Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0025280 ( Pmc/Corpus ); précédent : 0025279; suivant : 0025281 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas</title>
<author>
<name sortKey="Cignetti, Fabien" sort="Cignetti, Fabien" uniqKey="Cignetti F" first="Fabien" last="Cignetti">Fabien Cignetti</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Aix-Marseille Université, CNRS, Fédération 3C</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chabeauti, Pierre Yves" sort="Chabeauti, Pierre Yves" uniqKey="Chabeauti P" first="Pierre-Yves" last="Chabeauti">Pierre-Yves Chabeauti</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Aix-Marseille Université, CNRS, Fédération 3C</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Menant, Jasmine" sort="Menant, Jasmine" uniqKey="Menant J" first="Jasmine" last="Menant">Jasmine Menant</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Prince of Wales Medical Research Institute, School of Public Health and Community Medicine, University of New South Wales, Randwick</institution>
<country>NSW, Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Anton, Jean Luc J J" sort="Anton, Jean Luc J J" uniqKey="Anton J" first="Jean-Luc J. J." last="Anton">Jean-Luc J. J. Anton</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Aix-Marseille Université, CNRS, INT UMR 7289, Centre IRM Fonctionnelle</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmitz, Christina" sort="Schmitz, Christina" uniqKey="Schmitz C" first="Christina" last="Schmitz">Christina Schmitz</name>
<affiliation>
<nlm:aff id="aff5">
<institution>Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, CRNL, INSERM U1028, CNRS UMR 5292</institution>
<country>Lyon, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<institution>University Lyon 1</institution>
<country>Lyon, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vaugoyeau, Marianne" sort="Vaugoyeau, Marianne" uniqKey="Vaugoyeau M" first="Marianne" last="Vaugoyeau">Marianne Vaugoyeau</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Aix-Marseille Université, CNRS, Fédération 3C</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Assaiante, Christine" sort="Assaiante, Christine" uniqKey="Assaiante C" first="Christine" last="Assaiante">Christine Assaiante</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Aix-Marseille Université, CNRS, Fédération 3C</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28861024</idno>
<idno type="pmc">5562714</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562714</idno>
<idno type="RBID">PMC:5562714</idno>
<idno type="doi">10.3389/fpsyg.2017.01396</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">002528</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002528</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas</title>
<author>
<name sortKey="Cignetti, Fabien" sort="Cignetti, Fabien" uniqKey="Cignetti F" first="Fabien" last="Cignetti">Fabien Cignetti</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Aix-Marseille Université, CNRS, Fédération 3C</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chabeauti, Pierre Yves" sort="Chabeauti, Pierre Yves" uniqKey="Chabeauti P" first="Pierre-Yves" last="Chabeauti">Pierre-Yves Chabeauti</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Aix-Marseille Université, CNRS, Fédération 3C</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Menant, Jasmine" sort="Menant, Jasmine" uniqKey="Menant J" first="Jasmine" last="Menant">Jasmine Menant</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Prince of Wales Medical Research Institute, School of Public Health and Community Medicine, University of New South Wales, Randwick</institution>
<country>NSW, Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Anton, Jean Luc J J" sort="Anton, Jean Luc J J" uniqKey="Anton J" first="Jean-Luc J. J." last="Anton">Jean-Luc J. J. Anton</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Aix-Marseille Université, CNRS, INT UMR 7289, Centre IRM Fonctionnelle</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmitz, Christina" sort="Schmitz, Christina" uniqKey="Schmitz C" first="Christina" last="Schmitz">Christina Schmitz</name>
<affiliation>
<nlm:aff id="aff5">
<institution>Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, CRNL, INSERM U1028, CNRS UMR 5292</institution>
<country>Lyon, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<institution>University Lyon 1</institution>
<country>Lyon, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vaugoyeau, Marianne" sort="Vaugoyeau, Marianne" uniqKey="Vaugoyeau M" first="Marianne" last="Vaugoyeau">Marianne Vaugoyeau</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Aix-Marseille Université, CNRS, Fédération 3C</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Assaiante, Christine" sort="Assaiante, Christine" uniqKey="Assaiante C" first="Christine" last="Assaiante">Christine Assaiante</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Aix-Marseille Université, CNRS, Fédération 3C</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Psychology</title>
<idno type="eISSN">1664-1078</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer’s motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersson, J L" uniqKey="Andersson J">J. L. Andersson</name>
</author>
<author>
<name sortKey="Hutton, C" uniqKey="Hutton C">C. Hutton</name>
</author>
<author>
<name sortKey="Ashburner, J" uniqKey="Ashburner J">J. Ashburner</name>
</author>
<author>
<name sortKey="Turner, R" uniqKey="Turner R">R. Turner</name>
</author>
<author>
<name sortKey="Friston, K" uniqKey="Friston K">K. Friston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashburner, J" uniqKey="Ashburner J">J. Ashburner</name>
</author>
<author>
<name sortKey="Friston, K J" uniqKey="Friston K">K. J. Friston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brouwer, A M" uniqKey="Brouwer A">A. M. Brouwer</name>
</author>
<author>
<name sortKey="Lopez Moliner, J" uniqKey="Lopez Moliner J">J. Lopez-Moliner</name>
</author>
<author>
<name sortKey="Brenner, E" uniqKey="Brenner E">E. Brenner</name>
</author>
<author>
<name sortKey="Smeets, J B" uniqKey="Smeets J">J. B. Smeets</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casile, A" uniqKey="Casile A">A. Casile</name>
</author>
<author>
<name sortKey="Dayan, E" uniqKey="Dayan E">E. Dayan</name>
</author>
<author>
<name sortKey="Caggiano, V" uniqKey="Caggiano V">V. Caggiano</name>
</author>
<author>
<name sortKey="Hendler, T" uniqKey="Hendler T">T. Hendler</name>
</author>
<author>
<name sortKey="Flash, T" uniqKey="Flash T">T. Flash</name>
</author>
<author>
<name sortKey="Giese, M A" uniqKey="Giese M">M. A. Giese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Centelles, L" uniqKey="Centelles L">L. Centelles</name>
</author>
<author>
<name sortKey="Assaiante, C" uniqKey="Assaiante C">C. Assaiante</name>
</author>
<author>
<name sortKey="Nazarian, B" uniqKey="Nazarian B">B. Nazarian</name>
</author>
<author>
<name sortKey="Anton, J L" uniqKey="Anton J">J.-L. Anton</name>
</author>
<author>
<name sortKey="Schmitz, C" uniqKey="Schmitz C">C. Schmitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chong, T T J" uniqKey="Chong T">T. T.-J. Chong</name>
</author>
<author>
<name sortKey="Cunnington, R" uniqKey="Cunnington R">R. Cunnington</name>
</author>
<author>
<name sortKey="Williams, M A" uniqKey="Williams M">M. A. Williams</name>
</author>
<author>
<name sortKey="Kanwisher, N" uniqKey="Kanwisher N">N. Kanwisher</name>
</author>
<author>
<name sortKey="Mattingley, J B" uniqKey="Mattingley J">J. B. Mattingley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Costantini, M" uniqKey="Costantini M">M. Costantini</name>
</author>
<author>
<name sortKey="Galati, G" uniqKey="Galati G">G. Galati</name>
</author>
<author>
<name sortKey="Ferretti, A" uniqKey="Ferretti A">A. Ferretti</name>
</author>
<author>
<name sortKey="Caulo, M" uniqKey="Caulo M">M. Caulo</name>
</author>
<author>
<name sortKey="Tartaro, A" uniqKey="Tartaro A">A. Tartaro</name>
</author>
<author>
<name sortKey="Romani, G L" uniqKey="Romani G">G. L. Romani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cutting, J E" uniqKey="Cutting J">J. E. Cutting</name>
</author>
<author>
<name sortKey="Kozlowski, L T" uniqKey="Kozlowski L">L. T. Kozlowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dayan, E" uniqKey="Dayan E">E. Dayan</name>
</author>
<author>
<name sortKey="Casile, A" uniqKey="Casile A">A. Casile</name>
</author>
<author>
<name sortKey="Levit Binnun, N" uniqKey="Levit Binnun N">N. Levit-Binnun</name>
</author>
<author>
<name sortKey="Giese, M A" uniqKey="Giese M">M. A. Giese</name>
</author>
<author>
<name sortKey="Hendler, T" uniqKey="Hendler T">T. Hendler</name>
</author>
<author>
<name sortKey="Flash, T" uniqKey="Flash T">T. Flash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinstein, I" uniqKey="Dinstein I">I. Dinstein</name>
</author>
<author>
<name sortKey="Hasson, U" uniqKey="Hasson U">U. Hasson</name>
</author>
<author>
<name sortKey="Rubin, N" uniqKey="Rubin N">N. Rubin</name>
</author>
<author>
<name sortKey="Heeger, D J" uniqKey="Heeger D">D. J. Heeger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dupont, P" uniqKey="Dupont P">P. Dupont</name>
</author>
<author>
<name sortKey="De Bruyn, B" uniqKey="De Bruyn B">B. De Bruyn</name>
</author>
<author>
<name sortKey="Vandenberghe, R" uniqKey="Vandenberghe R">R. Vandenberghe</name>
</author>
<author>
<name sortKey="Rosier, A M" uniqKey="Rosier A">A.-M. Rosier</name>
</author>
<author>
<name sortKey="Michiels, J" uniqKey="Michiels J">J. Michiels</name>
</author>
<author>
<name sortKey="Marchal, G" uniqKey="Marchal G">G. Marchal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dushanova, J" uniqKey="Dushanova J">J. Dushanova</name>
</author>
<author>
<name sortKey="Donoghue, J" uniqKey="Donoghue J">J. Donoghue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fadiga, L" uniqKey="Fadiga L">L. Fadiga</name>
</author>
<author>
<name sortKey="Craighero, L" uniqKey="Craighero L">L. Craighero</name>
</author>
<author>
<name sortKey="Olivier, E" uniqKey="Olivier E">E. Olivier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fox, R" uniqKey="Fox R">R. Fox</name>
</author>
<author>
<name sortKey="Mcdaniel, C" uniqKey="Mcdaniel C">C. McDaniel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friston, K J" uniqKey="Friston K">K. J. Friston</name>
</author>
<author>
<name sortKey="Holmes, A P" uniqKey="Holmes A">A. P. Holmes</name>
</author>
<author>
<name sortKey="Poline, J" uniqKey="Poline J">J. Poline</name>
</author>
<author>
<name sortKey="Grasby, P" uniqKey="Grasby P">P. Grasby</name>
</author>
<author>
<name sortKey="Williams, S" uniqKey="Williams S">S. Williams</name>
</author>
<author>
<name sortKey="Frackowiak, R S" uniqKey="Frackowiak R">R. S. Frackowiak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friston, K J" uniqKey="Friston K">K. J. Friston</name>
</author>
<author>
<name sortKey="Holmes, A P" uniqKey="Holmes A">A. P. Holmes</name>
</author>
<author>
<name sortKey="Worsley, K J" uniqKey="Worsley K">K. J. Worsley</name>
</author>
<author>
<name sortKey="Poline, J P" uniqKey="Poline J">J. P. Poline</name>
</author>
<author>
<name sortKey="Frith, C D" uniqKey="Frith C">C. D. Frith</name>
</author>
<author>
<name sortKey="Frackowiak, R S" uniqKey="Frackowiak R">R. S. Frackowiak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gazzola, V" uniqKey="Gazzola V">V. Gazzola</name>
</author>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G. Rizzolatti</name>
</author>
<author>
<name sortKey="Wicker, B" uniqKey="Wicker B">B. Wicker</name>
</author>
<author>
<name sortKey="Keysers, C" uniqKey="Keysers C">C. Keysers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grezes, J" uniqKey="Grezes J">J. Grezes</name>
</author>
<author>
<name sortKey="Fonlupt, P" uniqKey="Fonlupt P">P. Fonlupt</name>
</author>
<author>
<name sortKey="Bertenthal, B" uniqKey="Bertenthal B">B. Bertenthal</name>
</author>
<author>
<name sortKey="Delon Martin, C" uniqKey="Delon Martin C">C. Delon-Martin</name>
</author>
<author>
<name sortKey="Segebarth, C" uniqKey="Segebarth C">C. Segebarth</name>
</author>
<author>
<name sortKey="Decety, J" uniqKey="Decety J">J. Decety</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grossman, E" uniqKey="Grossman E">E. Grossman</name>
</author>
<author>
<name sortKey="Blake, R" uniqKey="Blake R">R. Blake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hagberg, G E" uniqKey="Hagberg G">G. E. Hagberg</name>
</author>
<author>
<name sortKey="Zito, G" uniqKey="Zito G">G. Zito</name>
</author>
<author>
<name sortKey="Patria, F" uniqKey="Patria F">F. Patria</name>
</author>
<author>
<name sortKey="Sanes, J N" uniqKey="Sanes J">J. N. Sanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Henson, R" uniqKey="Henson R">R. Henson</name>
</author>
<author>
<name sortKey="Buechel, C" uniqKey="Buechel C">C. Buechel</name>
</author>
<author>
<name sortKey="Josephs, O" uniqKey="Josephs O">O. Josephs</name>
</author>
<author>
<name sortKey="Friston, K" uniqKey="Friston K">K. Friston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huber, S" uniqKey="Huber S">S. Huber</name>
</author>
<author>
<name sortKey="Krist, H" uniqKey="Krist H">H. Krist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iacoboni, M" uniqKey="Iacoboni M">M. Iacoboni</name>
</author>
<author>
<name sortKey="Dapretto, M" uniqKey="Dapretto M">M. Dapretto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Indovina, I" uniqKey="Indovina I">I. Indovina</name>
</author>
<author>
<name sortKey="Maffei, V" uniqKey="Maffei V">V. Maffei</name>
</author>
<author>
<name sortKey="Bosco, G" uniqKey="Bosco G">G. Bosco</name>
</author>
<author>
<name sortKey="Zago, M" uniqKey="Zago M">M. Zago</name>
</author>
<author>
<name sortKey="Macaluso, E" uniqKey="Macaluso E">E. Macaluso</name>
</author>
<author>
<name sortKey="Lacquaniti, F" uniqKey="Lacquaniti F">F. Lacquaniti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Indovina, I" uniqKey="Indovina I">I. Indovina</name>
</author>
<author>
<name sortKey="Maffei, V" uniqKey="Maffei V">V. Maffei</name>
</author>
<author>
<name sortKey="Pauwels, K" uniqKey="Pauwels K">K. Pauwels</name>
</author>
<author>
<name sortKey="Macaluso, E" uniqKey="Macaluso E">E. Macaluso</name>
</author>
<author>
<name sortKey="Orban, G A" uniqKey="Orban G">G. A. Orban</name>
</author>
<author>
<name sortKey="Lacquaniti, F" uniqKey="Lacquaniti F">F. Lacquaniti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jastorff, J" uniqKey="Jastorff J">J. Jastorff</name>
</author>
<author>
<name sortKey="Orban, G A" uniqKey="Orban G">G. A. Orban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johansson, G" uniqKey="Johansson G">G. Johansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jokisch, D" uniqKey="Jokisch D">D. Jokisch</name>
</author>
<author>
<name sortKey="Troje, N F" uniqKey="Troje N">N. F. Troje</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keysers, C" uniqKey="Keysers C">C. Keysers</name>
</author>
<author>
<name sortKey="Gazzola, V" uniqKey="Gazzola V">V. Gazzola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kilner, J M" uniqKey="Kilner J">J. M. Kilner</name>
</author>
<author>
<name sortKey="Friston, K J" uniqKey="Friston K">K. J. Friston</name>
</author>
<author>
<name sortKey="Frith, C D" uniqKey="Frith C">C. D. Frith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kilner, J M" uniqKey="Kilner J">J. M. Kilner</name>
</author>
<author>
<name sortKey="Neal, A" uniqKey="Neal A">A. Neal</name>
</author>
<author>
<name sortKey="Weiskopf, N" uniqKey="Weiskopf N">N. Weiskopf</name>
</author>
<author>
<name sortKey="Friston, K J" uniqKey="Friston K">K. J. Friston</name>
</author>
<author>
<name sortKey="Frith, C D" uniqKey="Frith C">C. D. Frith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozlowski, L T" uniqKey="Kozlowski L">L. T. Kozlowski</name>
</author>
<author>
<name sortKey="Cutting, J E" uniqKey="Cutting J">J. E. Cutting</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lacquaniti, F" uniqKey="Lacquaniti F">F. Lacquaniti</name>
</author>
<author>
<name sortKey="Bosco, G" uniqKey="Bosco G">G. Bosco</name>
</author>
<author>
<name sortKey="Indovina, I" uniqKey="Indovina I">I. Indovina</name>
</author>
<author>
<name sortKey="La Scaleia, B" uniqKey="La Scaleia B">B. La Scaleia</name>
</author>
<author>
<name sortKey="Maffei, V" uniqKey="Maffei V">V. Maffei</name>
</author>
<author>
<name sortKey="Moscatelli, A" uniqKey="Moscatelli A">A. Moscatelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lestou, V" uniqKey="Lestou V">V. Lestou</name>
</author>
<author>
<name sortKey="Pollick, F E" uniqKey="Pollick F">F. E. Pollick</name>
</author>
<author>
<name sortKey="Kourtzi, Z" uniqKey="Kourtzi Z">Z. Kourtzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maffei, V" uniqKey="Maffei V">V. Maffei</name>
</author>
<author>
<name sortKey="Indovina, I" uniqKey="Indovina I">I. Indovina</name>
</author>
<author>
<name sortKey="Macaluso, E" uniqKey="Macaluso E">E. Macaluso</name>
</author>
<author>
<name sortKey="Ivanenko, Y P" uniqKey="Ivanenko Y">Y. P. Ivanenko</name>
</author>
<author>
<name sortKey="Orban, G A" uniqKey="Orban G">G. A. Orban</name>
</author>
<author>
<name sortKey="Lacquaniti, F" uniqKey="Lacquaniti F">F. Lacquaniti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcintyre, J" uniqKey="Mcintyre J">J. McIntyre</name>
</author>
<author>
<name sortKey="Zago, M" uniqKey="Zago M">M. Zago</name>
</author>
<author>
<name sortKey="Berthoz, A" uniqKey="Berthoz A">A. Berthoz</name>
</author>
<author>
<name sortKey="Lacquaniti, F" uniqKey="Lacquaniti F">F. Lacquaniti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molenberghs, P" uniqKey="Molenberghs P">P. Molenberghs</name>
</author>
<author>
<name sortKey="Cunnington, R" uniqKey="Cunnington R">R. Cunnington</name>
</author>
<author>
<name sortKey="Mattingley, J B" uniqKey="Mattingley J">J. B. Mattingley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moscatelli, A" uniqKey="Moscatelli A">A. Moscatelli</name>
</author>
<author>
<name sortKey="Lacquaniti, F" uniqKey="Lacquaniti F">F. Lacquaniti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pavlova, M" uniqKey="Pavlova M">M. Pavlova</name>
</author>
<author>
<name sortKey="Lutzenberger, W" uniqKey="Lutzenberger W">W. Lutzenberger</name>
</author>
<author>
<name sortKey="Sokolov, A" uniqKey="Sokolov A">A. Sokolov</name>
</author>
<author>
<name sortKey="Birbaumer, N" uniqKey="Birbaumer N">N. Birbaumer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pavlova, M" uniqKey="Pavlova M">M. Pavlova</name>
</author>
<author>
<name sortKey="Sokolov, A" uniqKey="Sokolov A">A. Sokolov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peuskens, H" uniqKey="Peuskens H">H. Peuskens</name>
</author>
<author>
<name sortKey="Vanrie, J" uniqKey="Vanrie J">J. Vanrie</name>
</author>
<author>
<name sortKey="Verfaillie, K" uniqKey="Verfaillie K">K. Verfaillie</name>
</author>
<author>
<name sortKey="Orban, G A" uniqKey="Orban G">G. A. Orban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pittenger, J B" uniqKey="Pittenger J">J. B. Pittenger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pollick, F E" uniqKey="Pollick F">F. E. Pollick</name>
</author>
<author>
<name sortKey="Kay, J W" uniqKey="Kay J">J. W. Kay</name>
</author>
<author>
<name sortKey="Heim, K" uniqKey="Heim K">K. Heim</name>
</author>
<author>
<name sortKey="Stringer, R" uniqKey="Stringer R">R. Stringer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pollick, F E" uniqKey="Pollick F">F. E. Pollick</name>
</author>
<author>
<name sortKey="Paterson, H M" uniqKey="Paterson H">H. M. Paterson</name>
</author>
<author>
<name sortKey="Bruderlin, A" uniqKey="Bruderlin A">A. Bruderlin</name>
</author>
<author>
<name sortKey="Sanford, A J" uniqKey="Sanford A">A. J. Sanford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reed, C L" uniqKey="Reed C">C. L. Reed</name>
</author>
<author>
<name sortKey="Stone, V E" uniqKey="Stone V">V. E. Stone</name>
</author>
<author>
<name sortKey="Bozova, S" uniqKey="Bozova S">S. Bozova</name>
</author>
<author>
<name sortKey="Tanaka, J" uniqKey="Tanaka J">J. Tanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G. Rizzolatti</name>
</author>
<author>
<name sortKey="Craighero, L" uniqKey="Craighero L">L. Craighero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saygin, A" uniqKey="Saygin A">A. Saygin</name>
</author>
<author>
<name sortKey="Chaminade, T" uniqKey="Chaminade T">T. Chaminade</name>
</author>
<author>
<name sortKey="Ishiguro, H" uniqKey="Ishiguro H">H. Ishiguro</name>
</author>
<author>
<name sortKey="Driver, J" uniqKey="Driver J">J. Driver</name>
</author>
<author>
<name sortKey="Frith, C" uniqKey="Frith C">C. Frith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saygin, A P" uniqKey="Saygin A">A. P. Saygin</name>
</author>
<author>
<name sortKey="Wilson, S M" uniqKey="Wilson S">S. M. Wilson</name>
</author>
<author>
<name sortKey="Hagler, D J" uniqKey="Hagler D">D. J. Hagler</name>
</author>
<author>
<name sortKey="Bates, E" uniqKey="Bates E">E. Bates</name>
</author>
<author>
<name sortKey="Sereno, M I" uniqKey="Sereno M">M. I. Sereno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Senot, P" uniqKey="Senot P">P. Senot</name>
</author>
<author>
<name sortKey="Zago, M" uniqKey="Zago M">M. Zago</name>
</author>
<author>
<name sortKey="Le Seac, A" uniqKey="Le Seac A">A. Le Séac’h</name>
</author>
<author>
<name sortKey="Zaoui, M" uniqKey="Zaoui M">M. Zaoui</name>
</author>
<author>
<name sortKey="Berthoz, A" uniqKey="Berthoz A">A. Berthoz</name>
</author>
<author>
<name sortKey="Lacquaniti, F" uniqKey="Lacquaniti F">F. Lacquaniti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Servos, P" uniqKey="Servos P">P. Servos</name>
</author>
<author>
<name sortKey="Osu, R" uniqKey="Osu R">R. Osu</name>
</author>
<author>
<name sortKey="Santi, A" uniqKey="Santi A">A. Santi</name>
</author>
<author>
<name sortKey="Kawato, M" uniqKey="Kawato M">M. Kawato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shipley, T F" uniqKey="Shipley T">T. F. Shipley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevens, J A" uniqKey="Stevens J">J. A. Stevens</name>
</author>
<author>
<name sortKey="Fonlupt, P" uniqKey="Fonlupt P">P. Fonlupt</name>
</author>
<author>
<name sortKey="Shiffrar, M" uniqKey="Shiffrar M">M. Shiffrar</name>
</author>
<author>
<name sortKey="Decety, J" uniqKey="Decety J">J. Decety</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sumi, S" uniqKey="Sumi S">S. Sumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tai, Y F" uniqKey="Tai Y">Y. F. Tai</name>
</author>
<author>
<name sortKey="Scherfler, C" uniqKey="Scherfler C">C. Scherfler</name>
</author>
<author>
<name sortKey="Brooks, D J" uniqKey="Brooks D">D. J. Brooks</name>
</author>
<author>
<name sortKey="Sawamoto, N" uniqKey="Sawamoto N">N. Sawamoto</name>
</author>
<author>
<name sortKey="Castiello, U" uniqKey="Castiello U">U. Castiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tkach, D" uniqKey="Tkach D">D. Tkach</name>
</author>
<author>
<name sortKey="Reimer, J" uniqKey="Reimer J">J. Reimer</name>
</author>
<author>
<name sortKey="Hatsopoulos, N G" uniqKey="Hatsopoulos N">N. G. Hatsopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Troje, N F" uniqKey="Troje N">N. F. Troje</name>
</author>
<author>
<name sortKey="Westhoff, C" uniqKey="Westhoff C">C. Westhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaina, L M" uniqKey="Vaina L">L. M. Vaina</name>
</author>
<author>
<name sortKey="Solomon, J" uniqKey="Solomon J">J. Solomon</name>
</author>
<author>
<name sortKey="Chowdhury, S" uniqKey="Chowdhury S">S. Chowdhury</name>
</author>
<author>
<name sortKey="Sinha, P" uniqKey="Sinha P">P. Sinha</name>
</author>
<author>
<name sortKey="Belliveau, J W" uniqKey="Belliveau J">J. W. Belliveau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Oostende, S" uniqKey="Van Oostende S">S. Van Oostende</name>
</author>
<author>
<name sortKey="Sunaert, S" uniqKey="Sunaert S">S. Sunaert</name>
</author>
<author>
<name sortKey="Van Hecke, P" uniqKey="Van Hecke P">P. Van Hecke</name>
</author>
<author>
<name sortKey="Marchal, G" uniqKey="Marchal G">G. Marchal</name>
</author>
<author>
<name sortKey="Orban, G" uniqKey="Orban G">G. Orban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watson, J S" uniqKey="Watson J">J. S. Watson</name>
</author>
<author>
<name sortKey="Banks, M S" uniqKey="Banks M">M. S. Banks</name>
</author>
<author>
<name sortKey="Von Hofsten, C" uniqKey="Von Hofsten C">C. von Hofsten</name>
</author>
<author>
<name sortKey="Royden, C S" uniqKey="Royden C">C. S. Royden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Werkhoven, P" uniqKey="Werkhoven P">P. Werkhoven</name>
</author>
<author>
<name sortKey="Snippe, H P" uniqKey="Snippe H">H. P. Snippe</name>
</author>
<author>
<name sortKey="Alexander, T" uniqKey="Alexander T">T. Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woo, C W" uniqKey="Woo C">C.-W. Woo</name>
</author>
<author>
<name sortKey="Krishnan, A" uniqKey="Krishnan A">A. Krishnan</name>
</author>
<author>
<name sortKey="Wager, T D" uniqKey="Wager T">T. D. Wager</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Psychol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Psychol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Psychol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Psychology</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-1078</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28861024</article-id>
<article-id pub-id-type="pmc">5562714</article-id>
<article-id pub-id-type="doi">10.3389/fpsyg.2017.01396</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Psychology</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Cignetti</surname>
<given-names>Fabien</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/307823/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chabeauti</surname>
<given-names>Pierre-Yves</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Menant</surname>
<given-names>Jasmine</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/285433/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Anton</surname>
<given-names>Jean-Luc J. J.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/308162/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schmitz</surname>
<given-names>Christina</given-names>
</name>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/9370/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vaugoyeau</surname>
<given-names>Marianne</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/83160/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Assaiante</surname>
<given-names>Christine</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/307862/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives</institution>
<country>Marseille, France</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Aix-Marseille Université, CNRS, Fédération 3C</institution>
<country>Marseille, France</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Prince of Wales Medical Research Institute, School of Public Health and Community Medicine, University of New South Wales, Randwick</institution>
<country>NSW, Australia</country>
</aff>
<aff id="aff4">
<sup>4</sup>
<institution>Aix-Marseille Université, CNRS, INT UMR 7289, Centre IRM Fonctionnelle</institution>
<country>Marseille, France</country>
</aff>
<aff id="aff5">
<sup>5</sup>
<institution>Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, CRNL, INSERM U1028, CNRS UMR 5292</institution>
<country>Lyon, France</country>
</aff>
<aff id="aff6">
<sup>6</sup>
<institution>University Lyon 1</institution>
<country>Lyon, France</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by:
<italic>Stephane Besnard, Institut National de la Santé et de la Recherche Médicale (INSERM), France</italic>
</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by:
<italic>Bettina E. Bläsing, Bielefeld University, Germany; Nicolas Vibert, University of Poitiers, France</italic>
</p>
</fn>
<corresp id="fn001">*Correspondence:
<italic>Marianne Vaugoyeau,
<email xlink:type="simple">marianne.vaugoyeau@univ-amu.fr</email>
Fabien Cignetti,
<email xlink:type="simple">fabien.cignetti@univ-amu.fr</email>
</italic>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Movement Science and Sport Psychology, a section of the journal Frontiers in Psychology</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>17</day>
<month>8</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>8</volume>
<elocation-id>1396</elocation-id>
<history>
<date date-type="received">
<day>05</day>
<month>5</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>31</day>
<month>7</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2017 Cignetti, Chabeauti, Menant, Anton, Schmitz, Vaugoyeau and Assaiante.</copyright-statement>
<copyright-year>2017</copyright-year>
<copyright-holder>Cignetti, Chabeauti, Menant, Anton, Schmitz, Vaugoyeau and Assaiante</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer’s motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.</p>
</abstract>
<kwd-group>
<kwd>biological motion</kwd>
<kwd>gravity</kwd>
<kwd>functional MRI</kwd>
<kwd>motor resonance</kwd>
<kwd>form-from-motion perception</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source id="cn001">Centre National d’Etudes Spatiales
<named-content content-type="fundref-id">10.13039/501100002830</named-content>
</funding-source>
</award-group>
</funding-group>
<counts>
<fig-count count="3"></fig-count>
<table-count count="2"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="61"></ref-count>
<page-count count="10"></page-count>
<word-count count="0"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Earth’s gravity is an important factor that influences visual perception. Psychophysical experiments demonstrated that several spatiotemporal characteristics of a visual scene are estimated employing implicit knowledge about the effects of gravity on moving objects in the physical world. For instance, visual gravity cues contribute to the perception of size, distance and flight time of falling objects (
<xref rid="B59" ref-type="bibr">Watson et al., 1992</xref>
;
<xref rid="B22" ref-type="bibr">Huber and Krist, 2004</xref>
;
<xref rid="B3" ref-type="bibr">Brouwer et al., 2006</xref>
;
<xref rid="B38" ref-type="bibr">Moscatelli and Lacquaniti, 2011</xref>
). Motion naturalness of a freely swinging pendulum is also established judging violations of the natural relation between period and length imposed by gravitational acceleration (
<xref rid="B42" ref-type="bibr">Pittenger, 1990</xref>
). Furthermore, manual interception of falling objects under microgravity is not accurately timed given the lack of object acceleration (
<xref rid="B36" ref-type="bibr">McIntyre et al., 2001</xref>
;
<xref rid="B49" ref-type="bibr">Senot et al., 2012</xref>
). Based on the fact that the visual system is quite poor at estimating image accelerations (
<xref rid="B60" ref-type="bibr">Werkhoven et al., 1992</xref>
), the above predictive behaviors in visual perception and interceptive responses involving knowledge about gravity were in favor of the existence of an internal model of gravitational motion internalized in the human brain. Functional magnetic resonance imaging (fMRI) experiments tested this hypothesis and demonstrated that an internal model implemented within a vestibular neural network, including the posterior insula, the retroinsular cortex and the temporoparietal junction, transforms the gravity vector into an abstract representation accessible by the visual system to establish judgments on gravitational motion of objects (
<xref rid="B24" ref-type="bibr">Indovina et al., 2005</xref>
;
<xref rid="B33" ref-type="bibr">Lacquaniti et al., 2013</xref>
). Likewise,
<xref rid="B25" ref-type="bibr">Indovina et al. (2013)</xref>
showed that a similar network is engaged during vertical self-motion coherent with natural gravity.</p>
<p>There is also evidence that gravity cues are critical for the visual perception of biological motion (BM) as presented with point-light displays (
<xref rid="B28" ref-type="bibr">Jokisch and Troje, 2003</xref>
;
<xref rid="B51" ref-type="bibr">Shipley, 2003</xref>
;
<xref rid="B56" ref-type="bibr">Troje and Westhoff, 2006</xref>
). Such displays, first described by
<xref rid="B27" ref-type="bibr">Johansson (1973)</xref>
, convey a vivid impression of figures in motion, which is already decoded by young infants (
<xref rid="B14" ref-type="bibr">Fox and McDaniel, 1982</xref>
). The rudimentary information contained in point-light displays of BM is sufficient even to solve sophisticated recognition tasks, including identity and gender recognition (
<xref rid="B8" ref-type="bibr">Cutting and Kozlowski, 1977</xref>
;
<xref rid="B32" ref-type="bibr">Kozlowski and Cutting, 1977</xref>
;
<xref rid="B43" ref-type="bibr">Pollick et al., 2005</xref>
), emotion recognition (
<xref rid="B44" ref-type="bibr">Pollick et al., 2001</xref>
), and understanding of social interactions (
<xref rid="B5" ref-type="bibr">Centelles et al., 2011</xref>
). Interestingly, the detection and recognition of BM from point-light displays are disrupted once they are turned upside down (
<xref rid="B53" ref-type="bibr">Sumi, 1984</xref>
;
<xref rid="B40" ref-type="bibr">Pavlova and Sokolov, 2000</xref>
). An explanation for this ‘inversion effect’ would be that the novel orientation of the display makes the form of the stimuli unfamiliar so that individuals are no longer able to extract form and then determine the action (
<xref rid="B45" ref-type="bibr">Reed et al., 2003</xref>
). Nevertheless, it has been demonstrated that even when form information is disrupted, perception of the displays is still subjected to an inversion effect, which in turn likely results from the violation of the familiar (earth-based) spatiotemporal relations between body joints specified by the kinematics (
<xref rid="B51" ref-type="bibr">Shipley, 2003</xref>
;
<xref rid="B56" ref-type="bibr">Troje and Westhoff, 2006</xref>
). Therefore, the visual perception of BM from point light displays involves picking-up dynamic information from the kinematics of body movements that relies on the natural gravity.</p>
<p>At the brain level, a sensitivity to the inversion effect (as obtained by contrasting intact and inverted point-light displays) was found in several regions belonging to the BM perception network (
<xref rid="B48" ref-type="bibr">Saygin et al., 2004</xref>
), especially the occipito-temporal cortex and regions in the parietal (i.e., intraparietal sulcus) and frontal (i.e., caudal part of the middle/inferior frontal gyrus) lobes (
<xref rid="B18" ref-type="bibr">Grezes et al., 2001</xref>
;
<xref rid="B19" ref-type="bibr">Grossman and Blake, 2001</xref>
;
<xref rid="B39" ref-type="bibr">Pavlova et al., 2004</xref>
;
<xref rid="B41" ref-type="bibr">Peuskens et al., 2005</xref>
). With respect to the occipito-temporal cortex, data from
<xref rid="B35" ref-type="bibr">Maffei et al. (2015)</xref>
suggest that activity changes induced by displays with a non-normal gravitational kinematics is related to backward modulatory influences from regions that internalize the effects of Earth gravity on visual motion in general, namely the insula and the temporoparietal junction (
<xref rid="B24" ref-type="bibr">Indovina et al., 2005</xref>
,
<xref rid="B25" ref-type="bibr">2013</xref>
;
<xref rid="B33" ref-type="bibr">Lacquaniti et al., 2013</xref>
). Thus, modulation of activity in the occipito-temporal cortex would signal mismatches (errors) between incoming and expected stimuli as predicted by the internal model of gravity stored in the vestibular cortex, meaning that predictive coding of gravity effects contributes to BM interpretation. However, there is no evidence that activation gradients in the previously mentioned posterior parietal and frontal regions when inverting BM displays constitute prediction errors that relate to the internal model of gravitational motion. It can only be argued that these regions are commonly involved during the execution and the observation of movements (
<xref rid="B46" ref-type="bibr">Rizzolatti and Craighero, 2004</xref>
;
<xref rid="B10" ref-type="bibr">Dinstein et al., 2007</xref>
;
<xref rid="B30" ref-type="bibr">Kilner et al., 2007</xref>
;
<xref rid="B6" ref-type="bibr">Chong et al., 2008</xref>
;
<xref rid="B31" ref-type="bibr">Kilner et al., 2009</xref>
;
<xref rid="B47" ref-type="bibr">Saygin et al., 2012</xref>
), or otherwise are core nodes of the mirror-neuron system (MNS) whose activation is often interpreted within the framework of motor resonance, whereby an observed action is understood through mapping onto the observer’s own motor representation. In this framework, interpreting gravitational cues embedded in BM would rely on a mechanism that ‘judges’ the compliance of the observed BM with naturalistic (Earth-based) BM stored in the observer sensorimotor repertoire, that is a sort of implicit coding of gravity effects that may not require a predictive code from the internal model of gravity.</p>
<p>Relevant to this explanatory framework is the fact that activity within the MNS was found to be sensitive to human kinematic invariants during action/motion observation (
<xref rid="B9" ref-type="bibr">Dayan et al., 2007</xref>
;
<xref rid="B4" ref-type="bibr">Casile et al., 2010</xref>
). In particular, these experiments reported that compliance of the moving stimuli with a natural law of motion (i.e., the two-thirds power law) was reflected in stronger activation in certain areas of the MNS, especially motor-related areas (e.g., ventral premotor cortex). Therefore, the more plausible the kinematics of the observed action, the stronger the resonance of the MNS. Alternatively, studies also examined the hypothesis that regions of the MNS, including motor-related and parietal areas, should not be active during the observation of biomechanically impossible movements that are not part of the observer’s motor repertoire (
<xref rid="B52" ref-type="bibr">Stevens et al., 2000</xref>
;
<xref rid="B7" ref-type="bibr">Costantini et al., 2005</xref>
). Although findings by
<xref rid="B52" ref-type="bibr">Stevens et al. (2000)</xref>
suggest that motor and parietal cortices are selectively activated to process movement that conforms to the capabilities of the observer,
<xref rid="B7" ref-type="bibr">Costantini et al. (2005)</xref>
showed that premotor areas coded movement regardless of whether it is biologically possible or impossible while parietal areas coded for movement plausibility (i.e., an activation gradient between possible and impossible movements). Overall, despite certain discrepancies, all these studies tend to demonstrate that violations of the physical laws that apply on Earth in displayed movements is inferred using motor resonance, with the sensory inputs being mapped onto one’s own body motor repertoire and thus coding the possibility of actually performing the same movements.</p>
<p>The present fMRI study investigated the cortical regions responsible for detecting graviceptive information during visual perception of BM. Gravity cues were manipulated by presenting point-light displays depicting a person moving under normogravity or microgravity, the displays having been recorded during parabolic flights (see Materials and Methods for details). The displayed avatars executed the same movements in both normogravity and microgravity so that shape characteristics changed only marginally between the two conditions but with different kinematic characteristics. We expected that coding of gravitational content in BM displays engages motor resonance, which should be reflected in a larger activity in regions of the MNS (i.e., a larger motor resonance) for normogravity BM displays given the closer match between the observed action and the observers’ own sensorimotor representations.</p>
</sec>
<sec sec-type="materials|methods" id="s1">
<title>Materials and Methods</title>
<sec>
<title>Participants</title>
<p>Twenty healthy right-handed volunteers (mean ± SD [range] age: 36 ± 8 [27–45] years; 9 females) participated in the study. All the participants were naïve as to the purpose of the study and never experienced microgravity. This study was reviewed and approved by the local Ethics Committee “CPP Sud-Méditerranée 1.” Before the study, all participants provided written informed consent. This study was carried out in accordance with the Declaration of Helsinki.</p>
</sec>
<sec>
<title>Stimuli</title>
<p>The stimuli were three-second silent point-light displays of human movements. The displays were created by videotaping actors (1 woman and 1 man) who performed various movements of everyday life, including standing-up from or sitting on a chair, crouching, moving the arms/legs in isolation or in combination, touching the floor from a sitted position, stepping aside, and tilting forward or backward. Specifically, the displacements of 22 markers (15 mm in diameter) taped onto major body parts (top of the head, acromions, elbows, wrists, metacarpophalangeal joint of the index fingers, manubrium, xiphoid process, navel, hips, greater trochanters, knees, ankles, toes) of the actors were sampled at a rate of 120 Hz with a four cameras SMART-E motion analysis system (BTS, Milan, Italy). Accordingly, each actor was depicted by a set of white dots moving against a black background (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
).</p>
<fig id="F1" position="float">
<label>FIGURE 1</label>
<caption>
<p>Task procedure. Participants observed the display (either normogravity or microgravity) on the screen for 3 s and had 2 s afterward to indicate whether the movement was performed on Earth (green rectangle) or in Space (red rectangle). Trials were separated by a jittered inter-trial interval (ITI) with a mean duration of 3 s during which a fixation cross was displayed at the center of the screen.</p>
</caption>
<graphic xlink:href="fpsyg-08-01396-g001"></graphic>
</fig>
<p>The recordings took place onboard the French Airbus A300-Zero G (Novespace) during three parabolic flights. In parabolic flight, the aircraft is put into a suborbital trajectory (30 parabolas per flight) that provides free-fall. Each parabola includes a pull-up phase and a pull-out phase, each 20–22 s long, where occupants are subjected to around 1.75 times the force of gravity, and a microgravity phase in the middle that lasts about 20 s where gravity is close to zero (0.02 ± 0.018 g). Each parabola is followed by 2 min of normogravity (1 g). Therefore, we recorded the actors’ movements during the microgravity and normogravity phases. In the microgravity phase, the actors always had at least one foot attached on the floor of the aircraft, so that they were not free-floating. This ensured that form characteristics of the point-light displays were comparable under both microgravity and normogravity for similar movements. Furthermore, the starting positions of the different movements depicted in the displays were standardized, the actors having either executed the movement starting from a standing upright position or sitting on a chair. Besides, the viewpoints could differ from one point-light display to another depending on the movement performed and each point-light display was presented in two different viewpoints to increase the number of stimuli. The set of stimuli was composed of 84 point-light displays in total, including 42 normogravity displays and 42 microgravity displays. The 42 displays per condition corresponded to 21 different movements multiplied by the two viewpoints.</p>
</sec>
<sec>
<title>Experimental Design</title>
<p>The participants, lying inside the fMRI scanner, had to watch the point-light displays and indicate whether the movements were performed under normogravity or microgravity (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
). The task consisted of three runs of 84 trials each. Each experimental run lasted approximately 11 min. A trial included a point-light display (3 s), followed by an instruction display asking whether the movement was performed on Earth (i.e., normogravity) or in Space (i.e., microgravity). The participants had 2 s maximum to respond as accurately as possible with either of two buttons on a keyboard corresponding to a green or red rectangle on the screen, with the former rectangle coding for a movement performed on Earth and the latter rectangle for a movement performed in Space. A fixation cross was then displayed during the inter-trial interval for an average of 3 s (range 1–12 s), obtained from exponential distribution (
<xref rid="B20" ref-type="bibr">Hagberg et al., 2001</xref>
). The order of the point light displays, including 42 normogravity and 42 microgravity displays per run, and the left-right locations of the rectangles on the screen were randomized across participants and across the three runs.</p>
<p>Stimuli were back-projected onto a semiopaque screen placed at the back end of the MRI tunnel. Participants viewed the displays through tilted mirrors placed over their eyes. They responded with their right index and middle fingers using an MRI-compatible response box. Responses (accuracy) were recorded using a custom software developed using LabVIEW (National Instruments, Austin, TX, United States). Before scanning, the participants had been instructed and had performed a few practice trials on a computer outside the scanning room to ensure understanding of the task.</p>
</sec>
<sec>
<title>fMRI Data Acquisition</title>
<p>The experiment was performed using a 3-T fMRI scanner (Medspec 30/80 AVANCE, Bruker, Ettlingen, Germany). EPI BOLD images were acquired over the three runs (i.e., three fMRI time series) with a T2
<sup></sup>
weighted gradient echo-planar imaging sequence [repetition time: 2133.3 ms; echo time: 30 ms; flip angle: 79.5°; 3 mm isotropic voxel size; reco matrix: 64 × 64; 32 interleaved axial slices with 1 mm gap; field of view (FOV): 192 mm × 192 mm]. The scanning planes were parallel to the anterior commissure/posterior commissure and covered the whole brain from the top of the cortex down to the base of the cerebellum. Structural MRI data was acquired using a standard T1-weighted scanning sequence of 1 mm
<sup>3</sup>
resolution (MPRAGE; repetition time: 9.4 ms; echo time: 4.424 ms; inversion time: 800 ms; FOV: 256 mm × 256 mm × 180 mm, reco matrix: 256 × 256 × 180) to allow anatomical localization of brain activation.</p>
</sec>
<sec>
<title>fMRI Data Preprocessing and Analysis</title>
<p>Data preprocessing was conducted following the standard SPM8 (Wellcome Department of Imaging Neuroscience, London, United Kingdom
<sup>
<xref ref-type="fn" rid="fn01">1</xref>
</sup>
) workflow for fMRI (
<xref rid="B15" ref-type="bibr">Friston et al., 1995</xref>
;
<xref rid="B21" ref-type="bibr">Henson et al., 1999</xref>
). Each run consisted of 317 scans, including six dummy images of magnetic field saturation that were discarded before analysis. The remaining images were slice-time corrected. After discarding the last two volumes, these images were realigned to the first image of the time series (6-parameter rigid body) to correct for head movement between scans, and a mean realigned image was created. The realigned images were also “unwarped” to reduce residual movement-related variance (
<xref rid="B1" ref-type="bibr">Andersson et al., 2001</xref>
). Each structural MRI was co-registered to the corresponding mean realigned image, and normalized to a template in the stereotactic space of the Montreal Neurological Institute (MNI) by matching gray matter with a priori gray matter template (
<xref rid="B2" ref-type="bibr">Ashburner and Friston, 2005</xref>
). Normalization was then applied to the functional images before smoothing with a 6 mm × 6 mm × 6 mm Gaussian kernel. The absence of gross normalization errors was visually confirmed by an experienced operator for all participants. No excessive head motion were observed (i.e., cumulative translation and rotation <3 mm and 3° and mean point-to-point translation and rotation <0.15 mm and 0.1°).</p>
<p>Statistical analysis of the fMRI time series was based on the general linear model (GLM) approach (
<xref rid="B16" ref-type="bibr">Friston et al., 1994</xref>
,
<xref rid="B15" ref-type="bibr">1995</xref>
). The GLM design matrix included the two gravity conditions (i.e., normogravity and microgravity), the instruction, and the fixation cross, which were modeled as boxcar regressors and were convolved with the canonical hemodynamic response function of SPM8. Furthermore, the design matrix also included the participant’s realignment parameters, to regress out residual movement-related variance. Low-frequency drifts were removed from images using high-pass filtering (1/128 Hz). Contrasts of interest were defined at the first level of analysis (i.e., participant-level) to reveal areas coding for: (i) the perception of human movement in point-light displays (i.e., voxels where parameter estimates of the normogravity and microgravity regressors were significantly greater than baseline; labeled “normogravity > baseline” and “microgravity > baseline”); and (ii) gravity information embedded in the displays (i.e., voxels where parameter estimate of the normogravity regressor was significantly greater than that of the microgravity regressor, and inversely; labeled “normogravity > microgravity” and “microgravity > normogravity”). For contrasts (i), active voxels common to both normogravity and microgravity effects were identified by using the contrast “microgravity > baseline” as an inclusive mask of the contrast “normogravity > baseline.” Exclusive masking was also conducted to reveal areas that might have been specifically activated by normogravity or microgravity, although results were insignificant (see Results section). Contrasts (ii), i.e., “normogravity > microgravity” and “microgravity > normogravity,” were masked inclusively with the contrast “normogravity > baseline” to discard any voxel whose activation was unrelated to gravity information (i.e., voxel that can be considered as false positive). Individual contrast maps were then entered into a second level (random effect) full group GLM. It is worth emphasizing that identical results were obtained when implicit baseline (zero) was replaced by the weight of the regressor modeling the fixation periods (see Results section). With respect to group-level analyses, multiple comparisons correction of statistical maps was conducted using a cluster-based extent thresholding for
<italic>p</italic>
< 0.05 (FWER-corrected) calculated based on the Gaussian random field method and following previous recommendations (
<xref rid="B61" ref-type="bibr">Woo et al., 2014</xref>
).</p>
</sec>
</sec>
<sec>
<title>Results</title>
<p>All participants were successful in performing the categorization task inside the scanner, with a good and similar categorization accuracy for both the normogravity and the microgravity displays as assessed using independent two-sample
<italic>t</italic>
-test (mean ± SD: 75.85 ± 7.55% and 72.98 ± 8.22%, respectively;
<italic>t</italic>
= 1.15;
<italic>p</italic>
= 0.25;
<italic>d</italic>
= 0.36).</p>
<p>As previously mentioned, a first analysis of the fMRI data consisted in identifying brain regions that were similarly activated during the observation of point light displays independently of whether the movements were performed under normogravity or microgravity. For this purpose, we identified voxels that were common to the contrasts “normogravity > baseline” and “microgravity > baseline,” by masking inclusively (
<italic>p</italic>
= 0.05) the latter contrast with the former contrast (
<bold>Figure
<xref ref-type="fig" rid="F2">2</xref>
</bold>
and
<bold>Table
<xref ref-type="table" rid="T1">1</xref>
</bold>
). Results indicated that the observation of point light displays moving either under normogravity or microgravity led to a widespread pattern of activity, with significant clusters of activation located in frontal, parietal and occipito-temporal regions. In particular, regions subtending the pattern of activity included the middle occipital gyrus, the lingual gyrus, the fusiform gyrus, the superior, middle and inferior temporal gyrus, the cuneus, the inferior and superior parietal lobules, motor-related areas (primary motor cortex, primary somatosensory cortex, pre-motor cortex, and pre-supplementary motor area) and the inferior frontal gyrus. On the other hand, neither the “normogravity > baseline” contrast nor the “microgravity > baseline” contrast revealed exclusive clusters of significant activation, as examined by looking for activated voxels in either contrasts while using an exclusive masking approach (i.e., “normogravity > baseline” masked exclusively by “microgravity > baseline,” and inversely). Therefore, the networks subtending the perception of human movement under either microgravity or normogravity perfectly overlapped. Furthermore, the same network was identified when baseline was modeled as the fixation period. Significant clusters of activation were located along the regions previously identified, although the spatial extent of activation was reduced (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM2">S1</xref>
).</p>
<fig id="F2" position="float">
<label>FIGURE 2</label>
<caption>
<p>Brain areas activated by the point light displays independently of the gravity condition. The activation pattern was obtained by masking inclusively (
<italic>p</italic>
= 0.05) the contrast “microgravity > baseline” with the contrast “normogravity > baseline.” Activations are thresholded at
<italic>p</italic>
< 0.001 (uncorrected) at the voxel level and at
<italic>p</italic>
< 0.05 (FWE-corrected) at the cluster level. Abbreviations: M1/S1, primary motor and somatosensory cortices; PMd, dorsal premotor cortex; PMv, ventral premotor cortex; pre-SMA, pre-supplementary motor area; IFG, inferior frontal gyrus; IPS, intraparietal sulcus; STS, superior temporal sulcus; FG, fusiform gyrus; LgG, lingual gyrus; MOG, middle occipital gyrus.</p>
</caption>
<graphic xlink:href="fpsyg-08-01396-g002"></graphic>
</fig>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Activated brain regions during the observation of point light displays, as obtained by masking inclusively (
<italic>p</italic>
= 0.05) the contrast “microgravity > baseline” with the contrast “normogravity > baseline.”</p>
</caption>
<table frame="hsides" rules="groups" cellspacing="5" cellpadding="5">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">Region</th>
<th valign="top" align="center" rowspan="1" colspan="1">BA</th>
<th valign="top" align="center" rowspan="1" colspan="1">Side</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<italic>X, Y, Z</italic>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<italic>Z</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" colspan="5" rowspan="1">
<bold>Cluster #1: 6082 voxels</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Middle occipital gyrus</td>
<td valign="top" align="center" rowspan="1" colspan="1">18/19</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">30, -87, 12</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">30, -84, 21</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–30, -93, 12</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">–30, -87, 12</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">–27, -90, 15</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Fusiform gyrus</td>
<td valign="top" align="center" rowspan="1" colspan="1">19</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">27, -75, -12</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.79</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–21, -81, -12</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Lingual gyrus</td>
<td valign="top" align="center" rowspan="1" colspan="1">18</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">9, -87, -6</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.28</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–6, -87, -9</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.33</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Superior temporal gyrus</td>
<td valign="top" align="center" rowspan="1" colspan="1">22</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">60, -36, 21</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.69</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–62, -37, 20</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.06</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Middle temporal gyrus</td>
<td valign="top" align="center" rowspan="1" colspan="1">37</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">48, -63, 3</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–42, -66, 6</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Inferior temporal gyrus</td>
<td valign="top" align="center" rowspan="1" colspan="1">19</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">48, -62, -4</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–45, -72, 0</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Cuneus</td>
<td valign="top" align="center" rowspan="1" colspan="1">17</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">12, -96, 3</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.82</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–15, -96, 6</td>
<td valign="top" align="center" rowspan="1" colspan="1">>8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Inferior parietal lobule</td>
<td valign="top" align="center" rowspan="1" colspan="1">40</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">60, -35, 21</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.69</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–57, -38, 24</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.93</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Superior parietal lobule</td>
<td valign="top" align="center" rowspan="1" colspan="1">7</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">33, -60, 54</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.65</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–27, -57, 54</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.78</td>
</tr>
<tr>
<td valign="top" align="left" colspan="5" rowspan="1">
<bold>Cluster #2: 2069 voxels</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">M1/S1</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">51, -12, 39</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.58</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–46, -14, 49</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.32</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">54, -9, 48</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.72</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–50, -18, 40</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.05</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">PMd</td>
<td valign="top" align="center" rowspan="1" colspan="1">6</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">39, -3, 51</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.40</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–27, -6, 48</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.25</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">PMv</td>
<td valign="top" align="center" rowspan="1" colspan="1">6</td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–48, 3, 33</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.57</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">–42, -3, 42</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.20</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">–48, 0, 48</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.69</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">33, -9, 48</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.33</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">48, 0, 45</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.94</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Pre-SMA</td>
<td valign="top" align="center" rowspan="1" colspan="1">6</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">9, 12, 51</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.57</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">6, 9, 54</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.28</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">9, 0, 66</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.12</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–3, 9, 51</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.34</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">–6, 6, 54</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.32</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">–12, -6, 69</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.78</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Insula</td>
<td valign="top" align="center" rowspan="1" colspan="1">13</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">30, 24, 0</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.55</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–30, 21, 3</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.91</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Inferior frontal gyrus</td>
<td valign="top" align="center" rowspan="1" colspan="1">9</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">45, 3, 33</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.37</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–48, 6, 27</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.37</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">46</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">51, 36, 12</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.79</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–45, 33, 15</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.81</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<attrib>
<italic>For each region, MNI coordinates at the center of gravity are specified along with the corresponding Brodmann area (BA).
<italic>Z</italic>
-values refer to significant activation peaks at
<italic>p</italic>
< 0.001 (uncorrected for multiple comparisons). In addition, all reported regions were significantly active at
<italic>p</italic>
< 0.05 (FWE correction). Abbreviations: L, left hemisphere; R, Right hemisphere; M1, primary motor cortex; S1, primary somatosensory cortex. PMd, dorsal premotor cortex; PMv, ventral premotor cortex; pre-SMA, pre-supplementary motor area.</italic>
</attrib>
</table-wrap-foot>
</table-wrap>
<p>In the second analysis, we identified regions where activation was modulated by the gravity condition of the displays (
<bold>Figure
<xref ref-type="fig" rid="F3">3</xref>
</bold>
and
<bold>Table
<xref ref-type="table" rid="T2">2</xref>
</bold>
). Three significant clusters of activation were revealed by the contrast normogravity > microgravity. The first cluster was located in the primary motor cortex (BA 4). Activation also extended into the primary somatosensory cortex (BA 3), as shown in greater detail in Supplementary Figure
<xref ref-type="supplementary-material" rid="SM3">S2</xref>
. The other clusters belonged to the kinetic occipital region (BA 18) in both the right and left hemispheres. The reverse contrast, namely microgravity > normogravity, revealed increased activation of a cluster that included regions of the right and left lingual gyrus and cuneus.</p>
<fig id="F3" position="float">
<label>FIGURE 3</label>
<caption>
<p>Brain areas showing an activation gradient as a function of the gravity information embedded in the point light displays. Activations are thresholded at
<italic>p</italic>
< 0.001 (uncorrected) at the voxel level and at
<italic>p</italic>
< 0.05 (FWE-corrected) at the cluster level. An inclusive mask (
<italic>p</italic>
= 0.05, “normogravity > baseline” contrast) was applied. Abbreviations: M1, primary motor cortex; S1, primary somatosensory cortex; Cun, Cuneus; LgG, lingual gyrus; KO, kinetic occipital region.</p>
</caption>
<graphic xlink:href="fpsyg-08-01396-g003"></graphic>
</fig>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Activated brain regions during the observation of normogravity displays vs. microgravity displays and microgravity displays vs. normogravity displays.</p>
</caption>
<table frame="hsides" rules="groups" cellspacing="5" cellpadding="5">
<thead>
<tr>
<th valign="top" align="left" colspan="2" rowspan="1">Region</th>
<th valign="top" align="center" rowspan="1" colspan="1">BA</th>
<th valign="top" align="center" rowspan="1" colspan="1">Side</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<italic>X, Y, Z</italic>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<italic>Z</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" colspan="6" rowspan="1">
<bold>Normogravity</bold>
>
<bold>Microgravity</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" colspan="2" rowspan="1">Middle occipital gyrus</td>
<td valign="top" align="center" rowspan="1" colspan="1">18/19</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">27, -90, 0</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.11</td>
</tr>
<tr>
<td valign="top" align="left" colspan="2" rowspan="1">k: 101 voxels</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–24, -93, 3</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.23</td>
</tr>
<tr>
<td valign="top" align="left" colspan="2" rowspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">–27, -83, -3</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.15</td>
</tr>
<tr>
<td valign="top" align="left" colspan="2" rowspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">–21, -99, 6</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.46</td>
</tr>
<tr>
<td valign="top" align="left" colspan="2" rowspan="1">Motor-related areas (M1/S1)</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">51, -12, 39</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.18</td>
</tr>
<tr>
<td valign="top" align="left" colspan="2" rowspan="1">k: 45 voxels</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">56, -8, 48</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.99</td>
</tr>
<tr>
<td valign="top" align="left" colspan="2" rowspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">54, -9, 48</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.98</td>
</tr>
<tr>
<td valign="top" align="left" colspan="6" rowspan="1">
<bold>Microgravity</bold>
>
<bold>Normogravity</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Lingual gyrus</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">18</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">9, -84, 3</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.01</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">k: 107 voxels</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–9, -78, 0</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.29</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Cuneus</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">17</td>
<td valign="top" align="center" rowspan="1" colspan="1">R</td>
<td valign="top" align="left" rowspan="1" colspan="1">12, -90, 18</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.77</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">15, -93, 24</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.63</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">18, -84, 18</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.54</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">L</td>
<td valign="top" align="left" rowspan="1" colspan="1">–3, -90, 6</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.98</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<attrib>
<italic>For each region, MNI coordinates at the center of gravity are specified along with the corresponding Brodmann area (BA).
<italic>Z</italic>
-values refer to significant activation peaks at
<italic>p</italic>
< 0.001 (uncorrected for multiple comparisons). In addition, all reported regions were significantly active at
<italic>p</italic>
< 0.05 (FWE correction). Abbreviations: L, left hemisphere; R, Right hemisphere; M1, primary motor cortex; S1, primary somatosensory cortex.</italic>
</attrib>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Discussion</title>
<p>The present study investigated whether gravity-related changes in movement kinematics is reflected through activation gradients in regions of the MNS, which would support the premise that coding of gravitational content in BM displays relies on motor resonance. For this purpose, we examined BOLD signal when participants were observing point-light displays of human movements performed under either normogravity or microgravity. The result is twofold: first, independently of the gravity conditions, the perception of human movement relied on a large-scale network that encompassed frontal (inferior frontal gyrus, motor-related areas), parietal (inferior and superior parietal lobules), and occipito-temporal (superior temporal sulcus region, inferior temporal gyrus, fusiform gyrus, lingual gyrus, middle occipital gyrus) regions, which is in keeping with previous findings on the perception of point-light BM (
<xref rid="B57" ref-type="bibr">Vaina et al., 2001</xref>
;
<xref rid="B48" ref-type="bibr">Saygin et al., 2004</xref>
); and second, gravity information modulated the activation of a restricted set of regions of the network including visual (kinetic occipital region, lingual gyrus, cuneus) and motor-related (primary motor and somatosensory cortices) areas. Notably, the portions of the primary motor cortex along with those of the primary somatosensory cortex were significantly more active when acceleration in the point-light displays was consistent with natural (Earth) gravity. Previous studies on the neuronal encoding of the kinematic laws of motion during both abstract (cloud of dots) motion observation (
<xref rid="B9" ref-type="bibr">Dayan et al., 2007</xref>
) and human action observation (
<xref rid="B4" ref-type="bibr">Casile et al., 2010</xref>
) already demonstrated a larger involvement of the motor-related regions in processing normal kinematics compared to perturbed kinematics. The authors proposed that cortical representations of motion are optimally tuned to the kinematic invariants characterizing biological actions, with discrimination of normal vs. abnormal kinematics being carried out via a motor-matching process of the observed movements onto the observer’s motor system. The present finding adds to this view by providing evidence that compliance of gravity cues embedded in the kinematics of human motion with normal gravity is encoded in motor-related areas, possibly by transforming the visual inputs into the specific motor capabilities of the observer and thus coding the plausibility of actually performing the same movements.</p>
<p>Although the above result favors our hypothesis that the interpretation of gravitational cues embedded in BM relies on a mechanism of motor resonance, the primary motor and sensorimotor cortices are not classically considered to be part of the human MNS subtending motor resonance whose core regions are the inferior frontal/ventral premotor and posterior parietal areas (
<xref rid="B46" ref-type="bibr">Rizzolatti and Craighero, 2004</xref>
;
<xref rid="B23" ref-type="bibr">Iacoboni and Dapretto, 2006</xref>
). In particular, several studies that manipulated indirectly the kinematic characteristics of the movement, by contrasting the observation of natural as opposed to unnatural movements (
<xref rid="B52" ref-type="bibr">Stevens et al., 2000</xref>
;
<xref rid="B54" ref-type="bibr">Tai et al., 2004</xref>
;
<xref rid="B7" ref-type="bibr">Costantini et al., 2005</xref>
;
<xref rid="B17" ref-type="bibr">Gazzola et al., 2007</xref>
;
<xref rid="B34" ref-type="bibr">Lestou et al., 2008</xref>
), revealed a further involvement of these core regions in processing movement displays that conform with normal kinematics. However, there is growing evidence that mirror activity extends beyond brain regions identified as being part of the classical MNS, including the primary somatosensory cortex (
<xref rid="B29" ref-type="bibr">Keysers and Gazzola, 2009</xref>
;
<xref rid="B37" ref-type="bibr">Molenberghs et al., 2012</xref>
) and the primary motor cortex (
<xref rid="B13" ref-type="bibr">Fadiga et al., 2005</xref>
;
<xref rid="B55" ref-type="bibr">Tkach et al., 2007</xref>
;
<xref rid="B12" ref-type="bibr">Dushanova and Donoghue, 2010</xref>
). Thus, it is reasonable to assume that the individuals discriminated between normogravity and microgravity displays via the mirror property of these two regions, by simulating the motor commands and their sensory consequences for observed movements.</p>
<p>Such an implicit coding of gravity effects through motor resonance contrasts with a recent study by
<xref rid="B35" ref-type="bibr">Maffei et al. (2015)</xref>
where judgment on graviceptive information embedded in point-light BM is proposed to result from a predictive code generated by an internal model of gravity effects (whose primary sites are in temporo-parietal junction and insula) that is conveyed to the occipito-temporal cortex where it is compared to the incoming stimuli to produce a prediction error, and thereby an activation. Specifically, BM stimuli under a condition of abnormal gravity evoked stronger activation in occipito-temporal regions than BM stimuli under normal gravity. Studies on the recognition of BM when stimuli are displayed upside down (i.e., violation of physical gravity) reconcile this result with our own. Indeed, it was reported a sensitivity to the inversion effect in the occipito-temporal cortex (
<xref rid="B18" ref-type="bibr">Grezes et al., 2001</xref>
;
<xref rid="B19" ref-type="bibr">Grossman and Blake, 2001</xref>
;
<xref rid="B39" ref-type="bibr">Pavlova et al., 2004</xref>
;
<xref rid="B41" ref-type="bibr">Peuskens et al., 2005</xref>
) as well as in parietal (i.e., intraparietal sulcus) and frontal (i.e., caudal part of the middle/inferior frontal gyrus) areas (
<xref rid="B18" ref-type="bibr">Grezes et al., 2001</xref>
;
<xref rid="B39" ref-type="bibr">Pavlova et al., 2004</xref>
) that belong to the MNS. The discrepancy between results from
<xref rid="B35" ref-type="bibr">Maffei et al. (2015)</xref>
and ours may have to do with differences in the complexity of the portrayed movements. They used gait movements that are likely to be of lower complexity than the movements used in our experiment. Exploring gait movements and complex movements close to those used in our experiment,
<xref rid="B26" ref-type="bibr">Jastorff and Orban (2009)</xref>
showed enhanced activations by complex biological kinematics in the occipito-temporal cortex and in frontal regions belonging to the MNS, therefore suggesting that one destination of the BM signals is the occipito-temporal cortex and another destination is the MNS. Accordingly, gravity cues are likely coded in these two main loci of BM processing, with a hierarchy from the occipito-temporal cortex to the MNS as BM becomes more complex.</p>
<p>Another intriguing result was that gravity discrimination between displays also relied on visual regions known to be involved in form-from-motion perception, defined as the ability to extract the form of a stimuli entirely from motion cues. The kinetic occipital region, which was found to be more active for movements performed under normogravity, is selective to kinetic boundaries (
<xref rid="B11" ref-type="bibr">Dupont et al., 1997</xref>
;
<xref rid="B58" ref-type="bibr">Van Oostende et al., 1997</xref>
). In the case of point-light BM,
<xref rid="B57" ref-type="bibr">Vaina et al. (2001)</xref>
showed that this region integrates local motion of the light points with the goal of determining whether they altogether constitute the outline of a human silhouette. The lingual gyrus at the cuneus border, which was inversely found to be more active for movements performed under microgravity, is also involved in processing motion and deriving global form information in the perception of BM (
<xref rid="B50" ref-type="bibr">Servos et al., 2002</xref>
). Accordingly, variations of gravity information in point-light displays of human movement was likely also coded based on the familiarity of the human form reconstructed from the moving dots. Furthermore, the opposite pattern of activation found between the kinetic occipital region (i.e., more active in normogravity) and the lingual gyrus/cuneus complex (i.e., more active in microgravity) may indicate different functions in form-from-motion perception, the former region coding visual familiarity with the observed form-from-motion and the latter region visual unfamiliarity.</p>
<p>In sum, findings of the present experiment suggest that discrimination of point-light movements whose kinematic characteristics either did or did not comply with natural gravity was carried out by (i) mapping the movements onto the observer’s motor system, and (ii) extracting the overall form of the movements from local motion of the moving light points. Such a dual-mechanism plausibly coded both the possibility of actually performing the same movements and the visual familiarity of the observer with the form defined by the movements. Therefore, judgment on graviceptive information embedded in point-light BM may not be restricted to accessing the internal model of gravity effects (
<xref rid="B35" ref-type="bibr">Maffei et al., 2015</xref>
), also relying on motor representations and visual knowledge of what is observed.</p>
</sec>
<sec>
<title>Author Contributions</title>
<p>Conceived and designed the experiment: P-YC, CS, MV, and CA. Subject recruitment and screening: P-YC, MV, and CA. Acquisition of data: FC, P-YC, CS, MV, and CA. Analysis and interpretation of data: FC, P-YC, JM, J-LA, MV, and CA. Drafting the work: FC, MV, and CA. Final approval of the work: FC, P-YC, J-LA, JM, CS, MV, and CA. Being accountable for the accuracy and integrity of the work: FC, P-YC, J-LA, JM, CS, MV, and CA.</p>
</sec>
<sec>
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<ack>
<p>The authors thank Dr. Jennifer T. Coull and Dr. Marie-Hélène Grosbras for useful discussions and comments on the study. This research was supported by the French Space Agency (CNES).</p>
</ack>
<fn-group>
<fn id="fn01">
<label>1</label>
<p>
<ext-link ext-link-type="uri" xlink:href="http://www.fil.ion.ucl.ac.uk/spm/software/spm8">http://www.fil.ion.ucl.ac.uk/spm/software/spm8</ext-link>
</p>
</fn>
</fn-group>
<sec sec-type="supplementary material">
<title>Supplementary Material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="http://journal.frontiersin.org/article/10.3389/fpsyg.2017.01396/full#supplementary-material">http://journal.frontiersin.org/article/10.3389/fpsyg.2017.01396/full#supplementary-material</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="Data_Sheet_1.DOCX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM2">
<media xlink:href="Image_1.TIF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM3">
<media xlink:href="Image_2.TIF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andersson</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Hutton</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ashburner</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Friston</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Modeling geometric deformations in EPI time series.</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>13</volume>
<fpage>903</fpage>
<lpage>919</lpage>
.
<pub-id pub-id-type="doi">10.1006/nimg.2001.0746</pub-id>
<pub-id pub-id-type="pmid">11304086</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ashburner</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Friston</surname>
<given-names>K. J.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Unified segmentation.</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>26</volume>
<fpage>839</fpage>
<lpage>851</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2005.02.018</pub-id>
<pub-id pub-id-type="pmid">15955494</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brouwer</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Lopez-Moliner</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Smeets</surname>
<given-names>J. B.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Determining whether a ball will land behind or in front of you: not just a combination of expansion and angular velocity.</article-title>
<source>
<italic>Vision Res.</italic>
</source>
<volume>46</volume>
<fpage>382</fpage>
<lpage>391</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.visres.2005.09.002</pub-id>
<pub-id pub-id-type="pmid">16271742</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casile</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dayan</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Caggiano</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Hendler</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Flash</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Giese</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Neuronal encoding of human kinematic invariants during action observation.</article-title>
<source>
<italic>Cereb. Cortex</italic>
</source>
<volume>20</volume>
<fpage>1647</fpage>
<lpage>1655</lpage>
.
<pub-id pub-id-type="doi">10.1093/cercor/bhp229</pub-id>
<pub-id pub-id-type="pmid">19933580</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Centelles</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Assaiante</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Nazarian</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Anton</surname>
<given-names>J.-L.</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Recruitment of both the mirror and the mentalizing networks when observing social interactions depicted by point-lights: a neuroimaging study.</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<volume>6</volume>
:
<issue>e15749</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0015749</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chong</surname>
<given-names>T. T.-J.</given-names>
</name>
<name>
<surname>Cunnington</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Kanwisher</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Mattingley</surname>
<given-names>J. B.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>fMRI adaptation reveals mirror neurons in human inferior parietal cortex.</article-title>
<source>
<italic>Curr. Biol.</italic>
</source>
<volume>18</volume>
<fpage>1576</fpage>
<lpage>1580</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2008.08.068</pub-id>
<pub-id pub-id-type="pmid">18948009</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Costantini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Galati</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ferretti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Caulo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tartaro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Romani</surname>
<given-names>G. L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>Neural systems underlying observation of humanly impossible movements: an fMRI study.</article-title>
<source>
<italic>Cereb. Cortex</italic>
</source>
<volume>15</volume>
<fpage>1761</fpage>
<lpage>1767</lpage>
.
<pub-id pub-id-type="doi">10.1093/cercor/bhi053</pub-id>
<pub-id pub-id-type="pmid">15728741</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cutting</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Kozlowski</surname>
<given-names>L. T.</given-names>
</name>
</person-group>
(
<year>1977</year>
).
<article-title>Recognizing friends by their walk: gait perception without familiarity cues.</article-title>
<source>
<italic>Bull. Psychon. Soc.</italic>
</source>
<volume>9</volume>
<fpage>353</fpage>
<lpage>356</lpage>
.
<pub-id pub-id-type="doi">10.3758/BF03337021</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dayan</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Casile</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Levit-Binnun</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Giese</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Hendler</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Flash</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Neural representations of kinematic laws of motion: evidence for action-perception coupling.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>104</volume>
<fpage>20582</fpage>
<lpage>20587</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0710033104</pub-id>
<pub-id pub-id-type="pmid">18079289</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinstein</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Hasson</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Rubin</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Heeger</surname>
<given-names>D. J.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Brain areas selective for both observed and executed movements.</article-title>
<source>
<italic>J. Neurophysiol.</italic>
</source>
<volume>98</volume>
<fpage>1415</fpage>
<lpage>1427</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.00238.2007</pub-id>
<pub-id pub-id-type="pmid">17596409</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dupont</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>De Bruyn</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Vandenberghe</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rosier</surname>
<given-names>A.-M.</given-names>
</name>
<name>
<surname>Michiels</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Marchal</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1997</year>
).
<article-title>The kinetic occipital region in human visual cortex.</article-title>
<source>
<italic>Cereb. Cortex</italic>
</source>
<volume>7</volume>
<fpage>283</fpage>
<lpage>292</lpage>
.
<pub-id pub-id-type="doi">10.1093/cercor/7.3.283</pub-id>
<pub-id pub-id-type="pmid">9143447</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dushanova</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Donoghue</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Neurons in primary motor cortex engaged during action observation.</article-title>
<source>
<italic>Eur. J. Neurosci.</italic>
</source>
<volume>31</volume>
<fpage>386</fpage>
<lpage>398</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2009.07067.x</pub-id>
<pub-id pub-id-type="pmid">20074212</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fadiga</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Craighero</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Olivier</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Human motor cortex excitability during the perception of others’ action.</article-title>
<source>
<italic>Curr. Opin. Neurobiol.</italic>
</source>
<volume>15</volume>
<fpage>213</fpage>
<lpage>218</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.conb.2005.03.013</pub-id>
<pub-id pub-id-type="pmid">15831405</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fox</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>McDaniel</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>1982</year>
).
<article-title>The perception of biological motion by human infants.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>218</volume>
<fpage>486</fpage>
<lpage>487</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.7123249</pub-id>
<pub-id pub-id-type="pmid">7123249</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friston</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Poline</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Grasby</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Frackowiak</surname>
<given-names>R. S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1995</year>
).
<article-title>Analysis of fMRI time-series revisited.</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>2</volume>
<fpage>45</fpage>
<lpage>53</lpage>
.
<pub-id pub-id-type="doi">10.1006/nimg.1995.1007</pub-id>
<pub-id pub-id-type="pmid">9343589</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friston</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Worsley</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Poline</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Frith</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>Frackowiak</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
(
<year>1994</year>
).
<article-title>Statistical parametric maps in functional imaging: a general linear approach.</article-title>
<source>
<italic>Hum. Brain Mapp.</italic>
</source>
<volume>2</volume>
<fpage>189</fpage>
<lpage>210</lpage>
.
<pub-id pub-id-type="doi">10.1002/hbm.460020402</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gazzola</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Rizzolatti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wicker</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Keysers</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>The anthropomorphic brain: the mirror neuron system responds to human and robotic actions.</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>35</volume>
<fpage>1674</fpage>
<lpage>1684</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2007.02.003</pub-id>
<pub-id pub-id-type="pmid">17395490</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grezes</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fonlupt</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bertenthal</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Delon-Martin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Segebarth</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Decety</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Does perception of biological motion rely on specific brain regions?</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>13</volume>
<fpage>775</fpage>
<lpage>785</lpage>
.
<pub-id pub-id-type="pmid">11304074</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grossman</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Blake</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Brain activity evoked by inverted and imagined biological motion.</article-title>
<source>
<italic>Vision Res.</italic>
</source>
<volume>41</volume>
<fpage>1475</fpage>
<lpage>1482</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0042-6989(00)00317-5</pub-id>
<pub-id pub-id-type="pmid">11322987</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hagberg</surname>
<given-names>G. E.</given-names>
</name>
<name>
<surname>Zito</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Patria</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sanes</surname>
<given-names>J. N.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Improved detection of event-related functional MRI signals using probability functions.</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>14</volume>
<fpage>1193</fpage>
<lpage>1205</lpage>
.
<pub-id pub-id-type="doi">10.1006/nimg.2001.0880</pub-id>
<pub-id pub-id-type="pmid">11697951</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Henson</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Buechel</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Josephs</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Friston</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>The slice-timing problem in event-related fMRI.</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>9</volume>
<issue>S125</issue>
.</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huber</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Krist</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>When is the ball going to hit the ground? Duration estimates, eye movements, and mental imagery of object motion.</article-title>
<source>
<italic>J. Exp. Psychol. Hum. Percept. Perform.</italic>
</source>
<volume>30</volume>
<fpage>431</fpage>
<lpage>444</lpage>
.
<pub-id pub-id-type="doi">10.1037/0096-1523.30.3.431</pub-id>
<pub-id pub-id-type="pmid">15161377</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iacoboni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dapretto</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>The mirror neuron system and the consequences of its dysfunction.</article-title>
<source>
<italic>Nat. Rev. Neurosci.</italic>
</source>
<volume>7</volume>
<fpage>942</fpage>
<lpage>951</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrn2024</pub-id>
<pub-id pub-id-type="pmid">17115076</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Indovina</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Maffei</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Bosco</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Zago</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Macaluso</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lacquaniti</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Representation of visual gravitational motion in the human vestibular cortex.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>308</volume>
<fpage>416</fpage>
<lpage>419</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1107961</pub-id>
<pub-id pub-id-type="pmid">15831760</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Indovina</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Maffei</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pauwels</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Macaluso</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Orban</surname>
<given-names>G. A.</given-names>
</name>
<name>
<surname>Lacquaniti</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>71</volume>
<fpage>114</fpage>
<lpage>124</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2013.01.005</pub-id>
<pub-id pub-id-type="pmid">23321153</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jastorff</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Orban</surname>
<given-names>G. A.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing.</article-title>
<source>
<italic>J. Neurosci.</italic>
</source>
<volume>29</volume>
<fpage>7315</fpage>
<lpage>7329</lpage>
.
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.4870-08.2009</pub-id>
<pub-id pub-id-type="pmid">19494153</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johansson</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>1973</year>
).
<article-title>Visual perception of biological motion and a model for its analysis.</article-title>
<source>
<italic>Percept. Psychophys.</italic>
</source>
<volume>14</volume>
<fpage>201</fpage>
<lpage>211</lpage>
.
<pub-id pub-id-type="doi">10.3758/BF03212378</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jokisch</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Troje</surname>
<given-names>N. F.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Biological motion as a cue for the perception of size.</article-title>
<source>
<italic>J. Vis.</italic>
</source>
<volume>3</volume>
<fpage>252</fpage>
<lpage>264</lpage>
.
<pub-id pub-id-type="doi">10.1167/3.4.1</pub-id>
<pub-id pub-id-type="pmid">12803534</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keysers</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gazzola</surname>
<given-names>V.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Expanding the mirror: vicarious activity for actions, emotions, and sensations.</article-title>
<source>
<italic>Curr. Opin. Neurobiol.</italic>
</source>
<volume>19</volume>
<fpage>666</fpage>
<lpage>671</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.conb.2009.10.006</pub-id>
<pub-id pub-id-type="pmid">19880311</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kilner</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Friston</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Frith</surname>
<given-names>C. D.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>The mirror-neuron system: a Bayesian perspective.</article-title>
<source>
<italic>Neuroreport</italic>
</source>
<volume>18</volume>
<fpage>619</fpage>
<lpage>623</lpage>
.
<pub-id pub-id-type="doi">10.1097/WNR.0b013e3281139ed0</pub-id>
<pub-id pub-id-type="pmid">17413668</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kilner</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Neal</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Weiskopf</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Friston</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Frith</surname>
<given-names>C. D.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Evidence of mirror neurons in human inferior frontal gyrus.</article-title>
<source>
<italic>J. Neurosci.</italic>
</source>
<volume>29</volume>
<fpage>10153</fpage>
<lpage>10159</lpage>
.
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.2668-09.2009</pub-id>
<pub-id pub-id-type="pmid">19675249</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kozlowski</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>Cutting</surname>
<given-names>J. E.</given-names>
</name>
</person-group>
(
<year>1977</year>
).
<article-title>Recognizing the sex of a walker from a dynamic point-light display.</article-title>
<source>
<italic>Percept. Psychophys.</italic>
</source>
<volume>21</volume>
<fpage>575</fpage>
<lpage>580</lpage>
.
<pub-id pub-id-type="doi">10.3758/BF03198740</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lacquaniti</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bosco</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Indovina</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>La Scaleia</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Maffei</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Moscatelli</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Visual gravitational motion and the vestibular system in humans.</article-title>
<source>
<italic>Front. Integr. Neurosci.</italic>
</source>
<volume>7</volume>
:
<issue>101</issue>
<pub-id pub-id-type="doi">10.3389/fnint.2013.00101</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lestou</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pollick</surname>
<given-names>F. E.</given-names>
</name>
<name>
<surname>Kourtzi</surname>
<given-names>Z.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Neural substrates for action understanding at different description levels in the human brain.</article-title>
<source>
<italic>J. Cogn. Neurosci.</italic>
</source>
<volume>20</volume>
<fpage>324</fpage>
<lpage>341</lpage>
.
<pub-id pub-id-type="doi">10.1162/jocn.2008.20021</pub-id>
<pub-id pub-id-type="pmid">18275338</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maffei</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Indovina</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Macaluso</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ivanenko</surname>
<given-names>Y. P.</given-names>
</name>
<name>
<surname>Orban</surname>
<given-names>G. A.</given-names>
</name>
<name>
<surname>Lacquaniti</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Visual gravity cues in the interpretation of biological movements: neural correlates in humans.</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>104</volume>
<fpage>221</fpage>
<lpage>230</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2014.10.006</pub-id>
<pub-id pub-id-type="pmid">25315789</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McIntyre</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zago</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Berthoz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lacquaniti</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Does the brain model Newton’s laws?</article-title>
<source>
<italic>Nat. Neurosci.</italic>
</source>
<volume>4</volume>
<fpage>693</fpage>
<lpage>694</lpage>
.
<pub-id pub-id-type="doi">10.1038/89477</pub-id>
<pub-id pub-id-type="pmid">11426224</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Molenberghs</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cunnington</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mattingley</surname>
<given-names>J. B.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies.</article-title>
<source>
<italic>Neurosci. Biobehav. Rev.</italic>
</source>
<volume>36</volume>
<fpage>341</fpage>
<lpage>349</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neubiorev.2011.07.004</pub-id>
<pub-id pub-id-type="pmid">21782846</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moscatelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lacquaniti</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>The weight of time: gravitational force enhances discrimination of visual motion duration.</article-title>
<source>
<italic>J. Vis.</italic>
</source>
<volume>11</volume>
:
<issue>5</issue>
<pub-id pub-id-type="doi">10.1167/11.4.5</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pavlova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lutzenberger</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Sokolov</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Birbaumer</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Dissociable cortical processing of recognizable and non-recognizable biological movement: analysing gamma MEG activity.</article-title>
<source>
<italic>Cereb. Cortex</italic>
</source>
<volume>14</volume>
<fpage>181</fpage>
<lpage>188</lpage>
.
<pub-id pub-id-type="doi">10.1093/cercor/bhg117</pub-id>
<pub-id pub-id-type="pmid">14704215</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pavlova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sokolov</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Orientation specificity in biological motion perception.</article-title>
<source>
<italic>Percept. Psychophys.</italic>
</source>
<volume>62</volume>
<fpage>889</fpage>
<lpage>899</lpage>
.
<pub-id pub-id-type="doi">10.3758/BF03212075</pub-id>
<pub-id pub-id-type="pmid">10997036</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peuskens</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Vanrie</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Verfaillie</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Orban</surname>
<given-names>G. A.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Specificity of regions processing biological motion.</article-title>
<source>
<italic>Eur. J. Neurosci.</italic>
</source>
<volume>21</volume>
<fpage>2864</fpage>
<lpage>2875</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2005.04106.x</pub-id>
<pub-id pub-id-type="pmid">15926934</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pittenger</surname>
<given-names>J. B.</given-names>
</name>
</person-group>
(
<year>1990</year>
).
<article-title>Detection of violations of the law of pendulum motion: observers’ sensitivity to the relation between period and length.</article-title>
<source>
<italic>Ecol. Psychol.</italic>
</source>
<volume>2</volume>
<fpage>55</fpage>
<lpage>81</lpage>
.
<pub-id pub-id-type="doi">10.1207/s15326969eco0201_3</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pollick</surname>
<given-names>F. E.</given-names>
</name>
<name>
<surname>Kay</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Heim</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Stringer</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Gender recognition from point-light walkers.</article-title>
<source>
<italic>J. Exp. Psychol. Hum. Percept. Perform.</italic>
</source>
<volume>31</volume>
<issue>1247</issue>
<pub-id pub-id-type="doi">10.1037/0096-1523.31.6.1247</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pollick</surname>
<given-names>F. E.</given-names>
</name>
<name>
<surname>Paterson</surname>
<given-names>H. M.</given-names>
</name>
<name>
<surname>Bruderlin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sanford</surname>
<given-names>A. J.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Perceiving affect from arm movement.</article-title>
<source>
<italic>Cognition</italic>
</source>
<volume>82</volume>
<fpage>B51</fpage>
<lpage>B61</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0010-0277(01)00147-0</pub-id>
<pub-id pub-id-type="pmid">11716834</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reed</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>V. E.</given-names>
</name>
<name>
<surname>Bozova</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>The body-inversion effect.</article-title>
<source>
<italic>Psychol. Sci.</italic>
</source>
<volume>14</volume>
<fpage>302</fpage>
<lpage>308</lpage>
.
<pub-id pub-id-type="doi">10.1111/1467-9280.14431</pub-id>
<pub-id pub-id-type="pmid">12807401</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rizzolatti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Craighero</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The mirror-neuron system.</article-title>
<source>
<italic>Annu. Rev. Neurosci.</italic>
</source>
<volume>27</volume>
<fpage>169</fpage>
<lpage>192</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.neuro.27.070203.144230</pub-id>
<pub-id pub-id-type="pmid">15217330</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saygin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chaminade</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ishiguro</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Driver</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Frith</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions.</article-title>
<source>
<italic>Soc. Cogn. Affect. Neurosci.</italic>
</source>
<volume>7</volume>
<fpage>413</fpage>
<lpage>422</lpage>
.
<pub-id pub-id-type="doi">10.1093/scan/nsr025</pub-id>
<pub-id pub-id-type="pmid">21515639</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saygin</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Hagler</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Bates</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Sereno</surname>
<given-names>M. I.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Point-light biological motion perception activates human premotor cortex.</article-title>
<source>
<italic>J. Neurosci.</italic>
</source>
<volume>24</volume>
<fpage>6181</fpage>
<lpage>6188</lpage>
.
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.0504-04.2004</pub-id>
<pub-id pub-id-type="pmid">15240810</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Senot</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zago</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Le Séac’h</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zaoui</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Berthoz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lacquaniti</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>When up is down in 0g: how gravity sensing affects the timing of interceptive actions.</article-title>
<source>
<italic>J. Neurosci.</italic>
</source>
<volume>32</volume>
<fpage>1969</fpage>
<lpage>1973</lpage>
.
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3886-11.2012</pub-id>
<pub-id pub-id-type="pmid">22323710</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Servos</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Osu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Santi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kawato</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>The neural substrates of biological motion perception: an fMRI study.</article-title>
<source>
<italic>Cereb. Cortex</italic>
</source>
<volume>12</volume>
<fpage>772</fpage>
<lpage>782</lpage>
.
<pub-id pub-id-type="doi">10.1093/cercor/12.7.772</pub-id>
<pub-id pub-id-type="pmid">12050089</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shipley</surname>
<given-names>T. F.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>The effect of object and event orientation on perception of biological motion.</article-title>
<source>
<italic>Psychol. Sci.</italic>
</source>
<volume>14</volume>
<fpage>377</fpage>
<lpage>380</lpage>
.
<pub-id pub-id-type="doi">10.1111/1467-9280.24471</pub-id>
<pub-id pub-id-type="pmid">12807414</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stevens</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Fonlupt</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shiffrar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Decety</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>New aspects of motion perception: selective neural encoding of apparent human movements.</article-title>
<source>
<italic>Neuroreport</italic>
</source>
<volume>11</volume>
<fpage>109</fpage>
<lpage>115</lpage>
.
<pub-id pub-id-type="doi">10.1097/00001756-200001170-00022</pub-id>
<pub-id pub-id-type="pmid">10683840</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sumi</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>1984</year>
).
<article-title>Upside-down presentation of the Johansson moving light-spot pattern.</article-title>
<source>
<italic>Perception</italic>
</source>
<volume>13</volume>
<fpage>283</fpage>
<lpage>286</lpage>
.
<pub-id pub-id-type="doi">10.1068/p130283</pub-id>
<pub-id pub-id-type="pmid">6514513</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tai</surname>
<given-names>Y. F.</given-names>
</name>
<name>
<surname>Scherfler</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Sawamoto</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Castiello</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The human premotor cortex is’ mirror’ only for biological actions.</article-title>
<source>
<italic>Curr. Biol.</italic>
</source>
<volume>14</volume>
<fpage>117</fpage>
<lpage>120</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2004.01.005</pub-id>
<pub-id pub-id-type="pmid">14738732</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tkach</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Reimer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hatsopoulos</surname>
<given-names>N. G.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Congruent activity during action and action observation in motor cortex.</article-title>
<source>
<italic>J. Neurosci.</italic>
</source>
<volume>27</volume>
<fpage>13241</fpage>
<lpage>13250</lpage>
.
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.2895-07.2007</pub-id>
<pub-id pub-id-type="pmid">18045918</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Troje</surname>
<given-names>N. F.</given-names>
</name>
<name>
<surname>Westhoff</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>The inversion effect in biological motion perception: Evidence for a “life detector”?</article-title>
<source>
<italic>Curr. Biol.</italic>
</source>
<volume>16</volume>
<fpage>821</fpage>
<lpage>824</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2006.03.022</pub-id>
<pub-id pub-id-type="pmid">16631591</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaina</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Solomon</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chowdhury</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sinha</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Belliveau</surname>
<given-names>J. W.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Functional neuroanatomy of biological motion perception in humans.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>98</volume>
<fpage>11656</fpage>
<lpage>11661</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.191374198</pub-id>
<pub-id pub-id-type="pmid">11553776</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Oostende</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sunaert</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Van Hecke</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Marchal</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Orban</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>The kinetic occipital (KO) region in man: an fMRI study.</article-title>
<source>
<italic>Cereb. Cortex</italic>
</source>
<volume>7</volume>
<fpage>690</fpage>
<lpage>701</lpage>
.
<pub-id pub-id-type="doi">10.1093/cercor/7.7.690</pub-id>
<pub-id pub-id-type="pmid">9373023</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watson</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Banks</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>von Hofsten</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Royden</surname>
<given-names>C. S.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>Gravity as a monocular cue for perception of absolute distance and/or absolute size.</article-title>
<source>
<italic>Perception</italic>
</source>
<volume>21</volume>
<fpage>69</fpage>
<lpage>76</lpage>
.
<pub-id pub-id-type="doi">10.1068/p210069</pub-id>
<pub-id pub-id-type="pmid">1528705</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Werkhoven</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Snippe</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>Visual processing of optic acceleration.</article-title>
<source>
<italic>Vision Res.</italic>
</source>
<volume>32</volume>
<fpage>2313</fpage>
<lpage>2329</lpage>
.
<pub-id pub-id-type="doi">10.1016/0042-6989(92)90095-Z</pub-id>
<pub-id pub-id-type="pmid">1288008</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woo</surname>
<given-names>C.-W.</given-names>
</name>
<name>
<surname>Krishnan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wager</surname>
<given-names>T. D.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations.</article-title>
<source>
<italic>Neuroimage</italic>
</source>
<volume>91</volume>
<fpage>412</fpage>
<lpage>419</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2013.12.058</pub-id>
<pub-id pub-id-type="pmid">24412399</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0025280 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0025280 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024