Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induction of TDO2 and IDO2 in Liver by High-Fat Feeding in Mice: Discrepancies with Human Obesity

Identifieur interne : 002614 ( Pmc/Corpus ); précédent : 002613; suivant : 002615

Induction of TDO2 and IDO2 in Liver by High-Fat Feeding in Mice: Discrepancies with Human Obesity

Auteurs : Odile Poulain-Godefroy ; Elodie Eury ; Audrey Leloire ; Benjamin Hennart ; Gilles J. Guillemin ; Delphine Allorge ; Philippe Froguel

Source :

RBID : PMC:3729279

Abstract

Low-grade and chronic inflammation is elicited in white adipose tissue in human obesity. The presence of inflammatory molecules leads to an increased tryptophan catabolism through the induction of indoleamine-2,3-dioxygenase-1 (IDO1). In order to characterize the mechanisms underlying this dysregulation, we have studied 2 mouse models of obesity. Unexpectedly, we did not detect any IDO1 expression in obese or lean mice adipose tissue. In a previous study, we did not find any significant difference in the liver for IDO2 and tryptophan-2,3-dioxygenase (TDO2) gene expression between normal weight and obese patients. IDO2 and TDO2 expression was increased in the liver of high-fat fed mice, but not in ob/ob mice, and was strongly correlated with hydroxysteroid-(11-beta) dehydrogenase-1 (HSD11B1) expression, an enzyme that generates active cortisol within tissues. In conclusion, despite a dysregulation of tryptophan metabolism, obese mice display discrepancies with human obesity metabolism, rendering them inappropriate for further investigations in this animal model.


Url:
DOI: 10.4137/IJTR.S11717
PubMed: 26882470
PubMed Central: 3729279

Links to Exploration step

PMC:3729279

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induction of TDO2 and IDO2 in Liver by High-Fat Feeding in Mice: Discrepancies with Human Obesity</title>
<author>
<name sortKey="Poulain Godefroy, Odile" sort="Poulain Godefroy, Odile" uniqKey="Poulain Godefroy O" first="Odile" last="Poulain-Godefroy">Odile Poulain-Godefroy</name>
<affiliation>
<nlm:aff id="af1-ijtr-suppl.1-2013-029">European Genomic Institute for Diabetes (EGID), Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijtr-suppl.1-2013-029">CNRS UMR 8199, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5-ijtr-suppl.1-2013-029">IPL, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Eury, Elodie" sort="Eury, Elodie" uniqKey="Eury E" first="Elodie" last="Eury">Elodie Eury</name>
<affiliation>
<nlm:aff id="af1-ijtr-suppl.1-2013-029">European Genomic Institute for Diabetes (EGID), Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijtr-suppl.1-2013-029">CNRS UMR 8199, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5-ijtr-suppl.1-2013-029">IPL, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leloire, Audrey" sort="Leloire, Audrey" uniqKey="Leloire A" first="Audrey" last="Leloire">Audrey Leloire</name>
<affiliation>
<nlm:aff id="af1-ijtr-suppl.1-2013-029">European Genomic Institute for Diabetes (EGID), Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijtr-suppl.1-2013-029">CNRS UMR 8199, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5-ijtr-suppl.1-2013-029">IPL, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hennart, Benjamin" sort="Hennart, Benjamin" uniqKey="Hennart B" first="Benjamin" last="Hennart">Benjamin Hennart</name>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af6-ijtr-suppl.1-2013-029">EA4483, Faculty of Medicine, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guillemin, Gilles J" sort="Guillemin, Gilles J" uniqKey="Guillemin G" first="Gilles J." last="Guillemin">Gilles J. Guillemin</name>
<affiliation>
<nlm:aff id="af7-ijtr-suppl.1-2013-029">MND and Neurodegenerative Diseases Research Group, Australian School of Advanced Medicine, Macquarie University, Australia.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Allorge, Delphine" sort="Allorge, Delphine" uniqKey="Allorge D" first="Delphine" last="Allorge">Delphine Allorge</name>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af6-ijtr-suppl.1-2013-029">EA4483, Faculty of Medicine, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Froguel, Philippe" sort="Froguel, Philippe" uniqKey="Froguel P" first="Philippe" last="Froguel">Philippe Froguel</name>
<affiliation>
<nlm:aff id="af1-ijtr-suppl.1-2013-029">European Genomic Institute for Diabetes (EGID), Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijtr-suppl.1-2013-029">CNRS UMR 8199, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5-ijtr-suppl.1-2013-029">IPL, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-ijtr-suppl.1-2013-029">Department of Genomics of Common Disease, School of Public Health, Imperial College London, United Kingdom.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26882470</idno>
<idno type="pmc">3729279</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729279</idno>
<idno type="RBID">PMC:3729279</idno>
<idno type="doi">10.4137/IJTR.S11717</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002614</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002614</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Induction of TDO2 and IDO2 in Liver by High-Fat Feeding in Mice: Discrepancies with Human Obesity</title>
<author>
<name sortKey="Poulain Godefroy, Odile" sort="Poulain Godefroy, Odile" uniqKey="Poulain Godefroy O" first="Odile" last="Poulain-Godefroy">Odile Poulain-Godefroy</name>
<affiliation>
<nlm:aff id="af1-ijtr-suppl.1-2013-029">European Genomic Institute for Diabetes (EGID), Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijtr-suppl.1-2013-029">CNRS UMR 8199, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5-ijtr-suppl.1-2013-029">IPL, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Eury, Elodie" sort="Eury, Elodie" uniqKey="Eury E" first="Elodie" last="Eury">Elodie Eury</name>
<affiliation>
<nlm:aff id="af1-ijtr-suppl.1-2013-029">European Genomic Institute for Diabetes (EGID), Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijtr-suppl.1-2013-029">CNRS UMR 8199, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5-ijtr-suppl.1-2013-029">IPL, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leloire, Audrey" sort="Leloire, Audrey" uniqKey="Leloire A" first="Audrey" last="Leloire">Audrey Leloire</name>
<affiliation>
<nlm:aff id="af1-ijtr-suppl.1-2013-029">European Genomic Institute for Diabetes (EGID), Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijtr-suppl.1-2013-029">CNRS UMR 8199, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5-ijtr-suppl.1-2013-029">IPL, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hennart, Benjamin" sort="Hennart, Benjamin" uniqKey="Hennart B" first="Benjamin" last="Hennart">Benjamin Hennart</name>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af6-ijtr-suppl.1-2013-029">EA4483, Faculty of Medicine, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guillemin, Gilles J" sort="Guillemin, Gilles J" uniqKey="Guillemin G" first="Gilles J." last="Guillemin">Gilles J. Guillemin</name>
<affiliation>
<nlm:aff id="af7-ijtr-suppl.1-2013-029">MND and Neurodegenerative Diseases Research Group, Australian School of Advanced Medicine, Macquarie University, Australia.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Allorge, Delphine" sort="Allorge, Delphine" uniqKey="Allorge D" first="Delphine" last="Allorge">Delphine Allorge</name>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af6-ijtr-suppl.1-2013-029">EA4483, Faculty of Medicine, Lille, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Froguel, Philippe" sort="Froguel, Philippe" uniqKey="Froguel P" first="Philippe" last="Froguel">Philippe Froguel</name>
<affiliation>
<nlm:aff id="af1-ijtr-suppl.1-2013-029">European Genomic Institute for Diabetes (EGID), Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijtr-suppl.1-2013-029">University of Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijtr-suppl.1-2013-029">CNRS UMR 8199, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijtr-suppl.1-2013-029">CHRU Lille, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5-ijtr-suppl.1-2013-029">IPL, Lille, France.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-ijtr-suppl.1-2013-029">Department of Genomics of Common Disease, School of Public Health, Imperial College London, United Kingdom.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Tryptophan Research : IJTR</title>
<idno type="eISSN">1178-6469</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Low-grade and chronic inflammation is elicited in white adipose tissue in human obesity. The presence of inflammatory molecules leads to an increased tryptophan catabolism through the induction of indoleamine-2,3-dioxygenase-1 (IDO1). In order to characterize the mechanisms underlying this dysregulation, we have studied 2 mouse models of obesity. Unexpectedly, we did not detect any IDO1 expression in obese or lean mice adipose tissue. In a previous study, we did not find any significant difference in the liver for IDO2 and tryptophan-2,3-dioxygenase (TDO2) gene expression between normal weight and obese patients. IDO2 and TDO2 expression was increased in the liver of high-fat fed mice, but not in ob/ob mice, and was strongly correlated with hydroxysteroid-(11-beta) dehydrogenase-1 (HSD11B1) expression, an enzyme that generates active cortisol within tissues. In conclusion, despite a dysregulation of tryptophan metabolism, obese mice display discrepancies with human obesity metabolism, rendering them inappropriate for further investigations in this animal model.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Harford, Ka" uniqKey="Harford K">KA Harford</name>
</author>
<author>
<name sortKey="Reynolds, Cm" uniqKey="Reynolds C">CM Reynolds</name>
</author>
<author>
<name sortKey="Mcgillicuddy, Fc" uniqKey="Mcgillicuddy F">FC McGillicuddy</name>
</author>
<author>
<name sortKey="Roche, Hm" uniqKey="Roche H">HM Roche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Fox, Cs" uniqKey="Fox C">CS Fox</name>
</author>
<author>
<name sortKey="Hickson, Da" uniqKey="Hickson D">DA Hickson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolowczuk, I" uniqKey="Wolowczuk I">I Wolowczuk</name>
</author>
<author>
<name sortKey="Hennart, B" uniqKey="Hennart B">B Hennart</name>
</author>
<author>
<name sortKey="Leloire, A" uniqKey="Leloire A">A Leloire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takikawa, O" uniqKey="Takikawa O">O Takikawa</name>
</author>
<author>
<name sortKey="Yoshida, R" uniqKey="Yoshida R">R Yoshida</name>
</author>
<author>
<name sortKey="Kido, R" uniqKey="Kido R">R Kido</name>
</author>
<author>
<name sortKey="Hayaishi, O" uniqKey="Hayaishi O">O Hayaishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oxenkrug, Gf" uniqKey="Oxenkrug G">GF Oxenkrug</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ball, H" uniqKey="Ball H">H Ball</name>
</author>
<author>
<name sortKey="Yuasa, H" uniqKey="Yuasa H">H Yuasa</name>
</author>
<author>
<name sortKey="Austin, C" uniqKey="Austin C">C Austin</name>
</author>
<author>
<name sortKey="Weiser, S" uniqKey="Weiser S">S Weiser</name>
</author>
<author>
<name sortKey="Hunt, N" uniqKey="Hunt N">N Hunt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niimi, S" uniqKey="Niimi S">S Niimi</name>
</author>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
<author>
<name sortKey="Nawa, K" uniqKey="Nawa K">K Nawa</name>
</author>
<author>
<name sortKey="Ichihara, A" uniqKey="Ichihara A">A Ichihara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brandacher, G" uniqKey="Brandacher G">G Brandacher</name>
</author>
<author>
<name sortKey="Winkler, C" uniqKey="Winkler C">C Winkler</name>
</author>
<author>
<name sortKey="Aigner, F" uniqKey="Aigner F">F Aigner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romani, L" uniqKey="Romani L">L Romani</name>
</author>
<author>
<name sortKey="Fallarino, F" uniqKey="Fallarino F">F Fallarino</name>
</author>
<author>
<name sortKey="De Luca, A" uniqKey="De Luca A">A De Luca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baban, B" uniqKey="Baban B">B Baban</name>
</author>
<author>
<name sortKey="Chandler, Pr" uniqKey="Chandler P">PR Chandler</name>
</author>
<author>
<name sortKey="Sharma, Md" uniqKey="Sharma M">MD Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Favre, D" uniqKey="Favre D">D Favre</name>
</author>
<author>
<name sortKey="Mold, J" uniqKey="Mold J">J Mold</name>
</author>
<author>
<name sortKey="Hunt, Pw" uniqKey="Hunt P">PW Hunt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poulain Godefroy, O" uniqKey="Poulain Godefroy O">O Poulain-Godefroy</name>
</author>
<author>
<name sortKey="Lecoeur, C" uniqKey="Lecoeur C">C Lecoeur</name>
</author>
<author>
<name sortKey="Pattou, F" uniqKey="Pattou F">F Pattou</name>
</author>
<author>
<name sortKey="Fruhbeck, G" uniqKey="Fruhbeck G">G Fruhbeck</name>
</author>
<author>
<name sortKey="Froguel, P" uniqKey="Froguel P">P Froguel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ilan, Y" uniqKey="Ilan Y">Y Ilan</name>
</author>
<author>
<name sortKey="Maron, R" uniqKey="Maron R">R Maron</name>
</author>
<author>
<name sortKey="Tukpah, Am" uniqKey="Tukpah A">AM Tukpah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, R" uniqKey="Ross R">R Ross</name>
</author>
<author>
<name sortKey="Aru, J" uniqKey="Aru J">J Aru</name>
</author>
<author>
<name sortKey="Freeman, J" uniqKey="Freeman J">J Freeman</name>
</author>
<author>
<name sortKey="Hudson, R" uniqKey="Hudson R">R Hudson</name>
</author>
<author>
<name sortKey="Janssen, I" uniqKey="Janssen I">I Janssen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hariri, N" uniqKey="Hariri N">N Hariri</name>
</author>
<author>
<name sortKey="Thibault, L" uniqKey="Thibault L">L Thibault</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindstrom, P" uniqKey="Lindstrom P">P Lindstrom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kintscher, U" uniqKey="Kintscher U">U Kintscher</name>
</author>
<author>
<name sortKey="Hartge, M" uniqKey="Hartge M">M Hartge</name>
</author>
<author>
<name sortKey="Hess, K" uniqKey="Hess K">K Hess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, Y" uniqKey="Peng Y">Y Peng</name>
</author>
<author>
<name sortKey="Rideout, D" uniqKey="Rideout D">D Rideout</name>
</author>
<author>
<name sortKey="Rakita, S" uniqKey="Rakita S">S Rakita</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
<author>
<name sortKey="Murr, M" uniqKey="Murr M">M Murr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamada, K" uniqKey="Yamada K">K Yamada</name>
</author>
<author>
<name sortKey="Miyazaki, T" uniqKey="Miyazaki T">T Miyazaki</name>
</author>
<author>
<name sortKey="Shibata, T" uniqKey="Shibata T">T Shibata</name>
</author>
<author>
<name sortKey="Hara, N" uniqKey="Hara N">N Hara</name>
</author>
<author>
<name sortKey="Tsuchiya, M" uniqKey="Tsuchiya M">M Tsuchiya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schefold, Jc" uniqKey="Schefold J">JC Schefold</name>
</author>
<author>
<name sortKey="Zeden, Jp" uniqKey="Zeden J">JP Zeden</name>
</author>
<author>
<name sortKey="Fotopoulou, C" uniqKey="Fotopoulou C">C Fotopoulou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weisberg, Sp" uniqKey="Weisberg S">SP Weisberg</name>
</author>
<author>
<name sortKey="Hunter, D" uniqKey="Hunter D">D Hunter</name>
</author>
<author>
<name sortKey="Huber, R" uniqKey="Huber R">R Huber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomlinson, Jw" uniqKey="Tomlinson J">JW Tomlinson</name>
</author>
<author>
<name sortKey="Walker, Ea" uniqKey="Walker E">EA Walker</name>
</author>
<author>
<name sortKey="Bujalska, Ij" uniqKey="Bujalska I">IJ Bujalska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morton, Nm" uniqKey="Morton N">NM Morton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salter, M" uniqKey="Salter M">M Salter</name>
</author>
<author>
<name sortKey="Pogson, Ci" uniqKey="Pogson C">CI Pogson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staab, Ca" uniqKey="Staab C">CA Staab</name>
</author>
<author>
<name sortKey="Maser, E" uniqKey="Maser E">E Maser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wake, Dj" uniqKey="Wake D">DJ Wake</name>
</author>
<author>
<name sortKey="Walker, Br" uniqKey="Walker B">BR Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morton, Nm" uniqKey="Morton N">NM Morton</name>
</author>
<author>
<name sortKey="Ramage, L" uniqKey="Ramage L">L Ramage</name>
</author>
<author>
<name sortKey="Seckl, Jr" uniqKey="Seckl J">JR Seckl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danesch, U" uniqKey="Danesch U">U Danesch</name>
</author>
<author>
<name sortKey="Gloss, B" uniqKey="Gloss B">B Gloss</name>
</author>
<author>
<name sortKey="Schmid, W" uniqKey="Schmid W">W Schmid</name>
</author>
<author>
<name sortKey="Schutz, G" uniqKey="Schutz G">G Schutz</name>
</author>
<author>
<name sortKey="Schule, R" uniqKey="Schule R">R Schule</name>
</author>
<author>
<name sortKey="Renkawitz, R" uniqKey="Renkawitz R">R Renkawitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
<author>
<name sortKey="Niimi, S" uniqKey="Niimi S">S Niimi</name>
</author>
<author>
<name sortKey="Nawa, K" uniqKey="Nawa K">K Nawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Lo" uniqKey="Li L">LO Li</name>
</author>
<author>
<name sortKey="Hu, Yf" uniqKey="Hu Y">YF Hu</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Mitchell, M" uniqKey="Mitchell M">M Mitchell</name>
</author>
<author>
<name sortKey="Berger, A" uniqKey="Berger A">A Berger</name>
</author>
<author>
<name sortKey="Coleman, Ra" uniqKey="Coleman R">RA Coleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allegri, G" uniqKey="Allegri G">G Allegri</name>
</author>
<author>
<name sortKey="Bertazzo, A" uniqKey="Bertazzo A">A Bertazzo</name>
</author>
<author>
<name sortKey="Biasiolo, M" uniqKey="Biasiolo M">M Biasiolo</name>
</author>
<author>
<name sortKey="Costa, Cv" uniqKey="Costa C">CV Costa</name>
</author>
<author>
<name sortKey="Ragazzi, E" uniqKey="Ragazzi E">E Ragazzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badawy, Aa" uniqKey="Badawy A">AA Badawy</name>
</author>
<author>
<name sortKey="Evans, M" uniqKey="Evans M">M Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monroe, C" uniqKey="Monroe C">C Monroe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, S" uniqKey="Cheng S">S Cheng</name>
</author>
<author>
<name sortKey="Rhee, Ep" uniqKey="Rhee E">EP Rhee</name>
</author>
<author>
<name sortKey="Larson, Mg" uniqKey="Larson M">MG Larson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toye, Aa" uniqKey="Toye A">AA Toye</name>
</author>
<author>
<name sortKey="Dumas, Me" uniqKey="Dumas M">ME Dumas</name>
</author>
<author>
<name sortKey="Blancher, C" uniqKey="Blancher C">C Blancher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badawi, A" uniqKey="Badawi A">A Badawi</name>
</author>
<author>
<name sortKey="Morgan, C" uniqKey="Morgan C">C Morgan</name>
</author>
<author>
<name sortKey="Davis, N" uniqKey="Davis N">N Davis</name>
</author>
<author>
<name sortKey="Dacey, A" uniqKey="Dacey A">A Dacey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nocito, A" uniqKey="Nocito A">A Nocito</name>
</author>
<author>
<name sortKey="Dahm, F" uniqKey="Dahm F">F Dahm</name>
</author>
<author>
<name sortKey="Jochum, W" uniqKey="Jochum W">W Jochum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osawa, Y" uniqKey="Osawa Y">Y Osawa</name>
</author>
<author>
<name sortKey="Kanamori, H" uniqKey="Kanamori H">H Kanamori</name>
</author>
<author>
<name sortKey="Seki, E" uniqKey="Seki E">E Seki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munn, Dh" uniqKey="Munn D">DH Munn</name>
</author>
<author>
<name sortKey="Mellor, Al" uniqKey="Mellor A">AL Mellor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fallarino, F" uniqKey="Fallarino F">F Fallarino</name>
</author>
<author>
<name sortKey="Grohmann, U" uniqKey="Grohmann U">U Grohmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Opitz, Ca" uniqKey="Opitz C">CA Opitz</name>
</author>
<author>
<name sortKey="Litzenburger, Um" uniqKey="Litzenburger U">UM Litzenburger</name>
</author>
<author>
<name sortKey="Sahm, F" uniqKey="Sahm F">F Sahm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qian, F" uniqKey="Qian F">F Qian</name>
</author>
<author>
<name sortKey="Liao, J" uniqKey="Liao J">J Liao</name>
</author>
<author>
<name sortKey="Villella, J" uniqKey="Villella J">J Villella</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Tryptophan Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Tryptophan Res</journal-id>
<journal-title-group>
<journal-title>International Journal of Tryptophan Research : IJTR</journal-title>
</journal-title-group>
<issn pub-type="epub">1178-6469</issn>
<publisher>
<publisher-name>Libertas Academica</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26882470</article-id>
<article-id pub-id-type="pmc">3729279</article-id>
<article-id pub-id-type="doi">10.4137/IJTR.S11717</article-id>
<article-id pub-id-type="publisher-id">ijtr-suppl_1-2013-029</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Meeting Report</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Induction of TDO2 and IDO2 in Liver by High-Fat Feeding in Mice: Discrepancies with Human Obesity</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Poulain-Godefroy</surname>
<given-names>Odile</given-names>
</name>
<xref ref-type="aff" rid="af1-ijtr-suppl.1-2013-029">1</xref>
<xref ref-type="aff" rid="af2-ijtr-suppl.1-2013-029">2</xref>
<xref ref-type="aff" rid="af3-ijtr-suppl.1-2013-029">3</xref>
<xref ref-type="aff" rid="af4-ijtr-suppl.1-2013-029">4</xref>
<xref ref-type="aff" rid="af5-ijtr-suppl.1-2013-029">5</xref>
<xref ref-type="corresp" rid="c1-ijtr-suppl.1-2013-029"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Eury</surname>
<given-names>Elodie</given-names>
</name>
<xref ref-type="aff" rid="af1-ijtr-suppl.1-2013-029">1</xref>
<xref ref-type="aff" rid="af2-ijtr-suppl.1-2013-029">2</xref>
<xref ref-type="aff" rid="af3-ijtr-suppl.1-2013-029">3</xref>
<xref ref-type="aff" rid="af4-ijtr-suppl.1-2013-029">4</xref>
<xref ref-type="aff" rid="af5-ijtr-suppl.1-2013-029">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Leloire</surname>
<given-names>Audrey</given-names>
</name>
<xref ref-type="aff" rid="af1-ijtr-suppl.1-2013-029">1</xref>
<xref ref-type="aff" rid="af2-ijtr-suppl.1-2013-029">2</xref>
<xref ref-type="aff" rid="af3-ijtr-suppl.1-2013-029">3</xref>
<xref ref-type="aff" rid="af4-ijtr-suppl.1-2013-029">4</xref>
<xref ref-type="aff" rid="af5-ijtr-suppl.1-2013-029">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hennart</surname>
<given-names>Benjamin</given-names>
</name>
<xref ref-type="aff" rid="af2-ijtr-suppl.1-2013-029">2</xref>
<xref ref-type="aff" rid="af4-ijtr-suppl.1-2013-029">4</xref>
<xref ref-type="aff" rid="af6-ijtr-suppl.1-2013-029">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guillemin</surname>
<given-names>Gilles J.</given-names>
</name>
<xref ref-type="aff" rid="af7-ijtr-suppl.1-2013-029">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Allorge</surname>
<given-names>Delphine</given-names>
</name>
<xref ref-type="aff" rid="af2-ijtr-suppl.1-2013-029">2</xref>
<xref ref-type="aff" rid="af4-ijtr-suppl.1-2013-029">4</xref>
<xref ref-type="aff" rid="af6-ijtr-suppl.1-2013-029">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Froguel</surname>
<given-names>Philippe</given-names>
</name>
<xref ref-type="aff" rid="af1-ijtr-suppl.1-2013-029">1</xref>
<xref ref-type="aff" rid="af2-ijtr-suppl.1-2013-029">2</xref>
<xref ref-type="aff" rid="af3-ijtr-suppl.1-2013-029">3</xref>
<xref ref-type="aff" rid="af4-ijtr-suppl.1-2013-029">4</xref>
<xref ref-type="aff" rid="af5-ijtr-suppl.1-2013-029">5</xref>
<xref ref-type="aff" rid="af8-ijtr-suppl.1-2013-029">8</xref>
</contrib>
</contrib-group>
<aff id="af1-ijtr-suppl.1-2013-029">
<label>1</label>
European Genomic Institute for Diabetes (EGID), Lille, France.</aff>
<aff id="af2-ijtr-suppl.1-2013-029">
<label>2</label>
University of Lille, Lille, France.</aff>
<aff id="af3-ijtr-suppl.1-2013-029">
<label>3</label>
CNRS UMR 8199, Lille, France.</aff>
<aff id="af4-ijtr-suppl.1-2013-029">
<label>4</label>
CHRU Lille, Lille, France.</aff>
<aff id="af5-ijtr-suppl.1-2013-029">
<label>5</label>
IPL, Lille, France.</aff>
<aff id="af6-ijtr-suppl.1-2013-029">
<label>6</label>
EA4483, Faculty of Medicine, Lille, France.</aff>
<aff id="af7-ijtr-suppl.1-2013-029">
<label>7</label>
MND and Neurodegenerative Diseases Research Group, Australian School of Advanced Medicine, Macquarie University, Australia.</aff>
<aff id="af8-ijtr-suppl.1-2013-029">
<label>8</label>
Department of Genomics of Common Disease, School of Public Health, Imperial College London, United Kingdom.</aff>
<author-notes>
<corresp id="c1-ijtr-suppl.1-2013-029">Corresponding author email:
<email>odile.poulain@good.ibl.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>21</day>
<month>7</month>
<year>2013</year>
</pub-date>
<volume>6</volume>
<issue>Suppl 1</issue>
<fpage>29</fpage>
<lpage>37</lpage>
<permissions>
<copyright-statement>© 2013 the author(s), publisher and licensee Libertas Academica Ltd.</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article published under the Creative Commons CC-BY-NC 3.0 license.</license-p>
</license>
</permissions>
<abstract>
<p>Low-grade and chronic inflammation is elicited in white adipose tissue in human obesity. The presence of inflammatory molecules leads to an increased tryptophan catabolism through the induction of indoleamine-2,3-dioxygenase-1 (IDO1). In order to characterize the mechanisms underlying this dysregulation, we have studied 2 mouse models of obesity. Unexpectedly, we did not detect any IDO1 expression in obese or lean mice adipose tissue. In a previous study, we did not find any significant difference in the liver for IDO2 and tryptophan-2,3-dioxygenase (TDO2) gene expression between normal weight and obese patients. IDO2 and TDO2 expression was increased in the liver of high-fat fed mice, but not in ob/ob mice, and was strongly correlated with hydroxysteroid-(11-beta) dehydrogenase-1 (HSD11B1) expression, an enzyme that generates active cortisol within tissues. In conclusion, despite a dysregulation of tryptophan metabolism, obese mice display discrepancies with human obesity metabolism, rendering them inappropriate for further investigations in this animal model.</p>
</abstract>
<kwd-group>
<kwd>tryptophan 2</kwd>
<kwd>3-dioxygenase</kwd>
<kwd>indoleamine 2</kwd>
<kwd>3-dioxygenase 2</kwd>
<kwd>obesity</kwd>
<kwd>high fat diet</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Obesity and the associated metabolic disorders are characterized by the presence of a chronic “low-grade” inflammatory response in insulin-sensitive tissues, particularly adipose tissue and liver. The different adipose depots of the organism are enlarged and infiltrated with macrophages and diverse immune cells that promote a proinflammatory state.
<xref ref-type="bibr" rid="b1-ijtr-suppl.1-2013-029">1</xref>
In this context, epidemiological studies have demonstrated that the visceral adipose compartment was the more deleterious in terms of the risk of developing associated comorbidities, due to its higher inflammatory features.
<xref ref-type="bibr" rid="b2-ijtr-suppl.1-2013-029">2</xref>
</p>
<p>We have recently demonstrated that tryptophan metabolism is activated in human obesity
<xref ref-type="bibr" rid="b3-ijtr-suppl.1-2013-029">3</xref>
and likely results from the inflammatory response linked to this pathology. In particular, in indoleamine 2,3-dioxygenase (IDO1) the rate-limiting enzyme of the tryptophan–kynurenine pathway
<xref ref-type="bibr" rid="b4-ijtr-suppl.1-2013-029">4</xref>
,
<xref ref-type="bibr" rid="b5-ijtr-suppl.1-2013-029">5</xref>
is induced in white adipose tissue and liver. The kynurenine pathway is the main degradative pathway for the essential amino acid tryptophan. The first step in the conversion of tryptophan to kynurenine can be carried out by 3 different enzymes: indoleamine 2,3 dioxygenase-1 (IDO1), tryptophan 2,3-dioxygenase (TDO2) and indoleamine 2,3-dioxygenase-2 (IDO2), a recently described paralog of IDO1.
<xref ref-type="bibr" rid="b6-ijtr-suppl.1-2013-029">6</xref>
IDO1 is known to be ubiquitous whereas IDO2 and TDO2 are both expressed in the liver, brain (TDO2), kidney or epididymis (IDO2). IDO1 is induced by pro-inflammatory cytokines while TDO2 is induced by tryptophan and cortisol.
<xref ref-type="bibr" rid="b5-ijtr-suppl.1-2013-029">5</xref>
,
<xref ref-type="bibr" rid="b7-ijtr-suppl.1-2013-029">7</xref>
Inductors of IDO2 expression might be the same as IDO1’s, but few are known and the data are still controversial.
<xref ref-type="bibr" rid="b6-ijtr-suppl.1-2013-029">6</xref>
</p>
<p>The kynurenine/tryptophan ratio, used as an indicator of IDO1/TDO2 activity, is enhanced in the sera of obese patients, demonstrating a dysregulation of this pathway which is not re-equilibrated by weight loss.
<xref ref-type="bibr" rid="b8-ijtr-suppl.1-2013-029">8</xref>
Several studies have suggested that IDO1 regulates the balance of TH17 cells (proinflammatory) relative to regulatory T-cells (Treg, a lymphocyte subset with immunosuppressive attributes) in mice
<xref ref-type="bibr" rid="b9-ijtr-suppl.1-2013-029">9</xref>
,
<xref ref-type="bibr" rid="b10-ijtr-suppl.1-2013-029">10</xref>
and in humans.
<xref ref-type="bibr" rid="b11-ijtr-suppl.1-2013-029">11</xref>
We further demonstrated that the ratio between TH17 cells and regulatory T cells correlates with IDO1 activation in subcutaneous adipose tissue.
<xref ref-type="bibr" rid="b3-ijtr-suppl.1-2013-029">3</xref>
Despite IDO1 enhancement, the TH17/Treg ratio remained high, especially in the omental compartment, which we demonstrated to be more inflammatory.
<xref ref-type="bibr" rid="b12-ijtr-suppl.1-2013-029">12</xref>
This suggests an impairment of the pathway in this compartment. The ability of regulatory T-cells to decrease adipose inflammation and to counteract insulin resistance has been demonstrated in obese, leptin-deficient ob/ob mice.
<xref ref-type="bibr" rid="b13-ijtr-suppl.1-2013-029">13</xref>
Since visceral adipose inflammation in obesity is a major pathophysiological risk factor for the development of whole body insulin-resistance and metabolic abnormalities,
<xref ref-type="bibr" rid="b14-ijtr-suppl.1-2013-029">14</xref>
our main objective was to further understand mechanisms underlying inability of IDO1 to regulate TH17/Treg ratio in the omental compartment.</p>
<p>For this purpose, we studied the high-fat diet induced-obesity model and the leptin-deficiency model (ob/ob), the two main mouse models that have been extensively studied in this field.
<xref ref-type="bibr" rid="b15-ijtr-suppl.1-2013-029">15</xref>
,
<xref ref-type="bibr" rid="b16-ijtr-suppl.1-2013-029">16</xref>
We first explored tryptophan catabolism and production of kynurenine in these models both in the white adipose tissue and in the liver, which are the 2 main organs prone to inflammation in obesity.
<xref ref-type="bibr" rid="b17-ijtr-suppl.1-2013-029">17</xref>
,
<xref ref-type="bibr" rid="b18-ijtr-suppl.1-2013-029">18</xref>
In this study, we have monitored weight gain in mice during 16 weeks with a high fat diet, as well as inflammation in the white adipose tissue. The tryptophan degradation pathway was investigated by the analysis of the expression of 3 degrading enzymes and by the measurement of metabolite concentrations in sera. Unexpectedly, we found a dysregulation of tryptophan metabolism in obese mice, but with very different features than in human obesity, that render mouse models inappropriate for further mechanistic investigations of this pathway.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and Methods</title>
<sec>
<title>Animals, diet and treatment</title>
<p>Two common mice obesity models have been used in this study: mice fed a high fat diet and ob/ob mice. For diet-induced obesity, 6-week-old C57BL/6J male mice (Charles River Laboratories, L’Arbresle, France) were fed either with a standard diet or with a high-fat diet (Research Diets, INC, New Brunswick, NJ) containing 10% or 60% in kcal of fat, respectively, but produced with ingredients of the same origin. Food intake and body weight were measured weekly for up to 16 weeks of diet. As another model of obesity with metabolic abnormalities,
<xref ref-type="bibr" rid="b16-ijtr-suppl.1-2013-029">16</xref>
we used 7-week-old ob/ob male mice (JAX
<sup>®</sup>
Mice Strain: B6.V-Lep(ob)/J, Charles River Laboratories) deficient in the hormone leptin and used littermates C57BL/6J male mice as control as recommended.</p>
<p>As a positive control of inflammation we used a model of acute inflammation obtained by lipopolysaccharide (LPS) administration. LPS (
<italic>E. coli</italic>
0127:B8, Sigma, Steinheim, Germany) was intraperitoneally administrated to 6-week-old C57BL/6J male mice at 830 μg/kg body weight in PBS. Animals were sacrificed 6 hours (h) after injection. All animals were kept on a 12:12 h light–darkness cycle and were given free access to food and water. Breeding, housing and experimentations were carried out according to the French and European guidelines of laboratory animal care (European Communities Council Directive of 430 1986, 86/609/EEC) and approved by the Departmental Direction of Veterinary Services (Prefecture of Lille, France; authorization number: 59-350172).</p>
</sec>
<sec>
<title>Intraperitoneal glucose tolerance test</title>
<p>Glucose tolerance tests (GTT) were performed on 6 h-fasted mice injected intraperitoneally with D-glucose (1g/kg body weight, Sigma-Aldrich). Glucose levels were measured by tail tip bleeding with an automatic glucometer (ACCU-CHEK Performa, Roche, Meylan, France) immediately before and 15, 30, 60 and 180 minutes (min) after the glucose injection.</p>
</sec>
<sec>
<title>Adipose and liver tissue sampling and RNA extraction</title>
<p>Tissue samples (liver, epidydimal fat and subcutaneous fat) were retrieved from each animal immediately after cervical dislocation. They were stored at −85 °C in Qiazol reagent. Total ribonucleic acid (RNA) was extracted from each sample by homogenization with TissueLyser II (QIAGEN Inc., Valencia, CA) using Qiazol reagent and carbide beads ( QIAGEN). These extracts were further automatically processed in a Qiacube machine using RNeasy Lipid Tissue MiniKit (QIAGEN). The RNA concentration was determined by absorbance at 260 nm (
<italic>A</italic>
<sub>260</sub>
), and the purity was estimated by determining the
<italic>A</italic>
<sub>260</sub>
/
<italic>A</italic>
<sub>280</sub>
ratio using a Nanodrop spectrophotometer (Nanodrop Technologies, Wilmington, DE).</p>
</sec>
<sec>
<title>Relative quantitative real-time PCR</title>
<p>The relative quantification of messenger RNA (mRNA) was performed with a quantitative RT-PCR assay. 1 μg of total RNA was transcribed into cDNA using the cDNA Archive Kit (Applied Biosystems, Foster City, CA, USA). Each cDNA sample was analyzed for gene expression by quantitative real-time PCR (qPCR) using the fluorescent TaqMan 5′-nuclease assay with an Applied Biosystems 7900HT sequence detection system. The TaqMan RT-PCR was performed using 2X TaqMan Master Mix and 20X premade TaqMan gene expression assays (Applied Biosystems). Analysis was performed with the ABI 7900HT SDS 2.2 Software. The mRNA levels were normalized to that of the 60S acidic ribosomal protein P0 (RPLP0), which was chosen for its stability in these samples. The data are given as the ratio of the level of the target gene mRNA to that of RPLP0 mRNA.</p>
</sec>
<sec>
<title>Determination of serum concentrations of tryptophan and kynurenine</title>
<p>An analytical procedure based on liquid chromatography-tandem mass spectrometry, employing electrospray ionization (LC-ESI/MS/MS), has been developed according to previously published methods, with slight modifications.
<xref ref-type="bibr" rid="b19-ijtr-suppl.1-2013-029">19</xref>
,
<xref ref-type="bibr" rid="b20-ijtr-suppl.1-2013-029">20</xref>
100 μL of pooled sera was analyzed after the addition of 50 μL methanol containing methyl-clonazepam (Sigma-Aldrich, Saint-Quentin Fallavier, France) at 1.25 mg/L, as an internal standard, and 50 μL acetonitrile. The samples were mixed and centrifuged (11200 g, 6 min) and the supernatant (100 μL) was added to deionized water (500 μL). 15 μL of this mixture was injected onto an UPLC-MS-MS system (Acquity TQ Detector, Waters, Milford, MA) equipped with a HSS C18 column. Ions of each analyzed compound were detected in a positive ion mode using multiple reaction monitoring. Chromalinks software (Waters) was used for data acquisition and processing.</p>
</sec>
<sec sec-type="methods">
<title>Statistical analysis</title>
<p>Statistical analysis was performed with the GraphPad Prism version 5.00 for Windows, GraphPad Software (San Diego, California, USA). Circulating metabolite concentrations and mRNA levels were compared using
<italic>U</italic>
Mann-Whitney’s test. Correlation analyses were performed using Pearson analysis. The threshold of significance was set to
<italic>P</italic>
< 0.05.</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>Lack of IDO1 expression in adipose tissue of obese mice</title>
<p>Compared to standard diet fed animals, high-fat fed animals displayed, as expected, a significant increase of their body weight from first week of diet, to an over 100% increase after 15 weeks (
<xref ref-type="fig" rid="f1-ijtr-suppl.1-2013-029">Fig. 1A</xref>
). This weight increase was mainly associated with an increase in adipose tissue mass as visualized by the analysis of epididymal fat mass (
<xref ref-type="fig" rid="f1-ijtr-suppl.1-2013-029">Fig. 1B</xref>
). Upon feeding of a high fat diet, animals became glucose resistant and displayed a higher fasting glycemia (
<xref ref-type="fig" rid="f1-ijtr-suppl.1-2013-029">Fig. 1C</xref>
). Inflammation was monitored in adipose tissue by analyzing CCL2 expression. In accordance with the literature,
<xref ref-type="bibr" rid="b21-ijtr-suppl.1-2013-029">21</xref>
CCL2 is highly induced in adipose tissue by high fat feeding while it remains low in control mice (
<xref ref-type="fig" rid="f2-ijtr-suppl.1-2013-029">Fig. 2A</xref>
). This chemokine is also induced in adipose tissue by LPS administration and in ob/ob mice (
<xref ref-type="fig" rid="f2-ijtr-suppl.1-2013-029">Fig. 2A</xref>
). Interferon-gamma (IFNG) expression in adipose tissue remained below detection limits in obese mice but was significantly induced 6 h after LPS administration (data not shown).</p>
<p>Despite inflammatory and glucose resistance features similar to those encountered in human obesity, we did not detect any significant IDO1 expression in epididymal adipose tissue of either control or high-fat diet fed animals (
<xref ref-type="fig" rid="f2-ijtr-suppl.1-2013-029">Fig. 2B</xref>
). Furthermore, in the ob/ob mice, no IDO1 expression was detected in the adipose tissue (
<xref ref-type="fig" rid="f2-ijtr-suppl.1-2013-029">Fig. 2B</xref>
). Subcutaneous adipose tissue was also studied and never displayed any IDO1 expression (data not shown). Intraperitoneal administration of LPS induced a weak but significant expression of IDO1 in adipose tissue, six hours after administration (
<xref ref-type="fig" rid="f2-ijtr-suppl.1-2013-029">Fig. 2B</xref>
).</p>
<p>Finally, in order to detect a potential activation of the kynurenine pathway in our animals, we analyzed the ratio of circulating kynurenine/tryptophan in high fat-fed mice. Serum was harvested from sacrificed animals and pooled for spectrometry analysis. This ratio was slightly lower in high fat fed mice than in corresponding controls (
<xref ref-type="fig" rid="f2-ijtr-suppl.1-2013-029">Fig. 2C</xref>
), and this was associated with a decrease in kynurenine concentration while tryptophan concentration was not different between high fat-fed and control animals (data not shown). However, an acute inflammation induced by LPS administration is able to shift twice this ratio (
<xref ref-type="fig" rid="f2-ijtr-suppl.1-2013-029">Fig. 2C</xref>
) and this shift was the result of a strong increase in kynurenine concentration, while tryptophan variation was low (data not shown). Low levels of IDO1 expression were detected in spleens of mice, but no significant difference was demonstrated between control and high fat diet animals (ratio to RPLP0; week 16; control = 1.13 10
<sup>−4</sup>
± 1.78 10
<sup>−5</sup>
and high fat diet = 1.22 10
<sup>−4</sup>
± 2.51 10
<sup>−5</sup>
). Hepatic IDO1 expression was also very weak or undetectable either in normal or in high fat fed mice.</p>
</sec>
<sec>
<title>Induction of TDO2 and IDO2 in liver of high-fat diet mice</title>
<p>We further evaluated the expression of TDO2 and IDO2 in the liver of high fat diet mice. An enhancement of IDO2 expression became significant after 4 weeks of high fat diet and reached two-fold after 13 weeks (
<xref ref-type="fig" rid="f3-ijtr-suppl.1-2013-029">Fig. 3A</xref>
). Acute inflammation induced decreased IDO2 expression after 6 hours using intraperitoneal injection of LPS. In contrast, the ob/ob mice did not display any variation in IDO2 expression when compared to wild-type littermates (
<xref ref-type="fig" rid="f3-ijtr-suppl.1-2013-029">Fig. 3A</xref>
). TDO2 displayed an expression pattern very similar to that of IDO2 except for the acute inflammation experiment where TDO2 was significantly induced by LPS administration (
<xref ref-type="fig" rid="f3-ijtr-suppl.1-2013-029">Fig. 3B</xref>
).</p>
<p>For this reason, we assessed the correlation between IDO2 and TDO2 expressions in hepatic tissue of control and high fat-fed mice after 16 weeks of feeding (
<xref ref-type="fig" rid="f3-ijtr-suppl.1-2013-029">Fig. 3C</xref>
). Pearson analysis showed very low
<italic>P</italic>
-value and correlation coefficient (
<italic>P</italic>
< 0.0001 and r
<sup>2</sup>
= 0.8543) suggesting that these 2 genes are induced by the same factor. To note, IDO2 and TDO2 expressions in adipose tissues were weak in all studied groups and were, on average, 10000-fold less than in the liver (data not shown).</p>
<p>Hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) is a microsomal enzyme that catalyzes the conversion of the inactive metabolite cortisone to the stress hormone cortisol
<xref ref-type="bibr" rid="b22-ijtr-suppl.1-2013-029">22</xref>
and its activation is known to promote obesity.
<xref ref-type="bibr" rid="b23-ijtr-suppl.1-2013-029">23</xref>
TDO2 can be regulated by glucocorticoids
<xref ref-type="bibr" rid="b5-ijtr-suppl.1-2013-029">5</xref>
,
<xref ref-type="bibr" rid="b7-ijtr-suppl.1-2013-029">7</xref>
therefore we analyzed HSD11B1 expression in the liver of our animals. No significant difference in expression was demonstrated between control and high fat fed animals (data not shown). We then studied correlations of TDO2 and IDO2 expression with HSD11B1 expression in liver of mice fed during 16 weeks a standard or a high fat diet. A global Pearson analysis of all the liver samples demonstrated a positive correlation of TDO2 (
<italic>P</italic>
= 0.003; r
<sup>2</sup>
= 0.696) and of IDO2 (
<italic>P</italic>
= 0.003; r
<sup>2</sup>
= 0.696) expression with HSD11B1 expression. When high fat-fed and control group were analyzed separately, the correlation coefficients were higher. For TDO2 expression, r
<sup>2</sup>
= 0.825 (
<italic>P</italic>
= 0.012) for high fat diet and r
<sup>2</sup>
= 0.829 (
<italic>P</italic>
= 0.011) for control. For IDO2 expression r
<sup>2</sup>
= 0.806 (
<italic>P</italic>
= 0.016) for high fat diet and r
<sup>2</sup>
= 0.847 (
<italic>P</italic>
= 0.008) for control (
<xref ref-type="fig" rid="f4-ijtr-suppl.1-2013-029">Fig. 4A</xref>
). We performed the same analysis with hepatic samples of ob/ob mice and littermate controls and found a positive correlation between TDO2 and IDO2 expression and HSD11B expression, but the groups could not be split into 2 unconnected populations (
<xref ref-type="fig" rid="f4-ijtr-suppl.1-2013-029">Fig. 4B</xref>
). Furthermore, LPS administration induced a decrease in HSD11B1 expression in the liver 6 hours after injection (data not shown). IDO2 and TDO2 expression were inversely regulated after this interval (
<xref ref-type="fig" rid="f3-ijtr-suppl.1-2013-029">Fig. 3</xref>
). We found a strong correlation between IDO2 and HSD11B1, while the association between TDO2 and HSD11B1 was no more significant (
<xref ref-type="fig" rid="f4-ijtr-suppl.1-2013-029">Fig. 4C</xref>
).</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>In the obese state, the different adipose depots in the body are enlarged and often infiltrated with macrophages and other diverse immune cells that promote a proinflammatory state.
<xref ref-type="bibr" rid="b1-ijtr-suppl.1-2013-029">1</xref>
We have recently demonstrated that tryptophan metabolism is activated in human obesity.
<xref ref-type="bibr" rid="b3-ijtr-suppl.1-2013-029">3</xref>
In order to further investigate biological mechanisms involved in obesity, we analyzed the tryptophan metabolism in mouse models of obesity such as animals fed a high fat diet
<xref ref-type="bibr" rid="b15-ijtr-suppl.1-2013-029">15</xref>
and genetically deficient in leptin,
<xref ref-type="bibr" rid="b16-ijtr-suppl.1-2013-029">16</xref>
a protein implied in the regulation of food intake and energy expenditure. We demonstrated here that despite the presence of inflammation in adipose depots, there is no detectable IDO1 mRNA expression in mice subcutaneous and visceral adipose tissues, in contrast to what we previously found in human obese samples.
<xref ref-type="bibr" rid="b3-ijtr-suppl.1-2013-029">3</xref>
We observed other striking differences between the 2 species: the kynurenine/tryptophan ratio was significantly increased in obese human subjects due to an increase level of circulating kynurenine. In mice this ratio was always lower in mice fed a high fat diet in comparison with mice fed a control diet. Nevertheless, an acute inflammation induced by LPS administration was able to shift this ratio, as expected. Furthermore, in the human liver IDO2 and TDO2 expression was not significantly different between normal weight and obese patients.
<xref ref-type="bibr" rid="b3-ijtr-suppl.1-2013-029">3</xref>
In high fat-fed mice we observed an early induction of these 2 enzymes, from 4 weeks after the change in diet, with an increasing difference between obese and control mice until the end of the experiment. We found that the expression of IDO2 and TDO2 was strongly correlated. TDO2 is regulated by tryptophan and stress hormones, such as corticoids.
<xref ref-type="bibr" rid="b5-ijtr-suppl.1-2013-029">5</xref>
,
<xref ref-type="bibr" rid="b24-ijtr-suppl.1-2013-029">24</xref>
Little is known about IDO2 regulators. We analyzed expression of HSD11B1, an enzyme that generates active glucocorticoid compounds within tissues. Circulating cortisol levels are not elevated in idiopathic obesity, but overexpression of HSD11B1 in mice causes obesity by local increase of glucocorticoid concentrations, especially in adipose tissue.
<xref ref-type="bibr" rid="b25-ijtr-suppl.1-2013-029">25</xref>
,
<xref ref-type="bibr" rid="b26-ijtr-suppl.1-2013-029">26</xref>
We did not observe any significant differences between high fat-fed and control-fed mice in HSD11B1 expression in liver, as previously described in high fat-fed mice.
<xref ref-type="bibr" rid="b27-ijtr-suppl.1-2013-029">27</xref>
However, a significant correlation between HSD11B1 and IDO2 or TDO2 was found, demonstrating that intracellular cortisol is likely to be a strong inducer of these two enzymes. 2 earlier studies have described that TDO2 can be upregulated by steroids.
<xref ref-type="bibr" rid="b28-ijtr-suppl.1-2013-029">28</xref>
,
<xref ref-type="bibr" rid="b29-ijtr-suppl.1-2013-029">29</xref>
Nevertheless, our results suggest that leptin could be involved in the regulation of IDO2 and TDO2, since we observed in high fat fed mice an increased level in expression of TDO2 and IDO2, which was not observed in leptin-deficient obese mice. Furthermore, the induction of acute inflammation with LPS administration triggers an opposite effect on IDO2 and TDO2 induction, demonstrating that these two enzymes can be differentially regulated by pro-inflammatory factors. In addition, we noticed a quite fluctuating baseline in tryptophan concentrations and in IDO2 and TDO2 expression for control mice during weeks of feeding. We have no rational explanation for these fluctuations. Altogether, these results deserve further investigations on the molecular mechanisms involved in IDO2 and TDO2 regulation.</p>
<p>Our data led us to conclude that there is a limitation to the use of mouse models to study dysregulation of tryptophan metabolism in human obesity, especially to try to find different mechanisms in subcutaneous and visceral adipose tissue. But, even if the characteristics are different between human and mouse, tryptophan degradation pathway is obviously affected by obesity. A recent metabolomic analysis performed on C57BL/6 mice fed with a high fat diet (safflower oil and menhaden oil, 59% calories), demonstrated a decrease in kynurenine concentration corroborating our results.
<xref ref-type="bibr" rid="b30-ijtr-suppl.1-2013-029">30</xref>
Discrepancies between species could have been awaited since variations between species or strains in expression and activity of enzymes of the kynurenine degradation pathway have already been documented.
<xref ref-type="bibr" rid="b31-ijtr-suppl.1-2013-029">31</xref>
<xref ref-type="bibr" rid="b33-ijtr-suppl.1-2013-029">33</xref>
</p>
<p>Correlations between the tryptophan degradation pathway and other metabolic diseases have recently been found. Tryptophan and some of its catabolites were recently associated with an adverse metabolic profile in individuals who are prone to developing diabetes mellitus and cardiovascular disease.
<xref ref-type="bibr" rid="b34-ijtr-suppl.1-2013-029">34</xref>
The gene expression profile of tryptophan metabolism is altered in the liver of mice undergoing a high fat diet.
<xref ref-type="bibr" rid="b35-ijtr-suppl.1-2013-029">35</xref>
In addition, the obesity-induced increase in circulating free fatty acids can result in a displacement of serum-protein-bound tryptophan and reduce availability of circulating free tryptophan.
<xref ref-type="bibr" rid="b36-ijtr-suppl.1-2013-029">36</xref>
This suggests a likely involvement of the kynurenine pathway in lipid metabolism in the liver. In addition, serotonin, another tryptophan metabolite, is also involved in the development of steatosis and steatohepatitis.
<xref ref-type="bibr" rid="b37-ijtr-suppl.1-2013-029">37</xref>
,
<xref ref-type="bibr" rid="b38-ijtr-suppl.1-2013-029">38</xref>
Inflammation, which is an underlying feature of most the metabolic diseases, is directly connected with increased tryptophan metabolism. IDO1 is implicated in the endogenous induction of peripheral tolerance and immunosuppression,
<xref ref-type="bibr" rid="b39-ijtr-suppl.1-2013-029">39</xref>
,
<xref ref-type="bibr" rid="b40-ijtr-suppl.1-2013-029">40</xref>
particularly through the control of the balance between TH17/Treg cells.
<xref ref-type="bibr" rid="b10-ijtr-suppl.1-2013-029">10</xref>
Recent evidence suggests that both IDO2 and TDO2 could also be involved in immunomodulation via their downstream metabolites. Kynurenine, produced after TDO2 activation, has been shown to suppress antitumor immune responses and to promote tumor-cell survival.
<xref ref-type="bibr" rid="b41-ijtr-suppl.1-2013-029">41</xref>
Both IDO1 and TDO2 are able to block T cell proliferation.
<xref ref-type="bibr" rid="b42-ijtr-suppl.1-2013-029">42</xref>
</p>
<p>In conclusion, we identified here a new link between obesity and tryptophan metabolism in mice, despite its discrepancies with human metabolism. The dysregulation of tryptophan degrading enzymes in human and mouse obesity point out the kynurenine pathway as a new potential target for the prevention and treatment of metabolic diseases.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>We thank Isabelle Wolowczuk and Stéphanie Lucas for helpful discussion and Solenne Taront for technical help.</p>
</ack>
<fn-group>
<fn id="fn1-ijtr-suppl.1-2013-029">
<p>
<bold>Author Contributions</bold>
</p>
<p>Conceived and designed the experiments: OPG, EE, DA, AL, BH. Analyzed the data: OPG, EE, DA, AL, BH. Wrote the first draft of the manuscript: OPG. Contributed to the writing of the manuscript: DA, GJG, OPG, PF. Agree with manuscript results and conclusions: EE, BH, AL, OPG, GJG, DA, PF. Jointly developed the structure and arguments for the paper: DA, OPG. Made critical revisions and approved final version: OPG, GJG, DA, PF. All authors reviewed and approved of the final manuscript.</p>
</fn>
<fn id="fn2-ijtr-suppl.1-2013-029">
<p>
<bold>Competing Interests</bold>
</p>
<p>Author(s) disclose no potential conflicts of interest.</p>
</fn>
<fn id="fn3-ijtr-suppl.1-2013-029">
<p>
<bold>Disclosures and Ethics</bold>
</p>
<p>As a requirement of publication the authors have provided signed confirmation of their compliance with ethical and legal obligations including but not limited to compliance with ICMJE authorship and competing interests guidelines, that the article is neither under consideration for publication nor published elsewhere, of their compliance with legal and ethical guidelines concerning human and animal research participants (if applicable), and that permission has been obtained for reproduction of any copyrighted material. This article was subject to blind, independent, expert peer review. The reviewers reported no competing interests.</p>
</fn>
<fn id="fn4-ijtr-suppl.1-2013-029">
<p>
<bold>Funding</bold>
</p>
<p>We thank the “Conseil Régional du Nord pas de Calais” (CPER 2007–2013) for its financial support.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="b1-ijtr-suppl.1-2013-029">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harford</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>McGillicuddy</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Roche</surname>
<given-names>HM</given-names>
</name>
</person-group>
<article-title>Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue</article-title>
<source>Proc Nutr Soc</source>
<year>2011</year>
<volume>70</volume>
<issue>4</issue>
<fpage>408</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">21835098</pub-id>
</element-citation>
</ref>
<ref id="b2-ijtr-suppl.1-2013-029">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fox</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Hickson</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study</article-title>
<source>J Clin Endocrinol Metab</source>
<year>2010</year>
<volume>95</volume>
<issue>12</issue>
<fpage>5419</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">20843952</pub-id>
</element-citation>
</ref>
<ref id="b3-ijtr-suppl.1-2013-029">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolowczuk</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Hennart</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Leloire</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tryptophan metabolism activation by indoleamine 2,3-dioxygenase in adipose tissue of obese women: an attempt to maintain immune homeostasis and vascular tone</article-title>
<source>Am J Physiol Regul Integr Comp Physiol</source>
<year>2012</year>
<volume>303</volume>
<issue>2</issue>
<fpage>R135</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">22592557</pub-id>
</element-citation>
</ref>
<ref id="b4-ijtr-suppl.1-2013-029">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takikawa</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kido</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hayaishi</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase</article-title>
<source>J Biol Chem</source>
<year>1986</year>
<volume>261</volume>
<issue>8</issue>
<fpage>3648</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">2419335</pub-id>
</element-citation>
</ref>
<ref id="b5-ijtr-suppl.1-2013-029">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oxenkrug</surname>
<given-names>GF</given-names>
</name>
</person-group>
<article-title>Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan-kynurenine metabolism</article-title>
<source>Ann N Y Acad Sci</source>
<year>2010</year>
<volume>1199</volume>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">20633104</pub-id>
</element-citation>
</ref>
<ref id="b6-ijtr-suppl.1-2013-029">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ball</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yuasa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Austin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Weiser</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway</article-title>
<source>Int J Biochem Cell Biol</source>
<year>2009</year>
<volume>41</volume>
<fpage>467</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">18282734</pub-id>
</element-citation>
</ref>
<ref id="b7-ijtr-suppl.1-2013-029">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niimi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ichihara</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Hormonal regulation of translatable mRNA of tryptophan 2,3-dioxygenase in primary cultures of adult rat hepatocytes</article-title>
<source>J Biochem</source>
<year>1983</year>
<volume>94</volume>
<issue>5</issue>
<fpage>1697</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="pmid">6361014</pub-id>
</element-citation>
</ref>
<ref id="b8-ijtr-suppl.1-2013-029">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brandacher</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Winkler</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Aigner</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bariatric surgery cannot prevent tryptophan depletion due to chronic immune activation in morbidly obese patients</article-title>
<source>Obes Surg</source>
<year>2006</year>
<volume>16</volume>
<fpage>541</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">16687019</pub-id>
</element-citation>
</ref>
<ref id="b9-ijtr-suppl.1-2013-029">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Romani</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fallarino</surname>
<given-names>F</given-names>
</name>
<name>
<surname>De Luca</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease</article-title>
<source>Nature</source>
<year>2008</year>
<volume>451</volume>
<issue>7175</issue>
<fpage>211</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">18185592</pub-id>
</element-citation>
</ref>
<ref id="b10-ijtr-suppl.1-2013-029">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baban</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chandler</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IDO activates regulatory T cells and blocks their conversion into Th17-like T cells</article-title>
<source>J Immunol</source>
<year>2009</year>
<volume>183</volume>
<issue>4</issue>
<fpage>2475</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">19635913</pub-id>
</element-citation>
</ref>
<ref id="b11-ijtr-suppl.1-2013-029">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Favre</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mold</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>PW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease</article-title>
<source>Sci Transl Med</source>
<year>2010</year>
<volume>2</volume>
<issue>32</issue>
<fpage>32ra36</fpage>
</element-citation>
</ref>
<ref id="b12-ijtr-suppl.1-2013-029">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poulain-Godefroy</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Lecoeur</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pattou</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fruhbeck</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Froguel</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Inflammation is associated with a decrease of lipogenic factors in omental fat in women</article-title>
<source>Am J Physiol Regul Integr Comp Physiol</source>
<year>2008</year>
<volume>295</volume>
<issue>1</issue>
<fpage>R1</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">18448614</pub-id>
</element-citation>
</ref>
<ref id="b13-ijtr-suppl.1-2013-029">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ilan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Maron</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tukpah</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2010</year>
<volume>107</volume>
<issue>21</issue>
<fpage>9765</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="pmid">20445103</pub-id>
</element-citation>
</ref>
<ref id="b14-ijtr-suppl.1-2013-029">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ross</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Aru</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hudson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Abdominal adiposity and insulin resistance in obese men</article-title>
<source>Am J Physiol Endocrinol Metab</source>
<year>2002</year>
<volume>282</volume>
<issue>3</issue>
<fpage>E657</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">11832370</pub-id>
</element-citation>
</ref>
<ref id="b15-ijtr-suppl.1-2013-029">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hariri</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Thibault</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>High-fat diet-induced obesity in animal models</article-title>
<source>Nutr Res Rev</source>
<year>2010</year>
<volume>23</volume>
<issue>2</issue>
<fpage>270</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">20977819</pub-id>
</element-citation>
</ref>
<ref id="b16-ijtr-suppl.1-2013-029">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindstrom</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>The physiology of obese-hyperglycemic mice [ob/ob mice]</article-title>
<source>ScientificWorldJournal</source>
<year>2007</year>
<volume>7</volume>
<fpage>666</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="pmid">17619751</pub-id>
</element-citation>
</ref>
<ref id="b17-ijtr-suppl.1-2013-029">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kintscher</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Hartge</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance</article-title>
<source>Arterioscler Thromb Vasc Biol</source>
<year>2008</year>
<volume>28</volume>
<issue>7</issue>
<fpage>1304</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">18420999</pub-id>
</element-citation>
</ref>
<ref id="b18-ijtr-suppl.1-2013-029">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Rideout</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rakita</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Murr</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver</article-title>
<source>Surg Obes Relat Dis</source>
<year>2012</year>
<volume>8</volume>
<issue>1</issue>
<fpage>73</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">21978752</pub-id>
</element-citation>
</ref>
<ref id="b19-ijtr-suppl.1-2013-029">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Miyazaki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hara</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tsuchiya</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Simultaneous measurement of tryptophan and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry</article-title>
<source>J Chromatogr B Analyt Technol Biomed Life Sci</source>
<year>2008</year>
<volume>867</volume>
<issue>1</issue>
<fpage>57</fpage>
<lpage>61</lpage>
</element-citation>
</ref>
<ref id="b20-ijtr-suppl.1-2013-029">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schefold</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Zeden</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Fotopoulou</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: a possible link between chronic inflammation and uraemic symptoms</article-title>
<source>Nephrol Dial Transplant</source>
<year>2009</year>
<volume>24</volume>
<issue>6</issue>
<fpage>1901</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">19155537</pub-id>
</element-citation>
</ref>
<ref id="b21-ijtr-suppl.1-2013-029">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weisberg</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CCR2 modulates inflammatory and metabolic effects of high-fat feeding</article-title>
<source>J Clin Invest</source>
<year>2006</year>
<volume>116</volume>
<issue>1</issue>
<fpage>115</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">16341265</pub-id>
</element-citation>
</ref>
<ref id="b22-ijtr-suppl.1-2013-029">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomlinson</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Bujalska</surname>
<given-names>IJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response</article-title>
<source>Endocr Rev</source>
<year>2004</year>
<volume>25</volume>
<issue>5</issue>
<fpage>831</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">15466942</pub-id>
</element-citation>
</ref>
<ref id="b23-ijtr-suppl.1-2013-029">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morton</surname>
<given-names>NM</given-names>
</name>
</person-group>
<article-title>Obesity and corticosteroids: 11beta-hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease</article-title>
<source>Mol Cell Endocrinol</source>
<year>2010</year>
<volume>316</volume>
<issue>2</issue>
<fpage>154</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="pmid">19804814</pub-id>
</element-citation>
</ref>
<ref id="b24-ijtr-suppl.1-2013-029">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salter</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pogson</surname>
<given-names>CI</given-names>
</name>
</person-group>
<article-title>The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes</article-title>
<source>Biochem J</source>
<year>1985</year>
<volume>229</volume>
<issue>2</issue>
<fpage>499</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="pmid">3899109</pub-id>
</element-citation>
</ref>
<ref id="b25-ijtr-suppl.1-2013-029">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Staab</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Maser</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>11beta-Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation</article-title>
<source>J Steroid Biochem Mol Biol</source>
<year>2010</year>
<volume>119</volume>
<issue>1–2</issue>
<fpage>56</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">20045052</pub-id>
</element-citation>
</ref>
<ref id="b26-ijtr-suppl.1-2013-029">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wake</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 in obesity</article-title>
<source>Endocrine</source>
<year>2006</year>
<volume>29</volume>
<issue>1</issue>
<fpage>101</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">16622297</pub-id>
</element-citation>
</ref>
<ref id="b27-ijtr-suppl.1-2013-029">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morton</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Ramage</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Seckl</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>Down-regulation of adipose 11beta-hydroxysteroid dehydrogenase type 1 by high-fat feeding in mice: a potential adaptive mechanism counteracting metabolic disease</article-title>
<source>Endocrinology</source>
<year>2004</year>
<volume>145</volume>
<issue>6</issue>
<fpage>2707</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">15044372</pub-id>
</element-citation>
</ref>
<ref id="b28-ijtr-suppl.1-2013-029">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danesch</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Gloss</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Schutz</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schule</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Renkawitz</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Glucocorticoid induction of the rat tryptophan oxygenase gene is mediated by two widely separated glucocorticoid-responsive elements</article-title>
<source>EMBO J</source>
<year>1987</year>
<volume>6</volume>
<issue>3</issue>
<fpage>625</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">3582368</pub-id>
</element-citation>
</ref>
<ref id="b29-ijtr-suppl.1-2013-029">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Niimi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nawa</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multihormonal regulation of transcription of the tryptophan 2,3-dioxygenase gene in primary cultures of adult rat hepatocytes with special reference to the presence of a transcriptional protein mediating the action of glucocorticoids</article-title>
<source>J Biol Chem</source>
<year>1987</year>
<volume>262</volume>
<issue>2</issue>
<fpage>727</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">3542992</pub-id>
</element-citation>
</ref>
<ref id="b30-ijtr-suppl.1-2013-029">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>LO</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Early hepatic insulin resistance in mice: a metabolomics analysis</article-title>
<source>Mol Endocrinol</source>
<year>2010</year>
<volume>24</volume>
<issue>3</issue>
<fpage>657</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">20150186</pub-id>
</element-citation>
</ref>
<ref id="b31-ijtr-suppl.1-2013-029">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allegri</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bertazzo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Biasiolo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>CV</given-names>
</name>
<name>
<surname>Ragazzi</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Kynurenine pathway enzymes in different species of animals</article-title>
<source>Adv Exp Med Biol</source>
<year>2003</year>
<volume>527</volume>
<fpage>455</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">15206763</pub-id>
</element-citation>
</ref>
<ref id="b32-ijtr-suppl.1-2013-029">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Badawy</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The role of free serum tryptophan in the biphasic effect of acute ethanol administration on the concentrations of rat brain tryptophan, 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid</article-title>
<source>Biochem J</source>
<year>1976</year>
<volume>160</volume>
<issue>2</issue>
<fpage>315</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">1008859</pub-id>
</element-citation>
</ref>
<ref id="b33-ijtr-suppl.1-2013-029">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monroe</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Induction of tryptophan oxygenase and tyrosine aminotransferase in mice</article-title>
<source>Am J Physiol</source>
<year>1968</year>
<volume>214</volume>
<fpage>1410</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="pmid">4384954</pub-id>
</element-citation>
</ref>
<ref id="b34-ijtr-suppl.1-2013-029">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rhee</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Larson</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolite profiling identifies pathways associated with metabolic risk in humans</article-title>
<source>Circulation</source>
<year>2012</year>
<volume>125</volume>
<issue>18</issue>
<fpage>2222</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">22496159</pub-id>
</element-citation>
</ref>
<ref id="b35-ijtr-suppl.1-2013-029">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Toye</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Dumas</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Blancher</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice</article-title>
<source>Diabetologia</source>
<year>2007</year>
<volume>50</volume>
<issue>9</issue>
<fpage>1867</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="pmid">17618414</pub-id>
</element-citation>
</ref>
<ref id="b36-ijtr-suppl.1-2013-029">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Badawi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Dacey</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>High-fat diets increase tryptophan availability to the brain: importance of choice of the control diet</article-title>
<source>Biochem J</source>
<year>1983</year>
<volume>217</volume>
<fpage>863</fpage>
<lpage>4</lpage>
</element-citation>
</ref>
<ref id="b37-ijtr-suppl.1-2013-029">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nocito</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dahm</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jochum</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis</article-title>
<source>Gastroenterology</source>
<year>2007</year>
<volume>133</volume>
<issue>2</issue>
<fpage>608</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="pmid">17681180</pub-id>
</element-citation>
</ref>
<ref id="b38-ijtr-suppl.1-2013-029">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Osawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kanamori</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Seki</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin</article-title>
<source>J Biol Chem</source>
<year>2011</year>
<volume>286</volume>
<issue>40</issue>
<fpage>34800</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">21841000</pub-id>
</element-citation>
</ref>
<ref id="b39-ijtr-suppl.1-2013-029">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munn</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Mellor</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>Indoleamine 2,3-dioxygenase and tumor-induced tolerance</article-title>
<source>J Clin Invest</source>
<year>2007</year>
<volume>117</volume>
<issue>5</issue>
<fpage>1147</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">17476344</pub-id>
</element-citation>
</ref>
<ref id="b40-ijtr-suppl.1-2013-029">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fallarino</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Grohmann</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Using an ancient tool for igniting and propagating immune tolerance: IDO as an inducer and amplifier of regulatory T cell functions</article-title>
<source>Curr Med Chem</source>
<year>2011</year>
<volume>18</volume>
<issue>15</issue>
<fpage>2215</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">21517758</pub-id>
</element-citation>
</ref>
<ref id="b41-ijtr-suppl.1-2013-029">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Opitz</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Litzenburger</surname>
<given-names>UM</given-names>
</name>
<name>
<surname>Sahm</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor</article-title>
<source>Nature</source>
<year>2011</year>
<volume>478</volume>
<issue>7368</issue>
<fpage>197</fpage>
<lpage>203</lpage>
<pub-id pub-id-type="pmid">21976023</pub-id>
</element-citation>
</ref>
<ref id="b42-ijtr-suppl.1-2013-029">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qian</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Villella</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of 1-methyltryptophan stereoisomers on IDO2 enzyme activity and IDO2-mediated arrest of human T cell proliferation</article-title>
<source>Cancer Immunol Immunother</source>
<year>2012</year>
<volume>61</volume>
<issue>11</issue>
<fpage>2013</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="pmid">22527253</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-ijtr-suppl.1-2013-029" position="float">
<label>Figure 1</label>
<caption>
<p>Six-week-old C57Bl6J male mice were fed either a standard diet (○) or a high-fat diet (●); n = 40/group. N = 8 in each group were sacrificed every 3 weeks. (
<bold>A</bold>
) Body weight was expressed as a percentage of initial mass. (
<bold>B</bold>
) Left epidydimal adipose tissue mass was expressed as a percentage of total body weight (
<bold>C</bold>
) Intraperitoneal glucose tolerance test with 1 g glucose/kg body mass after 6 hr of fasting performed on animals after 16 weeks of diet.</p>
<p>
<bold>Notes: ***</bold>
<italic>P</italic>
< 0.001; **
<italic>P</italic>
< 0.005; *
<italic>P</italic>
< 0.05.</p>
</caption>
<graphic xlink:href="ijtr-suppl.1-2013-029f1"></graphic>
</fig>
<fig id="f2-ijtr-suppl.1-2013-029" position="float">
<label>Figure 2</label>
<caption>
<p>(
<bold>A</bold>
) Expression of CCL2 in epidymal adipose tissue of mice: C57Bl/6J fed either a standard diet (white) or a high fat diet (black) n = 40/group. N = 8 in each group were sacrificed every 3 weeks (week 4 to week 16)—or 6 hours after an intraperitoneal administration of LPS (vehicle: white; LPS: black; n = 8)—or of ob/ob mice (control littermate: white; OB/OB: black; n = 5). (
<bold>B</bold>
) Expression of IDO1 in epidydimal adipose tissue of mice: C57Bl/6J fed either a standard diet (control) or a high fat diet (HFD) for 16 weeks (n = 8)—or 6 hours after an intraperitoneal administration of LPS (LPS; n = 8)—or of ob/ob mice (OB/OB; n = 5). (
<bold>C</bold>
) Kynurenine/tryptophan ratio in pooled sera of C57Bl/6J fed either a standard diet (white) or a high fat diet (black) for 16 weeks; n = 40/group. N = 8 in each group were sacrificed every 3 weeks and corresponding sera were pooled—or 6 hours after an intraperitoneal administration of LPS (vehicle: white; LPS: black; n = 8).</p>
<p>
<bold>Notes:</bold>
***
<italic>P</italic>
< 0.001; **
<italic>P</italic>
< 0.005; *
<italic>P</italic>
< 0.05.</p>
</caption>
<graphic xlink:href="ijtr-suppl.1-2013-029f2"></graphic>
</fig>
<fig id="f3-ijtr-suppl.1-2013-029" position="float">
<label>Figure 3</label>
<caption>
<p>Expression of IDO2 (
<bold>A</bold>
) and of TDO2 (
<bold>B</bold>
) in hepatic tissue of mice: C57Bl/6J fed either a standard diet (white) or a high fat diet (black) n = 40/group. N = 8 in each group were sacrificed every 3 weeks (week 4 to week 16)—or 6 hours after an intraperitoneal administration of LPS (vehicle: white; LPS: black; n = 8)—or of ob/ob mice (control littermate: white; OB/OB: black; n = 5). (
<bold>C</bold>
) Correlation between TDO2 and IDO2 expression in hepatic tissue of C57Bl/6J mice after 16 weeks of standard diet (○) or high-fat diet (●); Pearson analysis.</p>
<p>
<bold>Notes:</bold>
***
<italic>P</italic>
< 0.001; **
<italic>P</italic>
< 0.005; *
<italic>P</italic>
< 0.05.</p>
</caption>
<graphic xlink:href="ijtr-suppl.1-2013-029f3"></graphic>
</fig>
<fig id="f4-ijtr-suppl.1-2013-029" position="float">
<label>Figure 4</label>
<caption>
<p>Correlation between IDO2 or TDO2 and HSD11B1 expression in hepatic tissue (Pearson analysis). (
<bold>A</bold>
) C57Bl/6J fed during 16 weeks either a standard diet (○) or a high fat diet (●) IDO2: r
<sup>2</sup>
= 0.806 (
<italic>P</italic>
= 0.016) for high fat diet and r
<sup>2</sup>
= 0,847 (
<italic>P</italic>
= 0.008) for control TDO2: r
<sup>2</sup>
= 0.825 (
<italic>P</italic>
= 0.012) for high fat diet and r
<sup>2</sup>
= 0.829 (
<italic>P</italic>
= 0.011) for control. (
<bold>B</bold>
) ob/ob (●) or littermate control (○) IDO2: r
<sup>2</sup>
= 0.742 (
<italic>P</italic>
= 0.0014) TDO2: r
<sup>2</sup>
= 0.816 (
<italic>P</italic>
= 0.0003). (
<bold>C</bold>
) 6 hours after an intraperitoneal administration of LPS (●) or vehicle (○); IDO2 expression r
<sup>2</sup>
= 0.943 (
<italic>P</italic>
< 0.0001).</p>
</caption>
<graphic xlink:href="ijtr-suppl.1-2013-029f4"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002614 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002614 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3729279
   |texte=   Induction of TDO2 and IDO2 in Liver by High-Fat Feeding in Mice: Discrepancies with Human Obesity
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26882470" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024