Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation

Identifieur interne : 002631 ( Pmc/Corpus ); précédent : 002630; suivant : 002632

Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation

Auteurs : Jessica M. Olsen ; Masaaki Sato ; Olof S. Dallner ; Anna L. Sandström ; Didier F. Pisani ; Jean-Claude Chambard ; Ez-Zoubir Amri ; Dana S. Hutchinson ; Tore Bengtsson

Source :

RBID : PMC:4226734

Abstract

β3-Adrenoceptors promote glucose uptake in brown adipose tissue via both cAMP-mediated increases in GLUT1 transcription and mTORC2-stimulated translocation of newly synthesized GLUT1 to the plasma membrane.


Url:
DOI: 10.1083/jcb.201403080
PubMed: 25385184
PubMed Central: 4226734

Links to Exploration step

PMC:4226734

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation</title>
<author>
<name sortKey="Olsen, Jessica M" sort="Olsen, Jessica M" uniqKey="Olsen J" first="Jessica M." last="Olsen">Jessica M. Olsen</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sato, Masaaki" sort="Sato, Masaaki" uniqKey="Sato M" first="Masaaki" last="Sato">Masaaki Sato</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=" and" id="aff3">
<institution>Department of Pharmacology</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dallner, Olof S" sort="Dallner, Olof S" uniqKey="Dallner O" first="Olof S." last="Dallner">Olof S. Dallner</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sandstrom, Anna L" sort="Sandstrom, Anna L" uniqKey="Sandstrom A" first="Anna L." last="Sandström">Anna L. Sandström</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pisani, Didier F" sort="Pisani, Didier F" uniqKey="Pisani D" first="Didier F." last="Pisani">Didier F. Pisani</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Institute of Biology Valrose, Centre National de la Recherche Scientifique UMR 7277, Institut National de la Santé et de la Recherche Médicale UMR 1091, University of Nice Sophia Antipolis, 06100 Nice, France</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chambard, Jean Claude" sort="Chambard, Jean Claude" uniqKey="Chambard J" first="Jean-Claude" last="Chambard">Jean-Claude Chambard</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Institute of Biology Valrose, Centre National de la Recherche Scientifique UMR 7277, Institut National de la Santé et de la Recherche Médicale UMR 1091, University of Nice Sophia Antipolis, 06100 Nice, France</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Amri, Ez Zoubir" sort="Amri, Ez Zoubir" uniqKey="Amri E" first="Ez-Zoubir" last="Amri">Ez-Zoubir Amri</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Institute of Biology Valrose, Centre National de la Recherche Scientifique UMR 7277, Institut National de la Santé et de la Recherche Médicale UMR 1091, University of Nice Sophia Antipolis, 06100 Nice, France</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hutchinson, Dana S" sort="Hutchinson, Dana S" uniqKey="Hutchinson D" first="Dana S." last="Hutchinson">Dana S. Hutchinson</name>
<affiliation>
<nlm:aff wicri:cut=" and" id="aff3">
<institution>Department of Pharmacology</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bengtsson, Tore" sort="Bengtsson, Tore" uniqKey="Bengtsson T" first="Tore" last="Bengtsson">Tore Bengtsson</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25385184</idno>
<idno type="pmc">4226734</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226734</idno>
<idno type="RBID">PMC:4226734</idno>
<idno type="doi">10.1083/jcb.201403080</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">002631</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002631</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation</title>
<author>
<name sortKey="Olsen, Jessica M" sort="Olsen, Jessica M" uniqKey="Olsen J" first="Jessica M." last="Olsen">Jessica M. Olsen</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sato, Masaaki" sort="Sato, Masaaki" uniqKey="Sato M" first="Masaaki" last="Sato">Masaaki Sato</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=" and" id="aff3">
<institution>Department of Pharmacology</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dallner, Olof S" sort="Dallner, Olof S" uniqKey="Dallner O" first="Olof S." last="Dallner">Olof S. Dallner</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sandstrom, Anna L" sort="Sandstrom, Anna L" uniqKey="Sandstrom A" first="Anna L." last="Sandström">Anna L. Sandström</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pisani, Didier F" sort="Pisani, Didier F" uniqKey="Pisani D" first="Didier F." last="Pisani">Didier F. Pisani</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Institute of Biology Valrose, Centre National de la Recherche Scientifique UMR 7277, Institut National de la Santé et de la Recherche Médicale UMR 1091, University of Nice Sophia Antipolis, 06100 Nice, France</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chambard, Jean Claude" sort="Chambard, Jean Claude" uniqKey="Chambard J" first="Jean-Claude" last="Chambard">Jean-Claude Chambard</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Institute of Biology Valrose, Centre National de la Recherche Scientifique UMR 7277, Institut National de la Santé et de la Recherche Médicale UMR 1091, University of Nice Sophia Antipolis, 06100 Nice, France</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Amri, Ez Zoubir" sort="Amri, Ez Zoubir" uniqKey="Amri E" first="Ez-Zoubir" last="Amri">Ez-Zoubir Amri</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Institute of Biology Valrose, Centre National de la Recherche Scientifique UMR 7277, Institut National de la Santé et de la Recherche Médicale UMR 1091, University of Nice Sophia Antipolis, 06100 Nice, France</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hutchinson, Dana S" sort="Hutchinson, Dana S" uniqKey="Hutchinson D" first="Dana S." last="Hutchinson">Dana S. Hutchinson</name>
<affiliation>
<nlm:aff wicri:cut=" and" id="aff3">
<institution>Department of Pharmacology</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bengtsson, Tore" sort="Bengtsson, Tore" uniqKey="Bengtsson T" first="Tore" last="Bengtsson">Tore Bengtsson</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Cell Biology</title>
<idno type="ISSN">0021-9525</idno>
<idno type="eISSN">1540-8140</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>β
<sub>3</sub>
-Adrenoceptors promote glucose uptake in brown adipose tissue via both cAMP-mediated increases in GLUT1 transcription and mTORC2-stimulated translocation of newly synthesized GLUT1 to the plasma membrane.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, E J" uniqKey="Brown E">E.J. Brown</name>
</author>
<author>
<name sortKey="Albers, M W" uniqKey="Albers M">M.W. Albers</name>
</author>
<author>
<name sortKey="Shin, T B" uniqKey="Shin T">T.B. Shin</name>
</author>
<author>
<name sortKey="Ichikawa, K" uniqKey="Ichikawa K">K. Ichikawa</name>
</author>
<author>
<name sortKey="Keith, C T" uniqKey="Keith C">C.T. Keith</name>
</author>
<author>
<name sortKey="Lane, W S" uniqKey="Lane W">W.S. Lane</name>
</author>
<author>
<name sortKey="Schreiber, S L" uniqKey="Schreiber S">S.L. Schreiber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cannon, B" uniqKey="Cannon B">B. Cannon</name>
</author>
<author>
<name sortKey="Nedergaard, J" uniqKey="Nedergaard J">J. Nedergaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cannon, B" uniqKey="Cannon B">B. Cannon</name>
</author>
<author>
<name sortKey="Nedergaard, J" uniqKey="Nedergaard J">J. Nedergaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Catus, S L" uniqKey="Catus S">S.L. Catus</name>
</author>
<author>
<name sortKey="Gibbs, M E" uniqKey="Gibbs M">M.E. Gibbs</name>
</author>
<author>
<name sortKey="Sato, M" uniqKey="Sato M">M. Sato</name>
</author>
<author>
<name sortKey="Summers, R J" uniqKey="Summers R">R.J. Summers</name>
</author>
<author>
<name sortKey="Hutchinson, D S" uniqKey="Hutchinson D">D.S. Hutchinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chernogubova, E" uniqKey="Chernogubova E">E. Chernogubova</name>
</author>
<author>
<name sortKey="Cannon, B" uniqKey="Cannon B">B. Cannon</name>
</author>
<author>
<name sortKey="Bengtsson, T" uniqKey="Bengtsson T">T. Bengtsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chernogubova, E" uniqKey="Chernogubova E">E. Chernogubova</name>
</author>
<author>
<name sortKey="Hutchinson, D S" uniqKey="Hutchinson D">D.S. Hutchinson</name>
</author>
<author>
<name sortKey="Nedergaard, J" uniqKey="Nedergaard J">J. Nedergaard</name>
</author>
<author>
<name sortKey="Bengtsson, T" uniqKey="Bengtsson T">T. Bengtsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Copp, J" uniqKey="Copp J">J. Copp</name>
</author>
<author>
<name sortKey="Manning, G" uniqKey="Manning G">G. Manning</name>
</author>
<author>
<name sortKey="Hunter, T" uniqKey="Hunter T">T. Hunter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dallner, O S" uniqKey="Dallner O">O.S. Dallner</name>
</author>
<author>
<name sortKey="Chernogubova, E" uniqKey="Chernogubova E">E. Chernogubova</name>
</author>
<author>
<name sortKey="Brolinson, K A" uniqKey="Brolinson K">K.A. Brolinson</name>
</author>
<author>
<name sortKey="Bengtsson, T" uniqKey="Bengtsson T">T. Bengtsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Devic, E" uniqKey="Devic E">E. Devic</name>
</author>
<author>
<name sortKey="Xiang, Y" uniqKey="Xiang Y">Y. Xiang</name>
</author>
<author>
<name sortKey="Gould, D" uniqKey="Gould D">D. Gould</name>
</author>
<author>
<name sortKey="Kobilka, B" uniqKey="Kobilka B">B. Kobilka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elabd, C" uniqKey="Elabd C">C. Elabd</name>
</author>
<author>
<name sortKey="Chiellini, C" uniqKey="Chiellini C">C. Chiellini</name>
</author>
<author>
<name sortKey="Carmona, M" uniqKey="Carmona M">M. Carmona</name>
</author>
<author>
<name sortKey="Galitzky, J" uniqKey="Galitzky J">J. Galitzky</name>
</author>
<author>
<name sortKey="Cochet, O" uniqKey="Cochet O">O. Cochet</name>
</author>
<author>
<name sortKey="Petersen, R" uniqKey="Petersen R">R. Petersen</name>
</author>
<author>
<name sortKey="Penicaud, L" uniqKey="Penicaud L">L. Pénicaud</name>
</author>
<author>
<name sortKey="Kristiansen, K" uniqKey="Kristiansen K">K. Kristiansen</name>
</author>
<author>
<name sortKey="Bouloumie, A" uniqKey="Bouloumie A">A. Bouloumié</name>
</author>
<author>
<name sortKey="Casteilla, L" uniqKey="Casteilla L">L. Casteilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, J" uniqKey="Feng J">J. Feng</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J. Park</name>
</author>
<author>
<name sortKey="Cron, P" uniqKey="Cron P">P. Cron</name>
</author>
<author>
<name sortKey="Hess, D" uniqKey="Hess D">D. Hess</name>
</author>
<author>
<name sortKey="Hemmings, B A" uniqKey="Hemmings B">B.A. Hemmings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
<author>
<name sortKey="Czech, M P" uniqKey="Czech M">M.P. Czech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hutchinson, D S" uniqKey="Hutchinson D">D.S. Hutchinson</name>
</author>
<author>
<name sortKey="Bengtsson, T" uniqKey="Bengtsson T">T. Bengtsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hutchinson, D S" uniqKey="Hutchinson D">D.S. Hutchinson</name>
</author>
<author>
<name sortKey="Chernogubova, E" uniqKey="Chernogubova E">E. Chernogubova</name>
</author>
<author>
<name sortKey="Dallner, O S" uniqKey="Dallner O">O.S. Dallner</name>
</author>
<author>
<name sortKey="Cannon, B" uniqKey="Cannon B">B. Cannon</name>
</author>
<author>
<name sortKey="Bengtsson, T" uniqKey="Bengtsson T">T. Bengtsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inokuma, K" uniqKey="Inokuma K">K. Inokuma</name>
</author>
<author>
<name sortKey="Ogura Okamatsu, Y" uniqKey="Ogura Okamatsu Y">Y. Ogura-Okamatsu</name>
</author>
<author>
<name sortKey="Toda, C" uniqKey="Toda C">C. Toda</name>
</author>
<author>
<name sortKey="Kimura, K" uniqKey="Kimura K">K. Kimura</name>
</author>
<author>
<name sortKey="Yamashita, H" uniqKey="Yamashita H">H. Yamashita</name>
</author>
<author>
<name sortKey="Saito, M" uniqKey="Saito M">M. Saito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knight, Z A" uniqKey="Knight Z">Z.A. Knight</name>
</author>
<author>
<name sortKey="Shokat, K M" uniqKey="Shokat K">K.M. Shokat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Konrad, D" uniqKey="Konrad D">D. Konrad</name>
</author>
<author>
<name sortKey="Bilan, P J" uniqKey="Bilan P">P.J. Bilan</name>
</author>
<author>
<name sortKey="Nawaz, Z" uniqKey="Nawaz Z">Z. Nawaz</name>
</author>
<author>
<name sortKey="Sweeney, G" uniqKey="Sweeney G">G. Sweeney</name>
</author>
<author>
<name sortKey="Niu, W" uniqKey="Niu W">W. Niu</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Antonescu, C N" uniqKey="Antonescu C">C.N. Antonescu</name>
</author>
<author>
<name sortKey="Rudich, A" uniqKey="Rudich A">A. Rudich</name>
</author>
<author>
<name sortKey="Klip, A" uniqKey="Klip A">A. Klip</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Lawrence, J C" uniqKey="Lawrence J">J.C. Lawrence</name>
</author>
<author>
<name sortKey="Jung, D Y" uniqKey="Jung D">D.Y. Jung</name>
</author>
<author>
<name sortKey="Ko, H J" uniqKey="Ko H">H.J. Ko</name>
</author>
<author>
<name sortKey="Keller, S R" uniqKey="Keller S">S.R. Keller</name>
</author>
<author>
<name sortKey="Kim, J K" uniqKey="Kim J">J.K. Kim</name>
</author>
<author>
<name sortKey="Magnuson, M A" uniqKey="Magnuson M">M.A. Magnuson</name>
</author>
<author>
<name sortKey="Harris, T E" uniqKey="Harris T">T.E. Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lamming, D W" uniqKey="Lamming D">D.W. Lamming</name>
</author>
<author>
<name sortKey="Sabatini, D M" uniqKey="Sabatini D">D.M. Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laplante, M" uniqKey="Laplante M">M. Laplante</name>
</author>
<author>
<name sortKey="Sabatini, D M" uniqKey="Sabatini D">D.M. Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Comer, F I" uniqKey="Comer F">F.I. Comer</name>
</author>
<author>
<name sortKey="Sasaki, A" uniqKey="Sasaki A">A. Sasaki</name>
</author>
<author>
<name sortKey="Mcleod, I X" uniqKey="Mcleod I">I.X. McLeod</name>
</author>
<author>
<name sortKey="Duong, Y" uniqKey="Duong Y">Y. Duong</name>
</author>
<author>
<name sortKey="Okumura, K" uniqKey="Okumura K">K. Okumura</name>
</author>
<author>
<name sortKey="Yates, J R" uniqKey="Yates J">J.R. Yates</name>
</author>
<author>
<name sortKey="Parent, C A" uniqKey="Parent C">C.A. Parent</name>
</author>
<author>
<name sortKey="Firtel, R A" uniqKey="Firtel R">R.A. Firtel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Perusse, F" uniqKey="Perusse F">F. Pérusse</name>
</author>
<author>
<name sortKey="Bukowiecki, L J" uniqKey="Bukowiecki L">L.J. Bukowiecki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marette, A" uniqKey="Marette A">A. Marette</name>
</author>
<author>
<name sortKey="Bukowiecki, L J" uniqKey="Bukowiecki L">L.J. Bukowiecki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nechad, M" uniqKey="Nechad M">M. Néchad</name>
</author>
<author>
<name sortKey="Nedergaard, J" uniqKey="Nedergaard J">J. Nedergaard</name>
</author>
<author>
<name sortKey="Cannon, B" uniqKey="Cannon B">B. Cannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nedergaard, J" uniqKey="Nedergaard J">J. Nedergaard</name>
</author>
<author>
<name sortKey="Bengtsson, T" uniqKey="Bengtsson T">T. Bengtsson</name>
</author>
<author>
<name sortKey="Cannon, B" uniqKey="Cannon B">B. Cannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nevzorova, J" uniqKey="Nevzorova J">J. Nevzorova</name>
</author>
<author>
<name sortKey="Bengtsson, T" uniqKey="Bengtsson T">T. Bengtsson</name>
</author>
<author>
<name sortKey="Evans, B A" uniqKey="Evans B">B.A. Evans</name>
</author>
<author>
<name sortKey="Summers, R J" uniqKey="Summers R">R.J. Summers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nevzorova, J" uniqKey="Nevzorova J">J. Nevzorova</name>
</author>
<author>
<name sortKey="Evans, B A" uniqKey="Evans B">B.A. Evans</name>
</author>
<author>
<name sortKey="Bengtsson, T" uniqKey="Bengtsson T">T. Bengtsson</name>
</author>
<author>
<name sortKey="Summers, R J" uniqKey="Summers R">R.J. Summers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pessin, J E" uniqKey="Pessin J">J.E. Pessin</name>
</author>
<author>
<name sortKey="Thurmond, D C" uniqKey="Thurmond D">D.C. Thurmond</name>
</author>
<author>
<name sortKey="Elmendorf, J S" uniqKey="Elmendorf J">J.S. Elmendorf</name>
</author>
<author>
<name sortKey="Coker, K J" uniqKey="Coker K">K.J. Coker</name>
</author>
<author>
<name sortKey="Okada, S" uniqKey="Okada S">S. Okada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phung, T L" uniqKey="Phung T">T.L. Phung</name>
</author>
<author>
<name sortKey="Ziv, K" uniqKey="Ziv K">K. Ziv</name>
</author>
<author>
<name sortKey="Dabydeen, D" uniqKey="Dabydeen D">D. Dabydeen</name>
</author>
<author>
<name sortKey="Eyiah Mensah, G" uniqKey="Eyiah Mensah G">G. Eyiah-Mensah</name>
</author>
<author>
<name sortKey="Riveros, M" uniqKey="Riveros M">M. Riveros</name>
</author>
<author>
<name sortKey="Perruzzi, C" uniqKey="Perruzzi C">C. Perruzzi</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
<author>
<name sortKey="Monahan Earley, R A" uniqKey="Monahan Earley R">R.A. Monahan-Earley</name>
</author>
<author>
<name sortKey="Shiojima, I" uniqKey="Shiojima I">I. Shiojima</name>
</author>
<author>
<name sortKey="Nagy, J A" uniqKey="Nagy J">J.A. Nagy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polak, P" uniqKey="Polak P">P. Polak</name>
</author>
<author>
<name sortKey="Hall, M N" uniqKey="Hall M">M.N. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polak, P" uniqKey="Polak P">P. Polak</name>
</author>
<author>
<name sortKey="Cybulski, N" uniqKey="Cybulski N">N. Cybulski</name>
</author>
<author>
<name sortKey="Feige, J N" uniqKey="Feige J">J.N. Feige</name>
</author>
<author>
<name sortKey="Auwerx, J" uniqKey="Auwerx J">J. Auwerx</name>
</author>
<author>
<name sortKey="Ruegg, M A" uniqKey="Ruegg M">M.A. Rüegg</name>
</author>
<author>
<name sortKey="Hall, M N" uniqKey="Hall M">M.N. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raynaud, F I" uniqKey="Raynaud F">F.I. Raynaud</name>
</author>
<author>
<name sortKey="Eccles, S" uniqKey="Eccles S">S. Eccles</name>
</author>
<author>
<name sortKey="Clarke, P A" uniqKey="Clarke P">P.A. Clarke</name>
</author>
<author>
<name sortKey="Hayes, A" uniqKey="Hayes A">A. Hayes</name>
</author>
<author>
<name sortKey="Nutley, B" uniqKey="Nutley B">B. Nutley</name>
</author>
<author>
<name sortKey="Alix, S" uniqKey="Alix S">S. Alix</name>
</author>
<author>
<name sortKey="Henley, A" uniqKey="Henley A">A. Henley</name>
</author>
<author>
<name sortKey="Di Stefano, F" uniqKey="Di Stefano F">F. Di-Stefano</name>
</author>
<author>
<name sortKey="Ahmad, Z" uniqKey="Ahmad Z">Z. Ahmad</name>
</author>
<author>
<name sortKey="Guillard, S" uniqKey="Guillard S">S. Guillard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rehnmark, S" uniqKey="Rehnmark S">S. Rehnmark</name>
</author>
<author>
<name sortKey="Nechad, M" uniqKey="Nechad M">M. Néchad</name>
</author>
<author>
<name sortKey="Herron, D" uniqKey="Herron D">D. Herron</name>
</author>
<author>
<name sortKey="Cannon, B" uniqKey="Cannon B">B. Cannon</name>
</author>
<author>
<name sortKey="Nedergaard, J" uniqKey="Nedergaard J">J. Nedergaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabatini, D M" uniqKey="Sabatini D">D.M. Sabatini</name>
</author>
<author>
<name sortKey="Erdjument Bromage, H" uniqKey="Erdjument Bromage H">H. Erdjument-Bromage</name>
</author>
<author>
<name sortKey="Lui, M" uniqKey="Lui M">M. Lui</name>
</author>
<author>
<name sortKey="Tempst, P" uniqKey="Tempst P">P. Tempst</name>
</author>
<author>
<name sortKey="Snyder, S H" uniqKey="Snyder S">S.H. Snyder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarbassov, D D" uniqKey="Sarbassov D">D.D. Sarbassov</name>
</author>
<author>
<name sortKey="Ali, S M" uniqKey="Ali S">S.M. Ali</name>
</author>
<author>
<name sortKey="Kim, D H" uniqKey="Kim D">D.H. Kim</name>
</author>
<author>
<name sortKey="Guertin, D A" uniqKey="Guertin D">D.A. Guertin</name>
</author>
<author>
<name sortKey="Latek, R R" uniqKey="Latek R">R.R. Latek</name>
</author>
<author>
<name sortKey="Erdjument Bromage, H" uniqKey="Erdjument Bromage H">H. Erdjument-Bromage</name>
</author>
<author>
<name sortKey="Tempst, P" uniqKey="Tempst P">P. Tempst</name>
</author>
<author>
<name sortKey="Sabatini, D M" uniqKey="Sabatini D">D.M. Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarbassov, D D" uniqKey="Sarbassov D">D.D. Sarbassov</name>
</author>
<author>
<name sortKey="Ali, S M" uniqKey="Ali S">S.M. Ali</name>
</author>
<author>
<name sortKey="Sengupta, S" uniqKey="Sengupta S">S. Sengupta</name>
</author>
<author>
<name sortKey="Sheen, J H" uniqKey="Sheen J">J.H. Sheen</name>
</author>
<author>
<name sortKey="Hsu, P P" uniqKey="Hsu P">P.P. Hsu</name>
</author>
<author>
<name sortKey="Bagley, A F" uniqKey="Bagley A">A.F. Bagley</name>
</author>
<author>
<name sortKey="Markhard, A L" uniqKey="Markhard A">A.L. Markhard</name>
</author>
<author>
<name sortKey="Sabatini, D M" uniqKey="Sabatini D">D.M. Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, M" uniqKey="Sato M">M. Sato</name>
</author>
<author>
<name sortKey="Dehvari, N" uniqKey="Dehvari N">N. Dehvari</name>
</author>
<author>
<name sortKey="Oberg, A I" uniqKey="Oberg A">A.I. Öberg</name>
</author>
<author>
<name sortKey="Dallner, O S" uniqKey="Dallner O">O.S. Dallner</name>
</author>
<author>
<name sortKey="Sandstrom, A L" uniqKey="Sandstrom A">A.L. Sandström</name>
</author>
<author>
<name sortKey="Olsen, J M" uniqKey="Olsen J">J.M. Olsen</name>
</author>
<author>
<name sortKey="Csikasz, R I" uniqKey="Csikasz R">R.I. Csikasz</name>
</author>
<author>
<name sortKey="Summers, R J" uniqKey="Summers R">R.J. Summers</name>
</author>
<author>
<name sortKey="Hutchinson, D S" uniqKey="Hutchinson D">D.S. Hutchinson</name>
</author>
<author>
<name sortKey="Bengtsson, T" uniqKey="Bengtsson T">T. Bengtsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shibata, H" uniqKey="Shibata H">H. Shibata</name>
</author>
<author>
<name sortKey="Perusse, F" uniqKey="Perusse F">F. Pérusse</name>
</author>
<author>
<name sortKey="Vallerand, A" uniqKey="Vallerand A">A. Vallerand</name>
</author>
<author>
<name sortKey="Bukowiecki, L J" uniqKey="Bukowiecki L">L.J. Bukowiecki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimizu, Y" uniqKey="Shimizu Y">Y. Shimizu</name>
</author>
<author>
<name sortKey="Saito, M" uniqKey="Saito M">M. Saito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimobayashi, M" uniqKey="Shimobayashi M">M. Shimobayashi</name>
</author>
<author>
<name sortKey="Hall, M N" uniqKey="Hall M">M.N. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stanford, K I" uniqKey="Stanford K">K.I. Stanford</name>
</author>
<author>
<name sortKey="Middelbeek, R J" uniqKey="Middelbeek R">R.J. Middelbeek</name>
</author>
<author>
<name sortKey="Townsend, K L" uniqKey="Townsend K">K.L. Townsend</name>
</author>
<author>
<name sortKey="An, D" uniqKey="An D">D. An</name>
</author>
<author>
<name sortKey="Nygaard, E B" uniqKey="Nygaard E">E.B. Nygaard</name>
</author>
<author>
<name sortKey="Hitchcox, K M" uniqKey="Hitchcox K">K.M. Hitchcox</name>
</author>
<author>
<name sortKey="Markan, K R" uniqKey="Markan K">K.R. Markan</name>
</author>
<author>
<name sortKey="Nakano, K" uniqKey="Nakano K">K. Nakano</name>
</author>
<author>
<name sortKey="Hirshman, M F" uniqKey="Hirshman M">M.F. Hirshman</name>
</author>
<author>
<name sortKey="Tseng, Y H" uniqKey="Tseng Y">Y.H. Tseng</name>
</author>
<author>
<name sortKey="Goodyear, L J" uniqKey="Goodyear L">L.J. Goodyear</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Surucu, B" uniqKey="Surucu B">B. Surucu</name>
</author>
<author>
<name sortKey="Bozulic, L" uniqKey="Bozulic L">L. Bozulic</name>
</author>
<author>
<name sortKey="Hynx, D" uniqKey="Hynx D">D. Hynx</name>
</author>
<author>
<name sortKey="Parcellier, A" uniqKey="Parcellier A">A. Parcellier</name>
</author>
<author>
<name sortKey="Hemmings, B A" uniqKey="Hemmings B">B.A. Hemmings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsakiridis, T" uniqKey="Tsakiridis T">T. Tsakiridis</name>
</author>
<author>
<name sortKey="Vranic, M" uniqKey="Vranic M">M. Vranic</name>
</author>
<author>
<name sortKey="Klip, A" uniqKey="Klip A">A. Klip</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wakatsuki, T" uniqKey="Wakatsuki T">T. Wakatsuki</name>
</author>
<author>
<name sortKey="Schwab, B" uniqKey="Schwab B">B. Schwab</name>
</author>
<author>
<name sortKey="Thompson, N C" uniqKey="Thompson N">N.C. Thompson</name>
</author>
<author>
<name sortKey="Elson, E L" uniqKey="Elson E">E.L. Elson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaid, H" uniqKey="Zaid H">H. Zaid</name>
</author>
<author>
<name sortKey="Antonescu, C N" uniqKey="Antonescu C">C.N. Antonescu</name>
</author>
<author>
<name sortKey="Randhawa, V K" uniqKey="Randhawa V">V.K. Randhawa</name>
</author>
<author>
<name sortKey="Klip, A" uniqKey="Klip A">A. Klip</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Cell Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Cell Biol</journal-id>
<journal-id journal-id-type="hwp">jcb</journal-id>
<journal-id journal-id-type="publisher-id">jcb</journal-id>
<journal-title-group>
<journal-title>The Journal of Cell Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0021-9525</issn>
<issn pub-type="epub">1540-8140</issn>
<publisher>
<publisher-name>The Rockefeller University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25385184</article-id>
<article-id pub-id-type="pmc">4226734</article-id>
<article-id pub-id-type="publisher-id">201403080</article-id>
<article-id pub-id-type="doi">10.1083/jcb.201403080</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Articles</subject>
<subj-group>
<subject>Article</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation</article-title>
<alt-title alt-title-type="short">mTOR complex 2 promoted GLUT1 translocation</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Olsen</surname>
<given-names>Jessica M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="author-notes" rid="fn1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sato</surname>
<given-names>Masaaki</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff3">3</xref>
<xref ref-type="aff" rid="aff3">4</xref>
<xref ref-type="author-notes" rid="fn1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dallner</surname>
<given-names>Olof S.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sandström</surname>
<given-names>Anna L.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pisani</surname>
<given-names>Didier F.</given-names>
</name>
<xref ref-type="aff" rid="aff4">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chambard</surname>
<given-names>Jean-Claude</given-names>
</name>
<xref ref-type="aff" rid="aff4">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Amri</surname>
<given-names>Ez-Zoubir</given-names>
</name>
<xref ref-type="aff" rid="aff4">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hutchinson</surname>
<given-names>Dana S.</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
<xref ref-type="aff" rid="aff3">4</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Bengtsson</surname>
<given-names>Tore</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<institution>Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden</institution>
</aff>
<aff id="aff2">
<label>2</label>
<institution>Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065</institution>
</aff>
<aff id="aff3">
<label>3</label>
<institution>Department of Pharmacology</institution>
and
<label>4</label>
<institution>Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia</institution>
</aff>
<aff id="aff4">
<label>5</label>
<institution>Institute of Biology Valrose, Centre National de la Recherche Scientifique UMR 7277, Institut National de la Santé et de la Recherche Médicale UMR 1091, University of Nice Sophia Antipolis, 06100 Nice, France</institution>
</aff>
<author-notes>
<corresp>Correspondence to Tore Bengtsson:
<email>tore.bengtsson@su.se</email>
</corresp>
<fn id="fn1">
<label>*</label>
<p>J.M. Olsen and M. Sato contributed equally to this paper.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>10</day>
<month>11</month>
<year>2014</year>
</pub-date>
<volume>207</volume>
<issue>3</issue>
<fpage>365</fpage>
<lpage>374</lpage>
<history>
<date date-type="received">
<day>19</day>
<month>3</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>30</day>
<month>9</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 Olsen et al.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="openaccess">
<license-p>This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see
<ext-link ext-link-type="uri" xlink:href="http://www.rupress.org/terms">http://www.rupress.org/terms</ext-link>
). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-sa/3.0/">http://creativecommons.org/licenses/by-nc-sa/3.0/</ext-link>
).</license-p>
</license>
</permissions>
<self-uri xlink:role="icon" xlink:href="JCB_201403080_thumb.gif"></self-uri>
<abstract abstract-type="precis">
<p>β
<sub>3</sub>
-Adrenoceptors promote glucose uptake in brown adipose tissue via both cAMP-mediated increases in GLUT1 transcription and mTORC2-stimulated translocation of newly synthesized GLUT1 to the plasma membrane.</p>
</abstract>
<abstract>
<p>Brown adipose tissue is the primary site for thermogenesis and can consume, in addition to free fatty acids, a very high amount of glucose from the blood, which can both acutely and chronically affect glucose homeostasis. Here, we show that mechanistic target of rapamycin (mTOR) complex 2 has a novel role in β
<sub>3</sub>
-adrenoceptor–stimulated glucose uptake in brown adipose tissue. We show that β
<sub>3</sub>
-adrenoceptors stimulate glucose uptake in brown adipose tissue via a signaling pathway that is comprised of two different parts: one part dependent on cAMP-mediated increases in GLUT1 transcription and de novo synthesis of GLUT1 and another part dependent on mTOR complex 2–stimulated translocation of newly synthesized GLUT1 to the plasma membrane, leading to increased glucose uptake. Both parts are essential for β
<sub>3</sub>
-adrenoceptor–stimulated glucose uptake. Importantly, the effect of β
<sub>3</sub>
-adrenoceptor on mTOR complex 2 is independent of the classical insulin–phosphoinositide 3-kinase–Akt pathway, highlighting a novel mechanism of mTOR complex 2 activation.</p>
</abstract>
</article-meta>
</front>
<body>
<sec sec-type="introduction">
<title>Introduction</title>
<p>The recent interest in brown adipose tissue (BAT) research stems from the insight that this tissue, when activated, expends energy in the form of heat production (thermogenesis) that could potentially affect whole body energy homeostasis in humans, with recent evidence demonstrating the presence and function of BAT in adult humans (
<xref rid="bib25" ref-type="bibr">Nedergaard et al., 2007</xref>
). Besides its role in thermogenesis (
<xref rid="bib3" ref-type="bibr">Cannon and Nedergaard, 2004</xref>
), another important function is that it can consume, in addition to free fatty acids, a very high amount of glucose per gram of tissue from the blood (
<xref rid="bib38" ref-type="bibr">Shibata et al., 1989</xref>
;
<xref rid="bib22" ref-type="bibr">Liu et al., 1994</xref>
). Studies in rodents have shown that the amount of glucose delivered to BAT is enough to both acutely and in the long term affect glucose homeostasis (
<xref rid="bib41" ref-type="bibr">Stanford et al., 2013</xref>
). Because of these properties, BAT may prove to be a potential therapeutic target for several metabolic disorders that are dependent on glucose homeostasis, including type 2 diabetes.</p>
<p>Glucose uptake in BAT is stimulated in two metabolic states: sympathetically stimulated during active thermogenesis or by insulin during active anabolic processes. Although insulin-stimulated glucose uptake in tissues, including BAT, is well-characterized by the phosphoinositide 3-kinase-phosphoinositide–dependent kinase-1-Akt (PI3K–PDK1–Akt) pathway as resulting in the rapid translocation of glucose transporter 4 (GLUT4) from intracellular vesicles to the cell membrane (
<xref rid="bib12" ref-type="bibr">Huang and Czech, 2007</xref>
;
<xref rid="bib45" ref-type="bibr">Zaid et al., 2008</xref>
), the sympathetic pathway is poorly understood. Stimulation of the sympathetic nervous system via adrenoceptors, predominately the β
<sub>3</sub>
-adrenoceptor, increases non-shivering thermogenesis in mammals (
<xref rid="bib25" ref-type="bibr">Nedergaard et al., 2007</xref>
), but also increases glucose uptake in BAT (
<xref rid="bib15" ref-type="bibr">Inokuma et al., 2005</xref>
). β
<sub>3</sub>
-Adrenoceptor–stimulated glucose uptake is independent of the action of insulin in vivo and in vitro: glucose uptake in BAT in vivo is associated with decreases in plasma insulin levels (
<xref rid="bib39" ref-type="bibr">Shimizu and Saito, 1991</xref>
), whereas in vitro β-adrenoceptor–mediated glucose uptake occurs in the absence of insulin (
<xref rid="bib23" ref-type="bibr">Marette and Bukowiecki, 1989</xref>
;
<xref rid="bib5" ref-type="bibr">Chernogubova et al., 2004</xref>
;
<xref rid="bib6" ref-type="bibr">Chernogubova et al., 2005</xref>
) and via actions at GLUT1 and not GLUT4 (
<xref rid="bib39" ref-type="bibr">Shimizu and Saito, 1991</xref>
;
<xref rid="bib8" ref-type="bibr">Dallner et al., 2006</xref>
). Although other signaling pathways such as AMP-activated protein kinase can increase glucose uptake via an insulin-independent mechanism, we previously demonstrated that this mechanism is not likely to be involved in β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake in BAT (
<xref rid="bib14" ref-type="bibr">Hutchinson et al., 2005</xref>
). Hence, an alternative signaling pathway must be involved. One such candidate is mechanistic target of rapamycin (mTOR;
<xref rid="bib20" ref-type="bibr">Laplante and Sabatini, 2012</xref>
).</p>
<p>mTOR is essential in the control of many aspects of cell growth, metabolism, and energy homeostasis (
<xref rid="bib30" ref-type="bibr">Polak and Hall, 2009</xref>
;
<xref rid="bib20" ref-type="bibr">Laplante and Sabatini, 2012</xref>
;
<xref rid="bib19" ref-type="bibr">Lamming and Sabatini, 2013</xref>
). mTOR is the catalytic part of two functionally distinct multiprotein complexes: the well-studied mTOR complex 1 (mTORC1) and the less-studied mTOR complex 2 (mTORC2). They have different downstream targets, different biological functions, and, importantly, different sensitivity to the drug rapamycin. mTORC1 is pharmacologically inhibited by short-term rapamycin treatment, whereas mTORC2 is resistant to short-term rapamycin treatment, although long-term treatment can prevent mTORC2 complex assembly (
<xref rid="bib29" ref-type="bibr">Phung et al., 2006</xref>
;
<xref rid="bib36" ref-type="bibr">Sarbassov et al., 2006</xref>
). Recent studies of mTOR show that both complexes have important regulatory roles in white adipose tissue (
<xref rid="bib19" ref-type="bibr">Lamming and Sabatini, 2013</xref>
). Most of the efforts have, however, been focused on studying white adipose tissue, leaving the role and the importance of both complexes of mTOR in BAT function relatively unexplored. Recent data indicate a role of mTORC2 in glucose homeostasis, with adipose-specific ablation of rictor, a component of the mTORC2 complex, depressing insulin-stimulated glucose uptake in adipose tissue and impairing glucose tolerance in vivo (
<xref rid="bib18" ref-type="bibr">Kumar et al., 2010</xref>
). Adipose-specific deletion of raptor, a component of the mTORC1 complex, however, results in mice that are resistant to diet-induced obesity and are insulin sensitive (
<xref rid="bib30" ref-type="bibr">Polak and Hall, 2009</xref>
), which indicates vastly different roles for mTORC1 and mTORC2 in adipose tissues.</p>
<p>In this study, we demonstrate that mTOR is necessary for β
<sub>3</sub>
-adrenoceptor–stimulated glucose uptake in mouse brown adipocytes and in human multipotent adipose-derived stem (hMADS) cells. Stimulation of β
<sub>3</sub>
-adrenoceptors increases glucose uptake via a pathway divided into two parts. The first part is dependent on increased GLUT1 transcription and de novo synthesi
<italic>s</italic>
of GLUT1 via elevations in cAMP levels that are not dependent on either mTOR complexes. The second part involves translocation of GLUT1 to the plasma membrane by an mTORC2-mediated pathway. Both parts are necessary for β
<sub>3</sub>
-adrenoceptor–stimulated glucose uptake in BAT.</p>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>β
<sub>3</sub>
-Adrenoceptor–stimulated glucose uptake in primary brown adipocytes is independent of insulin signaling</title>
<p>Isoproterenol (1 µM), a β-adrenoceptor agonist, and insulin (100 nM) increased glucose uptake approximately twofold in brown adipocytes (
<xref ref-type="fig" rid="fig1">Fig. 1 A</xref>
), which is consistent with our previous results (
<xref rid="bib5" ref-type="bibr">Chernogubova et al., 2004</xref>
). The effect of isoproterenol was mimicked by the cell-permeable cAMP analogue 8-bromoadenosine-cAMP (8-br-cAMP; 1 mM;
<xref ref-type="fig" rid="fig1">Fig. 1 A</xref>
). Inhibition of PI3Kα by compound 15e (
<xref ref-type="fig" rid="fig1">Fig. 1 B</xref>
) inhibited insulin (IC
<sub>50</sub>
256 nM) but not isoproterenol-mediated glucose uptake. Akt inhibitor X (100 µM) also failed to inhibit isoproterenol-stimulated glucose uptake (
<xref ref-type="fig" rid="fig1">Fig. 1 C</xref>
). However, it did block phosphorylation of p70S6K at Thr389 (a known substrate of Akt) upon insulin but not isoproterenol stimulation (
<xref ref-type="fig" rid="fig1">Fig. 1 D</xref>
). Similar results were obtained using Akt inhibitor VII (unpublished data). Isoproterenol also failed to phosphorylate Akt at either Thr308 or Ser473 (
<xref ref-type="fig" rid="fig1">Fig. 1 E</xref>
). Insulin-stimulated glucose uptake occurs primarily through GLUT4 translocation in both brown and white adipocytes (
<xref rid="bib8" ref-type="bibr">Dallner et al., 2006</xref>
;
<xref rid="bib12" ref-type="bibr">Huang and Czech, 2007</xref>
;
<xref rid="bib45" ref-type="bibr">Zaid et al., 2008</xref>
). The GLUT4 inhibitor indinavir (
<xref ref-type="fig" rid="fig1">Fig. 1 F</xref>
) did not inhibit isoproterenol-stimulated glucose uptake while inhibiting insulin mediated glucose uptake, which highlights a contrast between the mechanisms of insulin and β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake in brown adipocytes.</p>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<p>
<bold>β-Adrenoceptor glucose uptake in mouse primary brown adipocyte cultures is independent of insulin.</bold>
(A) Isoproterenol (1 µM), 8-br-cAMP (1 mM), and insulin (100 nM) significantly increased glucose uptake in mature brown adipocytes (isoproterenol P = 0.0086, 8-br-cAMP P = 0.0015, insulin P = 0.0012). Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 5). (B) The PI3K-p110α inhibitor compound 15 (10 µM) did not inhibit isoproterenol (1 µM)-stimulated glucose. There was a significant difference between insulin and isoproterenol (P = 0.0015). The results are expressed as a percentage of basal glucose uptake. Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 3–7). (C and D) The Akt inhibitor X (100 µM) fully blocked the phosphorylation on p70S6k, a known substrate of Akt (D; P = 0.0064), but did not significantly inhibit isoproterenol (1 µM)-stimulated glucose uptake (
<italic>n</italic>
= 3). (E) Western blot demonstrating Akt phosphorylation at Thr308 and Ser473 in response to 2 h stimulation of 100 nM insulin (P = 0.0052 and P = 0.0055, respectively) but not 1 µM isoproterenol. The blot is representative of three experiments performed. (F) Isoproterenol (1 µM)- and insulin (100 nM)-stimulated glucose uptake in response to the GLUT4 inhibitor Indinavir (1 mM). Indinavir did inhibit insulin-mediated glucose uptake (P = 0.0008) but did not inhibit isoproterenol-mediated glucose uptake. The results are expressed as a percentage of basal glucose uptake. Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 3). **, P < 0.01.</p>
</caption>
<graphic xlink:href="JCB_201403080_Fig1"></graphic>
</fig>
</sec>
<sec>
<title>mTOR is a key factor in isoproterenol-stimulated glucose uptake</title>
<p>Pharmacological inhibition of PI3K by LY294002 inhibited isoproterenol-mediated glucose uptake in brown adipocytes (
<xref ref-type="fig" rid="fig2">Fig. 2 A</xref>
), which is consistent with our previous results (
<xref rid="bib5" ref-type="bibr">Chernogubova et al., 2004</xref>
;
<xref rid="bib8" ref-type="bibr">Dallner et al., 2006</xref>
), despite no concomitant phosphorylation of Akt (
<xref ref-type="fig" rid="fig1">Fig. 1 C</xref>
). This discrepancy may be caused by the nonspecific effects of these PI3K inhibitors (LY294002, wortmannin) on a wide range of other related PIKK family kinases (
<xref rid="bib16" ref-type="bibr">Knight and Shokat, 2007</xref>
;
<xref rid="bib32" ref-type="bibr">Raynaud et al., 2007</xref>
), including mTOR. The dual PI3K-mTOR inhibitor PI-103 (IC
<sub>50</sub>
1.2 µM;
<xref ref-type="fig" rid="fig2">Fig. 2 B</xref>
) and the specific mTOR inhibitor Torin-1 (IC
<sub>50</sub>
4.6 nM;
<xref ref-type="fig" rid="fig2">Fig. 2 C</xref>
) all significantly inhibited isoproterenol (1 µM)-stimulated glucose uptake. Furthermore, mimicking elevations in cAMP levels after isoproterenol treatment with 8-Br-cAMP (1 mM) increased glucose uptake to the same extent as isoproterenol, which was inhibited by Torin-1 (
<xref ref-type="fig" rid="fig2">Fig. 2 D</xref>
) and the commercially available mTOR inhibitor KU0063794 (unpublished data), which suggests that mTOR is downstream of cAMP.</p>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<p>
<bold>The effect of PI3K and PIKK inhibitors on β-adrenoceptor–mediated glucose uptake in mouse primary brown adipocytes.</bold>
(A) Inhibition of isoproterenol (1 µM)-stimulated glucose uptake by the 10 µM PI3K and PIKK inhibitor LY294002 (P = 0.0306). Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 3). (B) Inhibition of isoproterenol (1 µM)-stimulated glucose uptake by the PIKK family inhibitor PI-103 (10 µM). Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 4). (C) Inhibition of isoproterenol (1 µM)-stimulated glucose uptake by the mTOR inhibitor Torin-1 (1 µM). Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 3). (D) The effect of Torin-1 (1 µM) on glucose uptake in response to 1 µM isoproterenol (P = 0.0042) and 1 mM of the cell-permeable cAMP analogue 8-br-cAMP (P = 0.0409). Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 4–6). *, P < 0.05; **, P < 0.01.</p>
</caption>
<graphic xlink:href="JCB_201403080_Fig2"></graphic>
</fig>
</sec>
<sec>
<title>The effect of long-term stimulation of rapamycin on β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake and mTOR phosphorylation suggests mTORC2 involvement</title>
<p>To further investigate the role of mTOR in isoproterenol-stimulated glucose uptake, we examined which mTOR complex was involved by using rapamycin. Short-term treatment (30 min) of rapamycin that inhibits mTORC1 (
<xref rid="bib1" ref-type="bibr">Brown et al., 1994</xref>
;
<xref rid="bib34" ref-type="bibr">Sabatini et al., 1994</xref>
) did not affect isoproterenol-mediated glucose uptake (
<xref ref-type="fig" rid="fig3">Fig. 3 A</xref>
), but did completely block insulin-stimulated phosphorylation of p70S6K, a downstream substrate of mTORC1 (not depicted). However, long-term rapamycin treatment that inhibits the assembly of the mTORC2 complex (
<xref rid="bib29" ref-type="bibr">Phung et al., 2006</xref>
;
<xref rid="bib36" ref-type="bibr">Sarbassov et al., 2006</xref>
) significantly inhibited isoproterenol-mediated glucose uptake (IC
<sub>50</sub>
16 nM;
<xref ref-type="fig" rid="fig3">Fig. 3 B</xref>
).</p>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<p>
<bold>mTORC2 is a key factor in isoproterenol-mediated glucose uptake in mouse primary brown adipocytes.</bold>
(A) The effect of rapamycin on glucose uptake in response to isoproterenol (1 µM). Brown adipocyte primary cultures were pretreated with rapamycin for 30 min followed by stimulation with isoproterenol (1 µM for 2 h). The results are expressed as a percentage of basal glucose uptake. Each point represents the mean ± SEM (error bars;
<italic>n</italic>
= 3–7). (B) The effect of rapamycin on glucose uptake in response to isoproterenol (1 µM). Brown adipocyte primary cultures were pretreated with rapamycin for 46 h followed by stimulation with isoproterenol (1 µM for 2 h). The results are expressed as a percentage of basal glucose uptake. Each point represents the mean ± SEM (error bars;
<italic>n</italic>
= 3–7). (C) mTOR phosphorylation at Ser2481 (P < 0.001) but not at Ser2448 in response to 2 h of stimulation of 1 µM isoprenaline in the presence or absence of the mTOR inhibitor KU 0063794 (1 µM). The immunoblot is representative of three experiments performed. (D) Knockdown of raptor and rictor with the K2 transfection system resulted in a large reduction of both proteins. However, only knockdown of rictor led to inhibition of isoproterenol-stimulated glucose uptake (P = 0.0105). Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 3). (E) Isoproterenol (1 µM)-stimulated glucose uptake in the presence and absence of 20 µM Latrunculin B (P = 0.0027). Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 4). *, P < 0.5; **, P < 0.01; ***, P < 0.001.</p>
</caption>
<graphic xlink:href="JCB_201403080_Fig3"></graphic>
</fig>
<p>mTOR is phosphorylated at several sites including Ser2481 and Ser2448. These phosphorylation sites are located predominantly on different complexes: Ser2448 on complex 1 and Ser2481 on complex 2 (
<xref rid="bib7" ref-type="bibr">Copp et al., 2009</xref>
). Isoproterenol phosphorylated mTOR at Ser2481 but not Ser2448 (
<xref ref-type="fig" rid="fig3">Fig. 3 C</xref>
). Phosphorylation at Ser2481 by isoproterenol was abolished in the presence of the commercially available mTOR inhibitor KU 0063794. S2448 phosphorylation, although predominately associated with mTORC1, is not completely specific for mTORC1, with some S2448-phosphorylated mTOR associated with rictor in HEK293 cells and some other cancer cell lines (
<xref rid="bib7" ref-type="bibr">Copp et al., 2009</xref>
). Hence, we have knocked down either rictor or raptor to fully elucidate the mTOR complex involved. Knockdown of raptor or rictor, the regulatory subunit of mTORC1 and mTORC2, respectively, resulted in ∼85% knockdown of raptor protein levels or 75% of rictor protein levels (
<xref ref-type="fig" rid="fig3">Fig. 3 D</xref>
). Isoproterenol-stimulated glucose uptake was abolished by knockdown of rictor and not raptor, confirming the involvement of mTORC2.</p>
<p>mTORC2 is believed to be involved in the regulation of the cytoskeleton by reorganization of actin filaments (
<xref rid="bib35" ref-type="bibr">Sarbassov et al., 2004</xref>
). Isoproterenol-mediated glucose uptake was significantly inhibited by Latrunculin B, which disrupts the actin cytoskeleton (
<xref rid="bib44" ref-type="bibr">Wakatsuki et al., 2001</xref>
;
<xref ref-type="fig" rid="fig3">Fig. 3 E</xref>
), indicating the involvement of actin filaments and giving further evidence of mTORC2 involvement.</p>
</sec>
<sec>
<title>β-Adrenoceptor–mediated glucose uptake is dependent on mTOR in both human MADS cells and in vivo</title>
<p>To further confirm our findings in primary brown adipocyte cultures, glucose uptake in BAT was measured in vivo in β
<sub>1</sub>
<sub>2</sub>
knockout (to exclude any effects on β
<sub>1</sub>
- or β
<sub>2</sub>
-adrenoceptors) and wild-type FVB mice that express all three β-adrenoceptor subtypes (
<xref ref-type="fig" rid="fig4">Fig. 4, A and B</xref>
). Isoproterenol increased glucose uptake in BAT in vivo in FVB and β
<sub>1</sub>
<sub>2</sub>
knockout mice, which indicates that isoproterenol acts via β
<sub>3</sub>
-adrenoceptors. This effect in FVB mice in vivo was abolished by treatment of mice with the mTOR inhibitor KU 0063794.</p>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4.</label>
<caption>
<p>
<bold>Adrenoceptor-mediated glucose uptake in human MADS cells and in mice occurs through mTOR.</bold>
(A) Isoproterenol stimulated glucose uptake in vivo in β
<sub>1</sub>
×β
<sub>2</sub>
knockout mice. Mice were stimulated with 1 mg/kg i.p. isoproterenol (P = 0.0002). Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 5). (B) Isoproterenol-stimulated glucose uptake in vivo in FVB mice. Mice were stimulated with 1 mg/kg i.p. isoproterenol. Isoproterenol-stimulated glucose uptake was significantly reduced (P = 0.0175) by the mTOR inhibitor KU 0063794 (1 µM). Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 5). (C) Isoproterenol (10 and 100 nM) significantly increased (P = 0.0023 and P = 0.0357, respectively) glucose uptake in human MADS cells. Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 3). (D) 1 µM KU 0063794 significantly blocked (P = 0.0025) isoproterenol-stimulated glucose uptake in human MADS cells. Each value represents the mean ± SEM (error bars;
<italic>n</italic>
= 4). *, P < 0.05; **, P < 0.01; ***, P < 0.001.</p>
</caption>
<graphic xlink:href="JCB_201403080_Fig4"></graphic>
</fig>
<p>Human multipotent adipose-derived stem hMADS cells are a mesenchymal stem cell population from human adipose tissue. Differentiated hMADS cells respond to both insulin and β-adrenoceptor agonists, have up-regulated uncoupling protein 1 expression after stimulation of a β
<sub>3</sub>
-adrenoceptor agonist, and have increased uncoupling protein 1–dependent respiratory capacity after activation of PPARγ (
<xref rid="bib10" ref-type="bibr">Elabd et al., 2009</xref>
). Isoproterenol significantly increased glucose uptake in hMADS cells (
<xref ref-type="fig" rid="fig4">Fig. 4 C</xref>
), which was significantly inhibited by the mTOR inhibitor KU 0063794 (
<xref ref-type="fig" rid="fig4">Fig. 4 D</xref>
).</p>
</sec>
<sec>
<title>mTORC2 mediates translocation of GLUT1 in BAT</title>
<p>β
<sub>3</sub>
-Adrenoceptor–stimulated glucose uptake in brown adipocytes is dependent on de novo synthesis and translocation of GLUT1 but not GLUT4 (
<xref rid="bib8" ref-type="bibr">Dallner et al., 2006</xref>
). Isoproterenol increased total GLUT1 protein content in a time-dependent manner, with total GLUT1 protein levels not affected by the mTOR inhibitor KU 0063794 when measuring total GLUT1 protein content by immunoblotting (
<xref ref-type="fig" rid="fig5">Fig. 5 A</xref>
) or using confocal microscopy in permeabilized cells (
<xref ref-type="fig" rid="fig5">Fig. 5 B</xref>
). However, visualization of only cell surface GLUT1 in nonpermeabilized cells showed that isoproterenol increased expression of cell surface GLUT1 in a KU 0063794–sensitive manner (
<xref ref-type="fig" rid="fig5">Fig. 5 C</xref>
). These results indicate that mTORC2 may have an important role in transporting the newly synthesized glucose transporters to the plasma membrane.</p>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<p>
<bold>KU 0063794 prevents the translocation of GLUT1 to the plasma membrane after stimulation of isoproterenol in mature brown adipocytes.</bold>
(A) Western blot showing GLUT1 protein content in mature brown adipocytes after isoproterenol stimulation (1 µM, 0–2 h) in the presence or absence of 1 µM KU 0063794. Isoproterenol significantly increase the amount of GLUT1 in an mTOR-independent manner (P = 0.0015 and P = 0.0003, respectively;
<italic>n</italic>
= 3). (B) Permeabilized mature brown adipocytes treated for 2 h with 1 µM isoproterenol (P = 0.0334) showing total cellular GLUT1 in the presence or absence of 1 µM KU 0063794 (
<italic>n</italic>
= 3). (C) Nonpermeabilized mature brown adipocytes after 2 h of 1 µM isoproterenol treatment in the presence or absence of 1 µM KU 0063794 (P = 0.0153). The histogram shows significant inhibition of GLUT1 transport to the plasma membrane (
<italic>n</italic>
= 3). *, P < 0.05; **, P < 0.01; ***, P < 0.001. Bars, 100 µm.</p>
</caption>
<graphic xlink:href="JCB_201403080_Fig5"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>Stimulation of glucose uptake has been used as an important parameter for understanding BAT existence, localization, and function in animals (
<xref rid="bib3" ref-type="bibr">Cannon and Nedergaard, 2004</xref>
;
<xref rid="bib25" ref-type="bibr">Nedergaard et al., 2007</xref>
). Together with the potential importance that BAT has in regulating total energy homeostasis in the body (
<xref rid="bib3" ref-type="bibr">Cannon and Nedergaard, 2004</xref>
), it is important to understand the mechanisms that regulate glucose uptake in this tissue. Curiously however, the signaling pathway and mechanism used to increase glucose uptake in brown adipocytes and BAT are not well characterized. In this article, we show that β
<sub>3</sub>
-adrenoceptor–stimulated glucose uptake in brown adipocytes occurs through a pathway divided into two parts that both involve cAMP elevation. The first part is rapid de novo synthesis of GLUT1, which is mTOR independent. The second part of translocation of the newly synthesized GLUT1 to the plasma membrane requires mTORC2 (
<xref ref-type="fig" rid="fig6">Fig. 6</xref>
).</p>
<fig id="fig6" orientation="portrait" position="float">
<label>Figure 6.</label>
<caption>
<p>
<bold>Schematic summary of the mechanism of β
<sub>3</sub>
-adrenceptor–stimulated glucose uptake in BAT.</bold>
Activation of β
<sub>3</sub>
-adrenoceptors result in increased levels of intracellular cAMP that lead to increased de novo synthesis of GLUT1 (1) and mTORC2 phosphorylation (2). The newly produced GLUT1 is then translocated to the plasma membrane with help of actin filaments.</p>
</caption>
<graphic xlink:href="JCB_201403080_Fig6"></graphic>
</fig>
<p>In this paper, we have used the β-adrenoceptor agonist isoproterenol for all the in vivo and in vitro studies. We have extensively shown (
<xref rid="bib5" ref-type="bibr">Chernogubova et al., 2004</xref>
,
<xref rid="bib6" ref-type="bibr">2005</xref>
;
<xref rid="bib13" ref-type="bibr">Hutchinson and Bengtsson, 2006</xref>
;
<xref rid="bib8" ref-type="bibr">Dallner et al., 2006</xref>
) that the β
<sub>3</sub>
-adrenoceptor is the only β-adrenoceptor subtype that increases glucose uptake via increased de novo synthesis of GLUT1 in brown adipocytes from wild-type mice in vitro through the use of specific agonists and antagonists (
<xref rid="bib5" ref-type="bibr">Chernogubova et al., 2004</xref>
,
<xref rid="bib6" ref-type="bibr">2005</xref>
;
<xref rid="bib8" ref-type="bibr">Dallner et al., 2006</xref>
). The exception occurs in β
<sub>3</sub>
-adrenoceptor knockout mice, where there is compensation by both the α
<sub>1</sub>
- and β
<sub>1</sub>
-adrenoceptors that is not evident in cultures derived from wild-type mice (
<xref rid="bib6" ref-type="bibr">Chernogubova et al., 2005</xref>
). Hence we strongly believe that the effects of isoproterenol in vitro are due solely to activation of β
<sub>3</sub>
-adrenoceptors. With respect to glucose uptake in vivo, isoproterenol is still effective in promoting glucose uptake into BAT in β
<sub>1</sub>
β
<sub>2</sub>
-adrenoceptor knockout mice (
<xref ref-type="fig" rid="fig4">Fig. 4 A</xref>
), highlighting the role of β
<sub>3</sub>
-adrenoceptors in vivo. CL316243, a highly specific β
<sub>3</sub>
-adrenoceptor agonist, also increases in vivo glucose uptake in BAT in FVB mice (unpublished data).</p>
<p>mTOR is a key central regulator of metabolism. It is involved in multiple physiological processes such as lipogenesis, lipolysis, and adipogenesis, and has recently been implicated in insulin signaling and sensitivity in white adipose tissue (
<xref rid="bib31" ref-type="bibr">Polak et al., 2008</xref>
;
<xref rid="bib18" ref-type="bibr">Kumar et al., 2010</xref>
), with a large focus on the role of mTOR in white adipose tissue. Little is known about mTOR function in brown adipocytes, with recent reviews highlighting the lack of knowledge in the field (
<xref rid="bib19" ref-type="bibr">Lamming and Sabatini, 2013</xref>
). Our results clearly show that β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake in brown adipocytes in vitro, BAT in vivo, and, importantly, in human MADS cells in vitro, is through mTOR.</p>
<p>mTOR exists in two distinct complexes: mTORC1 and mTORC2. In this paper, we first tried to characterize which of these complexes was required for β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake in brown adipocytes. The specific mTORC1 inhibitor rapamycin has been instrumental in giving mechanistic insight into mTORC1 action. mTORC2 is less characterized due to the lack of specific inhibitors, but long-term treatment with rapamycin can inhibit mTORC2 formation (
<xref rid="bib29" ref-type="bibr">Phung et al., 2006</xref>
;
<xref rid="bib36" ref-type="bibr">Sarbassov et al., 2006</xref>
). We show that long-term, but not short-term, treatment with rapamycin in mouse brown adipocytes inhibits β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake, which indicates the involvement of mTORC2. This was confirmed by knockdown of the regulatory subunit rictor that abolished β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake, and that β
<sub>3</sub>
-adrenoceptor stimulation phosphorylated mTOR at Ser2481, a phosphorylation site predominately associated with mTORC2 activation. Collectively, this is the first time it has been shown that β
<sub>3</sub>
-adrenoceptors can specifically regulate mTORC2 in adipocytes.</p>
<p>mTORC2 responds to growth factors such as insulin, and it has been suggested that activation of mTORC2 is dependent on PI3K activation. However, the PI3K inhibitor Compound15e failed to inhibit β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake in brown adipocytes. In conjunction with no inhibition of isoproterenol-stimulated glucose uptake in response to Akt inhibitor X, and no Akt phosphorylation at either Thr308 or Ser473 after β
<sub>3</sub>
-adrenoceptor activation, this indicates a lack of PI3K–Akt pathway in β
<sub>3</sub>
-adrenoceptor signaling in brown adipocytes (
<xref rid="bib11" ref-type="bibr">Feng et al., 2004</xref>
;
<xref rid="bib42" ref-type="bibr">Surucu et al., 2008</xref>
), and that β
<sub>3</sub>
-adrenoceptors stimulate mTORC2 differently from insulin. After insulin-mediated increases in PI3K activity, phosphatidylinositol (3,4,5)-trisphosphate (PIP3) recruits inactive Akt and phosphoinositide-dependent kinase-1 (PDK1) to the plasma membrane via their N-terminal PH domain, allowing Akt phosphorylation at Thr308 by PDK1. In parallel, PI3K phosphorylates mTORC2 at Ser2481. The subsequent conformational change in Akt allows mTORC2 to phosphorylate Akt at Ser473, thereby fully activating Akt, resulting in mTORC1 phosphorylation at Ser2448 and subsequent AS160 and GLUT4 translocation. In contrast, β
<sub>3</sub>
-adrenoceptors activate mTORC2 in a PI3K-Akt–independent manner (as indicated by no Akt phosphorylation, glucose uptake responses that are insensitive to Akt inhibition [using Akt inhibitor X], or PI3K inhibition [using compound 15e]). These results are consistent with our results in skeletal muscle that show activation of mTORC2 independently of PI3K and Akt after β
<sub>2</sub>
-adrenoceptor stimulation (
<xref rid="bib37" ref-type="bibr">Sato et al., 2014</xref>
). The precise mechanism whereby β
<sub>3</sub>
-adrenoceptors activate mTORC2 needs further investigation, but cAMP is implied, with 8-Br-cAMP mimicking the effect of isoproterenol. It should be noted that the exact mechanism of activation of mTORC2 is still unknown even in the insulin field, most likely due to the absence of specific inhibitors for this complex. However, our novel finding that G protein–coupled receptors (GPCRs), via cAMP, can activate mTORC2 could have wider implications on how GPCRs stimulate mTOR. Most studies investigating links between GPCRs and mTOR have focused on mTORC1, where GPCR activation of PI3K subsequently leads to mTORC1 activation (
<xref rid="bib40" ref-type="bibr">Shimobayashi and Hall, 2014</xref>
). Almost nothing is known about GPCR stimulation of mTORC2 without PI3K involvement, except in a study in
<italic>Dictyostelium discoideum</italic>
(
<xref rid="bib21" ref-type="bibr">Lee et al., 2005</xref>
).</p>
<p>As very little is known specifically about mTORC2 and its effectors in the insulin signaling pathway, not much is known about its downstream targets that can regulate glucose uptake. However, mTORC2 is involved in actin cytoskeleton reorganization (
<xref rid="bib35" ref-type="bibr">Sarbassov et al., 2004</xref>
), and it is believed that this reorganization is the mechanism responsible for insulin-mediated translocation of GLUT4 to the plasma membrane (
<xref rid="bib43" ref-type="bibr">Tsakiridis et al., 1994</xref>
;
<xref rid="bib12" ref-type="bibr">Huang and Czech, 2007</xref>
;
<xref rid="bib45" ref-type="bibr">Zaid et al., 2008</xref>
). This is in agreement with studies showing that knockdown of mTORC2-specific components in cells resulted in alteration of the actin cytoskeleton (
<xref rid="bib35" ref-type="bibr">Sarbassov et al., 2004</xref>
). Consistent with actin as a downstream target, latrunculin B, which disrupts actin polymerization, impairs β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake. However, one major difference between insulin- and β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake revolves around the required GLUT isoform. Whereas insulin translocates GLUT4 from intracellular vesicles to the cell surface in brown adipocytes (
<xref rid="bib28" ref-type="bibr">Pessin et al., 1999</xref>
;
<xref rid="bib17" ref-type="bibr">Konrad et al., 2002</xref>
), β
<sub>3</sub>
-adrenoceptor–mediated glucose uptake involves de novo synthesis of GLUT1. Surprisingly, mTOR does not appear to be required for the de novo synthesis of GLUT1, but is specifically required for its subsequent translocation to the cell surface. The difference between the GLUT isoforms required for insulin and β
<sub>3</sub>
-adrenoceptor stimulation of glucose uptake further implies the difference between the two signaling pathways. The significance of mTORC2 and GLUT1 translocation in brown adipocyte glucose uptake can be used in future experiments aimed specifically at inhibiting or stimulating glucose uptake in BAT. Furthermore, the difference in both signaling and GLUT isoforms between insulin- and β
<sub>3</sub>
-adrenoceptor–stimulated glucose uptake should be considered in the search for compounds that are aimed at activating BAT function. It could also aid in experiments aimed at elucidating the localization, the amount, and the potential therapeutic value of BAT in humans.</p>
<p>Sympathetic-mediated glucose uptake is not limited to BAT. We have previously shown that stimulation of adrenoceptors can increase glucose uptake in skeletal muscle and other cells (
<xref rid="bib26" ref-type="bibr">Nevzorova et al., 2002</xref>
;
<xref rid="bib27" ref-type="bibr">Nevzorova et al., 2006</xref>
;
<xref rid="bib13" ref-type="bibr">Hutchinson and Bengtsson, 2006</xref>
;
<xref rid="bib4" ref-type="bibr">Catus et al., 2011</xref>
), which indicates the broad significance of this finding and the importance of understanding this mechanism. Our recent findings in skeletal muscle show involvement of mTORC2 in β
<sub>2</sub>
-adrenoceptor activation of glucose uptake via GLUT4 translocation (
<xref rid="bib37" ref-type="bibr">Sato et al., 2014</xref>
).</p>
<p>In summary, our results show that β
<sub>3</sub>
-adrenoceptor activation increases glucose uptake in brown adipocytes and BAT both in vitro and in vivo. This results in rapid de novo synthesis of GLUT1 by cAMP, and subsequent translocation of GLUT1 to the plasma membrane via mTORC2. This new knowledge and the physiological relevance of these results may contribute to new exciting possibilities in understanding BAT function and provide therapeutic value in the field of metabolic diseases.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and methods</title>
<sec>
<title>Chemicals</title>
<p>Isoproterenol, insulin, collagenase type II, 8-Br-cAMP, latrunculin B, and DMEM (4.5 g
<sc>d</sc>
-glucose/liter) were all obtained from Sigma-Aldrich. Compound 15e (3-[4-(4-morpholinyl)thieno[3,2-d]pyrimidin-2-yl]-phenol), PI-103 (3-(4-(4-morpholinyl), pyrido[3′,2’:4,5] furo [3,2-d]pyrimidin-2-yl)phenol), LY294002, and rapamycin were from Alexis Biochemical. KU 0063794 was obtained from Axon Medchem. Akt inhibitor C was obtained from EMD Millipore, 2-deoxy-
<sc>d</sc>
-[1-
<sup>3</sup>
H]-glucose ([
<sup>3</sup>
H]2DG; specific activity 7.5 Ci/mmol) from PerkinElmer. Torin1 was provided by D.M. Sabatini (Whitehead Institute, Cambridge, MA).</p>
</sec>
<sec>
<title>Brown fat precursor cell isolation</title>
<p>3–4-wk-old NMRI mice of either sex were purchased from Nova-SCB AB. NMRI mice are known to produce BAT with high quality, and have been used extensively for more than 25 years in characterizing brown adipocyte physiology (
<xref rid="bib2" ref-type="bibr">Cannon and Nedergaard, 2001</xref>
). Animals were euthanized by CO
<sub>2</sub>
, and brown fat precursor cells were isolated from the intrascapular, axillary, and cervical brown adipocyte depots (
<xref rid="bib24" ref-type="bibr">Néchad et al., 1987</xref>
;
<xref rid="bib33" ref-type="bibr">Rehnmark et al., 1990</xref>
). The tissue was minced and transferred to a Hepes-buffered solution, pH 7.4, containing 0.2% (wt/vol) crude collagenase type II. Routinely, tissue from six mice was digested in 10 ml of the Hepes-buffered solution. The tissue was digested for 30 min at 37°C, with constant vortexing. The digest was filtered through a 250-µm filter and the solution incubated on ice for 15 min to allow the mature adipocytes and fat droplets to float. The infranatant was filtered through a 25-µm filter and centrifuged (10 min, 700
<italic>g</italic>
). The pellet was then resuspended in DMEM (4.5 g
<sc>d</sc>
-glucose/liter) and recentrifuged. The pellet was finally resuspended in 0.5 ml cell culture medium per mouse dissected. All experiments were conducted with ethical permission (N388/12) from the North Stockholm Animal Ethics Committee.</p>
</sec>
<sec>
<title>Primary brown adipocyte cell culture</title>
<p>The cell culture medium consisted of DMEM (4.5 g
<sc>d</sc>
-glucose/liter) supplemented with 10% newborn calf serum, 2.4 nM insulin, 10 nM Hepes, 50 IU/ml penicillin, 50 µg/ml streptomycin, and 25 µg/ml sodium ascorbate. Aliquots of 0.1-ml cell suspension were cultured in 12-well culture dishes with 0.9 ml of cell culture medium. Cultures were incubated in a 37°C humidified atmosphere of 8% CO
<sub>2</sub>
in air. On days 1, 3, and 5, the cell culture medium was renewed. Cells were used on day 7.</p>
</sec>
<sec>
<title>hMADS cell culture</title>
<p>Human multipotent adipose-derived stem hMADS cells that have previously been established as a model system for human brown fat (
<xref rid="bib10" ref-type="bibr">Elabd et al., 2009</xref>
) were seeded in DMEM supplemented with 10% fetal calf serum, 2.5 ng/ml hFGF2, 60 µg/ml penicillin, and 50 µg/ml streptomycin. The medium was changed every other day and hFGF2 removed when the cells reached confluence and were triggered for differentiation on day 2 after confluence. Cells were then maintained in DMEM-Ham’s F-12 medium supplemented with 10 µg/ml transferrin, 0.85 µM insulin, 0.2 nM triiodothyronine, 1 µM dexamethasone, and 500 µM isobutylmethylxanthine. 3 d later, the medium was changed (dexamethasone and isobutylmethylxanthine were omitted) and 100 nM rosiglitazone was added. Medium was changed every other day until day 7, when they were used.</p>
</sec>
<sec>
<title>[
<sup>3</sup>
H]2DG uptake in primary brown adipocytes, hMADS cells, and in vivo</title>
<p>Brown adipocytes were grown and differentiated in 12-well plates, and serum and insulin starved the night before the experiment. On day 7, the cells were treated with inhibitors for 30 min before addition of insulin, isoproterenol, or 8-br-cAMP for 2 h, unless otherwise indicated. 10 min before [
<sup>3</sup>
H]2DG uptake measurement, the medium was discarded, and cells washed with prewarmed PBS (10 mM phosphate buffer, 2.7 mM KCl, and 137 mM NaCl, pH 7.4). Glucose-free DMEM (containing 0.5% BSA and 0.25 mM sodium ascorbate) was added and drugs re-added with trace amounts of [
<sup>3</sup>
H]2DG (50 nM; specific activity 7.5 Ci/mmol) for 10 min. Reactions were terminated by washing in ice-cold PBS, cells were lysed (400 µl of 0.2 M NaOH, 1 h at 60°C), and the incorporated radioactivity was determined by liquid scintillation counting.</p>
<p>For in vivo glucose uptake, groups of β
<sub>1</sub>
×β
<sub>2</sub>
knockout (
<xref rid="bib9" ref-type="bibr">Devic et al., 2001</xref>
) and FVB mice were fasted for 5 h before study and anesthetized with pentobarbital (60 mg/kg of body weight, i.p.). If stated, mice were then injected with KU 0063794 (10 mg/kg i.p.) or DMSO. Insulin (1 mg/kg i.p.), isoproterenol (1 mg/kg i.p.), or saline were injected after 10 min and [
<sup>3</sup>
H]2DG (130 µCi/kg body weight, i.p.) 20 min before the indicated end time. BAT was dissected 1 h after [
<sup>3</sup>
H]2DG injection, and tissues were digested with 0.5 M NaOH overnight. Glucose uptake was measured by liquid scintillation counting. All experiments were conducted with ethical permission (N388/12) from the North Stockholm Animal Ethics Committee.</p>
</sec>
<sec>
<title>Immunoblotting</title>
<p>Brown adipocytes were grown and differentiated in 12-well plates, and serum and insulin starved the night before the experiment. On day 7, the cells were challenged with inhibitors for 30 min before being stimulated with drugs as indicated. Lysates were prepared in prewarmed (65°C) sample buffer (62.5 mM Tris, pH 6.8, 2% SDS, 10% glycerol, 50 mM dithiothreitol, and 0.1% bromophenol blue) and boiled for 5 min. Samples were loaded on a 8 or 12% acrylamide gel and separated for 2 h at 100 V. Proteins were transferred to Hybond-P polyvinylidene difluoride membranes (pore size 0.45 µm; GE Healthcare). The primary antibodies used were: rabbit anti-AKT (1:1,000), rabbit anti–p-AKT Thr308 (1:1,000), rabbit anti–p-AKT Ser473 (1:1,000), rabbit anti-mTOR (1:1,000), rabbit anti–p-mTOR Ser2448 (1:1,000), rabbit anti–p-mTOR Ser2481 (1:1,000), rabbit anti-P70S6K (1:1,000), rabbit anti–p-P70S6K S389 (1:1,000), rabbit anti-rictor (1:1,000), rabbit anti-raptor (1:1,000), and rabbit anti–β-tubulin (diluted 1:1,000) were from Cell Signaling Technology. Rabbit anti-GLUT1 (diluted 1:500) was from Abcam. All primary antibodies were detected using a secondary antibody (horseradish peroxidase–linked anti–rabbit IgG; Cell Signaling Technology) diluted 1:2,000 and enhanced chemiluminescence (ECL; GE Healthcare). Images were quantified using ImageJ 1.46r.</p>
</sec>
<sec>
<title>Immunocytochemistry</title>
<p>Brown adipocytes were isolated as described in the “Primary brown adipocyte cell culture” section and seeded onto BD Falcon culture chamber slides (BD). Cells were serum starved the night before the experiment. On day 7, the cells were challenged with inhibitors for 30 min before being stimulated for 1–2 h with drugs as indicated. Cells were washed with warm PBS and fixed for 15 min (4% formaldehyde in PBS). Cells were washed with PBS and formaldehyde quenched with 50 mM glycine in PBS, and washed three times for 5 min each with PBS. Cells were blocked for 1 h at room temperature with 8% BSA in PBS, and washed three times for 5 min each with PBS. For permeabilizing the cells, the cells were treated with 10% Triton X-100 in PBS (dilution 1:40) before blocking. Primary antibody (2 µg/ml GLUT1 antibody [Abcam], 1.5% BSA in PBS) was added and slides were incubated overnight at 4°C. The next day the cells were washed three times for 5 min each with PBS. Slides were then incubated with secondary antibody (3 µg/ml Alexa Fluor 488–conjugated goat anti–rabbit IgG [Invitrogen], 3% BSA in PBS) and washed three times for 5 min each with PBS. Slides were mounted with mounting media (8% 1,4-diazabicyclooctane, 75% glycerol in PBS) and sealed. Validation of the specificity of the antibody was performed using immunoblotting, with a strong specific band at the molecular mass of 50 kD.</p>
<p>Images were acquired at room temperature on an inverted laser-scanning microscope (Axiovert 200M; Carl Zeiss). The objective lens used was EC Plan Neofluar 10× dry/0.3 NA (Carl Zeiss) and a Cascade 1K camera (Photometrics). All images were acquired and processed using Slidebook (Version 6) software. The mean fluorescents from a set of pictures for all the different stimulations (2–4 pictures/stimulation) from three different experiments were quantified and analyzed with ImageJ (1.48v). The basal level was set to 100%.</p>
</sec>
<sec>
<title>Transient transfection of siRNA</title>
<p>siRNA constructs directed against mouse raptor (sequence not disclosed; Santa Cruz Biotechnology, Inc.) and mouse rictor were used (5′-CAGAAAGCAATCGCAACTCACCACA-3′; Sigma-Aldrich). Primary brown adipocytes were used on day 3 and transfected with K2 Transfection System (Biontex Laboratories GmbH) according to the manufacturer’s protocol using 2.5 µg/ml of siRNA. 24 h after transfection, glucose uptake or Western blotting was performed as described in the “[
<sup>3</sup>
H]2DG uptake in primary brown adipocytes, hMADS cells, and in vivo” and “Immunoblotting” sections.</p>
</sec>
<sec>
<title>Statistics</title>
<p>All experiments were performed in duplicate, and the results were expressed as mean ± SEM. The responses to agonists were calculated as a percentage compared to control, which was set to 100%. The statistical significance of differences was analyzed by a Student’s unpaired two-tailed
<italic>t</italic>
test unless stated otherwise.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>The authors thank IFSU and Anna-Stina Höglund for technical help. Torin1 was kindly provided by D.M. Sabatini.</p>
<p>Dr. Masaaki Sato is supported by the Wenner-Gren Foundations, an Australian Research Council Linkage International fellowship (LX0989791), and a National Health and Medical Research Council (NHMRC) CJ Martin Overseas Biomedical Fellowship (606763). Dr. Dana Hutchinson is supported by NHMRC Career Development Fellowship 545952. Prof. Tore Bengtsson is supported by the Vetenskapsrådet Medicin (VR-M) from the Swedish Research Council, Novonordiskfonden, Stiftelsen Svenska Diabetesförbundets Forskningsfond, the Magnus Bergvall foundation, and the Carl Tryggers foundation.</p>
<p>The authors declare no competing financial interests.</p>
<p>Author contributions: J.M. Olsen and M. Sato wrote the manuscript and researched data. O.S. Dallner, A.L. Sandström, D.F. Pisani, and J.-C. Chambard researched data. E.-Z. Amri, D.S. Hutchinson, and T. Bengtsson reviewed and edited the manuscript. T. Bengtsson is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.</p>
</ack>
<fn-group>
<fn>
<p>
<def-list>
<title>Abbreviations used in this paper:</title>
<def-item>
<term>[
<sup>3</sup>
H]2DG</term>
<def>
<p>2-deoxy-
<sc>d</sc>
-[1-
<sup>3</sup>
H]-glucose</p>
</def>
</def-item>
<def-item>
<term>8-Br-cAMP</term>
<def>
<p>8-bromoadenosine-cAMP</p>
</def>
</def-item>
<def-item>
<term>BAT</term>
<def>
<p>brown adipose tissue</p>
</def>
</def-item>
<def-item>
<term>GLUT4</term>
<def>
<p>glucose transporter 4</p>
</def>
</def-item>
<def-item>
<term>hMADS</term>
<def>
<p>human multipotent adipose-derived stem</p>
</def>
</def-item>
<def-item>
<term>mTOR</term>
<def>
<p>mechanistic target of rapamycin</p>
</def>
</def-item>
<def-item>
<term>mTORC1</term>
<def>
<p>mTOR complex 1</p>
</def>
</def-item>
<def-item>
<term>mTORC2</term>
<def>
<p>mTOR complex 2</p>
</def>
</def-item>
</def-list>
</p>
</fn>
</fn-group>
<ref-list>
<ref id="bib1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>E.J.</given-names>
</name>
,
<name>
<surname>Albers</surname>
<given-names>M.W.</given-names>
</name>
,
<name>
<surname>Shin</surname>
<given-names>T.B.</given-names>
</name>
,
<name>
<surname>Ichikawa</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Keith</surname>
<given-names>C.T.</given-names>
</name>
,
<name>
<surname>Lane</surname>
<given-names>W.S.</given-names>
</name>
, and
<name>
<surname>Schreiber</surname>
<given-names>S.L.</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>A mammalian protein targeted by G1-arresting rapamycin-receptor complex</article-title>
.
<source>Nature.</source>
<volume>369</volume>
:
<fpage>756</fpage>
<lpage>758</lpage>
<pub-id pub-id-type="doi">10.1038/369756a0</pub-id>
<pub-id pub-id-type="pmid">8008069</pub-id>
</mixed-citation>
</ref>
<ref id="bib2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cannon</surname>
<given-names>B.</given-names>
</name>
, and
<name>
<surname>Nedergaard</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Cultures of adipose precursor cells from brown adipose tissue and of clonal brown-adipocyte-like cell lines</article-title>
.
<source>Methods Mol. Biol.</source>
<volume>155</volume>
:
<fpage>213</fpage>
<lpage>224</lpage>
.
<pub-id pub-id-type="pmid">11293074</pub-id>
</mixed-citation>
</ref>
<ref id="bib3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cannon</surname>
<given-names>B.</given-names>
</name>
, and
<name>
<surname>Nedergaard</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Brown adipose tissue: function and physiological significance</article-title>
.
<source>Physiol. Rev.</source>
<volume>84</volume>
:
<fpage>277</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="doi">10.1152/physrev.00015.2003</pub-id>
<pub-id pub-id-type="pmid">14715917</pub-id>
</mixed-citation>
</ref>
<ref id="bib4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Catus</surname>
<given-names>S.L.</given-names>
</name>
,
<name>
<surname>Gibbs</surname>
<given-names>M.E.</given-names>
</name>
,
<name>
<surname>Sato</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Summers</surname>
<given-names>R.J.</given-names>
</name>
, and
<name>
<surname>Hutchinson</surname>
<given-names>D.S.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Role of β-adrenoceptors in glucose uptake in astrocytes using β-adrenoceptor knockout mice</article-title>
.
<source>Br. J. Pharmacol.</source>
<volume>162</volume>
:
<fpage>1700</fpage>
<lpage>1715</lpage>
<pub-id pub-id-type="doi">10.1111/j.1476-5381.2010.01153.x</pub-id>
<pub-id pub-id-type="pmid">21138422</pub-id>
</mixed-citation>
</ref>
<ref id="bib5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chernogubova</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Cannon</surname>
<given-names>B.</given-names>
</name>
, and
<name>
<surname>Bengtsson</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Norepinephrine increases glucose transport in brown adipocytes via β3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs</article-title>
.
<source>Endocrinology.</source>
<volume>145</volume>
:
<fpage>269</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1210/en.2003-0857</pub-id>
<pub-id pub-id-type="pmid">14551227</pub-id>
</mixed-citation>
</ref>
<ref id="bib6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chernogubova</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Hutchinson</surname>
<given-names>D.S.</given-names>
</name>
,
<name>
<surname>Nedergaard</surname>
<given-names>J.</given-names>
</name>
, and
<name>
<surname>Bengtsson</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>α1- and β1-adrenoceptor signaling fully compensates for β3-adrenoceptor deficiency in brown adipocyte norepinephrine-stimulated glucose uptake</article-title>
.
<source>Endocrinology.</source>
<volume>146</volume>
:
<fpage>2271</fpage>
<lpage>2284</lpage>
<pub-id pub-id-type="doi">10.1210/en.2004-1104</pub-id>
<pub-id pub-id-type="pmid">15665039</pub-id>
</mixed-citation>
</ref>
<ref id="bib7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Copp</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Manning</surname>
<given-names>G.</given-names>
</name>
, and
<name>
<surname>Hunter</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2</article-title>
.
<source>Cancer Res.</source>
<volume>69</volume>
:
<fpage>1821</fpage>
<lpage>1827</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-08-3014</pub-id>
<pub-id pub-id-type="pmid">19244117</pub-id>
</mixed-citation>
</ref>
<ref id="bib8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dallner</surname>
<given-names>O.S.</given-names>
</name>
,
<name>
<surname>Chernogubova</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Brolinson</surname>
<given-names>K.A.</given-names>
</name>
, and
<name>
<surname>Bengtsson</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>β3-adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation</article-title>
.
<source>Endocrinology.</source>
<volume>147</volume>
:
<fpage>5730</fpage>
<lpage>5739</lpage>
<pub-id pub-id-type="doi">10.1210/en.2006-0242</pub-id>
<pub-id pub-id-type="pmid">16959848</pub-id>
</mixed-citation>
</ref>
<ref id="bib9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Devic</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Xiang</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Gould</surname>
<given-names>D.</given-names>
</name>
, and
<name>
<surname>Kobilka</surname>
<given-names>B.</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>β-Adrenergic receptor subtype-specific signaling in cardiac myocytes from β(1) and β(2) adrenoceptor knockout mice</article-title>
.
<source>Mol. Pharmacol.</source>
<volume>60</volume>
:
<fpage>577</fpage>
<lpage>583</lpage>
.
<pub-id pub-id-type="pmid">11502890</pub-id>
</mixed-citation>
</ref>
<ref id="bib10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elabd</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Chiellini</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Carmona</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Galitzky</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Cochet</surname>
<given-names>O.</given-names>
</name>
,
<name>
<surname>Petersen</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Pénicaud</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Kristiansen</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Bouloumié</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Casteilla</surname>
<given-names>L.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2009</year>
<article-title>Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes</article-title>
.
<source>Stem Cells.</source>
<volume>27</volume>
:
<fpage>2753</fpage>
<lpage>2760</lpage>
<pub-id pub-id-type="doi">10.1002/stem.200</pub-id>
<pub-id pub-id-type="pmid">19697348</pub-id>
</mixed-citation>
</ref>
<ref id="bib11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Cron</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Hess</surname>
<given-names>D.</given-names>
</name>
, and
<name>
<surname>Hemmings</surname>
<given-names>B.A.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase</article-title>
.
<source>J. Biol. Chem.</source>
<volume>279</volume>
:
<fpage>41189</fpage>
<lpage>41196</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M406731200</pub-id>
<pub-id pub-id-type="pmid">15262962</pub-id>
</mixed-citation>
</ref>
<ref id="bib12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>S.</given-names>
</name>
, and
<name>
<surname>Czech</surname>
<given-names>M.P.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>The GLUT4 glucose transporter</article-title>
.
<source>Cell Metab.</source>
<volume>5</volume>
:
<fpage>237</fpage>
<lpage>252</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2007.03.006</pub-id>
<pub-id pub-id-type="pmid">17403369</pub-id>
</mixed-citation>
</ref>
<ref id="bib13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hutchinson</surname>
<given-names>D.S.</given-names>
</name>
, and
<name>
<surname>Bengtsson</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>AMP-activated protein kinase activation by adrenoceptors in L6 skeletal muscle cells: mediation by alpha1-adrenoceptors causing glucose uptake</article-title>
.
<source>Diabetes.</source>
<volume>55</volume>
:
<fpage>682</fpage>
<lpage>690</lpage>
<pub-id pub-id-type="doi">10.2337/diabetes.55.03.06.db05-0901</pub-id>
<pub-id pub-id-type="pmid">16505231</pub-id>
</mixed-citation>
</ref>
<ref id="bib14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hutchinson</surname>
<given-names>D.S.</given-names>
</name>
,
<name>
<surname>Chernogubova</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Dallner</surname>
<given-names>O.S.</given-names>
</name>
,
<name>
<surname>Cannon</surname>
<given-names>B.</given-names>
</name>
, and
<name>
<surname>Bengtsson</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>β-Adrenoceptors, but not α-adrenoceptors, stimulate AMP-activated protein kinase in brown adipocytes independently of uncoupling protein-1</article-title>
.
<source>Diabetologia.</source>
<volume>48</volume>
:
<fpage>2386</fpage>
<lpage>2395</lpage>
<pub-id pub-id-type="doi">10.1007/s00125-005-1936-7</pub-id>
<pub-id pub-id-type="pmid">16160864</pub-id>
</mixed-citation>
</ref>
<ref id="bib15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inokuma</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Ogura-Okamatsu</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Toda</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Kimura</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Yamashita</surname>
<given-names>H.</given-names>
</name>
, and
<name>
<surname>Saito</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue</article-title>
.
<source>Diabetes.</source>
<volume>54</volume>
:
<fpage>1385</fpage>
<lpage>1391</lpage>
<pub-id pub-id-type="doi">10.2337/diabetes.54.5.1385</pub-id>
<pub-id pub-id-type="pmid">15855324</pub-id>
</mixed-citation>
</ref>
<ref id="bib16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knight</surname>
<given-names>Z.A.</given-names>
</name>
, and
<name>
<surname>Shokat</surname>
<given-names>K.M.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Chemically targeting the PI3K family</article-title>
.
<source>Biochem. Soc. Trans.</source>
<volume>35</volume>
:
<fpage>245</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.1042/BST0350245</pub-id>
<pub-id pub-id-type="pmid">17371250</pub-id>
</mixed-citation>
</ref>
<ref id="bib17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Konrad</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Bilan</surname>
<given-names>P.J.</given-names>
</name>
,
<name>
<surname>Nawaz</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Sweeney</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Niu</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Antonescu</surname>
<given-names>C.N.</given-names>
</name>
,
<name>
<surname>Rudich</surname>
<given-names>A.</given-names>
</name>
, and
<name>
<surname>Klip</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Need for GLUT4 activation to reach maximum effect of insulin-mediated glucose uptake in brown adipocytes isolated from GLUT4myc-expressing mice</article-title>
.
<source>Diabetes.</source>
<volume>51</volume>
:
<fpage>2719</fpage>
<lpage>2726</lpage>
<pub-id pub-id-type="doi">10.2337/diabetes.51.9.2719</pub-id>
<pub-id pub-id-type="pmid">12196464</pub-id>
</mixed-citation>
</ref>
<ref id="bib18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Lawrence</surname>
<given-names>J.C.</given-names>
<suffix>Jr</suffix>
</name>
,
<name>
<surname>Jung</surname>
<given-names>D.Y.</given-names>
</name>
,
<name>
<surname>Ko</surname>
<given-names>H.J.</given-names>
</name>
,
<name>
<surname>Keller</surname>
<given-names>S.R.</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>J.K.</given-names>
</name>
,
<name>
<surname>Magnuson</surname>
<given-names>M.A.</given-names>
</name>
, and
<name>
<surname>Harris</surname>
<given-names>T.E.</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism</article-title>
.
<source>Diabetes.</source>
<volume>59</volume>
:
<fpage>1397</fpage>
<lpage>1406</lpage>
<pub-id pub-id-type="doi">10.2337/db09-1061</pub-id>
<pub-id pub-id-type="pmid">20332342</pub-id>
</mixed-citation>
</ref>
<ref id="bib19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamming</surname>
<given-names>D.W.</given-names>
</name>
, and
<name>
<surname>Sabatini</surname>
<given-names>D.M.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>A central role for mTOR in lipid homeostasis</article-title>
.
<source>Cell Metab.</source>
<volume>18</volume>
:
<fpage>465</fpage>
<lpage>469</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2013.08.002</pub-id>
<pub-id pub-id-type="pmid">23973332</pub-id>
</mixed-citation>
</ref>
<ref id="bib20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laplante</surname>
<given-names>M.</given-names>
</name>
, and
<name>
<surname>Sabatini</surname>
<given-names>D.M.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>mTOR signaling in growth control and disease</article-title>
.
<source>Cell.</source>
<volume>149</volume>
:
<fpage>274</fpage>
<lpage>293</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.03.017</pub-id>
<pub-id pub-id-type="pmid">22500797</pub-id>
</mixed-citation>
</ref>
<ref id="bib21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Comer</surname>
<given-names>F.I.</given-names>
</name>
,
<name>
<surname>Sasaki</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>McLeod</surname>
<given-names>I.X.</given-names>
</name>
,
<name>
<surname>Duong</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Okumura</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Yates</surname>
<given-names>J.R.</given-names>
<suffix>III</suffix>
</name>
,
<name>
<surname>Parent</surname>
<given-names>C.A.</given-names>
</name>
, and
<name>
<surname>Firtel</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>TOR complex 2 integrates cell movement during chemotaxis and signal relay in
<italic>Dictyostelium</italic>
</article-title>
.
<source>Mol. Biol. Cell.</source>
<volume>16</volume>
:
<fpage>4572</fpage>
<lpage>4583</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.E05-04-0342</pub-id>
<pub-id pub-id-type="pmid">16079174</pub-id>
</mixed-citation>
</ref>
<ref id="bib22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Pérusse</surname>
<given-names>F.</given-names>
</name>
, and
<name>
<surname>Bukowiecki</surname>
<given-names>L.J.</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>Chronic norepinephrine infusion stimulates glucose uptake in white and brown adipose tissues</article-title>
.
<source>Am. J. Physiol.</source>
<volume>266</volume>
:
<fpage>R914</fpage>
<lpage>R920</lpage>
.
<pub-id pub-id-type="pmid">8160886</pub-id>
</mixed-citation>
</ref>
<ref id="bib23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marette</surname>
<given-names>A.</given-names>
</name>
, and
<name>
<surname>Bukowiecki</surname>
<given-names>L.J.</given-names>
</name>
</person-group>
<year>1989</year>
<article-title>Stimulation of glucose transport by insulin and norepinephrine in isolated rat brown adipocytes</article-title>
.
<source>Am. J. Physiol.</source>
<volume>257</volume>
:
<fpage>C714</fpage>
<lpage>C721</lpage>
.
<pub-id pub-id-type="pmid">2478026</pub-id>
</mixed-citation>
</ref>
<ref id="bib24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Néchad</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Nedergaard</surname>
<given-names>J.</given-names>
</name>
, and
<name>
<surname>Cannon</surname>
<given-names>B.</given-names>
</name>
</person-group>
<year>1987</year>
<article-title>Noradrenergic stimulation of mitochondriogenesis in brown adipocytes differentiating in culture</article-title>
.
<source>Am. J. Physiol.</source>
<volume>253</volume>
:
<fpage>C889</fpage>
<lpage>C894</lpage>
.
<pub-id pub-id-type="pmid">2827500</pub-id>
</mixed-citation>
</ref>
<ref id="bib25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nedergaard</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Bengtsson</surname>
<given-names>T.</given-names>
</name>
, and
<name>
<surname>Cannon</surname>
<given-names>B.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Unexpected evidence for active brown adipose tissue in adult humans</article-title>
.
<source>Am. J. Physiol. Endocrinol. Metab.</source>
<volume>293</volume>
:
<fpage>E444</fpage>
<lpage>E452</lpage>
<pub-id pub-id-type="doi">10.1152/ajpendo.00691.2006</pub-id>
<pub-id pub-id-type="pmid">17473055</pub-id>
</mixed-citation>
</ref>
<ref id="bib26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nevzorova</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Bengtsson</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>B.A.</given-names>
</name>
, and
<name>
<surname>Summers</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Characterization of the β-adrenoceptor subtype involved in mediation of glucose transport in L6 cells</article-title>
.
<source>Br. J. Pharmacol.</source>
<volume>137</volume>
:
<fpage>9</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1038/sj.bjp.0704845</pub-id>
<pub-id pub-id-type="pmid">12183326</pub-id>
</mixed-citation>
</ref>
<ref id="bib27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nevzorova</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>B.A.</given-names>
</name>
,
<name>
<surname>Bengtsson</surname>
<given-names>T.</given-names>
</name>
, and
<name>
<surname>Summers</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Multiple signalling pathways involved in β2-adrenoceptor-mediated glucose uptake in rat skeletal muscle cells</article-title>
.
<source>Br. J. Pharmacol.</source>
<volume>147</volume>
:
<fpage>446</fpage>
<lpage>454</lpage>
<pub-id pub-id-type="doi">10.1038/sj.bjp.0706626</pub-id>
<pub-id pub-id-type="pmid">16415914</pub-id>
</mixed-citation>
</ref>
<ref id="bib28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pessin</surname>
<given-names>J.E.</given-names>
</name>
,
<name>
<surname>Thurmond</surname>
<given-names>D.C.</given-names>
</name>
,
<name>
<surname>Elmendorf</surname>
<given-names>J.S.</given-names>
</name>
,
<name>
<surname>Coker</surname>
<given-names>K.J.</given-names>
</name>
, and
<name>
<surname>Okada</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! Location! Location!</article-title>
<source>J. Biol. Chem.</source>
<volume>274</volume>
:
<fpage>2593</fpage>
<lpage>2596</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.274.5.2593</pub-id>
<pub-id pub-id-type="pmid">9915783</pub-id>
</mixed-citation>
</ref>
<ref id="bib29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Phung</surname>
<given-names>T.L.</given-names>
</name>
,
<name>
<surname>Ziv</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Dabydeen</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Eyiah-Mensah</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Riveros</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Perruzzi</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Monahan-Earley</surname>
<given-names>R.A.</given-names>
</name>
,
<name>
<surname>Shiojima</surname>
<given-names>I.</given-names>
</name>
,
<name>
<surname>Nagy</surname>
<given-names>J.A.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2006</year>
<article-title>Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin</article-title>
.
<source>Cancer Cell.</source>
<volume>10</volume>
:
<fpage>159</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2006.07.003</pub-id>
<pub-id pub-id-type="pmid">16904613</pub-id>
</mixed-citation>
</ref>
<ref id="bib30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Polak</surname>
<given-names>P.</given-names>
</name>
, and
<name>
<surname>Hall</surname>
<given-names>M.N.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>mTOR and the control of whole body metabolism</article-title>
.
<source>Curr. Opin. Cell Biol.</source>
<volume>21</volume>
:
<fpage>209</fpage>
<lpage>218</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceb.2009.01.024</pub-id>
<pub-id pub-id-type="pmid">19261457</pub-id>
</mixed-citation>
</ref>
<ref id="bib31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Polak</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Cybulski</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Feige</surname>
<given-names>J.N.</given-names>
</name>
,
<name>
<surname>Auwerx</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Rüegg</surname>
<given-names>M.A.</given-names>
</name>
, and
<name>
<surname>Hall</surname>
<given-names>M.N.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration</article-title>
.
<source>Cell Metab.</source>
<volume>8</volume>
:
<fpage>399</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2008.09.003</pub-id>
<pub-id pub-id-type="pmid">19046571</pub-id>
</mixed-citation>
</ref>
<ref id="bib32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raynaud</surname>
<given-names>F.I.</given-names>
</name>
,
<name>
<surname>Eccles</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Clarke</surname>
<given-names>P.A.</given-names>
</name>
,
<name>
<surname>Hayes</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Nutley</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Alix</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Henley</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Di-Stefano</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Ahmad</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Guillard</surname>
<given-names>S.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2007</year>
<article-title>Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases</article-title>
.
<source>Cancer Res.</source>
<volume>67</volume>
:
<fpage>5840</fpage>
<lpage>5850</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-06-4615</pub-id>
<pub-id pub-id-type="pmid">17575152</pub-id>
</mixed-citation>
</ref>
<ref id="bib33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rehnmark</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Néchad</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Herron</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Cannon</surname>
<given-names>B.</given-names>
</name>
, and
<name>
<surname>Nedergaard</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>1990</year>
<article-title>α- and β-adrenergic induction of the expression of the uncoupling protein thermogenin in brown adipocytes differentiated in culture</article-title>
.
<source>J. Biol. Chem.</source>
<volume>265</volume>
:
<fpage>16464</fpage>
<lpage>16471</lpage>
.
<pub-id pub-id-type="pmid">1697859</pub-id>
</mixed-citation>
</ref>
<ref id="bib34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabatini</surname>
<given-names>D.M.</given-names>
</name>
,
<name>
<surname>Erdjument-Bromage</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Lui</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Tempst</surname>
<given-names>P.</given-names>
</name>
, and
<name>
<surname>Snyder</surname>
<given-names>S.H.</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs</article-title>
.
<source>Cell.</source>
<volume>78</volume>
:
<fpage>35</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90570-3</pub-id>
<pub-id pub-id-type="pmid">7518356</pub-id>
</mixed-citation>
</ref>
<ref id="bib35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarbassov</surname>
<given-names>D.D.</given-names>
</name>
,
<name>
<surname>Ali</surname>
<given-names>S.M.</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>D.H.</given-names>
</name>
,
<name>
<surname>Guertin</surname>
<given-names>D.A.</given-names>
</name>
,
<name>
<surname>Latek</surname>
<given-names>R.R.</given-names>
</name>
,
<name>
<surname>Erdjument-Bromage</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Tempst</surname>
<given-names>P.</given-names>
</name>
, and
<name>
<surname>Sabatini</surname>
<given-names>D.M.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton</article-title>
.
<source>Curr. Biol.</source>
<volume>14</volume>
:
<fpage>1296</fpage>
<lpage>1302</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2004.06.054</pub-id>
<pub-id pub-id-type="pmid">15268862</pub-id>
</mixed-citation>
</ref>
<ref id="bib36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarbassov</surname>
<given-names>D.D.</given-names>
</name>
,
<name>
<surname>Ali</surname>
<given-names>S.M.</given-names>
</name>
,
<name>
<surname>Sengupta</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Sheen</surname>
<given-names>J.H.</given-names>
</name>
,
<name>
<surname>Hsu</surname>
<given-names>P.P.</given-names>
</name>
,
<name>
<surname>Bagley</surname>
<given-names>A.F.</given-names>
</name>
,
<name>
<surname>Markhard</surname>
<given-names>A.L.</given-names>
</name>
, and
<name>
<surname>Sabatini</surname>
<given-names>D.M.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB</article-title>
.
<source>Mol. Cell.</source>
<volume>22</volume>
:
<fpage>159</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2006.03.029</pub-id>
<pub-id pub-id-type="pmid">16603397</pub-id>
</mixed-citation>
</ref>
<ref id="bib37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sato</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Dehvari</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Öberg</surname>
<given-names>A.I.</given-names>
</name>
,
<name>
<surname>Dallner</surname>
<given-names>O.S.</given-names>
</name>
,
<name>
<surname>Sandström</surname>
<given-names>A.L.</given-names>
</name>
,
<name>
<surname>Olsen</surname>
<given-names>J.M.</given-names>
</name>
,
<name>
<surname>Csikasz</surname>
<given-names>R.I.</given-names>
</name>
,
<name>
<surname>Summers</surname>
<given-names>R.J.</given-names>
</name>
,
<name>
<surname>Hutchinson</surname>
<given-names>D.S.</given-names>
</name>
, and
<name>
<surname>Bengtsson</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle</article-title>
.
<source>Diabetes.</source>
<pub-id pub-id-type="doi">10.2337/db13-1860</pub-id>
</mixed-citation>
</ref>
<ref id="bib38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shibata</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Pérusse</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Vallerand</surname>
<given-names>A.</given-names>
</name>
, and
<name>
<surname>Bukowiecki</surname>
<given-names>L.J.</given-names>
</name>
</person-group>
<year>1989</year>
<article-title>Cold exposure reverses inhibitory effects of fasting on peripheral glucose uptake in rats</article-title>
.
<source>Am. J. Physiol.</source>
<volume>257</volume>
:
<fpage>R96</fpage>
<lpage>R101</lpage>
.
<pub-id pub-id-type="pmid">2665523</pub-id>
</mixed-citation>
</ref>
<ref id="bib39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shimizu</surname>
<given-names>Y.</given-names>
</name>
, and
<name>
<surname>Saito</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1991</year>
<article-title>Activation of brown adipose tissue thermogenesis in recovery from anesthetic hypothermia in rats</article-title>
.
<source>Am. J. Physiol.</source>
<volume>261</volume>
:
<fpage>R301</fpage>
<lpage>R304</lpage>
.
<pub-id pub-id-type="pmid">1678931</pub-id>
</mixed-citation>
</ref>
<ref id="bib40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shimobayashi</surname>
<given-names>M.</given-names>
</name>
, and
<name>
<surname>Hall</surname>
<given-names>M.N.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Making new contacts: the mTOR network in metabolism and signalling crosstalk</article-title>
.
<source>Nat. Rev. Mol. Cell Biol.</source>
<volume>15</volume>
:
<fpage>155</fpage>
<lpage>162</lpage>
<pub-id pub-id-type="doi">10.1038/nrm3757</pub-id>
<pub-id pub-id-type="pmid">24556838</pub-id>
</mixed-citation>
</ref>
<ref id="bib41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stanford</surname>
<given-names>K.I.</given-names>
</name>
,
<name>
<surname>Middelbeek</surname>
<given-names>R.J.</given-names>
</name>
,
<name>
<surname>Townsend</surname>
<given-names>K.L.</given-names>
</name>
,
<name>
<surname>An</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Nygaard</surname>
<given-names>E.B.</given-names>
</name>
,
<name>
<surname>Hitchcox</surname>
<given-names>K.M.</given-names>
</name>
,
<name>
<surname>Markan</surname>
<given-names>K.R.</given-names>
</name>
,
<name>
<surname>Nakano</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Hirshman</surname>
<given-names>M.F.</given-names>
</name>
,
<name>
<surname>Tseng</surname>
<given-names>Y.H.</given-names>
</name>
, and
<name>
<surname>Goodyear</surname>
<given-names>L.J.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Brown adipose tissue regulates glucose homeostasis and insulin sensitivity</article-title>
.
<source>J. Clin. Invest.</source>
<volume>123</volume>
:
<fpage>215</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="doi">10.1172/JCI62308</pub-id>
<pub-id pub-id-type="pmid">23221344</pub-id>
</mixed-citation>
</ref>
<ref id="bib42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Surucu</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Bozulic</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Hynx</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Parcellier</surname>
<given-names>A.</given-names>
</name>
, and
<name>
<surname>Hemmings</surname>
<given-names>B.A.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>In vivo analysis of protein kinase B (PKB)/Akt regulation in DNA-PKcs-null mice reveals a role for PKB/Akt in DNA damage response and tumorigenesis</article-title>
.
<source>J. Biol. Chem.</source>
<volume>283</volume>
:
<fpage>30025</fpage>
<lpage>30033</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M803053200</pub-id>
<pub-id pub-id-type="pmid">18757368</pub-id>
</mixed-citation>
</ref>
<ref id="bib43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsakiridis</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Vranic</surname>
<given-names>M.</given-names>
</name>
, and
<name>
<surname>Klip</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane</article-title>
.
<source>J. Biol. Chem.</source>
<volume>269</volume>
:
<fpage>29934</fpage>
<lpage>29942</lpage>
.
<pub-id pub-id-type="pmid">7961991</pub-id>
</mixed-citation>
</ref>
<ref id="bib44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wakatsuki</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Schwab</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>N.C.</given-names>
</name>
, and
<name>
<surname>Elson</surname>
<given-names>E.L.</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Effects of cytochalasin D and latrunculin B on mechanical properties of cells</article-title>
.
<source>J. Cell Sci.</source>
<volume>114</volume>
:
<fpage>1025</fpage>
<lpage>1036</lpage>
.
<pub-id pub-id-type="pmid">11181185</pub-id>
</mixed-citation>
</ref>
<ref id="bib45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaid</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Antonescu</surname>
<given-names>C.N.</given-names>
</name>
,
<name>
<surname>Randhawa</surname>
<given-names>V.K.</given-names>
</name>
, and
<name>
<surname>Klip</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Insulin action on glucose transporters through molecular switches, tracks and tethers</article-title>
.
<source>Biochem. J.</source>
<volume>413</volume>
:
<fpage>201</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="doi">10.1042/BJ20080723</pub-id>
<pub-id pub-id-type="pmid">18570632</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002631 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002631 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4226734
   |texte=   Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25385184" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024