Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0026480 ( Pmc/Corpus ); précédent : 0026479; suivant : 0026481 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity</title>
<author>
<name sortKey="Jacobsen, Mette J" sort="Jacobsen, Mette J" uniqKey="Jacobsen M" first="Mette J." last="Jacobsen">Mette J. Jacobsen</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mentzel, Caroline M Junker" sort="Mentzel, Caroline M Junker" uniqKey="Mentzel C" first="Caroline M. Junker" last="Mentzel">Caroline M. Junker Mentzel</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Olesen, Ann Sofie" sort="Olesen, Ann Sofie" uniqKey="Olesen A" first="Ann Sofie" last="Olesen">Ann Sofie Olesen</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huby, Thierry" sort="Huby, Thierry" uniqKey="Huby T" first="Thierry" last="Huby">Thierry Huby</name>
<affiliation>
<nlm:aff id="I2">Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S 1166, Integrative Biology of Atherosclerosis Team, 75013 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, 75013 Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="J Rgensen, Claus B" sort="J Rgensen, Claus B" uniqKey="J Rgensen C" first="Claus B." last="J Rgensen">Claus B. J Rgensen</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barres, Romain" sort="Barres, Romain" uniqKey="Barres R" first="Romain" last="Barrès">Romain Barrès</name>
<affiliation>
<nlm:aff id="I4">The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fredholm, Merete" sort="Fredholm, Merete" uniqKey="Fredholm M" first="Merete" last="Fredholm">Merete Fredholm</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simar, David" sort="Simar, David" uniqKey="Simar D" first="David" last="Simar">David Simar</name>
<affiliation>
<nlm:aff id="I5">Inflammation and Infection Research, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26798656</idno>
<idno type="pmc">4698937</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698937</idno>
<idno type="RBID">PMC:4698937</idno>
<idno type="doi">10.1155/2016/8539057</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">002648</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002648</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity</title>
<author>
<name sortKey="Jacobsen, Mette J" sort="Jacobsen, Mette J" uniqKey="Jacobsen M" first="Mette J." last="Jacobsen">Mette J. Jacobsen</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mentzel, Caroline M Junker" sort="Mentzel, Caroline M Junker" uniqKey="Mentzel C" first="Caroline M. Junker" last="Mentzel">Caroline M. Junker Mentzel</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Olesen, Ann Sofie" sort="Olesen, Ann Sofie" uniqKey="Olesen A" first="Ann Sofie" last="Olesen">Ann Sofie Olesen</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huby, Thierry" sort="Huby, Thierry" uniqKey="Huby T" first="Thierry" last="Huby">Thierry Huby</name>
<affiliation>
<nlm:aff id="I2">Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S 1166, Integrative Biology of Atherosclerosis Team, 75013 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, 75013 Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="J Rgensen, Claus B" sort="J Rgensen, Claus B" uniqKey="J Rgensen C" first="Claus B." last="J Rgensen">Claus B. J Rgensen</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barres, Romain" sort="Barres, Romain" uniqKey="Barres R" first="Romain" last="Barrès">Romain Barrès</name>
<affiliation>
<nlm:aff id="I4">The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fredholm, Merete" sort="Fredholm, Merete" uniqKey="Fredholm M" first="Merete" last="Fredholm">Merete Fredholm</name>
<affiliation>
<nlm:aff id="I1">Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simar, David" sort="Simar, David" uniqKey="Simar D" first="David" last="Simar">David Simar</name>
<affiliation>
<nlm:aff id="I5">Inflammation and Infection Research, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Diabetes Research</title>
<idno type="ISSN">2314-6745</idno>
<idno type="eISSN">2314-6753</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedersen, S D" uniqKey="Pedersen S">S. D. Pedersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koppe, S W P" uniqKey="Koppe S">S. W. P. Koppe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davoodi, S H" uniqKey="Davoodi S">S. H. Davoodi</name>
</author>
<author>
<name sortKey="Malek Shahabi, T" uniqKey="Malek Shahabi T">T. Malek-Shahabi</name>
</author>
<author>
<name sortKey="Malekshahi Moghadam, A" uniqKey="Malekshahi Moghadam A">A. Malekshahi-Moghadam</name>
</author>
<author>
<name sortKey="Shahbazi, R" uniqKey="Shahbazi R">R. Shahbazi</name>
</author>
<author>
<name sortKey="Esmaeili, S" uniqKey="Esmaeili S">S. Esmaeili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weisberg, S P" uniqKey="Weisberg S">S. P. Weisberg</name>
</author>
<author>
<name sortKey="Mccann, D" uniqKey="Mccann D">D. McCann</name>
</author>
<author>
<name sortKey="Desai, M" uniqKey="Desai M">M. Desai</name>
</author>
<author>
<name sortKey="Rosenbaum, M" uniqKey="Rosenbaum M">M. Rosenbaum</name>
</author>
<author>
<name sortKey="Leibel, R L" uniqKey="Leibel R">R. L. Leibel</name>
</author>
<author>
<name sortKey="Ferrante, A W" uniqKey="Ferrante A">A. W. Ferrante</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aron Wisnewsky, J" uniqKey="Aron Wisnewsky J">J. Aron-Wisnewsky</name>
</author>
<author>
<name sortKey="Tordjman, J" uniqKey="Tordjman J">J. Tordjman</name>
</author>
<author>
<name sortKey="Poitou, C" uniqKey="Poitou C">C. Poitou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, D Y" uniqKey="Oh D">D. Y. Oh</name>
</author>
<author>
<name sortKey="Morinaga, H" uniqKey="Morinaga H">H. Morinaga</name>
</author>
<author>
<name sortKey="Talukdar, S" uniqKey="Talukdar S">S. Talukdar</name>
</author>
<author>
<name sortKey="Bae, E J" uniqKey="Bae E">E. J. Bae</name>
</author>
<author>
<name sortKey="Olefsky, J M" uniqKey="Olefsky J">J. M. Olefsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Defuria, J" uniqKey="Defuria J">J. DeFuria</name>
</author>
<author>
<name sortKey="Belkina, A C" uniqKey="Belkina A">A. C. Belkina</name>
</author>
<author>
<name sortKey="Jagannathan Bogdan, M" uniqKey="Jagannathan Bogdan M">M. Jagannathan-Bogdan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishimura, S" uniqKey="Nishimura S">S. Nishimura</name>
</author>
<author>
<name sortKey="Manabe, I" uniqKey="Manabe I">I. Manabe</name>
</author>
<author>
<name sortKey="Nagasaki, M" uniqKey="Nagasaki M">M. Nagasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gregor, M F" uniqKey="Gregor M">M. F. Gregor</name>
</author>
<author>
<name sortKey="Hotamisligil, G S" uniqKey="Hotamisligil G">G. S. Hotamisligil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sell, H" uniqKey="Sell H">H. Sell</name>
</author>
<author>
<name sortKey="Eckel, J" uniqKey="Eckel J">J. Eckel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Mello, V D F" uniqKey="De Mello V">V. D. F. de Mello</name>
</author>
<author>
<name sortKey="Pulkkinen, L" uniqKey="Pulkkinen L">L. Pulkkinen</name>
</author>
<author>
<name sortKey="Lalli, M" uniqKey="Lalli M">M. Lalli</name>
</author>
<author>
<name sortKey="Kolehmainen, M" uniqKey="Kolehmainen M">M. Kolehmainen</name>
</author>
<author>
<name sortKey="Pihlajam Ki, J" uniqKey="Pihlajam Ki J">J. Pihlajamäki</name>
</author>
<author>
<name sortKey="Uusitupa, M" uniqKey="Uusitupa M">M. Uusitupa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Dijk, S J" uniqKey="Van Dijk S">S. J. van Dijk</name>
</author>
<author>
<name sortKey="Molloy, P L" uniqKey="Molloy P">P. L. Molloy</name>
</author>
<author>
<name sortKey="Varinli, H" uniqKey="Varinli H">H. Varinli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H. Zhu</name>
</author>
<author>
<name sortKey="Snieder, H" uniqKey="Snieder H">H. Snieder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simar, D" uniqKey="Simar D">D. Simar</name>
</author>
<author>
<name sortKey="Versteyhe, S" uniqKey="Versteyhe S">S. Versteyhe</name>
</author>
<author>
<name sortKey="Donkin, I" uniqKey="Donkin I">I. Donkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
<author>
<name sortKey="Su, S" uniqKey="Su S">S. Su</name>
</author>
<author>
<name sortKey="Barnes, V A" uniqKey="Barnes V">V. A. Barnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janson, P C J" uniqKey="Janson P">P. C. J. Janson</name>
</author>
<author>
<name sortKey="Linton, L B" uniqKey="Linton L">L. B. Linton</name>
</author>
<author>
<name sortKey="Bergman, E A" uniqKey="Bergman E">E. A. Bergman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X. Yang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L. Yu</name>
</author>
<author>
<name sortKey="Xue, B" uniqKey="Xue B">B. Xue</name>
</author>
<author>
<name sortKey="Shi, H" uniqKey="Shi H">H. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maier, H" uniqKey="Maier H">H. Maier</name>
</author>
<author>
<name sortKey="Ostraat, R" uniqKey="Ostraat R">R. Ostraat</name>
</author>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H. Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hermsdorff, H H" uniqKey="Hermsdorff H">H. H. Hermsdorff</name>
</author>
<author>
<name sortKey="Mansego, M L" uniqKey="Mansego M">M. L. Mansego</name>
</author>
<author>
<name sortKey="Campi N, J" uniqKey="Campi N J">J. Campión</name>
</author>
<author>
<name sortKey="Milagro, F I" uniqKey="Milagro F">F. I. Milagro</name>
</author>
<author>
<name sortKey="Zulet, M A" uniqKey="Zulet M">M. A. Zulet</name>
</author>
<author>
<name sortKey="Martinez, J A" uniqKey="Martinez J">J. A. Martínez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Cardona, M C" uniqKey="Garcia Cardona M">M. C. García-Cardona</name>
</author>
<author>
<name sortKey="Huang, F" uniqKey="Huang F">F. Huang</name>
</author>
<author>
<name sortKey="Garcia Vivas, J M" uniqKey="Garcia Vivas J">J. M. García-Vivas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spurlock, M E" uniqKey="Spurlock M">M. E. Spurlock</name>
</author>
<author>
<name sortKey="Gabler, N K" uniqKey="Gabler N">N. K. Gabler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Groenen, M A" uniqKey="Groenen M">M. A. Groenen</name>
</author>
<author>
<name sortKey="Archibald, A L" uniqKey="Archibald A">A. L. Archibald</name>
</author>
<author>
<name sortKey="Uenishi, H" uniqKey="Uenishi H">H. Uenishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dawson, H D" uniqKey="Dawson H">H. D. Dawson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kogelman, L J A" uniqKey="Kogelman L">L. J. A. Kogelman</name>
</author>
<author>
<name sortKey="Kadarmideen, H N" uniqKey="Kadarmideen H">H. N. Kadarmideen</name>
</author>
<author>
<name sortKey="Mark, T" uniqKey="Mark T">T. Mark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Christoffersen, B" uniqKey="Christoffersen B">B. Christoffersen</name>
</author>
<author>
<name sortKey="Golozoubova, V" uniqKey="Golozoubova V">V. Golozoubova</name>
</author>
<author>
<name sortKey="Pacini, G" uniqKey="Pacini G">G. Pacini</name>
</author>
<author>
<name sortKey="Svendsen, O" uniqKey="Svendsen O">O. Svendsen</name>
</author>
<author>
<name sortKey="Raun, K" uniqKey="Raun K">K. Raun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedewald, W T" uniqKey="Friedewald W">W. T. Friedewald</name>
</author>
<author>
<name sortKey="Levy, R I" uniqKey="Levy R">R. I. Levy</name>
</author>
<author>
<name sortKey="Fredrickson, D S" uniqKey="Fredrickson D">D. S. Fredrickson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Decaunes, P" uniqKey="Decaunes P">P. Decaunes</name>
</author>
<author>
<name sortKey="Esteve, D" uniqKey="Esteve D">D. Estève</name>
</author>
<author>
<name sortKey="Zakaroff Girard, A" uniqKey="Zakaroff Girard A">A. Zakaroff-Girard</name>
</author>
<author>
<name sortKey="Sengenes, C" uniqKey="Sengenes C">C. Sengenès</name>
</author>
<author>
<name sortKey="Galitzky, J" uniqKey="Galitzky J">J. Galitzky</name>
</author>
<author>
<name sortKey="Bouloumie, A" uniqKey="Bouloumie A">A. Bouloumié</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cirera, S" uniqKey="Cirera S">S. Cirera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Traini, M" uniqKey="Traini M">M. Traini</name>
</author>
<author>
<name sortKey="Quinn, C M" uniqKey="Quinn C">C. M. Quinn</name>
</author>
<author>
<name sortKey="Sandoval, C" uniqKey="Sandoval C">C. Sandoval</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foy, T M" uniqKey="Foy T">T. M. Foy</name>
</author>
<author>
<name sortKey="Aruffo, A" uniqKey="Aruffo A">A. Aruffo</name>
</author>
<author>
<name sortKey="Bajorath, J" uniqKey="Bajorath J">J. Bajorath</name>
</author>
<author>
<name sortKey="Buhlmann, J E" uniqKey="Buhlmann J">J. E. Buhlmann</name>
</author>
<author>
<name sortKey="Noelle, R J" uniqKey="Noelle R">R. J. Noelle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wueest, S" uniqKey="Wueest S">S. Wueest</name>
</author>
<author>
<name sortKey="Mueller, R" uniqKey="Mueller R">R. Mueller</name>
</author>
<author>
<name sortKey="Bluher, M" uniqKey="Bluher M">M. Blüher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Y T" uniqKey="Huang Y">Y.-T. Huang</name>
</author>
<author>
<name sortKey="Maccani, J Z J" uniqKey="Maccani J">J. Z. J. Maccani</name>
</author>
<author>
<name sortKey="Hawley, N L" uniqKey="Hawley N">N. L. Hawley</name>
</author>
<author>
<name sortKey="Wing, R R" uniqKey="Wing R">R. R. Wing</name>
</author>
<author>
<name sortKey="Kelsey, K T" uniqKey="Kelsey K">K. T. Kelsey</name>
</author>
<author>
<name sortKey="Mccaffery, J M" uniqKey="Mccaffery J">J. M. McCaffery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newell Fugate, A E" uniqKey="Newell Fugate A">A. E. Newell-Fugate</name>
</author>
<author>
<name sortKey="Taibl, J N" uniqKey="Taibl J">J. N. Taibl</name>
</author>
<author>
<name sortKey="Clark, S G" uniqKey="Clark S">S. G. Clark</name>
</author>
<author>
<name sortKey="Alloosh, M" uniqKey="Alloosh M">M. Alloosh</name>
</author>
<author>
<name sortKey="Sturek, M" uniqKey="Sturek M">M. Sturek</name>
</author>
<author>
<name sortKey="Krisher, R L" uniqKey="Krisher R">R. L. Krisher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cirera, S" uniqKey="Cirera S">S. Cirera</name>
</author>
<author>
<name sortKey="Jensen, M S" uniqKey="Jensen M">M. S. Jensen</name>
</author>
<author>
<name sortKey="Elbr Nd, V S" uniqKey="Elbr Nd V">V. S. Elbrønd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faris, R J" uniqKey="Faris R">R. J. Faris</name>
</author>
<author>
<name sortKey="Boddicker, R L" uniqKey="Boddicker R">R. L. Boddicker</name>
</author>
<author>
<name sortKey="Walker Daniels, J" uniqKey="Walker Daniels J">J. Walker-Daniels</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Jones, D E" uniqKey="Jones D">D. E. Jones</name>
</author>
<author>
<name sortKey="Spurlock, M E" uniqKey="Spurlock M">M. E. Spurlock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pawar, A S" uniqKey="Pawar A">A. S. Pawar</name>
</author>
<author>
<name sortKey="Zhu, X Y" uniqKey="Zhu X">X.-Y. Zhu</name>
</author>
<author>
<name sortKey="Eirin, A" uniqKey="Eirin A">A. Eirin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amano, S U" uniqKey="Amano S">S. U. Amano</name>
</author>
<author>
<name sortKey="Cohen, J L" uniqKey="Cohen J">J. L. Cohen</name>
</author>
<author>
<name sortKey="Vangala, P" uniqKey="Vangala P">P. Vangala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, P S" uniqKey="Patel P">P. S. Patel</name>
</author>
<author>
<name sortKey="Buras, E D" uniqKey="Buras E">E. D. Buras</name>
</author>
<author>
<name sortKey="Balasubramanyam, A" uniqKey="Balasubramanyam A">A. Balasubramanyam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kintscher, U" uniqKey="Kintscher U">U. Kintscher</name>
</author>
<author>
<name sortKey="Hartge, M" uniqKey="Hartge M">M. Hartge</name>
</author>
<author>
<name sortKey="Hess, K" uniqKey="Hess K">K. Hess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deiuliis, J" uniqKey="Deiuliis J">J. Deiuliis</name>
</author>
<author>
<name sortKey="Shah, Z" uniqKey="Shah Z">Z. Shah</name>
</author>
<author>
<name sortKey="Shah, N" uniqKey="Shah N">N. Shah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winer, S" uniqKey="Winer S">S. Winer</name>
</author>
<author>
<name sortKey="Chan, Y" uniqKey="Chan Y">Y. Chan</name>
</author>
<author>
<name sortKey="Paltser, G" uniqKey="Paltser G">G. Paltser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cipolletta, D" uniqKey="Cipolletta D">D. Cipolletta</name>
</author>
<author>
<name sortKey="Feuerer, M" uniqKey="Feuerer M">M. Feuerer</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, L" uniqKey="Yao L">L. Yao</name>
</author>
<author>
<name sortKey="Herlea Pana, O" uniqKey="Herlea Pana O">O. Herlea-Pana</name>
</author>
<author>
<name sortKey="Heuser Baker, J" uniqKey="Heuser Baker J">J. Heuser-Baker</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Barlic Dicen, J" uniqKey="Barlic Dicen J">J. Barlic-Dicen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carbone, F" uniqKey="Carbone F">F. Carbone</name>
</author>
<author>
<name sortKey="La Rocca, C" uniqKey="La Rocca C">C. La Rocca</name>
</author>
<author>
<name sortKey="Matarese, G" uniqKey="Matarese G">G. Matarese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lund, S A" uniqKey="Lund S">S. A. Lund</name>
</author>
<author>
<name sortKey="Giachelli, C M" uniqKey="Giachelli C">C. M. Giachelli</name>
</author>
<author>
<name sortKey="Scatena, M" uniqKey="Scatena M">M. Scatena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ingvorsen, C" uniqKey="Ingvorsen C">C. Ingvorsen</name>
</author>
<author>
<name sortKey="Thysen, A H" uniqKey="Thysen A">A. H. Thysen</name>
</author>
<author>
<name sortKey="Fernandez Twinn, D" uniqKey="Fernandez Twinn D">D. Fernandez-Twinn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolf, D" uniqKey="Wolf D">D. Wolf</name>
</author>
<author>
<name sortKey="Jehle, F" uniqKey="Jehle F">F. Jehle</name>
</author>
<author>
<name sortKey="Michel, N A" uniqKey="Michel N">N. A. Michel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dhein, J" uniqKey="Dhein J">J. Dhein</name>
</author>
<author>
<name sortKey="Walczak, H" uniqKey="Walczak H">H. Walczak</name>
</author>
<author>
<name sortKey="Baumler, C" uniqKey="Baumler C">C. Baumler</name>
</author>
<author>
<name sortKey="Debatin, K M" uniqKey="Debatin K">K.-M. Debatin</name>
</author>
<author>
<name sortKey="Krammer, P H" uniqKey="Krammer P">P. H. Krammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Catrysse, L" uniqKey="Catrysse L">L. Catrysse</name>
</author>
<author>
<name sortKey="Vereecke, L" uniqKey="Vereecke L">L. Vereecke</name>
</author>
<author>
<name sortKey="Beyaert, R" uniqKey="Beyaert R">R. Beyaert</name>
</author>
<author>
<name sortKey="Van Loo, G" uniqKey="Van Loo G">G. van Loo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matmati, M" uniqKey="Matmati M">M. Matmati</name>
</author>
<author>
<name sortKey="Jacques, P" uniqKey="Jacques P">P. Jacques</name>
</author>
<author>
<name sortKey="Maelfait, J" uniqKey="Maelfait J">J. Maelfait</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsao, C H" uniqKey="Tsao C">C.-H. Tsao</name>
</author>
<author>
<name sortKey="Shiau, M Y" uniqKey="Shiau M">M.-Y. Shiau</name>
</author>
<author>
<name sortKey="Chuang, P H" uniqKey="Chuang P">P.-H. Chuang</name>
</author>
<author>
<name sortKey="Chang, Y H" uniqKey="Chang Y">Y.-H. Chang</name>
</author>
<author>
<name sortKey="Hwang, J" uniqKey="Hwang J">J. Hwang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawson, B R" uniqKey="Lawson B">B. R. Lawson</name>
</author>
<author>
<name sortKey="Eleftheriadis, T" uniqKey="Eleftheriadis T">T. Eleftheriadis</name>
</author>
<author>
<name sortKey="Tardif, V" uniqKey="Tardif V">V. Tardif</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winer, D A" uniqKey="Winer D">D. A. Winer</name>
</author>
<author>
<name sortKey="Winer, S" uniqKey="Winer S">S. Winer</name>
</author>
<author>
<name sortKey="Shen, L" uniqKey="Shen L">L. Shen</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Diabetes Res</journal-id>
<journal-id journal-id-type="iso-abbrev">J Diabetes Res</journal-id>
<journal-id journal-id-type="publisher-id">JDR</journal-id>
<journal-title-group>
<journal-title>Journal of Diabetes Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">2314-6745</issn>
<issn pub-type="epub">2314-6753</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26798656</article-id>
<article-id pub-id-type="pmc">4698937</article-id>
<article-id pub-id-type="doi">10.1155/2016/8539057</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Jacobsen</surname>
<given-names>Mette J.</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mentzel</surname>
<given-names>Caroline M. Junker</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Olesen</surname>
<given-names>Ann Sofie</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huby</surname>
<given-names>Thierry</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jørgensen</surname>
<given-names>Claus B.</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Barrès</surname>
<given-names>Romain</given-names>
</name>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fredholm</surname>
<given-names>Merete</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0002-3862-1932</contrib-id>
<name>
<surname>Simar</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="I5">
<sup>5</sup>
</xref>
<xref ref-type="corresp" rid="cor2">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Animal Genetics, Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark</aff>
<aff id="I2">
<sup>2</sup>
Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S 1166, Integrative Biology of Atherosclerosis Team, 75013 Paris, France</aff>
<aff id="I3">
<sup>3</sup>
Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, 75013 Paris, France</aff>
<aff id="I4">
<sup>4</sup>
The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark</aff>
<aff id="I5">
<sup>5</sup>
Inflammation and Infection Research, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia</aff>
<author-notes>
<corresp id="cor1">*Merete Fredholm:
<email>mf@sund.ku.dk</email>
and </corresp>
<corresp id="cor2">*David Simar:
<email>d.simar@unsw.edu.au</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Ed Randell</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>21</day>
<month>12</month>
<year>2015</year>
</pub-date>
<volume>2016</volume>
<elocation-id>8539057</elocation-id>
<history>
<date date-type="received">
<day>9</day>
<month>6</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>31</day>
<month>8</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>9</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Mette J. Jacobsen et al.</copyright-statement>
<copyright-year>2016</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Obesity is associated with a wide range of complications, such as insulin resistance, type 2 diabetes, fatty liver, cardiovascular diseases, and cancer [
<xref rid="B1" ref-type="bibr">1</xref>
<xref rid="B3" ref-type="bibr">3</xref>
]. Abnormal adipose tissue expansion leads to a chronic low-grade inflammatory state, due to increased recruitment and infiltration of immune cells into the tissue [
<xref rid="B4" ref-type="bibr">4</xref>
]. In particular, the number of classically activated or M1 adipose tissue macrophages (ATMs) is increased in obesity, and these cells are key contributors to the proinflammatory environment through the secretion of cytokines [
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B6" ref-type="bibr">6</xref>
]. Both T- and B-cells contribute to the initiation and maintenance of adipose tissue inflammation and are responsible for the recruitment of macrophages [
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
]. Such proinflammatory environment is an important contributor to the development of insulin resistance and type 2 diabetes [
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B10" ref-type="bibr">10</xref>
].</p>
<p>Both genetic and environmental factors contribute to the development of obesity and associated diseases. The DNA methylome, a molecular mechanism mediating the interplay between genetic and environmental factors, influences metabolic functions by regulating gene expression in specific cell types [
<xref rid="B11" ref-type="bibr">11</xref>
,
<xref rid="B12" ref-type="bibr">12</xref>
]. Recent studies have reported the existence of a specific epigenetic signature in peripheral blood mononuclear cells (PBMCs) in obese subjects [
<xref rid="B13" ref-type="bibr">13</xref>
] with obese individuals characterised by a hypermethylation and greater variation in global DNA methylation than lean subjects [
<xref rid="B14" ref-type="bibr">14</xref>
,
<xref rid="B15" ref-type="bibr">15</xref>
]. In T-cells, B-cells, and macrophages, epigenetic regulations of genes involved in trafficking and polarised activation have been reported [
<xref rid="B16" ref-type="bibr">16</xref>
<xref rid="B18" ref-type="bibr">18</xref>
] and candidate gene approaches have identified epigenetic regulations of the
<italic> TNFα</italic>
and
<italic> Leptin</italic>
genes in obesity [
<xref rid="B19" ref-type="bibr">19</xref>
,
<xref rid="B20" ref-type="bibr">20</xref>
]. Thus, the epigenetic signature of circulating and infiltrated immune cells could play a significant role in the inflammatory process observed in obesity.</p>
<p>Pigs share a plethora of similarities with humans in terms of diet, genetics, and metabolism and are thus pertinent animal models to study obesity [
<xref rid="B21" ref-type="bibr">21</xref>
,
<xref rid="B22" ref-type="bibr">22</xref>
]. The significant similarity in the genome further supports the possibilities to translate the research findings into humans [
<xref rid="B22" ref-type="bibr">22</xref>
]. In particular genes regulating immunological functions show preservation of orthology of more than 80% between pigs and humans, compared to less than 10% between human and mice [
<xref rid="B23" ref-type="bibr">23</xref>
]. Here, we developed a polygenetic pig model designed for elucidating molecular components underlying obesity. Our pigs were bred under controlled conditions (housed in the same building under the same environmental conditions with unrestricted access to food and water) and were monitored intensively during their lifespan, and diseased pigs were excluded from the study. Thus, confounding environmental factors that could potentially influence their epigenetic profile were limited.</p>
<p>Here, we hypothesised that obesity-related changes in immune functions are linked to epigenetic mechanisms, leading to metabolic disorders. Using a novel porcine model of obesity, we aimed at investigating the link between epigenetic changes in immune cells and their impact on immune cell trafficking and functions, as well as lipid and glucose metabolism. We show that obesity is characterised by increased immune cell infiltration in the adipose tissue and increased expression level of critical genes involved in immune response and lipid metabolism. Obesity was associated with increased global DNA methylation of subpopulations of immune cells. We propose that this specific epigenetic signature could represent an early marker associated with immune cell recruitment and activation in obesity.</p>
</sec>
<sec id="sec2">
<title>2. Material and Methods</title>
<sec id="sec2.1">
<title>2.1. Animals</title>
<p>Pigs from two highly divergent breeds, that is, Duroc and Göttingen minipigs, were bred to generate an F2 population. To ensure segregation of obesity traits in the F2 population, we used a breed that has been bred for leanness for decades (Duroc) and a breed prone to obesity (Göttingen minipigs) as previously described [
<xref rid="B24" ref-type="bibr">24</xref>
]. All F1 pigs were generated in the same direction and intercrossed to produce the F2 progeny. We selected 18 pigs from this F2 progeny with the most extreme obese and lean phenotypes. The specific characteristics used for the selection were body mass index (BMI), abdominal circumference, and amount of retroperitoneal fat. The sex distribution was 7 males/3 females in the obese group and 7 males/1 female in the lean group.</p>
<p>All pigs were housed in the same production farm, with 10–15 animals per pen and
<italic> ad libitum</italic>
access to standard production pig feed and water [
<xref rid="B24" ref-type="bibr">24</xref>
]. None of the animals included in this study received any antibiotics. Animal care, maintenance, and experimental work were conducted according to the “Animal Maintenance Act” (Act 432 dated 09/06/2004) and with the approval from the Danish Animal Experimentation Board (J.nr. 2007/561-1434). The pigs were slaughtered (9–13 months old, slaughtering weight: 67–160 kg) at a commercial slaughterhouse after overnight fasting. Weight, length, and abdominal circumference were measured prior to slaughter and tissue and blood samples were collected at slaughter. The animals were euthanized according to approved procedures under the supervision of a veterinarian (electronic stunning and bleeding). The following visceral fat samples were collected and weighed: retroperitoneal fat, greater omentum, and mesenteric fat, with the latter measured from an 8 cm diameter large section of the mesenteric fat in the triangle between ileum and cecum.</p>
</sec>
<sec id="sec2.2">
<title>2.2. Oral Glucose Tolerance Test (OGTT)</title>
<p>Pigs were fasted for 24 h and challenged with 4 mL/kg of a 50% glucose solution mixed in food as previously described [
<xref rid="B25" ref-type="bibr">25</xref>
]. The pigs consumed the glucose mix within 30 minutes and blood glucose levels were measured with a Freestyle Mini glucometer (Hermedico, Brøndby, Denmark) using a drop of blood from the ear vein at fasting and every 30 minutes for three hours after the challenge.</p>
</sec>
<sec id="sec2.3">
<title>2.3. Plasma Lipids</title>
<p>Plasma lipid profile was established using an Autoanalyzer (Konelab 20, Thermo Fisher Scientific, Waltham, MA, USA) and commercial kits from Roche Diagnostics for total cholesterol (Roche Diagnostics, Basel, Switzerland) and from Thermo Electron (Thermo Fisher Scientific) for triglycerides (TG) and HDL-cholesterol (HDL-C). Fasting plasma LDL-C was calculated using the Friedewald formula [
<xref rid="B26" ref-type="bibr">26</xref>
].</p>
</sec>
<sec id="sec2.4">
<title>2.4. Cell Isolation</title>
<sec id="sec2.4.1">
<title>2.4.1. Adipose Tissue Stromal Vascular Fraction (SVF)</title>
<p>The SVF containing preadipocytes and mononuclear cells was isolated from the retroperitoneal adipose tissue (approximately 15 g) from 12 animals (6 lean and 6 obese) as previously described [
<xref rid="B27" ref-type="bibr">27</xref>
] with a few modifications. Briefly, the adipose tissue was quickly removed from the animal after slaughter and rinsed in 37°C phosphate buffer saline (PBS), supplemented with 1% Penicillin/Streptomycin solution and 1% bovine serum albumin (BSA). The tissue was minced with scissors, and 20 mL of prewarmed (37°C) 0.2% collagenase solution in Hanks' Balanced Salt Solution and 1% BSA was subsequently added and then incubated for approximately 90 min in a 37°C water bath. The digested material was filtered through a 200
<italic>μ</italic>
m sterile nylon filter and washed with Dulbecco's Modified Eagle's Medium (DMEM) with 10% FBS and 4.5 g/L glucose, and the mature adipocytes were allowed to float. The pellet containing the preadipocytes and mononuclear cells was filtered through a 40 
<italic>μ</italic>
m nylon filter, followed by centrifugation for 10 min at 400 ×g. The supernatant was removed and the pellet was washed twice in DMEM and subsequently preserved in aliquots of approximately 1 × 10
<sup>6</sup>
cells per vial in DMEM (45% FBS and 10% DMSO) by gradually decreasing the temperature by 1°C/min to −80°C and then kept in liquid nitrogen until further analysis.</p>
</sec>
<sec id="sec2.4.2">
<title>2.4.2. Peripheral Blood Mononuclear Cells</title>
<p>The PBMCs were isolated from 2 × 6 mL of blood using Lymphoprep (Progen, Heidelberg, Germany) and washed in RMPI-1640 (25 mM HEPES). The purified PBMCs were resuspended in autologous plasma and preserved in aliquots of approximately 5 × 10
<sup>6</sup>
cells per vial in 40% RPMI-1640 (10% DMSO) by gradually decreasing the temperature by 1°C/min to −80°C and then transferred to liquid nitrogen until further analysis.</p>
</sec>
</sec>
<sec id="sec2.5">
<title>2.5. Flow Cytometry</title>
<sec id="sec2.5.1">
<title>2.5.1. Surface Staining of SVF Cells</title>
<p>SVF cells (1 × 10
<sup>6</sup>
) were quickly thawed at 37°C, washed once in RPMI-1640, resuspended in PBS (1% BSA), and incubated with the following antibodies: CD3
<italic>ε</italic>
-PerCp5.5, CD4-PE, and CD8
<italic>α</italic>
-Alexa Fluor 647 (all from BD, New Jersey, USA), CD21-APC and CD203a-DyLight405 (both from Novus Biologicals, Littleton, CO, USA), CD11R3-FITC (AbD serotec, Puchheim, Germany), CD45-DyLight680 (LSBio, Seattle, WA, USA), CD163-Alexa Fluor 350 and NKp46-PE (both from Bioss Antibodies, Woburn, MA, USA), for 20 min at RT in the dark, washed once with PBS (1% BSA) and fixed in 1% PFA for immediate analysis on a LSRFortessa flow cytometer (BD) at the Biological Resources Imaging Laboratory (Flow Cytometry Facility, UNSW Australia, Australia). T-cells were defined as CD45
<sup>+</sup>
CD3
<sup>+</sup>
. Within the T-cells, T-helper cells were defined as CD45
<sup>+</sup>
CD3
<sup>+</sup>
CD4
<sup>+</sup>
, T-cytotoxic cells as CD45
<sup>+</sup>
CD3
<sup>+</sup>
CD8
<sup>+</sup>
, and double positive T-cells as CD45
<sup>+</sup>
CD3
<sup>+</sup>
CD4
<sup>+</sup>
CD8
<sup>+</sup>
. Macrophages were defined as CD45
<sup>+</sup>
CD3
<sup></sup>
CD203A
<sup>+</sup>
, and the M1 and M2 macrophages were determined based on positivity for CD11R3 (CD45
<sup>+</sup>
CD3
<sup></sup>
CD203A
<sup>+</sup>
CD11R3
<sup>+</sup>
) and CD163, respectively (CD45
<sup>+</sup>
CD3
<sup></sup>
CD203A
<sup>+</sup>
CD163
<sup>+</sup>
). B-cells were CD45
<sup>+</sup>
CD3
<sup></sup>
CD203A
<sup></sup>
CD21
<sup>+</sup>
whereas NK-cells were CD45
<sup>+</sup>
CD3
<sup></sup>
CD203A
<sup></sup>
NKp46
<sup>+</sup>
.</p>
</sec>
<sec id="sec2.5.2">
<title>2.5.2. Surface Staining of PBMCs</title>
<p>PBMCs (5 × 10
<sup>6</sup>
cells) were quickly thawed at 37°C, washed once in RPMI-1640, and resuspended in PBS (1% BSA). They were then incubated with the following antibodies: CD3
<italic>ε</italic>
-PerCp5.5, CD4-PE, and CD8
<italic>α</italic>
-Alexa Fluor 647 or CD3
<italic>ε</italic>
-PerCp5.5, NKp46-PE, CD21-APC, and monocyte/granulocyte marker-PE (BD), for 20 min at room temperature. Cells were then washed twice with PBS (1% BSA) and fixed in 300 
<italic>μ</italic>
L PBS 1% PFA for immediate analysis using a FACSCalibur flow cytometer (BD). Lymphocytes and monocytes were defined based on size and granularity as well as the monocytes/granulocytes marker. T-cells, B-cells, and NK-cells were defined as described above, except for the omission of CD203A staining.</p>
</sec>
<sec id="sec2.5.3">
<title>2.5.3. DNA Methylation in PBMCs</title>
<p>Global DNA methylation in PBMCs was measured as previously described [
<xref rid="B14" ref-type="bibr">14</xref>
] with a few modifications. Briefly, PBMCs (10 × 10
<sup>6</sup>
cells) were quickly thawed at 37°C, washed twice in RPMI-1640, resuspended in PBS (1% BSA), and incubated with CD4-PE and CD8
<italic>α</italic>
-Alexa Fluor 647 for 20 min at room temperature. Cells were then fixed in 2% PFA for 10 min at 37°C and permeabilised in 90% methanol for 30 min at −20°C. After three washes in PBS (1% BSA and 0.1% Tween-20), DNA was denaturated by adding 2 N HCl for 30 min (37°C) and cells were subsequently incubated in 0.1 M borate buffer for 5 min and washed three times again. PBMCs were finally resuspended in PBS (1% BSA, 0.1% Tween-20) and the following antibodies, CD3
<italic>ε</italic>
-PerCp5.5, CD21-APC (BD) and monocyte/granulocyte-PE, and 5-methylcytidine-DyLight488 (Novus Biologicals), were added for an incubation period of 20 min at room temperature in the dark. After two washes, cells were fixed in 1% PFA and immediately acquired on a FACSCalibur (BD).</p>
</sec>
</sec>
<sec id="sec2.6">
<title>2.6. Analysis of Flow Cytometry Data</title>
<p>All the FACS data were analysed using FlowJo software v10.0.7 (Ashland, OR, USA) and normalized using isotype controls. For the acquisition on the FACSCalibur, compensations were performed on single stained control samples before acquisition. Data collected on LSRFortessa was analysed with post-compensation on FlowJo using compensation beads from Beckman Coulter (Brea, CA, USA).</p>
</sec>
<sec id="sec2.7">
<title>2.7. Total RNA Isolation and High-Throughput QPCR</title>
<p>Total RNA was purified from retroperitoneal adipose tissue from all 18 animals as previously described [
<xref rid="B28" ref-type="bibr">28</xref>
]. PBMCs (10 × 10
<sup>6</sup>
cells) were quickly thawed at 37°C, washed once in RPMI-1640, and then resuspended in 1 mL of TriReagent (Molecular Research Center, Cincinnati, OH, USA). Total RNA was then purified [
<xref rid="B28" ref-type="bibr">28</xref>
] with the omission of the additional centrifugation step to remove lipids. RNA concentration was estimated using a NanoDrop 1000 (Thermo Fisher Scientific) and the quality was assessed on an Experion system (Bio-Rad, Hercules, CA, USA), with all RQI values between 7.8 and 9.9. cDNA synthesis was performed on 400 ng in duplicate using Improm-IITM reverse transcriptase (Promega, Madison, WI, USA) and a 3 : 1 mixture of random hexamers/OligodT, according to the manufacturer's recommendations. cDNA was diluted 1/16 prior to the QPCR.</p>
<p>QPCR was performed on the Biomark HD 96.96 IFC chip (Fluidigm Corporation, San Francisco, CA, USA) according to the manufacturer's protocol and data collected using the associated software. Raw Cq values were subsequently transferred to Genex5 Pro (MultiD, Göteborg, Sweden), and the relative expression levels of the tested genes were normalised to
<italic> RPL4</italic>
, as this gene showed the highest stability in both adipose tissue and PBMC samples. Technical replicates were averaged, and data was log transformed to achieve normal distribution. The genes, primer sequences, and normalised log⁡(2) transformed fold changes (FC) are all listed in Supplementary Table 1 in the Supplementary Material available online at
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1155/2016/8539057">http://dx.doi.org/10.1155/2016/8539057</ext-link>
.</p>
<p>QPCR of
<italic> SSP1</italic>
,
<italic> SREBF1</italic>
,
<italic> IL4</italic>
,
<italic> ADIPOR1</italic>
, and
<italic> RPL4</italic>
was performed on Mx3005P (Agilent, Santa Clara, CA, USA) using QuantiFast SYBR Green PCR Master Mix (Qiagen, Hilden, Germany) according to supplier's instruction and analysed in Genex5 Pro as described above.</p>
</sec>
<sec id="sec2.8">
<title>2.8. Statistical Analysis</title>
<p>Values are expressed as mean ± SD and statistical analysis was performed on SPSS Statistics for Mac (Version 22, IBM, USA). Normality of the distribution was tested using the D'Agostino skewness test and the Anscombe-Glynn kurtosis test. In case of nonnormal distribution, data was log transformed to achieve normal distribution. Differences between the two groups were tested using unpaired Student's
<italic>t</italic>
-test. Data from the OGTT was analysed by ANOVA for repeated measures. Statistical significance was set at
<italic>p</italic>
< 0.05.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results</title>
<sec id="sec3.1">
<title>3.1. Animal Characteristics</title>
<p>The animals used in this study were selected from a population designed to exhibit large variation in obesity traits. The obese group of pigs had significantly higher body weight and increased mass in the different fat pads (Figures
<xref ref-type="fig" rid="fig1">1(a)</xref>
<xref ref-type="fig" rid="fig1">1(d)</xref>
,
<italic>p</italic>
< 0.05), whereas both age (10.4 ± 1.6
<italic> versus </italic>
9.3 ± 0.7 months) and length (86.4 ± 5.2
<italic> versus </italic>
90.4 ± 8.5 cm) did not differ significantly. The measured fat pads, retroperitoneal, omental, and mesenteric, are all part of the abdominal visceral fat depots, in which adipocyte sizes and numbers have been highly correlated with metabolic diseases. Metabolic perturbations were clearly identified in the obese group, as circulating LDL-C levels were significantly higher (
<xref ref-type="fig" rid="fig1">Figure 1(e)</xref>
). Given that previous reports showed a sex-specific blood glucose variation in obesity [
<xref rid="B25" ref-type="bibr">25</xref>
], we only included male pigs in the analysis of the OGTT. We found no difference in fasting blood glucose but a trend towards impaired glucose clearance in the obese as compared to the lean animals (
<xref ref-type="fig" rid="fig1">Figure 1(f)</xref>
). Thus, our data supports that our model successfully recapitulated the obese phenotype typically reported in humans.</p>
</sec>
<sec id="sec3.2">
<title>3.2. Altered Immune Cells Distribution in Both Adipose Tissue and Circulating Leukocytes</title>
<p>After extraction of the SVF from the retroperitoneal fat pads, we isolated leukocytes and phenotyped them using high-resolution 14-colour flow cytometry. The comparison of lean with obese pigs did not reveal any difference in the frequency of infiltrated T-cells, although the percentage of T-helper cells was decreased in obese animals (
<xref ref-type="fig" rid="fig2">Figure 2(d)</xref>
). The frequency of mature ATMs was increased in the obese group (
<xref ref-type="fig" rid="fig2">Figure 2(b)</xref>
) and was further associated with an increased frequency of M1 macrophages (
<xref ref-type="fig" rid="fig2">Figure 2(b)</xref>
), whereas no difference was observed for the frequency of M2 macrophages between the two groups (
<xref ref-type="fig" rid="fig2">Figure 2(b)</xref>
).</p>
<p>To determine if the proinflammatory phenotype we observed in the adipose tissue was linked to systemic immune changes, we investigated the cell type distribution in circulating PBMCs. Obese animals showed a higher percentage of B-cells (
<xref ref-type="fig" rid="fig2">Figure 2(f)</xref>
) and a lower frequency of monocytes (
<xref ref-type="fig" rid="fig2">Figure 2(e)</xref>
).</p>
<p>The increased macrophage infiltration we detected and, in particular, the proinflammatory macrophages, in conjunction with the decreased number of peripheral monocytes, suggests that an active recruitment of monocytes/macrophages occurs in the adipose tissue of obese animals.</p>
</sec>
<sec id="sec3.3">
<title>3.3. Differential Gene Expression in Adipose Tissue and Circulating Leukocytes from Obese Pigs</title>
<p>To investigate gene expression variation in obesity, we profiled RNA expression in both retroperitoneal adipose tissue and PBMCs from lean and obese pigs. In particular, we focused on adipokines, cytokines, chemokines, and genes known to be actively involved in obesity and inflammation. Of the 72 genes investigated, 60 were specific to the adipose tissue and 50 to the PBMCs. Sixty-six of these revealed a log⁡(2) fold change ratio of more than ±1.5 between the lean and obese animals (Figures
<xref ref-type="fig" rid="fig3">3(a)</xref>
and
<xref ref-type="fig" rid="fig3">3(b)</xref>
).</p>
<p>In adipose tissue, 37 genes were differentially expressed between the two groups and 10 of these were significantly upregulated in obese animals (
<xref ref-type="fig" rid="fig3">Figure 3(a)</xref>
, black columns). Notably,
<italic> SPP1</italic>
(
<italic>Osteopontin</italic>
) and
<italic> CCL5</italic>
(
<italic>RANTES</italic>
), two cytokines highly expressed in inflammatory states, were overexpressed in the adipose tissue of the obese group. In addition,
<italic> LEP</italic>
(
<italic>Leptin</italic>
), a hormone involved in appetite regulation possessing proinflammatory properties, was increased in obese pigs. Genes controlling lipid metabolism were also affected:
<italic> INSIG1</italic>
(
<italic>insulin induced gene 1</italic>
), a regulator of cholesterol homeostasis,
<italic> ELOVL4</italic>
(
<italic>ELOVL fatty acid elongase 4</italic>
) and
<italic> PECR</italic>
(
<italic>peroxisomal trans-2-enoyl-CoA reductase</italic>
), both involved in fatty acid metabolism, and
<italic> DGAT2</italic>
(
<italic>diacylglycerol O-acyltransferase homolog 2</italic>
), which is involved in synthesis and storage of intercellular triglycerides, were upregulated in obese pigs.
<italic> SMPDL3A</italic>
(
<italic>sphingomyelin phosphodiesterase, acid-like 3A</italic>
), involved in cholesterol loading in macrophages [
<xref rid="B29" ref-type="bibr">29</xref>
], and
<italic> SLC16A1</italic>
(
<italic>solute carrier family 16</italic>
), a monocarboxylates transporter, were upregulated in obese pigs.</p>
<p>In PBMCs, a total of 29 genes showed more than 1.5log⁡(2) fold difference between the two groups, but only four genes were statistically significantly up- or downregulated (
<xref ref-type="fig" rid="fig3">Figure 3(b)</xref>
, black columns).
<italic> CD40</italic>
and
<italic> FAS</italic>
(
<italic>TNF receptor superfamily members 5 and 6</italic>
) were both upregulated in the obese pigs. Both genes are essential for the initiation and progression of inflammation [
<xref rid="B30" ref-type="bibr">30</xref>
,
<xref rid="B31" ref-type="bibr">31</xref>
].
<italic> TNFAIP3</italic>
(
<italic>tumor necrosis factor, alpha-induced protein 3</italic>
) and
<italic> IL4</italic>
(
<italic>interleukin 4</italic>
), both playing a regulatory role in the inflammatory cascade, were downregulated in the obese animals.</p>
<p>Collectively, our gene expression analyses show dysregulation of several key genes in both the inflammatory pathway and fatty acid metabolism, supporting a link between increased adiposity, impaired lipid metabolism, and activated immune response in the adipose tissue.</p>
</sec>
<sec id="sec3.4">
<title>3.4. Global DNA Methylation Is Altered in Circulating Leukocytes</title>
<p>An altered epigenetic signature in lymphocytes and PBMCs has previously been reported in obesity and metabolic disease [
<xref rid="B13" ref-type="bibr">13</xref>
<xref rid="B15" ref-type="bibr">15</xref>
,
<xref rid="B32" ref-type="bibr">32</xref>
]. Epigenetic modifications in immune cells could be a mechanism by which the immune system is deregulated in metabolic disorders. We measured global DNA methylation levels in circulating PBMCs in a cell type specific manner (T-helper, T-cytotoxic, double positive T-cells, natural killer cells and B-cells) using FACS as previously reported [
<xref rid="B14" ref-type="bibr">14</xref>
]. In obese animals, we found higher levels of global DNA methylation in lymphocytes but not in monocytes (Figures
<xref ref-type="fig" rid="fig4">4(a)</xref>
and
<xref ref-type="fig" rid="fig4">4(b)</xref>
). The analysis of the individual lymphocyte subpopulations showed increased global DNA methylation in B-cells (Figures
<xref ref-type="fig" rid="fig4">4(c)</xref>
and
<xref ref-type="fig" rid="fig4">4(d)</xref>
), T-helper cells and T-cytotoxic cells (Figures
<xref ref-type="fig" rid="fig4">4(e)</xref>
and
<xref ref-type="fig" rid="fig4">4(f)</xref>
), suggesting that obesity is associated with altered epigenetic signature in specific subpopulations of circulating lymphocytes.</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Discussion</title>
<p>This study aimed at investigating the link between obesity and altered trafficking and polarisation of immune cells in the adipose tissue and their potential association with epigenetic changes in a pig model of obesity. In obese pigs, impaired glucose tolerance and an altered lipid profile were associated with increased immune cell infiltration in the visceral adipose tissue and immune activation. These changes were further linked to an altered transcriptomic and epigenetic signature of circulating lymphocytes, which reinforces the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.</p>
<p>To our knowledge, our study is the first of its kind to exploit differences in the development of obesity in F2 pigs produced by breeds that are highly divergent with respect to obesity, thus ensuring that the obese phenotype is predominantly genetically determined.</p>
<p>Pigs represent a useful model for obesity research, although the majority of pig studies have focused on either different diets or breed differences [
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B33" ref-type="bibr">33</xref>
<xref rid="B35" ref-type="bibr">35</xref>
]. It is noteworthy that our obese animals when compared to the lean ones had higher total body weight, visceral fat mass, and altered lipid profile, as well as impaired glucose tolerance. These results are consistent with previous reports investigating the effect of high fat diet (HFD) in pigs [
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B33" ref-type="bibr">33</xref>
,
<xref rid="B36" ref-type="bibr">36</xref>
].</p>
<p>Altered infiltration of immune cells in the adipose tissue of obese pigs has previously been reported in the Ossabaw pig breed [
<xref rid="B35" ref-type="bibr">35</xref>
]. In this model, the frequency of CD203A
<sup>+</sup>
macrophages was reduced in obese animals receiving a HFD for 30 weeks. In contrast, we report an increased infiltration of macrophages in obese animals, a finding generally observed in human and murine studies [
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B37" ref-type="bibr">37</xref>
,
<xref rid="B38" ref-type="bibr">38</xref>
]. Particularly, the frequency of proinflammatory M1 macrophages was higher in the adipose tissue from obese pigs, supporting the validity of our model in recapitulating the specific immune environment in adipose tissue previously reported in human and murine obesity [
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B6" ref-type="bibr">6</xref>
].</p>
<p>The frequency of T-helper cells was significantly decreased in the obese pigs. In human and murine obesity studies, conflicting results have been reported concerning the frequency of this subpopulation of T-cells [
<xref rid="B8" ref-type="bibr">8</xref>
,
<xref rid="B39" ref-type="bibr">39</xref>
<xref rid="B41" ref-type="bibr">41</xref>
]. Deiuliis et al. (2011) have reported a decrease of total CD4
<sup>+</sup>
T-cells in obese humans, with a concomitant increase in activated T-effector cells. We did not investigate the specific frequency of the T-helper subpopulations here (effectors
<italic> versus</italic>
regulatory), which could have provided additional information, since both T-effector and T-regulatory cells (Tregs) seem to play critical roles in insulin resistance and diabetes [
<xref rid="B40" ref-type="bibr">40</xref>
,
<xref rid="B42" ref-type="bibr">42</xref>
].</p>
<p>The precise sequence of inflammatory cytokine secretion and immune cell infiltration in the progression of adipose tissue inflammation is still not fully understood. The most recent studies have suggested that overnutrition and adipose tissue expansion cause the adipocytes to secrete various chemokines and cytokines, which in turn mediate the recruitment and the activation of immune cells to the adipose tissue. These recruited immune cells then initiate a second wave of inflammatory chemokine/cytokine production [
<xref rid="B9" ref-type="bibr">9</xref>
]. In our obese pigs, we found an increase of
<italic> CCL5</italic>
in the adipose tissue, and
<italic> CCL3L1</italic>
and
<italic> CXCL16</italic>
also trended to be upregulated. This could support increased trafficking of immune cell, as the upregulation of chemokines is implicated in the overall recruitment of leukocytes [
<xref rid="B43" ref-type="bibr">43</xref>
]. The upregulation of
<italic> Leptin</italic>
in obese pigs could also have contributed to the increase in immune cells trafficking to the adipose tissue since it has been shown to stimulate innate immune response by increasing chemotaxis and enhancing the secretion of proinflammatory cytokines [
<xref rid="B44" ref-type="bibr">44</xref>
]. Similarly, the upregulation of
<italic> SPP1</italic>
underpins an increased infiltration of immune cells and the resulting inflammatory process, as this gene is highly induced during inflammation in obesity [
<xref rid="B45" ref-type="bibr">45</xref>
]. A further evidence for immune activation is that interleukins
<italic> IL1B</italic>
,
<italic> IL6</italic>
,
<italic> IL8</italic>
, and
<italic> IL18</italic>
and the Toll-like receptors
<italic> TLR2</italic>
and
<italic> TLR4</italic>
also tended to be upregulated in the obese animals.</p>
<p>The decreased frequency of circulating monocytes in obese animals could also suggest that monocytes are recruited to the adipose tissue of obese animals. This is consistent with previous findings in high fat-fed mice, where a significant decrease of the peripheral monocyte population was observed, concomitant with an increased macrophage infiltration in adipose tissue [
<xref rid="B46" ref-type="bibr">46</xref>
]. We also found an increased number of B-cells in the blood stream of the obese pigs. This could be consistent with systemic immune activation as previously described [
<xref rid="B7" ref-type="bibr">7</xref>
]. Upregulation of
<italic> CD40</italic>
and
<italic> FAS</italic>
in PBMCs from obese pigs might reflect the increased frequency of circulating B-cells. Both CD40 and FAS have recently been shown to be increased in plasma from obese subjects and are highly expressed by B-cells [
<xref rid="B31" ref-type="bibr">31</xref>
,
<xref rid="B47" ref-type="bibr">47</xref>
]. It can be speculated that the upregulation of these two proteins could be an indication of a proinflammatory environment in obese pigs, as both genes are associated with the regulation of immune response [
<xref rid="B47" ref-type="bibr">47</xref>
,
<xref rid="B48" ref-type="bibr">48</xref>
]. In contrast,
<italic> TNFAIP3</italic>
, one of the key inhibitors of the nuclear factor-kB family, which plays a critical role in the regulation of inflammation, was downregulated in the obese group.
<italic> In vivo</italic>
gene targeting studies have established its importance in the regulation of inflammation in myeloid cells, B-cells, and macrophages that lack
<italic> TNFAIP3</italic>
[
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B50" ref-type="bibr">50</xref>
]. Similarly, the anti-inflammatory cytokine
<italic> IL4</italic>
was also downregulated in obese pigs, contributing to the proinflammatory environment and increased lipid accumulation [
<xref rid="B51" ref-type="bibr">51</xref>
].</p>
<p>The pigs used in this study were born at the same time of the year and housed in the same building under the same environmental conditions with free access to food and water, and none of them suffered from diseases that needed antibiotics/treatments during their lifespan. This very stringent and controlled environment suggests that the differences in epigenetic profile we report in these pigs are most likely to reflect variations due to obesity. Epigenetic regulation of immune cells has previously been associated with changes in cytokine production and could thereby influence the inflammatory environment associated with obesity [
<xref rid="B52" ref-type="bibr">52</xref>
]. The global DNA methylation profile of circulating immune cells was therefore established using flow cytometry allowing us to detect differences in specific subpopulations of PBMCs. We observed a global DNA hypermethylation in B-cells and T-helper and T-cytotoxic cells, consistent with our recent findings in B-cells from obese individuals [
<xref rid="B14" ref-type="bibr">14</xref>
]. In this previous study, hypermethylation in B- and NK-cells was associated with the severity of insulin resistance. We failed to observe such relation in our animals, which could be explained by the fact that these pigs had not yet developed a severe level of insulin resistance. It is noteworthy that we observed an increased global DNA methylation in T-helper, T-cytotoxic, and B-cells, since these cells not only have been linked to the development of obesity but also have been suggested to be part of the initiation and maintenance of inflammation in adipose tissue, contributing to the recruitment of macrophages and the development of insulin resistance [
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
,
<xref rid="B41" ref-type="bibr">41</xref>
,
<xref rid="B53" ref-type="bibr">53</xref>
].</p>
<p>In summary, we have established a porcine model of obesity, which displays numerous characteristics of the human metabolic syndrome. We show that obese pigs are characterised by early defects in glucose metabolism and increased recruitment of monocytes/macrophages to the adipose tissue and exhibit a proinflammatory environment in both adipose tissue and peripheral blood. The altered epigenetic profile we detect in lymphocytes is likely to contribute to the proinflammatory environment and could therefore represent an early marker of immune cell recruitment and activation in obesity.</p>
</sec>
<sec sec-type="supplementary-material" id="supplementary-material-sec">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="f1">
<caption>
<p>Supplementary table 1: Gene information, primer sequences and normalized log(2) transformed fold changes (FC) for the High-Throughput QPCR.</p>
</caption>
<media xlink:href="8539057.f1.xlsx" mimetype="application" mime-subtype="vnd.openxmlformats-officedocument.spreadsheetml.sheet" orientation="portrait" id="d35e982" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This study was supported by The Danish Independent Research Council (FTP 0602-01742B and DFF 1335-00127) and by The Novo Nordisk Foundation Centre for Basic Metabolic Research, which is an independent research centre at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (
<ext-link ext-link-type="uri" xlink:href="http://www.metabol.ku.dk">http://www.metabol.ku.dk/</ext-link>
). The authors are grateful to Anne Strandsby, Dr. Anna Fossum, Minna Jakobsen (University of Copenhagen, Denmark), and Dr. Chris Brownly at the Biological Resources Imaging Laboratory (Flow Cytometry Facility, UNSW Australia, Australia) for their invaluable contribution to sample collection and flow cytometry analysis.</p>
</ack>
<sec sec-type="conflict">
<title>Conflict of Interests</title>
<p>The authors declare no conflict of interests regarding the publication of this paper.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedersen</surname>
<given-names>S. D.</given-names>
</name>
</person-group>
<article-title>Metabolic complications of obesity</article-title>
<source>
<italic>Best Practice & Research: Clinical Endocrinology & Metabolism</italic>
</source>
<year>2013</year>
<volume>27</volume>
<issue>2</issue>
<fpage>179</fpage>
<lpage>193</lpage>
<pub-id pub-id-type="doi">10.1016/j.beem.2013.02.004</pub-id>
<pub-id pub-id-type="other">2-s2.0-84878594454</pub-id>
<pub-id pub-id-type="pmid">23731880</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koppe</surname>
<given-names>S. W. P.</given-names>
</name>
</person-group>
<article-title>Obesity and the liver: nonalcoholic fatty liver disease</article-title>
<source>
<italic>Translational Research</italic>
</source>
<year>2014</year>
<volume>164</volume>
<issue>4</issue>
<fpage>312</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="doi">10.1016/j.trsl.2014.06.008</pub-id>
<pub-id pub-id-type="other">2-s2.0-84908029914</pub-id>
<pub-id pub-id-type="pmid">25028077</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davoodi</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Malek-Shahabi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Malekshahi-Moghadam</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shahbazi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Esmaeili</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Obesity as an important risk factor for certain types of cancer</article-title>
<source>
<italic>Iranian Journal of Cancer Prevention</italic>
</source>
<year>2013</year>
<volume>6</volume>
<issue>4</issue>
<fpage>186</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="other">2-s2.0-84888405498</pub-id>
<pub-id pub-id-type="pmid">25250133</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weisberg</surname>
<given-names>S. P.</given-names>
</name>
<name>
<surname>McCann</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Desai</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rosenbaum</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Leibel</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Ferrante</surname>
<given-names>A. W.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Obesity is associated with macrophage accumulation in adipose tissue</article-title>
<source>
<italic>The Journal of Clinical Investigation</italic>
</source>
<year>2003</year>
<volume>112</volume>
<issue>12</issue>
<fpage>1796</fpage>
<lpage>1808</lpage>
<pub-id pub-id-type="doi">10.1172/jci200319246</pub-id>
<pub-id pub-id-type="other">2-s2.0-0348230958</pub-id>
<pub-id pub-id-type="pmid">14679176</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aron-Wisnewsky</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tordjman</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Poitou</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human adipose tissue macrophages: M1 and M2 cell surface markers in subcutaneous and omental depots and after weight loss</article-title>
<source>
<italic>The Journal of Clinical Endocrinology & Metabolism</italic>
</source>
<year>2009</year>
<volume>94</volume>
<issue>11</issue>
<fpage>4619</fpage>
<lpage>4623</lpage>
<pub-id pub-id-type="doi">10.1210/jc.2009-0925</pub-id>
<pub-id pub-id-type="other">2-s2.0-70449113184</pub-id>
<pub-id pub-id-type="pmid">19837929</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>D. Y.</given-names>
</name>
<name>
<surname>Morinaga</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Talukdar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Olefsky</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
<article-title>Increased macrophage migration into adipose tissue in obese mice</article-title>
<source>
<italic>Diabetes</italic>
</source>
<year>2012</year>
<volume>61</volume>
<issue>2</issue>
<fpage>346</fpage>
<lpage>354</lpage>
<pub-id pub-id-type="doi">10.2337/db11-0860</pub-id>
<pub-id pub-id-type="other">2-s2.0-84856533216</pub-id>
<pub-id pub-id-type="pmid">22190646</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeFuria</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Belkina</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Jagannathan-Bogdan</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2013</year>
<volume>110</volume>
<issue>13</issue>
<fpage>5133</fpage>
<lpage>5138</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1215840110</pub-id>
<pub-id pub-id-type="other">2-s2.0-84875548030</pub-id>
<pub-id pub-id-type="pmid">23479618</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishimura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Manabe</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Nagasaki</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD8
<sup>+</sup>
effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity</article-title>
<source>
<italic>Nature Medicine</italic>
</source>
<year>2009</year>
<volume>15</volume>
<issue>8</issue>
<fpage>914</fpage>
<lpage>920</lpage>
<pub-id pub-id-type="doi">10.1038/nm.1964</pub-id>
<pub-id pub-id-type="other">2-s2.0-68349150756</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gregor</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Hotamisligil</surname>
<given-names>G. S.</given-names>
</name>
</person-group>
<article-title>Inflammatory mechanisms in obesity</article-title>
<source>
<italic>Annual Review of Immunology</italic>
</source>
<year>2011</year>
<volume>29</volume>
<fpage>415</fpage>
<lpage>445</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-immunol-031210-101322</pub-id>
<pub-id pub-id-type="other">2-s2.0-79953046341</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sell</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Eckel</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation?</article-title>
<source>
<italic>Proceedings of the Nutrition Society</italic>
</source>
<year>2009</year>
<volume>68</volume>
<issue>4</issue>
<fpage>378</fpage>
<lpage>384</lpage>
<pub-id pub-id-type="doi">10.1017/s0029665109990218</pub-id>
<pub-id pub-id-type="other">2-s2.0-77949330439</pub-id>
<pub-id pub-id-type="pmid">19698204</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Mello</surname>
<given-names>V. D. F.</given-names>
</name>
<name>
<surname>Pulkkinen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lalli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kolehmainen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pihlajamäki</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Uusitupa</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>DNA methylation in obesity and type 2 diabetes</article-title>
<source>
<italic>Annals of Medicine</italic>
</source>
<year>2014</year>
<volume>46</volume>
<issue>3</issue>
<fpage>103</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="doi">10.3109/07853890.2013.857259</pub-id>
<pub-id pub-id-type="other">2-s2.0-84899861900</pub-id>
<pub-id pub-id-type="pmid">24779963</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Dijk</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Molloy</surname>
<given-names>P. L.</given-names>
</name>
<name>
<surname>Varinli</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epigenetics and human obesity</article-title>
<source>
<italic>International Journal of Obesity</italic>
</source>
<year>2015</year>
<volume>39</volume>
<issue>1</issue>
<fpage>85</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1038/ijo.2014.34</pub-id>
<pub-id pub-id-type="other">2-s2.0-84920672944</pub-id>
<pub-id pub-id-type="pmid">24566855</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Snieder</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Obesity related methylation changes in DNA of peripheral blood leukocytes</article-title>
<source>
<italic>BMC Medicine</italic>
</source>
<year>2010</year>
<volume>8, article 87</volume>
<pub-id pub-id-type="doi">10.1186/1741-7015-8-87</pub-id>
<pub-id pub-id-type="other">2-s2.0-78650291801</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simar</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Versteyhe</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Donkin</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human</article-title>
<source>
<italic>Metabolism: Clinical and Experimental</italic>
</source>
<year>2014</year>
<volume>63</volume>
<issue>9</issue>
<fpage>1188</fpage>
<lpage>1197</lpage>
<pub-id pub-id-type="doi">10.1016/j.metabol.2014.05.014</pub-id>
<pub-id pub-id-type="other">2-s2.0-84906248831</pub-id>
<pub-id pub-id-type="pmid">24996265</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>V. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A genome-wide methylation study on obesity: differential variability and differential methylation</article-title>
<source>
<italic>Epigenetics</italic>
</source>
<year>2013</year>
<volume>8</volume>
<issue>5</issue>
<fpage>522</fpage>
<lpage>533</lpage>
<pub-id pub-id-type="doi">10.4161/epi.24506</pub-id>
<pub-id pub-id-type="other">2-s2.0-84877342168</pub-id>
<pub-id pub-id-type="pmid">23644594</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janson</surname>
<given-names>P. C. J.</given-names>
</name>
<name>
<surname>Linton</surname>
<given-names>L. B.</given-names>
</name>
<name>
<surname>Bergman</surname>
<given-names>E. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Profiling of CD4
<sup>+</sup>
T cells with epigenetic immune lineage analysis</article-title>
<source>
<italic>Journal of Immunology</italic>
</source>
<year>2011</year>
<volume>186</volume>
<issue>1</issue>
<fpage>92</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1000960</pub-id>
<pub-id pub-id-type="other">2-s2.0-79251589323</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b</article-title>
<source>
<italic>Molecular Endocrinology</italic>
</source>
<year>2014</year>
<volume>28</volume>
<issue>4</issue>
<fpage>565</fpage>
<lpage>574</lpage>
<pub-id pub-id-type="doi">10.1210/me.2013-1293</pub-id>
<pub-id pub-id-type="other">2-s2.0-84897945915</pub-id>
<pub-id pub-id-type="pmid">24597547</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maier</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ostraat</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription</article-title>
<source>
<italic>Nature Immunology</italic>
</source>
<year>2004</year>
<volume>5</volume>
<issue>10</issue>
<fpage>1069</fpage>
<lpage>1077</lpage>
<pub-id pub-id-type="doi">10.1038/ni1119</pub-id>
<pub-id pub-id-type="other">2-s2.0-5444222634</pub-id>
<pub-id pub-id-type="pmid">15361869</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hermsdorff</surname>
<given-names>H. H.</given-names>
</name>
<name>
<surname>Mansego</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Campión</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Milagro</surname>
<given-names>F. I.</given-names>
</name>
<name>
<surname>Zulet</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Martínez</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
<article-title>TNF-alpha promoter methylation in peripheral white blood cells: relationship with circulating TNFalpha, truncal fat and n-6 PUFA intake in young women</article-title>
<source>
<italic>Cytokine</italic>
</source>
<year>2013</year>
<volume>64</volume>
<issue>1</issue>
<fpage>265</fpage>
<lpage>271</lpage>
<pub-id pub-id-type="doi">10.1016/j.cyto.2013.05.028</pub-id>
<pub-id pub-id-type="other">2-s2.0-84883557907</pub-id>
<pub-id pub-id-type="pmid">23796695</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>García-Cardona</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>García-Vivas</surname>
<given-names>J. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance</article-title>
<source>
<italic>International Journal of Obesity</italic>
</source>
<year>2014</year>
<volume>38</volume>
<issue>11</issue>
<fpage>1457</fpage>
<lpage>1465</lpage>
<pub-id pub-id-type="doi">10.1038/ijo.2014.30</pub-id>
<pub-id pub-id-type="other">2-s2.0-84910108592</pub-id>
<pub-id pub-id-type="pmid">24549138</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spurlock</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Gabler</surname>
<given-names>N. K.</given-names>
</name>
</person-group>
<article-title>The development of porcine models of obesity and the metabolic syndrome</article-title>
<source>
<italic>The Journal of Nutrition</italic>
</source>
<year>2008</year>
<volume>138</volume>
<issue>2</issue>
<fpage>397</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="other">2-s2.0-38949085542</pub-id>
<pub-id pub-id-type="pmid">18203910</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Groenen</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Archibald</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Uenishi</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Analyses of pig genomes provide insight into porcine demography and evolution</article-title>
<source>
<italic>Nature</italic>
</source>
<year>2012</year>
<volume>491</volume>
<issue>7424</issue>
<fpage>393</fpage>
<lpage>398</lpage>
<pub-id pub-id-type="doi">10.1038/nature11622</pub-id>
<pub-id pub-id-type="pmid">23151582</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Dawson</surname>
<given-names>H. D.</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Dayan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hastings</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Comparative assessment of the pig, mouse, and human genomes; a structural and functional analysis of genes involved in immunity</article-title>
<source>
<italic>The Minipig in Biomedical Research P A McAnulty</italic>
</source>
<year>2011</year>
<publisher-name>CRC Press, Taylor & Francis Group</publisher-name>
<fpage>p. 11</fpage>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kogelman</surname>
<given-names>L. J. A.</given-names>
</name>
<name>
<surname>Kadarmideen</surname>
<given-names>H. N.</given-names>
</name>
<name>
<surname>Mark</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An F2 pig resource population as a model for genetic studies of obesity and obesity-related diseases in humans: design and genetic parameters</article-title>
<source>
<italic>Frontiers in Genetics</italic>
</source>
<year>2013</year>
<volume>4, article 29</volume>
<pub-id pub-id-type="doi">10.3389/fgene.2013.00029</pub-id>
<pub-id pub-id-type="other">2-s2.0-84876187792</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Christoffersen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Golozoubova</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pacini</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Svendsen</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Raun</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>The young Göttingen minipig as a model of childhood and adolescent obesity: influence of diet and gender</article-title>
<source>
<italic>Obesity</italic>
</source>
<year>2013</year>
<volume>21</volume>
<issue>1</issue>
<fpage>149</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="doi">10.1038/oby.2012.176</pub-id>
<pub-id pub-id-type="other">2-s2.0-84876290908</pub-id>
<pub-id pub-id-type="pmid">23505180</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedewald</surname>
<given-names>W. T.</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>R. I.</given-names>
</name>
<name>
<surname>Fredrickson</surname>
<given-names>D. S.</given-names>
</name>
</person-group>
<article-title>Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge</article-title>
<source>
<italic>Clinical Chemistry</italic>
</source>
<year>1972</year>
<volume>18</volume>
<issue>6</issue>
<fpage>499</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="other">2-s2.0-0015348189</pub-id>
<pub-id pub-id-type="pmid">4337382</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Decaunes</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Estève</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zakaroff-Girard</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sengenès</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Galitzky</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bouloumié</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Adipose-derived stromal cells: cytokine expression and immune cell contaminants</article-title>
<source>
<italic>Methods in Molecular Biology</italic>
</source>
<year>2011</year>
<volume>702</volume>
<fpage>151</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="doi">10.1007/978-1-61737-960-4_12</pub-id>
<pub-id pub-id-type="other">2-s2.0-79952117066</pub-id>
<pub-id pub-id-type="pmid">21082401</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cirera</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Highly efficient method for isolation of total RNA from adipose tissue</article-title>
<source>
<italic>BMC Research Notes</italic>
</source>
<year>2013</year>
<volume>6, article 472</volume>
<pub-id pub-id-type="doi">10.1186/1756-0500-6-472</pub-id>
<pub-id pub-id-type="other">2-s2.0-84887754659</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Traini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Quinn</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Sandoval</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is a novel nucleotide phosphodiesterase regulated by cholesterol in human macrophages</article-title>
<source>
<italic>The Journal of Biological Chemistry</italic>
</source>
<year>2014</year>
<volume>289</volume>
<issue>47</issue>
<fpage>32895</fpage>
<lpage>32913</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.m114.612341</pub-id>
<pub-id pub-id-type="other">2-s2.0-84911452843</pub-id>
<pub-id pub-id-type="pmid">25288789</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foy</surname>
<given-names>T. M.</given-names>
</name>
<name>
<surname>Aruffo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bajorath</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Buhlmann</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Noelle</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
<article-title>Immune regulation by CD40 and its ligand GP39</article-title>
<source>
<italic>Annual Review of Immunology</italic>
</source>
<year>1996</year>
<volume>14</volume>
<fpage>591</fpage>
<lpage>617</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.immunol.14.1.591</pub-id>
<pub-id pub-id-type="other">2-s2.0-0029983837</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wueest</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Blüher</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fas (CD95) expression in myeloid cells promotes obesity-induced muscle insulin resistance</article-title>
<source>
<italic>EMBO Molecular Medicine</italic>
</source>
<year>2014</year>
<volume>6</volume>
<issue>1</issue>
<fpage>43</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="doi">10.1002/emmm.201302962</pub-id>
<pub-id pub-id-type="other">2-s2.0-84891923662</pub-id>
<pub-id pub-id-type="pmid">24203314</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Y.-T.</given-names>
</name>
<name>
<surname>Maccani</surname>
<given-names>J. Z. J.</given-names>
</name>
<name>
<surname>Hawley</surname>
<given-names>N. L.</given-names>
</name>
<name>
<surname>Wing</surname>
<given-names>R. R.</given-names>
</name>
<name>
<surname>Kelsey</surname>
<given-names>K. T.</given-names>
</name>
<name>
<surname>McCaffery</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
<article-title>Epigenetic patterns in successful weight loss maintainers: a pilot study</article-title>
<source>
<italic>International Journal of Obesity</italic>
</source>
<year>2015</year>
<volume>39</volume>
<issue>5</issue>
<fpage>865</fpage>
<lpage>868</lpage>
<pub-id pub-id-type="doi">10.1038/ijo.2014.213</pub-id>
<pub-id pub-id-type="other">2-s2.0-84922605181</pub-id>
<pub-id pub-id-type="pmid">25520250</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newell-Fugate</surname>
<given-names>A. E.</given-names>
</name>
<name>
<surname>Taibl</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>S. G.</given-names>
</name>
<name>
<surname>Alloosh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sturek</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Krisher</surname>
<given-names>R. L.</given-names>
</name>
</person-group>
<article-title>Effects of diet-induced obesity on metabolic parameters and reproductive function in female ossabaw minipigs</article-title>
<source>
<italic>Comparative Medicine</italic>
</source>
<year>2014</year>
<volume>64</volume>
<issue>1</issue>
<fpage>44</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="other">2-s2.0-84893899612</pub-id>
<pub-id pub-id-type="pmid">24512960</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cirera</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Elbrønd</surname>
<given-names>V. S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression studies of six human obesity-related genes in seven tissues from divergent pig breeds</article-title>
<source>
<italic>Animal Genetics</italic>
</source>
<year>2014</year>
<volume>45</volume>
<issue>1</issue>
<fpage>59</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1111/age.12082</pub-id>
<pub-id pub-id-type="other">2-s2.0-84892434364</pub-id>
<pub-id pub-id-type="pmid">24033492</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faris</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Boddicker</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Walker-Daniels</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>D. E.</given-names>
</name>
<name>
<surname>Spurlock</surname>
<given-names>M. E.</given-names>
</name>
</person-group>
<article-title>Inflammation in response to n3 fatty acids in a porcine obesity model</article-title>
<source>
<italic>Comparative Medicine</italic>
</source>
<year>2012</year>
<volume>62</volume>
<issue>6</issue>
<fpage>495</fpage>
<lpage>503</lpage>
<pub-id pub-id-type="other">2-s2.0-84876213122</pub-id>
<pub-id pub-id-type="pmid">23561883</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pawar</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.-Y.</given-names>
</name>
<name>
<surname>Eirin</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adipose tissue remodeling in a novel domestic porcine model of diet-induced obesity</article-title>
<source>
<italic>Obesity</italic>
</source>
<year>2015</year>
<volume>23</volume>
<issue>2</issue>
<fpage>399</fpage>
<lpage>407</lpage>
<pub-id pub-id-type="doi">10.1002/oby.20971</pub-id>
<pub-id pub-id-type="other">2-s2.0-84922688117</pub-id>
<pub-id pub-id-type="pmid">25627626</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amano</surname>
<given-names>S. U.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Vangala</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation</article-title>
<source>
<italic>Cell Metabolism</italic>
</source>
<year>2014</year>
<volume>19</volume>
<issue>1</issue>
<fpage>162</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2013.11.017</pub-id>
<pub-id pub-id-type="other">2-s2.0-84891890600</pub-id>
<pub-id pub-id-type="pmid">24374218</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patel</surname>
<given-names>P. S.</given-names>
</name>
<name>
<surname>Buras</surname>
<given-names>E. D.</given-names>
</name>
<name>
<surname>Balasubramanyam</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The role of the immune system in obesity and insulin resistance</article-title>
<source>
<italic>Journal of Obesity</italic>
</source>
<year>2013</year>
<volume>2013</volume>
<fpage>9</fpage>
<pub-id pub-id-type="publisher-id">616193</pub-id>
<pub-id pub-id-type="doi">10.1155/2013/616193</pub-id>
<pub-id pub-id-type="other">2-s2.0-84876553009</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kintscher</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Hartge</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance</article-title>
<source>
<italic>Arteriosclerosis, Thrombosis, and Vascular Biology</italic>
</source>
<year>2008</year>
<volume>28</volume>
<issue>7</issue>
<fpage>1304</fpage>
<lpage>1310</lpage>
<pub-id pub-id-type="doi">10.1161/atvbaha.108.165100</pub-id>
<pub-id pub-id-type="other">2-s2.0-46249117032</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deiuliis</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<year>2011</year>
<volume>6</volume>
<issue>1</issue>
<pub-id pub-id-type="publisher-id">e16376</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0016376</pub-id>
<pub-id pub-id-type="other">2-s2.0-79551529432</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Paltser</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Normalization of obesity-associated insulin resistance through immunotherapy</article-title>
<source>
<italic>Nature Medicine</italic>
</source>
<year>2009</year>
<volume>15</volume>
<issue>8</issue>
<fpage>921</fpage>
<lpage>929</lpage>
<pub-id pub-id-type="doi">10.1038/nm.2001</pub-id>
<pub-id pub-id-type="other">2-s2.0-68349137821</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cipolletta</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Feuerer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PPAR-
<italic>γ</italic>
is a major driver of the accumulation and phenotype of adipose tissue T reg cells</article-title>
<source>
<italic>Nature</italic>
</source>
<year>2012</year>
<volume>486</volume>
<issue>7404</issue>
<fpage>549</fpage>
<lpage>553</lpage>
<pub-id pub-id-type="doi">10.1038/nature11132</pub-id>
<pub-id pub-id-type="other">2-s2.0-84862986986</pub-id>
<pub-id pub-id-type="pmid">22722857</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Herlea-Pana</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Heuser-Baker</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Barlic-Dicen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Roles of the chemokine system in development of obesity, insulin resistance, and cardiovascular disease</article-title>
<source>
<italic>Journal of Immunology Research</italic>
</source>
<year>2014</year>
<volume>2014</volume>
<fpage>11</fpage>
<pub-id pub-id-type="publisher-id">181450</pub-id>
<pub-id pub-id-type="doi">10.1155/2014/181450</pub-id>
<pub-id pub-id-type="other">2-s2.0-84897549119</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carbone</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>La Rocca</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Matarese</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Immunological functions of leptin and adiponectin</article-title>
<source>
<italic>Biochimie</italic>
</source>
<year>2012</year>
<volume>94</volume>
<issue>10</issue>
<fpage>2082</fpage>
<lpage>2088</lpage>
<pub-id pub-id-type="doi">10.1016/j.biochi.2012.05.018</pub-id>
<pub-id pub-id-type="other">2-s2.0-84866141957</pub-id>
<pub-id pub-id-type="pmid">22750129</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lund</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Giachelli</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Scatena</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The role of osteopontin in inflammatory processes</article-title>
<source>
<italic>Journal of Cell Communication and Signaling</italic>
</source>
<year>2009</year>
<volume>3</volume>
<issue>3-4</issue>
<fpage>311</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="doi">10.1007/s12079-009-0068-0</pub-id>
<pub-id pub-id-type="other">2-s2.0-72449139507</pub-id>
<pub-id pub-id-type="pmid">19798593</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ingvorsen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Thysen</surname>
<given-names>A. H.</given-names>
</name>
<name>
<surname>Fernandez-Twinn</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of pregnancy on obesity-induced inflammation in a mouse model of fetal programming</article-title>
<source>
<italic>International Journal of Obesity</italic>
</source>
<year>2014</year>
<pub-id pub-id-type="doi">10.1038/ijo.2014.69</pub-id>
<pub-id pub-id-type="other">2-s2.0-84901548754</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolf</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Jehle</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Michel</surname>
<given-names>N. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice</article-title>
<source>
<italic>Circulation</italic>
</source>
<year>2014</year>
<volume>129</volume>
<issue>23</issue>
<fpage>2414</fpage>
<lpage>2425</lpage>
<pub-id pub-id-type="doi">10.1161/circulationaha.113.008055</pub-id>
<pub-id pub-id-type="other">2-s2.0-84902241067</pub-id>
<pub-id pub-id-type="pmid">24664276</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dhein</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Walczak</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Baumler</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Debatin</surname>
<given-names>K.-M.</given-names>
</name>
<name>
<surname>Krammer</surname>
<given-names>P. H.</given-names>
</name>
</person-group>
<article-title>Autocrine T-cell suicide mediated by APO-1/(Fas/CD95)</article-title>
<source>
<italic>Nature</italic>
</source>
<year>1995</year>
<volume>373</volume>
<issue>6513</issue>
<fpage>438</fpage>
<lpage>441</lpage>
<pub-id pub-id-type="doi">10.1038/373438a0</pub-id>
<pub-id pub-id-type="other">2-s2.0-0028795758</pub-id>
<pub-id pub-id-type="pmid">7530335</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Catrysse</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Vereecke</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Beyaert</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>van Loo</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>A20 in inflammation and autoimmunity</article-title>
<source>
<italic>Trends in Immunology</italic>
</source>
<year>2014</year>
<volume>35</volume>
<issue>1</issue>
<fpage>22</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1016/j.it.2013.10.005</pub-id>
<pub-id pub-id-type="other">2-s2.0-84891373034</pub-id>
<pub-id pub-id-type="pmid">24246475</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matmati</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jacques</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Maelfait</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis</article-title>
<source>
<italic>Nature Genetics</italic>
</source>
<year>2011</year>
<volume>43</volume>
<issue>9</issue>
<fpage>908</fpage>
<lpage>912</lpage>
<pub-id pub-id-type="doi">10.1038/ng.874</pub-id>
<pub-id pub-id-type="other">2-s2.0-80052195163</pub-id>
<pub-id pub-id-type="pmid">21841782</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsao</surname>
<given-names>C.-H.</given-names>
</name>
<name>
<surname>Shiau</surname>
<given-names>M.-Y.</given-names>
</name>
<name>
<surname>Chuang</surname>
<given-names>P.-H.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Y.-H.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis</article-title>
<source>
<italic>Journal of Lipid Research</italic>
</source>
<year>2014</year>
<volume>55</volume>
<issue>3</issue>
<fpage>385</fpage>
<lpage>397</lpage>
<pub-id pub-id-type="doi">10.1194/jlr.M041392</pub-id>
<pub-id pub-id-type="other">2-s2.0-84894859549</pub-id>
<pub-id pub-id-type="pmid">24347527</pub-id>
</element-citation>
</ref>
<ref id="B52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lawson</surname>
<given-names>B. R.</given-names>
</name>
<name>
<surname>Eleftheriadis</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tardif</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transmethylation in immunity and autoimmunity</article-title>
<source>
<italic>Clinical Immunology</italic>
</source>
<year>2012</year>
<volume>143</volume>
<issue>1</issue>
<fpage>8</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1016/j.clim.2011.10.007</pub-id>
<pub-id pub-id-type="other">2-s2.0-84858081105</pub-id>
<pub-id pub-id-type="pmid">22364920</pub-id>
</element-citation>
</ref>
<ref id="B53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winer</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Winer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies</article-title>
<source>
<italic>Nature Medicine</italic>
</source>
<year>2011</year>
<volume>17</volume>
<issue>5</issue>
<fpage>610</fpage>
<lpage>617</lpage>
<pub-id pub-id-type="doi">10.1038/nm.2353</pub-id>
<pub-id pub-id-type="other">2-s2.0-79955689860</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Anthropometric and metabolic characteristics in the lean group of animals (
<italic>n</italic>
= 8, grey columns and line) and in the obese group of animals (
<italic>n</italic>
= 10, open columns and a black line). The animals were weighted before slaughter (a), and after slaughter the weight of the retroperitoneal fat (b), omental fat (c), and mesenteric fat (d) was measured. Triglycerides (TG), high-density lipoprotein (HDL-C), and low-density lipoprotein (LDL-C) were measured from plasma collected after an overnight fast (e). Oral glucose tolerance test (OGTT) was performed only on males (7 in each group) after an overnight fast, and blood glucose was measured every 30 min for 3 hours (f). Data are mean ± SD.
<sup>
<italic></italic>
</sup>
<italic>p</italic>
< 0.05 compared to lean.
<sup></sup>
<italic>p</italic>
< 0.05 compared to baseline.</p>
</caption>
<graphic xlink:href="JDR2016-8539057.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Phenotypic characterisation by flow cytometry of the adipose SVF cells and PBMCs in lean and obese pigs. (a) Gating strategy of the porcine adipose SVF cells from an obese pig. T-cells were defined as CD45
<sup>+</sup>
CD3
<sup>+</sup>
. Within the T-cells, CD4
<sup>+</sup>
, CD8
<sup>+</sup>
, and CD4
<sup>+</sup>
CD8
<sup>+</sup>
were characterised based on positivity for CD4 and CD8. Macrophages were defined as CD45
<sup>+</sup>
CD3
<sup></sup>
CD203A
<sup>+</sup>
, and the M1 and M2 macrophages were determined based on positivity for CD11R3 and CD163, respectively. B-cells were CD45
<sup>+</sup>
CD3
<sup></sup>
CD203A
<sup></sup>
and CD21
<sup>+</sup>
whereas NK-cells were CD45
<sup>+</sup>
CD3
<sup></sup>
CD203A
<sup></sup>
and NKp46
<sup>+</sup>
. (b–d) Infiltrating leukocyte populations in the adipose tissue within the CD45
<sup>+</sup>
population from lean (grey columns) and obese (white columns) pigs. (b) Frequency of the total macrophages (CD203A
<sup>+</sup>
), classically activated M1 macrophages (CD203
<sup>+</sup>
CD11R3
<sup>+</sup>
), and alternatively activated M2 macrophages (CD203
<sup>+</sup>
CD163
<sup>+</sup>
). (c) Frequency of natural killer cells (NKp46
<sup>+</sup>
) and B-cells (CD21
<sup>+</sup>
). (d) Frequency of the T-helper (CD3
<sup>+</sup>
CD4
<sup>+</sup>
), T-cytotoxic (CD3
<sup>+</sup>
CD8
<sup>+</sup>
), and double positive T-cells (CD3
<sup>+</sup>
CD4
<sup>+</sup>
CD8
<sup>+</sup>
) within the T-cells. (e–g) PBMCs subpopulation frequencies. (e) Lymphocytes and monocytes. (f) Natural killer cells (CD3
<sup></sup>
NKp46
<sup>+</sup>
) and B-cells (CD3
<sup></sup>
CD21
<sup>+</sup>
) populations frequency. (g) Frequency of the T-helper (CD3
<sup>+</sup>
CD4
<sup>+</sup>
), T-cytotoxic (CD3
<sup>+</sup>
CD8
<sup>+</sup>
), and double positive T-cells (CD3
<sup>+</sup>
CD4
<sup>+</sup>
CD8
<sup>+</sup>
) within the T-cells. Data are mean ± SD.
<sup>
<italic></italic>
</sup>
<italic>p</italic>
< 0.05.</p>
</caption>
<graphic xlink:href="JDR2016-8539057.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Expression profile of the genes that showed a log⁡(2) fold change ratio higher than 1.5. The log⁡(2) difference between lean and obese pigs in the retroperitoneal adipose tissue (a) and the PBMCs (b). +log⁡(2) FC: upregulated in obese pigs; −log⁡(2) FC: downregulated in obese pigs. Gene names and columns in black: significant differential expression.
<sup>
<italic></italic>
</sup>
<italic>p</italic>
< 0.05.</p>
</caption>
<graphic xlink:href="JDR2016-8539057.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Global DNA methylation in PBMCs subpopulations from lean (grey columns and histograms) and obese pigs (open columns and histograms). (a) Representative quantification of 5-methylcytosine levels in lymphocytes and monocytes. (b) Quantification of 5-methylcytosine levels (MFI) in lymphocytes and monocytes. (c) Representative quantification of 5-methylcytosine levels in T-cells (CD3
<sup>+</sup>
), B-cells (CD21
<sup>+</sup>
), and natural killer cells (NKp46
<sup>+</sup>
). (d) Quantification of 5-methylcytosine levels (MFI) in T-cells, B-cells, and natural killer cells. (e) Representative quantification of 5-methylcytosine levels in T-cells subpopulations: T-helper (CD3
<sup>+</sup>
CD4
<sup>+</sup>
), T-cytotoxic (CD3
<sup>+</sup>
CD8
<sup>+</sup>
), and double positive T-cells (CD3
<sup>+</sup>
CD4
<sup>+</sup>
CD8
<sup>+</sup>
). (f) Quantification of 5-methylcytosine levels (MFI) in T-helper, T-cytotoxic, and double positive T-cells. Data are mean ± SD.
<sup>
<italic></italic>
</sup>
<italic>p</italic>
< 0.05. MFI: median fluorescence intensity.</p>
</caption>
<graphic xlink:href="JDR2016-8539057.004"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0026480 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0026480 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024