to
<italic>Eco</italic>
RI restriction fragments 109, 133 and 158, located 177, 283 and 360 kb upstream of
<italic>FOXL2</italic>
respectively (
<xref ref-type="supplementary-material" rid="pgen.1000522.s002">Figure S2</xref>
). Moreover, an identical but lower interaction profile was detected in expressing fibroblast cells from a normal individual (F2) (
<xref ref-type="supplementary-material" rid="pgen.1000522.s002">Figure S2</xref>
). These data demonstrate that in the nucleus of expressing cells, the promoter region of the
<italic>FOXL2</italic>
gene interacts with three long-distance
<italic>cis</italic>
-regulatory sequences.</p>
<p>To validate mutual interactions between these three regulatory regions, 3C was performed in EBV, KGN and F2 cells with fragments 109, 133 and 158 respectively as anchor fragments in a second step (
<xref ref-type="fig" rid="pgen-1000522-g005">Figure 5</xref>
). It was found that in expressing cells, all three distant sequences mutually interact and contact the
<italic>FOXL2</italic>
core promoter, assuming that the intervening DNA loops out. Interestingly, fragment 133 contains the 7.4 kb fragment that is deleted in deletion D (
<xref ref-type="fig" rid="pgen-1000522-g001">Figure 1</xref>
and
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
;
<xref ref-type="table" rid="pgen-1000522-t001">Table 1</xref>
). To investigate the consequences of a heterozygous deletion of interacting fragment 133 on the interaction profile of the
<italic>FOXL2</italic>
locus, we analysed the mutual interactions of these three fragments in a fibroblast cell line F1, obtained from a BPES patient carrying an upstream deletion defining the initial SRO
<xref rid="pgen.1000522-Beysen2" ref-type="bibr">[10]</xref>
. As a control, we used the fibroblast cell line F2. Interactions of the promoter with the two elements 109 and 158 that are not located within the deletion are not reduced. Thus, this suggests that even on the deleted chromosome these elements can interact with the
<italic>FOXL2</italic>
promotor despite the absence of fragment 133. Furthermore, fragments 109 and 158 appear to mutually interact even in the absence of 133. The upstream deletion disrupts fragment 133 within the reduced SRO, and causes a BPES phenotype. The latter might lead to the conclusion that the retained interactions between fragments 109 and 158 and the
<italic>FOXL2</italic>
core promoter are not sufficient to correctly regulate
<italic>FOXL2</italic>
transcription in the adult expressing cell system studied here. Moreover, it implies that the interactions between the
<italic>cis</italic>
-regulatory element(s) located in fragment 133 and the
<italic>FOXL2</italic>
core promoter are essential for this.</p>
<fig id="pgen-1000522-g005" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1000522.g005</object-id>
<label>Figure 5</label>
<caption>
<title>3C analysis of
<italic>FOXL2</italic>
region: mutual interactions between three regulatory sequences upstream of
<italic>FOXL2</italic>
.</title>
<p>(A–C) In a first step 3C analysis of the
<italic>FOXL2</italic>
region demonstrated a close proximity of three evolutionarily conserved fragments 109, 133, and 158 with a fragment containing the
<italic>FOXL2</italic>
core promoter in expressing cells (KGN and control fibroblasts F2) (
<xref ref-type="fig" rid="pgen-1000522-g001">Figure 1</xref>
,
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
, and
<xref ref-type="supplementary-material" rid="pgen.1000522.s002">Figure S2</xref>
). Fragment 133 contains the 7.4 kb deletion. Second, to validate mutual interactions between these three regulatory fragments, 3C was performed in non-expressing EBV and expressing KGN and F2 cells with fragments 109 (A), 133 (B) and 158 (C) as anchor fragments respectively. The X-axis shows the genomic positions relative to the respective anchor fragments 109, 133 and 158 respectively; the Y-axis indicates normalized interaction frequencies measured by semi-quantitative PCR. At the Y-axis there are no peaks in interaction frequencies because an anchor fragment cannot interact with itself. Regions of interaction are highlighted with yellow rectangles. In expressing cells, all three distant fragments mutually interact and contact the
<italic>FOXL2</italic>
core promoter, assuming the intervening DNA loops out. Interaction frequencies between the
<italic>FOXL2</italic>
promoter and the regulatory sequences (represented in
<xref ref-type="supplementary-material" rid="pgen.1000522.s002">Figure S2</xref>
) are significantly lower compared to interaction frequencies observed amongst the interacting fragments themselves (A–C). (D–F) The X-axis shows the genomic positions relative to the respective anchor fragments 109, 133, and 158 respectively; the Y-axis indicates normalized interaction frequencies measured by semi-quantitative PCR. At the Y-axis there are no peaks in interaction frequencies because an anchor fragment cannot interact with itself. Regions of interaction are highlighted with yellow rectangles. Experiments with anchor primers 109, 133, and 158 respectively (D–F), revealed interaction comparable to those in EBV cells in the deleted region. Moreover,
<xref ref-type="fig" rid="pgen-1000522-g005">Figure 5D and 5F</xref>
show that in F1 cells, restriction fragments 109 and 158 maintain their mutual interaction in spite of absence of interaction with fragment 133. This demonstrates that retained mutual interactions and interactions between fragments 109 and 158 and the
<italic>FOXL2</italic>
core promoter are not sufficient for a normal cell-specific control of
<italic>FOXL2</italic>
expression.</p>
</caption>
<graphic xlink:href="pgen.1000522.g005"></graphic>
</fig>
<sec id="s2a">
<title>General conclusions and perspectives</title>
<p>We identified a
<italic>de novo</italic>
distant 7.4-kb deletion that is causally related to BPES. To our knowledge, this is the smallest fully characterized distant deletion implicated in the causation of a human genetic condition (
<xref ref-type="supplementary-material" rid="pgen.1000522.s004">Table S2</xref>
). This deletion disrupts a long ncRNA
<italic>PISRT1</italic>
and 8 CNCs, 4 of which are conserved up to chicken. Functional assays suggest a
<italic>cis</italic>
-regulatory and tissue-specific potential of 3 of them. The biological relevance of these findings was corroborated by the 3C study of a normal and aberrant
<italic>FOXL2</italic>
locus in expressing adult cellular systems respectively, demonstrating a close proximity of the 7.4 kb deleted fragment and two other conserved regions with the
<italic>FOXL2</italic>
core promoter, and the necessity of the integrity of the regulatory domain for correct
<italic>FOXL2</italic>
expression.</p>
<p>Altogether, we identified and characterized a novel tissue-specific
<italic>cis</italic>
-regulatory domain of
<italic>FOXL2</italic>
expression. As we demonstrated the consequences of its disruption, our findings impact mutation screening of strictly regulated developmental and other disease genes. Specifically, our study emphasizes the need for high-resolution copy number screening of their
<italic>cis</italic>
-regulatory domains. Genome-wide tools such as oligonucleotide or SNP arrays and next-generation sequencing will play a prominent role in this. In addition, a well-selected patient population is another requirement, as illustrated here: (1) we only included patients with a diagnosis of BPES, a clinically distinguishable but rare disorder, and (2) they all underwent a uniform pre-screening excluding intragenic
<italic>FOXL2</italic>
mutations and gene deletions.</p>
<p>Sequence variations within individual CNCs did not contribute to the molecular pathogenesis of BPES in our study. This can be explained by the fact that sequence changes within individual CNCs might result in a more subtle, different or even normal phenotype, as the
<italic>cis</italic>
-regulatory elements they represent might act in a tissue-specific and quantitative manner
<xref rid="pgen.1000522-Pennacchio1" ref-type="bibr">[5]</xref>
,
<xref rid="pgen.1000522-Woolfe1" ref-type="bibr">[6]</xref>
,
<xref rid="pgen.1000522-Benko1" ref-type="bibr">[19]</xref>
,
<xref rid="pgen.1000522-Poulin1" ref-type="bibr">[33]</xref>
. The most striking example of the latter is the differential phenotype caused by point mutations in
<italic>SHH</italic>
and in its limb-specific enhancer ZRS of
<italic>SHH</italic>
, resulting in holoprosencephaly type III (HPE3) (OMIM 142945) and PPD respectively
<xref rid="pgen.1000522-Lettice2" ref-type="bibr">[20]</xref>
,
<xref rid="pgen.1000522-Roessler1" ref-type="bibr">[34]</xref>
.</p>
<p>Other mechanisms may explain the phenotype in the remaining 53 molecularly undefined BPES patients. Although there is no clear evidence for locus heterogeneity in BPES, mutations in other disease genes apart from
<italic>FOXL2</italic>
cannot be excluded in some of the remaining molecularly unresolved cases. Another possibility is the occurrence of regulatory variants within the untranslated regions (UTRs) or the core promoter. A number of non-pathogenic sequence variants have been reported in the
<italic>FOXL2</italic>
putative core promoter and untranslated regions (UTRs) up to now. However, a single basepair insertion in the
<italic>FOXL2</italic>
3′UTR was found to co-segregate with BPES in a large Chinese type II BPES family, and was shown to be located in an AU rich repeat
<xref rid="pgen.1000522-Qian1" ref-type="bibr">[35]</xref>
. No functional studies were provided however to unequivocally prove a relationship between the insertion and the phenotype in this family. Interestingly, in the
<italic>FOXP3</italic>
gene (NM_014009), encoding another forkhead transcription factor, a presumed disease-causing sequence change was found in the 3′UTR within the poly(A) signal, in affected members of a five-generation family with X-linked immune dysfunction, polyendocrinopathy, enteropathy (IPEX) (MIM 304790)
<xref rid="pgen.1000522-Bennett1" ref-type="bibr">[36]</xref>
. The occurrence of interesting pathogenic or modifying variants in 3′UTRs is in line with their important role in the regulation of gene expression at both pre-mRNA, mature mRNA and post-transcriptional level through
<italic>cis</italic>
-acting elements that interact with a variety of
<italic>trans</italic>
-acting factors
<xref rid="pgen.1000522-Chen1" ref-type="bibr">[37]</xref>
. This is highlighted by their many conserved sequence motifs, including microRNA (miRNA) targets
<xref rid="pgen.1000522-Chen1" ref-type="bibr">[37]</xref>
. It cannot be ruled out that changes in post-transcriptional regulation by altered miRNA targeting may result in BPES. A unique example of a variant that alters the gene expression level by modifying miRNA targeting activity is a 3′UTR SNP in human
<italic>SLITRK1</italic>
(NM_052910), which is implicated in Tourette syndrome (MIM 137580)
<xref rid="pgen.1000522-Abelson1" ref-type="bibr">[38]</xref>
.</p>
<p>Finally, this study considerably adds to the importance of an intact tissue-specific
<italic>cis</italic>
-regulatory domain in this and other developmental disorders. This impacts upon the concept of mutation screening of developmental disease in particular, and of human genetic disease in general. In the future, online databases such as Decipher and the Database of Genomic Variants which collect information on copy number changes, might help to interpret copy number changes affecting putative regulatory regions that might lead to disease
<xref rid="pgen.1000522-Firth1" ref-type="bibr">[39]</xref>
,
<xref rid="pgen.1000522-Iafrate1" ref-type="bibr">[40]</xref>
.</p>
</sec>
</sec>
<sec id="s3">
<title>Materials and Methods</title>
<sec id="s3a">
<title>Patients</title>
<p>Genomic DNA (gDNA) from 57 consenting BPES patients without intragenic mutation or copy number change of the
<italic>FOXL2</italic>
coding region was used in this study. Criteria described previously were used to accept a diagnosis of BPES
<xref rid="pgen.1000522-Beysen1" ref-type="bibr">[9]</xref>
. The study was conducted following the tenets of Helsinki and was approved by the local Ethics Committee of the Ghent University Hospital.</p>
</sec>
<sec id="s3b">
<title>Microsatellite analysis</title>
<p>In order to detect hemizygous regions outside
<italic>FOXL2</italic>
, microsatellite analysis was performed as described previously
<xref rid="pgen.1000522-Beysen2" ref-type="bibr">[10]</xref>
. Microsatellite analysis was conducted for 19 molecularly unresolved patients for whom parental DNA was available.</p>
</sec>
<sec id="s3c">
<title>ArrayCGH</title>
<p>In order to detect copy number changes outside the transcription unit of
<italic>FOXL2</italic>
, a new purpose-built bacterial artificial chromosome (BAC) array, consisting of 132 unique genomic clones covering a region of 3 Mb around
<italic>FOXL2</italic>
and 95 control BACs (3 on each chromosome and 26 on the X chromosome), was designed in-house as previously described
<xref rid="pgen.1000522-Fiegler1" ref-type="bibr">[41]</xref>
,
<xref rid="pgen.1000522-Menten1" ref-type="bibr">[42]</xref>
. In total, 500 ng of DNA was labelled by a random prime labelling system (BioPrime ArrayCGH genomic labelling system, Invitrogen) using Cy3 and Cy5 labelled dCTPs (Amersham Biosciences). Hybridizations were performed automatically using the HS400 hybridization station (Tecan) for 21 molecularly unresolved patients, of which 13 were previously screened by microsatellite analysis. The scan images were processed with Imagene software (Biodiscovery) and further analysed with arrayCGHbase
<xref rid="pgen.1000522-Menten2" ref-type="bibr">[43]</xref>
.</p>
</sec>
<sec id="s3d">
<title>Real-time quantitative PCR (qPCR) in the
<italic>FOXL2</italic>
region (qPCR-3q23)</title>
<p>Quantitative qPCR (qPCR-3q23) was performed as described for a second group of patients as an alternative to arrayCGH, in order to detect copy number changes encompassing the initial SRO
<xref rid="pgen.1000522-Hoebeeck1" ref-type="bibr">[44]</xref>
. First, 3 qPCR amplicons located within the SRO 5′ to
<italic>FOXL2</italic>
were designed and used to identify possible extragenic deletions overlapping the SRO in 24 molecularly unresolved patients, not previously screened by array CGH. Second, 10 additional in-house designed amplicons were used to further delineate 3 new extragenic deletions. All 13 amplicons were designed
<italic>in silico</italic>
as described (primer sequences available upon request)
<xref rid="pgen.1000522-Hoebeeck1" ref-type="bibr">[44]</xref>
. qPCR was carried out using the qPCR Core kit for SYBR Green I (Eurogentec) on the LightCycler 480 (Roche). Calculation of the gene copy number was performed with qBase software
<xref rid="pgen.1000522-Hellemans1" ref-type="bibr">[45]</xref>
. Two reference genes,
<italic>ZNF80</italic>
(NM_007136) and
<italic>GPR15</italic>
(NM_005290), were used for normalization of the relative quantities.</p>
</sec>
<sec id="s3e">
<title>Comparative sequence analysis (identification of CNCs)</title>
<p>A comparative analysis of the SRO region (delineated by SNP rs10935309 and rs4894405) was performed by pairwise comparison of the human and mouse genomes. More specifically, the GALA genome browser implemented with hg16 build was used to identify all non-coding sequences of ≥100 bp and sharing ≥70% identity with the mouse
<xref rid="pgen.1000522-Giardine1" ref-type="bibr">[46]</xref>
. The analysis resulted in the identification of 25 CNCs that are reproducibly mapped when implementing the hg17 build.</p>
<p>Subsequently, using the multiZ alignment track in the UCSC genome browser, the conservation of all identified CNCs was examined in the genomes of placental mammals, chicken and pufferfish. In addition, the overlap of all the identified CNCs with previously reported PhastCons sequences was evaluated using the PhastCons conservation in the UCSC Genome Browser
<xref rid="pgen.1000522-Blanchette1" ref-type="bibr">[47]</xref>
,
<xref rid="pgen.1000522-Siepel1" ref-type="bibr">[48]</xref>
.</p>
</sec>
<sec id="s3f">
<title>qPCR for CNCs in the SRO (qPCR-CNC)</title>
<p>In order to detect subtle copy number changes within or nearby the identified CNCs specifically, 36 qPCR amplicons were designed within the initial SRO: 19/36 map within CNCs (no successful assays were obtained for CNC10, 14, 15, 21, 23 and 25) while the 15 additional assays map within some long flanking regions. The latter amplicons were designed following CNC copy-number analysis in order to increase the screen resolution or to verify the mapping of putative copy-number variants. SYBR Green I qPCR-CNC was performed in 53 selected patients as described
<xref rid="pgen.1000522-Howald1" ref-type="bibr">[49]</xref>
. All amplicons were designed
<italic>in silico</italic>
using PrimerExpress (Applied Biosystems) (primers available upon request) and validated as described
<xref rid="pgen.1000522-Howald1" ref-type="bibr">[49]</xref>
.</p>
</sec>
<sec id="s3g">
<title>Deletion-junction PCR, sequencing, and
<italic>in silico</italic>
analysis of the breakpoint regions</title>
<p>For the patient with deletion D long-range PCR was performed using the qPCR primers delineating the deletion. For long-range PCR the iProof high-fidelity PCR kit (Biorad) was used according to the manufacturer's instructions.</p>
<p>In order to determine the junctions at base pair resolution, direct sequencing was performed on the 5 kb product using 8 internal sequencing primers (available upon request) (ABI 3730xl Applied Biosystems). We used several web-based tools to unravel the mechanism by which the 7.4 kb deletion occurred. Genomic sequences of several sizes and centered on the breakpoints were obtained from the UCSC genome browser. First, CLUSTALW was used to align the junction sequence (70 bp) with the reference genomic sequence from both the proximal and the distal breakpoint region
<xref rid="pgen.1000522-Larkin1" ref-type="bibr">[50]</xref>
. Second, BLAST2 was run under default conditions to perform a pairwise sequence comparison of the 2 kb proximal and distal breakpoint regions
<xref rid="pgen.1000522-Altschul1" ref-type="bibr">[51]</xref>
. Third, several programs (RepeatMasker, Mreps, Palindrome, and Censor) were employed to screen for repetitive elements/structures, low-complexity sequences, tandem and palindromic inverted repeats
<xref rid="pgen.1000522-TarailoGraovac1" ref-type="bibr">[52]</xref>
<xref rid="pgen.1000522-Jurka1" ref-type="bibr">[54]</xref>
. For sequence analysis with RepeatMasker and Censor we used the 2 kb breakpoint regions and for analysis with Mreps and Palindrome 300 bp regions. In addition, the fractional GC content of the breakpoint regions was calculated using GEECEE.</p>
<p>DNA Pattern Find was applied to locate specific sequence motifs within the 70 bp breakpoint regions and the junction fragment
<xref rid="pgen.1000522-Stothard1" ref-type="bibr">[55]</xref>
. The investigated specific sequences are known to be implicated in DNA rearrangements elsewhere
<xref rid="pgen.1000522-Abeysinghe1" ref-type="bibr">[56]</xref>
.</p>
</sec>
<sec id="s3h">
<title>
<italic>In silico</italic>
analysis of the reduced SRO</title>
<p>Several tracks within the UCSC genome browser (Genes and Gene Prediction Tracks, mRNA and EST Tracks and Regulation Tracks) were used to screen the reduced SRO (chr3:140,431,841-140,439,199). In addition, the Ensembl regulatory features track was used to gain information about possible
<italic>DNase</italic>
I hypersensitivity sites and
<named-content content-type="gene">CCCTC</named-content>
-binding factor (
<named-content content-type="gene">CTCF</named-content>
) binding sites. Several RNA databases (RNAdb, miRDB, miRNAMap, miRBase and NONCODE v2.0) were consulted in order to extract possible non-coding RNA sequences
<xref rid="pgen.1000522-Pang1" ref-type="bibr">[57]</xref>
<xref rid="pgen.1000522-He1" ref-type="bibr">[61]</xref>
. Finally, BLASTn was run under default conditions to define the human orthologue of caprine
<italic>PISRT1</italic>
(AF404302) within this reduced SRO. In order to define the location of the human 7.4 kb deletion with respect to the deletion in the PIS goat, BLAST2 was performed for goat BAC 376H9 and a 100 kb extract from human chromosome 3 NT_005612.15 containing the reduced SRO (45.400.000–45.500.000).</p>
</sec>
<sec id="s3i">
<title>Expression analysis and 5′ RACE of human
<italic>PISRT1</italic>
</title>
<p>Relative
<italic>PISRT1</italic>
expression levels were determined in several human cell lines/tissues using real-time quantitative RT-PCR with newly designed primers (available upon request). Primers were designed as described
<xref rid="pgen.1000522-Hoebeeck1" ref-type="bibr">[44]</xref>
. cDNA prepared from fibroblasts from a control individual and from human granulosa KGN cells (Riken Institute) and cDNA from testis (human testis Marathon-Ready cDNA, Clontech) were used for
<italic>PISRT1</italic>
expression analysis.. RNA was isolated from fibroblasts and KGN cells as described (RNeasy, Qiagen), and treated with RNase-free DNAse (Promega), followed by cDNA synthesis as described (iScript cDNA synthesis kit, Bio-Rad); qPCR was carried out using the qPCR Core kit for SYBR Green I (Eurogentec) on the LightCycler 480 (Roche) as described above.
<italic>PISRT1</italic>
expression levels were normalized using 3 housekeeping genes (
<italic>HPRT1</italic>
,
<italic>GAPDH</italic>
and
<italic>YWHAZ</italic>
) (NM_000194, NM_002046 and NM_145690). The obtained data were analyzed using qBase plus
<xref rid="pgen.1000522-Hellemans1" ref-type="bibr">[45]</xref>
.</p>
<p>To characterize the full-length human
<italic>PISRT1</italic>
transcript, 5′ rapid amplification of the cDNA ends (5′ RACE, Clontech) was performed according to the manufacturer's protocol, using the Advantage cDNA PCR Kit and human testis Marathon-Ready cDNA (Clontech) as a template (primers available upon request). For our novel human
<italic>PISRT1</italic>
transcript, an accession number was requested at the GenBank (accession number FJ617010).</p>
</sec>
<sec id="s3j">
<title>Sequencing of CNCs</title>
<p>Primers surrounding each of the 25 CNCs (±50 bp of the core CNC) were designed with Primer3 (primers available upon request)
<xref rid="pgen.1000522-Rozen1" ref-type="bibr">[62]</xref>
. A specific amplicon could be obtained for 24/25 CNCs, except for CNC19. Sequence analysis of 24 CNCs was performed in 32 molecularly unresolved patients. In a second step, targeted sequencing of CNCs mapping within the reduced SRO defined by the 7.4 kb deletion, was performed in the remaining 21 patients.</p>
<p>Sequence analysis of the first set of patients was performed with RedTaq (Jumpstart kit, Sigma) under standard touchdown PCR conditions. For the second set of patients new amplicons were designed for closely mapping CNCs instead of single CNC analysis. Thus, CNC5, 15, 6, 16, 4 and 14 were pooled as follows: CNC5-15 (amplicon size: 573 bp), CNC6-16 (amplicon size: 962 bp) and CNC4-14 (amplicon size: 1140 bp). In this case, PCR amplification was carried out with the iProof High-Fidelity DNA polymerase (BioRad) as indicated by the manufacturer. Each amplicon was directly sequenced in forward and reverse orientation using an ABI 3130 analyser (Applied Biosystems). To align and identify nucleotide variants the Sequencher software (Gene Codes Corporation) was used. Multispecies alignments extracted from the UCSC Genome browser were used to evaluate the conserved nature of nucleotides presenting variants. Computational transcription factor binding site predictions were performed with the MATCH interface of the TRANSFAC database
<xref rid="pgen.1000522-Kel1" ref-type="bibr">[63]</xref>
,
<xref rid="pgen.1000522-Matys1" ref-type="bibr">[64]</xref>
.</p>
</sec>
<sec id="s3k">
<title>Luciferase constructs and assays</title>
<p>
<italic>In vitro</italic>
luciferase assays were performed in
<italic>FOXL2</italic>
expressing KGN cells, and non-expressing 293T cells (human kidney cells,
<named-content content-type="gene">ATCC</named-content>
). Wild-type (WT) and variant CNCs were directly PCR amplified from normal and affected genomic DNA respectively, with the same sets of primers and PCR conditions used for CNC sequencing, except for CNC1. For CNC1 new primers were designed as described above based on a recent conservation pattern survey. The new CNC1 amplicon adds approximately 260 bp to the original one and covers the full conserved alignment that can be observed in UCSC and that overlaps with an extremely conserved sequence with highly regulatory potential
<xref rid="pgen.1000522-Visel1" ref-type="bibr">[65]</xref>
. Two types of luciferase constructs were produced: (1)
<italic>pTAL-Luc CNC constructs</italic>
, for which each PCR product was cloned into the TOPO-TA PCR II vector after amplification (Invitrogen); colonies with insert in reverse orientation (i.e. 3′-5′) were specifically selected and sequenced. Subsequent subcloning into the pTAL-Luc vector (Clontech) expressing the firefly luciferase was achieved by
<italic>Sac</italic>
I-
<italic>Xho</italic>
I digestion of both the TOPO-CNC constructs and pTAL-Luc vector (Clontech). The amplicon encompassing CNC1 contained internal
<italic>Sac</italic>
I and
<italic>Xho</italic>
I, and was subcloned using
<italic>Spe</italic>
I-
<italic>Bgl</italic>
II restriction sites. The fragment was subsequently cloned into a modified pTAL-Luc vector containing part of the multiple cloning site of TOPO-TA II. (2)
<italic>pTAL-SV40 CNC constructs</italic>
, for which the pTAL-Luc backbone was digested with
<italic>Bgl</italic>
II and
<italic>Hind</italic>
III in order to remove the minimal TATA-like promoter and replace it by a SV40 promoter. Subsequently, all pTAL-Luc CNCs were digested with
<italic>Sac</italic>
I-
<italic>Xho</italic>
I (
<italic>Spe</italic>
I-
<italic>Bgl</italic>
II for CNC1) and subcloned into a pTAL-SV40 (Promega) digested with similar enzymes. In both approaches, reverse-orientated CNC constructs were obtained. We specifically decided to investigate the regulatory potential of CNCs in their native orientation with respect to
<italic>FOXL2</italic>
.</p>
<sec id="s3k1">
<title>Luciferase Assays in 293T and KGN</title>
<p>The assay was performed as previously described
<xref rid="pgen.1000522-Attanasio1" ref-type="bibr">[31]</xref>
. For KGN, transfections were performed with minor modifications; briefly, 1×10
<sup>5</sup>
cells/well were grown into 24 wells and transiently transfected with 0.5 µg of each pTAL-SV40 CNCs construct along with 100 ng of
<italic>renilla</italic>
control plasmid (pRL-SV40).</p>
<p>For both cell lines, each construct was assayed in triplicate in three independent experiments. Firefly and
<italic>renilla</italic>
luciferase activities were measured using the Dual-Glo Luciferase Assay System (Promega) and a microplate luminometer (VICTOR
<sup>3</sup>
, PerkinElmer). We determined the luciferase activity driven by each construct by first measuring the firefly to
<italic>renilla</italic>
luciferase ratio for each transfection. In a second step, the signal was normalized to the control ratio (pTAL-Luc/pRL-SV40 or pTAL-SV40/pRL-SV40) included on each plate. Standard deviations were calculated for each construct.</p>
<p>In a next step, the putative influence of the variant on the level of transcription was expressed as the fold change in luciferase activity over the basal activity of the luciferase with the WT version of the respective CNC. P-values were calculated by 2-sample T-test. Significant differences, i.e. P<0.05, were indicated by an asterisk.</p>
</sec>
</sec>
<sec id="s3l">
<title>Chromosome conformation capture (3C)</title>
<sec id="s3l1">
<title>BAC selection and control library preparation</title>
<p>To create a standard for normalization of relative PCR efficiencies, a control template for the human
<italic>FOXL2</italic>
locus and gene desert regions (ENCODE region ENr313) was generated using a set of minimally overlapping bacterial artificial chromosome (BAC) clones
<xref rid="pgen.1000522-Dekker2" ref-type="bibr">[66]</xref>
,
<xref rid="pgen.1000522-Miele1" ref-type="bibr">[67]</xref>
. The following five BAC clones were used for the
<italic>FOXL2</italic>
locus: RP11-579O13, RP11-259D13, RP11-1129G19, RP11-111F8 and RP11-203B18. A set of four BAC clones was selected to cover the 0.5-Mb gene desert region and include RP11-197K24, RP11-609A13, RP11-454G21 and CTD-2133M23. These BAC clones were obtained from the Children's Hospital Oakland Research Institute (CHORI) and Invitrogen. BAC preparations were quantified by real-time quantitative PCR with SYBR Green I using universal primers that amplify part of the BAC vector backbone. Subsequently, BAC DNA was mixed in equimolar ratios, digested with
<italic>Eco</italic>
RI and randomly ligated, to obtain a collection of all possible ligation products in equimolar amounts.</p>
</sec>
<sec id="s3l2">
<title>Cell lines and culture conditions</title>
<p>The KGN cell line was grown as described
<xref rid="pgen.1000522-Nishi1" ref-type="bibr">[68]</xref>
. A control EBV cell line and fibroblasts were grown in standard conditions. The EBV cell line was derived from EBV-transformed B-lymphocytes of a healthy control. Template F1 was generated from fibroblasts from a BPES patient, carrying a deletion outside the transcription unit of
<italic>FOXL2</italic>
described by us
<xref rid="pgen.1000522-Beysen2" ref-type="bibr">[10]</xref>
. A fibroblast cell line derived from a normal individual was used to create the F2 template.
<italic>FOXL2</italic>
expression in the KGN, F1 and F2 cell lines was verified by real-time quantitative PCR (primers available upon request).</p>
</sec>
<sec id="s3l3">
<title>3C assay and PCR analysis of the ligation products</title>
<p>This was essentially performed as described
<xref rid="pgen.1000522-Dekker1" ref-type="bibr">[32]</xref>
,
<xref rid="pgen.1000522-Dekker2" ref-type="bibr">[66]</xref>
<xref rid="pgen.1000522-Miele1" ref-type="bibr">[67]</xref>
. Primers were designed to flank
<italic>Eco</italic>
RI sites with an orientation that allows amplification of potential ligated sequences. The 5′ side of each restriction fragment was used to design primers unless this coincided with repetitive DNA sequences (primers available upon request). The sizes of the predicted PCR products varied from 172 to 388 bp. The linear range of amplification was determined by using serial dilutions of the control template and all experimental templates for four different primer pairs. PCRs were conducted in 25 µl under the same cycling conditions, followed by agarose electrophoresis quantified on a Kodak Image Station 440 CF (Kodak).</p>
</sec>
<sec id="s3l4">
<title>Experimental controls</title>
<p>Several experimental controls were included to rule out potential artefacts
<xref rid="pgen.1000522-Dekker2" ref-type="bibr">[66]</xref>
. First, a BAC control template was generated to normalize for differences in primer efficiency. This control template contains equimolar amounts of all possible ligation products of the region of interest and the gene desert regions. Second, the level of background random collisions was assessed by determination of interactions between sites separated by increasing genomic distances, ranging from 0 to 130 kb both 3′ and 5′ of
<italic>FOXL2</italic>
. In all cell lines, highest interaction frequencies were found with neighbouring fragments upstream and downstream of the
<italic>FOXL2</italic>
core promoter, reflecting non-functional random collisions from adjacent restriction fragments. Moreover, interaction frequencies gradually decreased with fragments located further away on the DNA template. Finally, to allow direct quantitative comparison of interaction frequencies determined in all cell lines, interaction frequencies were normalized using a set of 18 interaction frequencies detected in gene desert regions (ENCODE region ENr313), assuming that this region has a similar conformation in all cell types. The average log ratio of these interaction frequencies was calculated in all cell types to determine the average fold difference in interaction frequencies between the EBV template and the KGN, F1 or F2 template.</p>
</sec>
</sec>
<sec id="s3m">
<title>Web resources</title>
<p>Ensembl Genome Browser,
<ext-link ext-link-type="uri" xlink:href="http://www.ensembl.org/index.html">http://www.ensembl.org/index.html</ext-link>
</p>
<p>GEECEE,
<ext-link ext-link-type="uri" xlink:href="http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=geecee">http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=geecee</ext-link>
</p>
<p>GenBank (MapViewer),
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/mapview/static/MVstart.html">http://www.ncbi.nlm.nih.gov/mapview/static/MVstart.html</ext-link>
</p>
<p>Online Mendelian Inheritance in Man (OMIM),
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/omim/">http://www.ncbi.nlm.nih.gov/omim/</ext-link>
</p>
<p>Palindrome,
<ext-link ext-link-type="uri" xlink:href="http://bioweb.pasteur.fr/seqanal/interfaces/palindrome.html">http://bioweb.pasteur.fr/seqanal/interfaces/palindrome.html</ext-link>
</p>
<p>Repeatmasker,
<ext-link ext-link-type="uri" xlink:href="http://www.repeatmasker.org">http://www.repeatmasker.org</ext-link>
</p>
<p>UCSC Genome browser,
<ext-link ext-link-type="uri" xlink:href="http://genome.ucsc.edu/">http://genome.ucsc.edu/</ext-link>
</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="s4">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pgen.1000522.s001">
<label>Figure S1</label>
<caption>
<p>Alignment of
<italic>PISRT1</italic>
homologues based on BLAST searches and 5′ RACE. Goat mRNA sequence AF404302 was used for BLASTN searches against human and mouse genomes. The homologous regions were localized on human contig NT_005612.15 at position 45445646–45447509 and on the mouse contig NT_039476.7 at position 18278112–18279127. These retrieved sequences, the human EST AW268472 and the canine EST CO633486.1 were aligned with ClustalW. Identification of the full-length human transcript was performed by 5′ RACE starting from testis-specific EST AW268472 using a testis cDNA library. The 2 gene specific primers used for 5′ RACE are indicated in red. The 5′ end of the full-length transcript is marked by a vertical black line. The reference number of the novel human PISRT1 was requested and retrieved at Genbank (FJ617010).</p>
<p>(7.21 MB TIF)</p>
</caption>
<media xlink:href="pgen.1000522.s001.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1000522.s002">
<label>Figure S2</label>
<caption>
<p>3C analysis of the human
<italic>FOXL2</italic>
locus in EBV, KGN and F2 cells. Schematic representation of the
<italic>FOXL2</italic>
locus. In the top line, genes located in this region are depicted by coloured boxes. The second line indicates the SROs of the downstream deletion (dashed line on the left) and the initial SRO of upstream deletions (red dashed line on the right respectively). Hatch marks on the third line represent midpoint distances of the
<italic>Eco</italic>
RI restriction fragments to anchor fragment 58. Arrowheads correspond with the location of the respective primers. The positions of the three known translocation breakpoints at 3q23 in BPES and of the orthologue of the PIS deletion are indicated by vertical arrows at the top. At the bottom, dot plot of 3C analysis representing interaction frequencies between the
<italic>Eco</italic>
RI fragment overlapping the
<italic>FOXL2</italic>
promoter (fragment 58) and restriction fragments throughout the
<italic>FOXL2</italic>
locus in non-expressing EBV cells, and expressing adult granulosa KGN and fibroblast cells F2. The X-axis shows the genomic position relative to anchor fragment 58; the Y-axis indicates normalized interaction frequencies measured by semi-quantitative PCR. Regions of interaction are highlighted with yellow rectangles. In the KGN cell line, the fragment containing (58) the
<italic>FOXL2</italic>
core promoter is shown to come in close vicinity to EcoRI restriction fragments 109, 133, and 158, located 177, 283, and 360 kb upstream of
<italic>FOXL2</italic>
respectively. The fold differences (average ratio of normalised interaction frequencies) of these interactions are 8, 11, and 39 respectively. An identical but lower interaction profile is seen in expressing fibroblast cells from a normal individual (F2).
<italic>Eco</italic>
RI fragments 109, 133 and 158 all correspond to evolutionarily conserved elements described by Crisponi et al. 2004 (see also
<xref ref-type="fig" rid="pgen-1000522-g001">Figure 1</xref>
,
<xref ref-type="fig" rid="pgen-1000522-g002">Figure 2</xref>
, and
<xref ref-type="table" rid="pgen-1000522-t001">Table 1</xref>
). Fragment 133 contains the reduced SRO of 7.4 kb and thus the
<italic>PISRT1</italic>
transcript. Altogether, these 3C data demonstrates that in the nucleus of expressing cells, the promoter region of the
<italic>FOXL2</italic>
gene comes in close vicinity to three distant cis-regulatory sequences that correspond to conserved sequence blocks.</p>
<p>(8.46 MB TIF)</p>
</caption>
<media xlink:href="pgen.1000522.s002.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1000522.s003">
<label>Table S1</label>
<caption>
<p>Variants identified by sequence analysis of CNCs.</p>
<p>(0.04 MB DOC)</p>
</caption>
<media xlink:href="pgen.1000522.s003.doc">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1000522.s004">
<label>Table S2</label>
<caption>
<p>Reported extragenic deletions in human genetic disorders.</p>
<p>(0.11 MB DOC)</p>
</caption>
<media xlink:href="pgen.1000522.s004.doc">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>Eric Pailhoux and Maelle Pannetier are acknowledged for sharing unpublished data about the caprine Polled Intersex deletion. We are most grateful to the families who participated in this study and to the clinicians and scientists who made this work possible.</p>
</ack>
<fn-group>
<fn fn-type="COI-statement">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="financial-disclosure">
<p>This study was supported by Specialisatiebeurs from IWT (B. D'haene), Bijzonder Onderzoeksfonds BOF2002/DRMAN/047 from Ghent University (D. Beysen), and 1.5.244.05 and 1.2.843.07.N.01 from the Research Foundation - Flanders (FWO-Vlaanderen) (E. De Baere). C. Attanasio was supported by a fellowship from the NCCR Frontiers in Genetics doctoral school. J. Dekker and J. Dostie were both supported by a grant from the National Institutes of Health (HG003143). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="pgen.1000522-Birney1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Birney</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Stamatoyannopoulos</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Dutta</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Guigo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gingeras</surname>
<given-names>TR</given-names>
</name>
<etal></etal>
</person-group>
<year>2007</year>
<article-title>Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.</article-title>
<source>Nature</source>
<volume>447</volume>
<fpage>799</fpage>
<lpage>816</lpage>
<pub-id pub-id-type="pmid">17571346</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Dermitzakis1">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dermitzakis</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Reymond</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Antonarakis</surname>
<given-names>SE</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Conserved non-genic sequences - an unexpected feature of mammalian genomes.</article-title>
<source>Nat Rev Genet</source>
<volume>6</volume>
<fpage>151</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="pmid">15716910</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Dermitzakis2">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dermitzakis</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Reymond</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lyle</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Scamuffa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ucla</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<year>2002</year>
<article-title>Numerous potentially functional but non-genic conserved sequences on human chromosome 21.</article-title>
<source>Nature</source>
<volume>420</volume>
<fpage>578</fpage>
<lpage>582</lpage>
<pub-id pub-id-type="pmid">12466853</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Dermitzakis3">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dermitzakis</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Reymond</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Scamuffa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ucla</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kirkness</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs).</article-title>
<source>Science</source>
<volume>302</volume>
<fpage>1033</fpage>
<lpage>1035</lpage>
<pub-id pub-id-type="pmid">14526086</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Pennacchio1">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pennacchio</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Ahituv</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Moses</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Prabhakar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nobrega</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<article-title>In vivo enhancer analysis of human conserved non-coding sequences.</article-title>
<source>Nature</source>
<volume>444</volume>
<fpage>499</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="pmid">17086198</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Woolfe1">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woolfe</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Goodson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Goode</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Snell</surname>
<given-names>P</given-names>
</name>
<name>
<surname>McEwen</surname>
<given-names>GK</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>Highly conserved non-coding sequences are associated with vertebrate development.</article-title>
<source>PLoS Biol</source>
<volume>3</volume>
<fpage>e7</fpage>
<comment>doi:10.1371/journal.pbio.0030007</comment>
<pub-id pub-id-type="pmid">15630479</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Nobrega1">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nobrega</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ovcharenko</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Afzal</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Rubin</surname>
<given-names>EM</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Scanning human gene deserts for long-range enhancers.</article-title>
<source>Science</source>
<volume>302</volume>
<fpage>413</fpage>
<pub-id pub-id-type="pmid">14563999</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Crisponi1">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crisponi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Deiana</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Loi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chiappe</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Uda</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2001</year>
<article-title>The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome.</article-title>
<source>Nat Genet</source>
<volume>27</volume>
<fpage>159</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="pmid">11175783</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Beysen1">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beysen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>De Paepe</surname>
<given-names>A</given-names>
</name>
<name>
<surname>De Baere</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>FOXL2 mutations and genomic rearrangements in BPES.</article-title>
<source>Hum Mutat</source>
<volume>30</volume>
<fpage>158</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="pmid">18726931</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Beysen2">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beysen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Raes</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Leroy</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Lucassen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yates</surname>
<given-names>JRW</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in Blepharophimosis syndrome.</article-title>
<source>Am J of Hum Gen</source>
<volume>77</volume>
<fpage>205</fpage>
<lpage>218</lpage>
</element-citation>
</ref>
<ref id="pgen.1000522-DeBaere1">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Baere</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Fukushima</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Small</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Udar</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Van Camp</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<year>2000</year>
<article-title>Identification of BPESC1, a novel gene disrupted by a balanced chromosomal translocation, t(3;4)(q23;p15.2), in a patient with BPES.</article-title>
<source>Genomics</source>
<volume>68</volume>
<fpage>296</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="pmid">10995571</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Praphanphoj1">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Praphanphoj</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Goodman</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>GH</given-names>
</name>
<name>
<surname>Niel</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Toomes</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<year>2000</year>
<article-title>Molecular cytogenetic evaluation in a patient with a translocation (3;21) associated with blepharophimosis, ptosis, epicanthus inversus syndrome (BPES).</article-title>
<source>Genomics</source>
<volume>65</volume>
<fpage>67</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="pmid">10777667</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Nikic1">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nikic</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vaiman</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Conserved patterns of gene expression in mice and goats in the vicinity of the Polled Intersex Syndrome (PIS) locus.</article-title>
<source>Chromosome Res</source>
<volume>12</volume>
<fpage>465</fpage>
<lpage>474</lpage>
<pub-id pub-id-type="pmid">15252242</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Pailhoux1">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pailhoux</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Vigier</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chaffaux</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Servel</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Taourit</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<year>2001</year>
<article-title>A 11.7-kb deletion triggers intersexuality and polledness in goats.</article-title>
<source>Nat Genet</source>
<volume>29</volume>
<fpage>453</fpage>
<lpage>458</lpage>
<pub-id pub-id-type="pmid">11726932</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Pannetier1">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pannetier</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Renault</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jolivet</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cotinot</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pailhoux</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Ovarian-specific expression of a new gene regulated by the goat PIS region and transcribed by a FOXL2 bidirectional promoter.</article-title>
<source>Genomics</source>
<volume>85</volume>
<fpage>715</fpage>
<lpage>726</lpage>
<pub-id pub-id-type="pmid">15885498</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Kleinjan1">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kleinjan</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>van Heyningen</surname>
<given-names>V</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Long-range control of gene expression: emerging mechanisms and disruption in disease.</article-title>
<source>Am J Hum Gen</source>
<volume>76</volume>
<fpage>8</fpage>
<lpage>32</lpage>
</element-citation>
</ref>
<ref id="pgen.1000522-BenitoSanz1">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benito-Sanz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gorbenko del Blanco</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Aza-Carmona</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>A novel class of Pseudoautosomal region 1 deletions downstream of SHOX is associated with Leri-Weill dyschondrosteosis.</article-title>
<source>Am J Hum Genet</source>
<volume>77</volume>
<fpage>533</fpage>
<lpage>544</lpage>
<pub-id pub-id-type="pmid">16175500</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Lettice1">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lettice</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Devenney</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>RE</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Point Mutations in a Distant Sonic Hedgehog Cis-Regulator Generate a Variable Regulatory Output Responsible for Preaxial Polydactyly.</article-title>
<source>Hum Mol Genet</source>
<volume>17(7)</volume>
<fpage>978</fpage>
<lpage>985</lpage>
<pub-id pub-id-type="pmid">18156157</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Benko1">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benko</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fantes</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Amiel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kleinjan</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<year>2009</year>
<article-title>Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence.</article-title>
<source>Nat Genet</source>
<volume>41</volume>
<fpage>359</fpage>
<lpage>364</lpage>
<pub-id pub-id-type="pmid">19234473</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Lettice2">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lettice</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Heaney</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Purdie</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>de Beer</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly.</article-title>
<source>Hum Mol Genet</source>
<volume>12</volume>
<fpage>1725</fpage>
<lpage>1735</lpage>
<pub-id pub-id-type="pmid">12837695</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Furniss1">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Furniss</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lettice</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>IB</given-names>
</name>
<name>
<surname>Critchley</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Giele</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>A variant in the sonic hedgehog regulatory sequence (ZRS) is associated with triphalangeal thumb and deregulates expression in the developing limb.</article-title>
<source>Hum Mol Genet</source>
<volume>17(16)</volume>
<fpage>2417</fpage>
<lpage>2423</lpage>
<pub-id pub-id-type="pmid">18463159</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Sun1">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>XL</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long-range, limb-specific SHH enhancer.</article-title>
<source>J Med Genet</source>
<volume>45(9)</volume>
<fpage>589</fpage>
<lpage>595</lpage>
<pub-id pub-id-type="pmid">18417549</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Klopocki1">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klopocki</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ott</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Benatar</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ullmann</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mundlos</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome.</article-title>
<source>J Med Genet</source>
<volume>45(6)</volume>
<fpage>370</fpage>
<lpage>375</lpage>
<pub-id pub-id-type="pmid">18178630</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Gu1">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lupski</surname>
<given-names>JR</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Mechanisms for human genomic rearrangements.</article-title>
<source>Pathogenetics</source>
<volume>1</volume>
<fpage>4</fpage>
<pub-id pub-id-type="pmid">19014668</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Smith1">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>GR</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Meeting DNA palindromes head-to-head.</article-title>
<source>Genes Dev</source>
<volume>22</volume>
<fpage>2612</fpage>
<lpage>2620</lpage>
<pub-id pub-id-type="pmid">18832065</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Wang1">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Vasquez</surname>
<given-names>KM</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells.</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>101</volume>
<fpage>13448</fpage>
<lpage>13453</lpage>
<pub-id pub-id-type="pmid">15342911</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Wells1">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wells</surname>
<given-names>RD</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Non-B DNA conformations, mutagenesis and disease.</article-title>
<source>Trends Biochem Sci</source>
<volume>32</volume>
<fpage>271</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="pmid">17493823</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Lobachev1">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lobachev</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Rattray</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Narayanan</surname>
<given-names>V</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Hairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells.</article-title>
<source>Front Biosci</source>
<volume>12</volume>
<fpage>4208</fpage>
<lpage>4220</lpage>
<pub-id pub-id-type="pmid">17485368</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Rahimov1">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rahimov</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Marazita</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Visel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Hitchler</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip.</article-title>
<source>Nat Genet</source>
<volume>40</volume>
<fpage>1341</fpage>
<lpage>1347</lpage>
<pub-id pub-id-type="pmid">18836445</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Jeong1">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Leskow</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>El-Jaick</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Roessler</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Muenke</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein.</article-title>
<source>Nat Genet</source>
<volume>40</volume>
<fpage>1348</fpage>
<lpage>1353</lpage>
<pub-id pub-id-type="pmid">18836447</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Attanasio1">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Attanasio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Reymond</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Humbert</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lyle</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kuehn</surname>
<given-names>MS</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Assaying the regulatory potential of mammalian conserved non-coding sequences in human cells.</article-title>
<source>Genome Biol</source>
<volume>9</volume>
<fpage>R168</fpage>
<pub-id pub-id-type="pmid">19055709</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Dekker1">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dekker</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rippe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dekker</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kleckner</surname>
<given-names>N</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Capturing chromosome conformation.</article-title>
<source>Science</source>
<volume>295</volume>
<fpage>1306</fpage>
<lpage>1311</lpage>
<pub-id pub-id-type="pmid">11847345</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Poulin1">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poulin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Nobrega</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Plajzer-Frick</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Holt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Afzal</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>In vivo characterization of a vertebrate ultraconserved enhancer.</article-title>
<source>Genomics</source>
<volume>85</volume>
<fpage>774</fpage>
<lpage>781</lpage>
<pub-id pub-id-type="pmid">15885503</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Roessler1">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roessler</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Belloni</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gaudenz</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jay</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Berta</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<year>1996</year>
<article-title>Mutations in the human Sonic Hedgehog gene cause holoprosencephaly.</article-title>
<source>Nat Genet</source>
<volume>14</volume>
<fpage>357</fpage>
<lpage>360</lpage>
<pub-id pub-id-type="pmid">8896572</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Qian1">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qian</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Shu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<year>2004</year>
<article-title>A novel insertion mutation in the FOXL2 gene is detected in a big Chinese family with blepharophimosis-ptosis-epicanthus inversus.</article-title>
<source>Mutat Res</source>
<volume>554</volume>
<fpage>19</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">15450400</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Bennett1">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennett</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Brunkow</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Ramsdell</surname>
<given-names>F</given-names>
</name>
<name>
<surname>O'Briant</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<year>2001</year>
<article-title>A rare polyadenylation signal mutation of the FOXP3 gene (
<named-content content-type="gene">AAUAAA→AAUGAA</named-content>
) leads to the IPEX syndrome.</article-title>
<source>Immunogenetics</source>
<volume>53</volume>
<fpage>435</fpage>
<lpage>439</lpage>
<pub-id pub-id-type="pmid">11685453</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Chen1">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ferec</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>DN</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes I: general principles and overview.</article-title>
<source>Hum Genet</source>
<volume>120</volume>
<fpage>1</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">16645853</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Abelson1">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abelson</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Kwan</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>O'Roak</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Baek</surname>
<given-names>DY</given-names>
</name>
<name>
<surname>Stillman</surname>
<given-names>AA</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>Sequence variants in SLITRK1 are associated with Tourette's syndrome.</article-title>
<source>Science</source>
<volume>310</volume>
<fpage>317</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="pmid">16224024</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Firth1">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Firth</surname>
<given-names>HV</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Bevan</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Clayton</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Corpas</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2009</year>
<article-title>DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources.</article-title>
<source>Am J Hum Genet</source>
<volume>84</volume>
<fpage>524</fpage>
<lpage>533</lpage>
<pub-id pub-id-type="pmid">19344873</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Iafrate1">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iafrate</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Feuk</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rivera</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Listewnik</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Donahoe</surname>
<given-names>PK</given-names>
</name>
<etal></etal>
</person-group>
<year>2004</year>
<article-title>Detection of large-scale variation in the human genome.</article-title>
<source>Nat Genet</source>
<volume>36</volume>
<fpage>949</fpage>
<lpage>951</lpage>
<pub-id pub-id-type="pmid">15286789</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Fiegler1">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiegler</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Douglas</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Burford</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones.</article-title>
<source>Genes Chromosomes Cancer</source>
<volume>36</volume>
<fpage>361</fpage>
<lpage>374</lpage>
<pub-id pub-id-type="pmid">12619160</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Menten1">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menten</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Buysse</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vandesompele</surname>
<given-names>J</given-names>
</name>
<name>
<surname>De Smet</surname>
<given-names>E</given-names>
</name>
<name>
<surname>De Paepe</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>Identification of an unbalanced X-autosome translocation by array CGH in a boy with a syndromic form of chondrodysplasia punctata brachytelephalangic type.</article-title>
<source>Eur J Med Genet</source>
<volume>48</volume>
<fpage>301</fpage>
<lpage>309</lpage>
<pub-id pub-id-type="pmid">16179225</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Menten2">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menten</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pattyn</surname>
<given-names>F</given-names>
</name>
<name>
<surname>De Preter</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Robbrecht</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Michels</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays.</article-title>
<source>BMC Bioinformatics</source>
<volume>6</volume>
<fpage>124</fpage>
<pub-id pub-id-type="pmid">15910681</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Hoebeeck1">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoebeeck</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Speleman</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Vandesompele</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Real-time quantitative PCR as an alternative to Southern blot or fluorescence in situ hybridization for detection of gene copy number changes.</article-title>
<source>Methods Mol Biol</source>
<volume>353</volume>
<fpage>205</fpage>
<lpage>226</lpage>
<pub-id pub-id-type="pmid">17332643</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Hellemans1">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hellemans</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mortier</surname>
<given-names>G</given-names>
</name>
<name>
<surname>De Paepe</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Speleman</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Vandesompele</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data.</article-title>
<source>Genome Biol</source>
<volume>8</volume>
<fpage>R19</fpage>
<pub-id pub-id-type="pmid">17291332</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Giardine1">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giardine</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Elnitski</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Riemer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Makalowska</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>GALA, a database for genomic sequence alignments and annotations.</article-title>
<source>Genome Res</source>
<volume>13</volume>
<fpage>732</fpage>
<lpage>741</lpage>
<pub-id pub-id-type="pmid">12671007</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Blanchette1">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blanchette</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kent</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Riemer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Elnitski</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>AF</given-names>
</name>
<etal></etal>
</person-group>
<year>2004</year>
<article-title>Aligning multiple genomic sequences with the threaded blockset aligner.</article-title>
<source>Genome Res</source>
<volume>14</volume>
<fpage>708</fpage>
<lpage>715</lpage>
<pub-id pub-id-type="pmid">15060014</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Siepel1">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siepel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bejerano</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Hinrichs</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes.</article-title>
<source>Genome Res</source>
<volume>15</volume>
<fpage>1034</fpage>
<lpage>1050</lpage>
<pub-id pub-id-type="pmid">16024819</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Howald1">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Howald</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Merla</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Digilio</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Amenta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lyle</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<article-title>Two high throughput technologies to detect segmental aneuploidies identify new Williams-Beuren syndrome patients with atypical deletions.</article-title>
<source>J Med Genet</source>
<volume>43</volume>
<fpage>266</fpage>
<lpage>273</lpage>
<pub-id pub-id-type="pmid">15994861</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Larkin1">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larkin</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Blackshields</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Chenna</surname>
<given-names>R</given-names>
</name>
<name>
<surname>McGettigan</surname>
<given-names>PA</given-names>
</name>
<etal></etal>
</person-group>
<year>2007</year>
<article-title>Clustal W and Clustal X version 2.0.</article-title>
<source>Bioinformatics</source>
<volume>23</volume>
<fpage>2947</fpage>
<lpage>2948</lpage>
<pub-id pub-id-type="pmid">17846036</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Altschul1">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altschul</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Gish</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Lipman</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>1990</year>
<article-title>Basic local alignment search tool.</article-title>
<source>J Mol Biol</source>
<volume>215</volume>
<fpage>403</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">2231712</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-TarailoGraovac1">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tarailo-Graovac</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>N</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Using RepeatMasker to identify repetitive elements in genomic sequences.</article-title>
<source>Curr Protoc Bioinformatics Chapter</source>
<volume>4</volume>
<fpage>Unit 4 10</fpage>
</element-citation>
</ref>
<ref id="pgen.1000522-Kolpakov1">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolpakov</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bana</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kucherov</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>mreps: Efficient and flexible detection of tandem repeats in DNA.</article-title>
<source>Nucleic Acids Res</source>
<volume>31</volume>
<fpage>3672</fpage>
<lpage>3678</lpage>
<pub-id pub-id-type="pmid">12824391</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Jurka1">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jurka</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Klonowski</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dagman</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Pelton</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>CENSOR–a program for identification and elimination of repetitive elements from DNA sequences.</article-title>
<source>Comput Chem</source>
<volume>20</volume>
<fpage>119</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="pmid">8867843</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Stothard1">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stothard</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences.</article-title>
<source>Biotechniques</source>
<volume>28</volume>
<fpage>1102, 1104</fpage>
<pub-id pub-id-type="pmid">10868275</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Abeysinghe1">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abeysinghe</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Chuzhanova</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Krawczak</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>EV</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>DN</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs.</article-title>
<source>Hum Mutat</source>
<volume>22</volume>
<fpage>229</fpage>
<lpage>244</lpage>
<pub-id pub-id-type="pmid">12938088</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Pang1">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pang</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Stephen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dinger</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Engstrom</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Lenhard</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<year>2007</year>
<article-title>RNAdb 2.0–an expanded database of mammalian non-coding RNAs.</article-title>
<source>Nucleic Acids Res</source>
<volume>35</volume>
<fpage>D178</fpage>
<lpage>182</lpage>
<pub-id pub-id-type="pmid">17145715</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Wang2">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>miRDB: a microRNA target prediction and functional annotation database with a wiki interface.</article-title>
<source>RNA</source>
<volume>14</volume>
<fpage>1012</fpage>
<lpage>1017</lpage>
<pub-id pub-id-type="pmid">18426918</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Hsu1">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Tsou</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>HC</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes.</article-title>
<source>Nucleic Acids Res</source>
<volume>36</volume>
<fpage>D165</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="pmid">18029362</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-GriffithsJones1">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Griffiths-Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Saini</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>van Dongen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Enright</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>miRBase: tools for microRNA genomics.</article-title>
<source>Nucleic Acids Res</source>
<volume>36</volume>
<fpage>D154</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">17991681</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-He1">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Skogerbo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>NONCODE v2.0: decoding the non-coding.</article-title>
<source>Nucleic Acids Res</source>
<volume>36</volume>
<fpage>D170</fpage>
<lpage>172</lpage>
<pub-id pub-id-type="pmid">18000000</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Rozen1">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rozen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Skaletsky</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Primer3 on the WWW for general users and for biologist programmers.</article-title>
<source>Methods Mol Biol</source>
<volume>132</volume>
<fpage>365</fpage>
<lpage>386</lpage>
<pub-id pub-id-type="pmid">10547847</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Kel1">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kel</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Gossling</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Reuter</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Cheremushkin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kel-Margoulis</surname>
<given-names>OV</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>MATCH: A tool for searching transcription factor binding sites in DNA sequences.</article-title>
<source>Nucleic Acids Res</source>
<volume>31</volume>
<fpage>3576</fpage>
<lpage>3579</lpage>
<pub-id pub-id-type="pmid">12824369</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Matys1">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matys</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Fricke</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Geffers</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gossling</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Haubrock</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>TRANSFAC: transcriptional regulation, from patterns to profiles.</article-title>
<source>Nucleic Acids Res</source>
<volume>31</volume>
<fpage>374</fpage>
<lpage>378</lpage>
<pub-id pub-id-type="pmid">12520026</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Visel1">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Visel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Prabhakar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Akiyama</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Shoukry</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>KD</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Ultraconservation identifies a small subset of extremely constrained developmental enhancers.</article-title>
<source>Nat Genet</source>
<volume>40</volume>
<fpage>158</fpage>
<lpage>160</lpage>
<pub-id pub-id-type="pmid">18176564</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Dekker2">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dekker</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>The three ‘C’ s of chromosome conformation capture: controls, controls, controls.</article-title>
<source>Nat Methods</source>
<volume>3</volume>
<fpage>17</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">16369547</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Miele1">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miele</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gheldof</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tabuchi</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Dostie</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dekker</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Mapping chromatin interactions by chromosome conformation capture.</article-title>
<source>Curr Protoc Mol Biol Chapter</source>
<volume>21</volume>
<fpage>Unit 21 11</fpage>
</element-citation>
</ref>
<ref id="pgen.1000522-Nishi1">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yanase</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Oba</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ichino</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<year>2001</year>
<article-title>Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor.</article-title>
<source>Endocrinology</source>
<volume>142</volume>
<fpage>437</fpage>
<lpage>445</lpage>
<pub-id pub-id-type="pmid">11145608</pub-id>
</element-citation>
</ref>
<ref id="pgen.1000522-Crisponi2">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crisponi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Uda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Deiana</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Loi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nagaraja</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<year>2004</year>
<article-title>FOXL2 inactivation by a translocation 171 kb away: analysis of 500 kb of chromosome 3 for candidate long-range regulatory sequences.</article-title>
<source>Genomics</source>
<volume>83</volume>
<fpage>757</fpage>
<lpage>764</lpage>
<pub-id pub-id-type="pmid">15081106</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002871  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002871  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024