Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002421 ( Pmc/Corpus ); précédent : 0024209; suivant : 0024220 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of Common Variation in Bone-Related Genes on Type 2 Diabetes and Related Traits</title>
<author>
<name sortKey="Billings, Liana K" sort="Billings, Liana K" uniqKey="Billings L" first="Liana K." last="Billings">Liana K. Billings</name>
<affiliation>
<nlm:aff id="aff1">Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Yi Hsiang" sort="Hsu, Yi Hsiang" uniqKey="Hsu Y" first="Yi-Hsiang" last="Hsu">Yi-Hsiang Hsu</name>
<affiliation>
<nlm:aff id="aff4">Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ackerman, Rachel J" sort="Ackerman, Rachel J" uniqKey="Ackerman R" first="Rachel J." last="Ackerman">Rachel J. Ackerman</name>
<affiliation>
<nlm:aff id="aff1">Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dupuis, Josee" sort="Dupuis, Josee" uniqKey="Dupuis J" first="Josée" last="Dupuis">Josée Dupuis</name>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Voight, Benjamin F" sort="Voight, Benjamin F" uniqKey="Voight B" first="Benjamin F." last="Voight">Benjamin F. Voight</name>
<affiliation>
<nlm:aff id="aff1">Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rasmussen Torvik, Laura J" sort="Rasmussen Torvik, Laura J" uniqKey="Rasmussen Torvik L" first="Laura J." last="Rasmussen-Torvik">Laura J. Rasmussen-Torvik</name>
<affiliation>
<nlm:aff id="aff9">Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hercberg, Serge" sort="Hercberg, Serge" uniqKey="Hercberg S" first="Serge" last="Hercberg">Serge Hercberg</name>
<affiliation>
<nlm:aff id="aff10">INSERM, National Institute of Agronomic Research, University of Paris, Bobigny, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lathrop, Mark" sort="Lathrop, Mark" uniqKey="Lathrop M" first="Mark" last="Lathrop">Mark Lathrop</name>
<affiliation>
<nlm:aff id="aff11">National Genotyping Center, Atomic Energy Commission, Institute of Genomics, Evry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barnes, Daniel" sort="Barnes, Daniel" uniqKey="Barnes D" first="Daniel" last="Barnes">Daniel Barnes</name>
<affiliation>
<nlm:aff id="aff12">Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Langenberg, Claudia" sort="Langenberg, Claudia" uniqKey="Langenberg C" first="Claudia" last="Langenberg">Claudia Langenberg</name>
<affiliation>
<nlm:aff id="aff12">Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hui, Jennie" sort="Hui, Jennie" uniqKey="Hui J" first="Jennie" last="Hui">Jennie Hui</name>
<affiliation>
<nlm:aff id="aff13">Molecular Genetics, PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff14">School of Population Health and School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff15">Busselton Population Medical Research Foundation, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fu, Mao" sort="Fu, Mao" uniqKey="Fu M" first="Mao" last="Fu">Mao Fu</name>
<affiliation>
<nlm:aff id="aff16">Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bouatia Naji, Nabila" sort="Bouatia Naji, Nabila" uniqKey="Bouatia Naji N" first="Nabila" last="Bouatia-Naji">Nabila Bouatia-Naji</name>
<affiliation>
<nlm:aff id="aff17">National Center for Scientific Research, UMR 8199, Genomics and Metabolic Diseases, Lille Pasteur Institute, Lille Nord de France University, Lille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lecoeur, Cecile" sort="Lecoeur, Cecile" uniqKey="Lecoeur C" first="Cecile" last="Lecoeur">Cecile Lecoeur</name>
<affiliation>
<nlm:aff id="aff17">National Center for Scientific Research, UMR 8199, Genomics and Metabolic Diseases, Lille Pasteur Institute, Lille Nord de France University, Lille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="An, Ping" sort="An, Ping" uniqKey="An P" first="Ping" last="An">Ping An</name>
<affiliation>
<nlm:aff id="aff18">Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Magnusson, Patrik K" sort="Magnusson, Patrik K" uniqKey="Magnusson P" first="Patrik K." last="Magnusson">Patrik K. Magnusson</name>
<affiliation>
<nlm:aff id="aff19">Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Surakka, Ida" sort="Surakka, Ida" uniqKey="Surakka I" first="Ida" last="Surakka">Ida Surakka</name>
<affiliation>
<nlm:aff id="aff20">Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff21">Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ripatti, Samuli" sort="Ripatti, Samuli" uniqKey="Ripatti S" first="Samuli" last="Ripatti">Samuli Ripatti</name>
<affiliation>
<nlm:aff id="aff20">Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff21">Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Christiansen, Lene" sort="Christiansen, Lene" uniqKey="Christiansen L" first="Lene" last="Christiansen">Lene Christiansen</name>
<affiliation>
<nlm:aff id="aff22">Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dalg Rd, Christine" sort="Dalg Rd, Christine" uniqKey="Dalg Rd C" first="Christine" last="Dalg Rd">Christine Dalg Rd</name>
<affiliation>
<nlm:aff id="aff23">Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Folkersen, Lasse" sort="Folkersen, Lasse" uniqKey="Folkersen L" first="Lasse" last="Folkersen">Lasse Folkersen</name>
<affiliation>
<nlm:aff id="aff24">Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grundberg, Elin" sort="Grundberg, Elin" uniqKey="Grundberg E" first="Elin" last="Grundberg">Elin Grundberg</name>
<affiliation>
<nlm:aff id="aff25">Wellcome Trust Sanger Institute, Hinxton, U.K.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff26">Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Eriksson, Per" sort="Eriksson, Per" uniqKey="Eriksson P" first="Per" last="Eriksson">Per Eriksson</name>
<affiliation>
<nlm:aff id="aff24">Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaprio, Jaakko" sort="Kaprio, Jaakko" uniqKey="Kaprio J" first="Jaakko" last="Kaprio">Jaakko Kaprio</name>
<affiliation>
<nlm:aff id="aff20">Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff28">Unit for Child and Adolescent Mental Health, National Institute for Health and Welfare, Helsinki, Finland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff29">Department of Public Health, University of Helsinki, Helsinki, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ohm Kyvik, Kirsten" sort="Ohm Kyvik, Kirsten" uniqKey="Ohm Kyvik K" first="Kirsten" last="Ohm Kyvik">Kirsten Ohm Kyvik</name>
<affiliation>
<nlm:aff id="aff30">Institute of Regional Health Services Research, University of Southern Denmark, Odense, Denmark</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff31">Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pedersen, Nancy L" sort="Pedersen, Nancy L" uniqKey="Pedersen N" first="Nancy L." last="Pedersen">Nancy L. Pedersen</name>
<affiliation>
<nlm:aff id="aff19">Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Borecki, Ingrid B" sort="Borecki, Ingrid B" uniqKey="Borecki I" first="Ingrid B." last="Borecki">Ingrid B. Borecki</name>
<affiliation>
<nlm:aff id="aff18">Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Province, Michael A" sort="Province, Michael A" uniqKey="Province M" first="Michael A." last="Province">Michael A. Province</name>
<affiliation>
<nlm:aff id="aff19">Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Balkau, Beverley" sort="Balkau, Beverley" uniqKey="Balkau B" first="Beverley" last="Balkau">Beverley Balkau</name>
<affiliation>
<nlm:aff id="aff32">INSERM, CESP Center for Research in Epidemiology and Health of Populations, U1018, Epidemiology of Diabetes, Obesity and Chronic Kidney Disease Over the Life Course, INSERM, Villejuif, France and Université Paris-Sud 11, UMRS 1018, Villejuif, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Froguel, Philippe" sort="Froguel, Philippe" uniqKey="Froguel P" first="Philippe" last="Froguel">Philippe Froguel</name>
<affiliation>
<nlm:aff id="aff17">National Center for Scientific Research, UMR 8199, Genomics and Metabolic Diseases, Lille Pasteur Institute, Lille Nord de France University, Lille, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff33">Genomic Medicine, Hammersmith Hospital, Imperial College London, London, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shuldiner, Alan R" sort="Shuldiner, Alan R" uniqKey="Shuldiner A" first="Alan R." last="Shuldiner">Alan R. Shuldiner</name>
<affiliation>
<nlm:aff id="aff16">Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff34">Geriatrics Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Palmer, Lyle J" sort="Palmer, Lyle J" uniqKey="Palmer L" first="Lyle J." last="Palmer">Lyle J. Palmer</name>
<affiliation>
<nlm:aff id="aff35">Ontario Institute for Cancer Research, Toronto, Ontario, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wareham, Nick" sort="Wareham, Nick" uniqKey="Wareham N" first="Nick" last="Wareham">Nick Wareham</name>
<affiliation>
<nlm:aff id="aff12">Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meneton, Pierre" sort="Meneton, Pierre" uniqKey="Meneton P" first="Pierre" last="Meneton">Pierre Meneton</name>
<affiliation>
<nlm:aff id="aff36">Cordeliers Center of Research, INSERM, Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Toby" sort="Johnson, Toby" uniqKey="Johnson T" first="Toby" last="Johnson">Toby Johnson</name>
<affiliation>
<nlm:aff id="aff37">Clinical Pharmacology and the Genome Centre, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pankow, James S" sort="Pankow, James S" uniqKey="Pankow J" first="James S." last="Pankow">James S. Pankow</name>
<affiliation>
<nlm:aff id="aff38">Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Karasik, David" sort="Karasik, David" uniqKey="Karasik D" first="David" last="Karasik">David Karasik</name>
<affiliation>
<nlm:aff id="aff4">Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meigs, James B" sort="Meigs, James B" uniqKey="Meigs J" first="James B." last="Meigs">James B. Meigs</name>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kiel, Douglas P" sort="Kiel, Douglas P" uniqKey="Kiel D" first="Douglas P." last="Kiel">Douglas P. Kiel</name>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Florez, Jose C" sort="Florez, Jose C" uniqKey="Florez J" first="Jose C." last="Florez">Jose C. Florez</name>
<affiliation>
<nlm:aff id="aff1">Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22698912</idno>
<idno type="pmc">3402303</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402303</idno>
<idno type="RBID">PMC:3402303</idno>
<idno type="doi">10.2337/db11-1515</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">002421</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002421</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Impact of Common Variation in Bone-Related Genes on Type 2 Diabetes and Related Traits</title>
<author>
<name sortKey="Billings, Liana K" sort="Billings, Liana K" uniqKey="Billings L" first="Liana K." last="Billings">Liana K. Billings</name>
<affiliation>
<nlm:aff id="aff1">Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Yi Hsiang" sort="Hsu, Yi Hsiang" uniqKey="Hsu Y" first="Yi-Hsiang" last="Hsu">Yi-Hsiang Hsu</name>
<affiliation>
<nlm:aff id="aff4">Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ackerman, Rachel J" sort="Ackerman, Rachel J" uniqKey="Ackerman R" first="Rachel J." last="Ackerman">Rachel J. Ackerman</name>
<affiliation>
<nlm:aff id="aff1">Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dupuis, Josee" sort="Dupuis, Josee" uniqKey="Dupuis J" first="Josée" last="Dupuis">Josée Dupuis</name>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Voight, Benjamin F" sort="Voight, Benjamin F" uniqKey="Voight B" first="Benjamin F." last="Voight">Benjamin F. Voight</name>
<affiliation>
<nlm:aff id="aff1">Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rasmussen Torvik, Laura J" sort="Rasmussen Torvik, Laura J" uniqKey="Rasmussen Torvik L" first="Laura J." last="Rasmussen-Torvik">Laura J. Rasmussen-Torvik</name>
<affiliation>
<nlm:aff id="aff9">Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hercberg, Serge" sort="Hercberg, Serge" uniqKey="Hercberg S" first="Serge" last="Hercberg">Serge Hercberg</name>
<affiliation>
<nlm:aff id="aff10">INSERM, National Institute of Agronomic Research, University of Paris, Bobigny, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lathrop, Mark" sort="Lathrop, Mark" uniqKey="Lathrop M" first="Mark" last="Lathrop">Mark Lathrop</name>
<affiliation>
<nlm:aff id="aff11">National Genotyping Center, Atomic Energy Commission, Institute of Genomics, Evry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barnes, Daniel" sort="Barnes, Daniel" uniqKey="Barnes D" first="Daniel" last="Barnes">Daniel Barnes</name>
<affiliation>
<nlm:aff id="aff12">Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Langenberg, Claudia" sort="Langenberg, Claudia" uniqKey="Langenberg C" first="Claudia" last="Langenberg">Claudia Langenberg</name>
<affiliation>
<nlm:aff id="aff12">Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hui, Jennie" sort="Hui, Jennie" uniqKey="Hui J" first="Jennie" last="Hui">Jennie Hui</name>
<affiliation>
<nlm:aff id="aff13">Molecular Genetics, PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff14">School of Population Health and School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff15">Busselton Population Medical Research Foundation, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fu, Mao" sort="Fu, Mao" uniqKey="Fu M" first="Mao" last="Fu">Mao Fu</name>
<affiliation>
<nlm:aff id="aff16">Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bouatia Naji, Nabila" sort="Bouatia Naji, Nabila" uniqKey="Bouatia Naji N" first="Nabila" last="Bouatia-Naji">Nabila Bouatia-Naji</name>
<affiliation>
<nlm:aff id="aff17">National Center for Scientific Research, UMR 8199, Genomics and Metabolic Diseases, Lille Pasteur Institute, Lille Nord de France University, Lille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lecoeur, Cecile" sort="Lecoeur, Cecile" uniqKey="Lecoeur C" first="Cecile" last="Lecoeur">Cecile Lecoeur</name>
<affiliation>
<nlm:aff id="aff17">National Center for Scientific Research, UMR 8199, Genomics and Metabolic Diseases, Lille Pasteur Institute, Lille Nord de France University, Lille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="An, Ping" sort="An, Ping" uniqKey="An P" first="Ping" last="An">Ping An</name>
<affiliation>
<nlm:aff id="aff18">Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Magnusson, Patrik K" sort="Magnusson, Patrik K" uniqKey="Magnusson P" first="Patrik K." last="Magnusson">Patrik K. Magnusson</name>
<affiliation>
<nlm:aff id="aff19">Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Surakka, Ida" sort="Surakka, Ida" uniqKey="Surakka I" first="Ida" last="Surakka">Ida Surakka</name>
<affiliation>
<nlm:aff id="aff20">Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff21">Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ripatti, Samuli" sort="Ripatti, Samuli" uniqKey="Ripatti S" first="Samuli" last="Ripatti">Samuli Ripatti</name>
<affiliation>
<nlm:aff id="aff20">Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff21">Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Christiansen, Lene" sort="Christiansen, Lene" uniqKey="Christiansen L" first="Lene" last="Christiansen">Lene Christiansen</name>
<affiliation>
<nlm:aff id="aff22">Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dalg Rd, Christine" sort="Dalg Rd, Christine" uniqKey="Dalg Rd C" first="Christine" last="Dalg Rd">Christine Dalg Rd</name>
<affiliation>
<nlm:aff id="aff23">Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Folkersen, Lasse" sort="Folkersen, Lasse" uniqKey="Folkersen L" first="Lasse" last="Folkersen">Lasse Folkersen</name>
<affiliation>
<nlm:aff id="aff24">Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grundberg, Elin" sort="Grundberg, Elin" uniqKey="Grundberg E" first="Elin" last="Grundberg">Elin Grundberg</name>
<affiliation>
<nlm:aff id="aff25">Wellcome Trust Sanger Institute, Hinxton, U.K.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff26">Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Eriksson, Per" sort="Eriksson, Per" uniqKey="Eriksson P" first="Per" last="Eriksson">Per Eriksson</name>
<affiliation>
<nlm:aff id="aff24">Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaprio, Jaakko" sort="Kaprio, Jaakko" uniqKey="Kaprio J" first="Jaakko" last="Kaprio">Jaakko Kaprio</name>
<affiliation>
<nlm:aff id="aff20">Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff28">Unit for Child and Adolescent Mental Health, National Institute for Health and Welfare, Helsinki, Finland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff29">Department of Public Health, University of Helsinki, Helsinki, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ohm Kyvik, Kirsten" sort="Ohm Kyvik, Kirsten" uniqKey="Ohm Kyvik K" first="Kirsten" last="Ohm Kyvik">Kirsten Ohm Kyvik</name>
<affiliation>
<nlm:aff id="aff30">Institute of Regional Health Services Research, University of Southern Denmark, Odense, Denmark</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff31">Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pedersen, Nancy L" sort="Pedersen, Nancy L" uniqKey="Pedersen N" first="Nancy L." last="Pedersen">Nancy L. Pedersen</name>
<affiliation>
<nlm:aff id="aff19">Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Borecki, Ingrid B" sort="Borecki, Ingrid B" uniqKey="Borecki I" first="Ingrid B." last="Borecki">Ingrid B. Borecki</name>
<affiliation>
<nlm:aff id="aff18">Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Province, Michael A" sort="Province, Michael A" uniqKey="Province M" first="Michael A." last="Province">Michael A. Province</name>
<affiliation>
<nlm:aff id="aff19">Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Balkau, Beverley" sort="Balkau, Beverley" uniqKey="Balkau B" first="Beverley" last="Balkau">Beverley Balkau</name>
<affiliation>
<nlm:aff id="aff32">INSERM, CESP Center for Research in Epidemiology and Health of Populations, U1018, Epidemiology of Diabetes, Obesity and Chronic Kidney Disease Over the Life Course, INSERM, Villejuif, France and Université Paris-Sud 11, UMRS 1018, Villejuif, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Froguel, Philippe" sort="Froguel, Philippe" uniqKey="Froguel P" first="Philippe" last="Froguel">Philippe Froguel</name>
<affiliation>
<nlm:aff id="aff17">National Center for Scientific Research, UMR 8199, Genomics and Metabolic Diseases, Lille Pasteur Institute, Lille Nord de France University, Lille, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff33">Genomic Medicine, Hammersmith Hospital, Imperial College London, London, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shuldiner, Alan R" sort="Shuldiner, Alan R" uniqKey="Shuldiner A" first="Alan R." last="Shuldiner">Alan R. Shuldiner</name>
<affiliation>
<nlm:aff id="aff16">Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff34">Geriatrics Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Palmer, Lyle J" sort="Palmer, Lyle J" uniqKey="Palmer L" first="Lyle J." last="Palmer">Lyle J. Palmer</name>
<affiliation>
<nlm:aff id="aff35">Ontario Institute for Cancer Research, Toronto, Ontario, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wareham, Nick" sort="Wareham, Nick" uniqKey="Wareham N" first="Nick" last="Wareham">Nick Wareham</name>
<affiliation>
<nlm:aff id="aff12">Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meneton, Pierre" sort="Meneton, Pierre" uniqKey="Meneton P" first="Pierre" last="Meneton">Pierre Meneton</name>
<affiliation>
<nlm:aff id="aff36">Cordeliers Center of Research, INSERM, Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Toby" sort="Johnson, Toby" uniqKey="Johnson T" first="Toby" last="Johnson">Toby Johnson</name>
<affiliation>
<nlm:aff id="aff37">Clinical Pharmacology and the Genome Centre, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pankow, James S" sort="Pankow, James S" uniqKey="Pankow J" first="James S." last="Pankow">James S. Pankow</name>
<affiliation>
<nlm:aff id="aff38">Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Karasik, David" sort="Karasik, David" uniqKey="Karasik D" first="David" last="Karasik">David Karasik</name>
<affiliation>
<nlm:aff id="aff4">Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meigs, James B" sort="Meigs, James B" uniqKey="Meigs J" first="James B." last="Meigs">James B. Meigs</name>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kiel, Douglas P" sort="Kiel, Douglas P" uniqKey="Kiel D" first="Douglas P." last="Kiel">Douglas P. Kiel</name>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Framingham Heart Study, Framingham, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Florez, Jose C" sort="Florez, Jose C" uniqKey="Florez J" first="Jose C." last="Florez">Jose C. Florez</name>
<affiliation>
<nlm:aff id="aff1">Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Department of Medicine, Harvard Medical School, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, Massachusetts</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Diabetes</title>
<idno type="ISSN">0012-1797</idno>
<idno type="eISSN">1939-327X</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Exploring genetic pleiotropy can provide clues to a mechanism underlying the observed epidemiological association between type 2 diabetes and heightened fracture risk. We examined genetic variants associated with bone mineral density (BMD) for association with type 2 diabetes and glycemic traits in large well-phenotyped and -genotyped consortia. We undertook follow-up analysis in ∼19,000 individuals and assessed gene expression. We queried single nucleotide polymorphisms (SNPs) associated with BMD at levels of genome-wide significance, variants in linkage disequilibrium (
<italic>r</italic>
<sup>2</sup>
> 0.5), and BMD candidate genes. SNP rs6867040, at the
<italic>ITGA1</italic>
locus, was associated with a 0.0166 mmol/L (0.004) increase in fasting glucose per C allele in the combined analysis. Genetic variants in the
<italic>ITGA1</italic>
locus were associated with its expression in the liver but not in adipose tissue.
<italic>ITGA1</italic>
variants appeared among the top loci associated with type 2 diabetes, fasting insulin, β-cell function by homeostasis model assessment, and 2-h post–oral glucose tolerance test glucose and insulin levels.
<italic>ITGA1</italic>
has demonstrated genetic pleiotropy in prior studies, and its suggested role in liver fibrosis, insulin secretion, and bone healing lends credence to its contribution to both osteoporosis and type 2 diabetes. These findings further underscore the link between skeletal and glucose metabolism and highlight a locus to direct future investigations.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Vestergaard, P" uniqKey="Vestergaard P">P Vestergaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwartz, Av" uniqKey="Schwartz A">AV Schwartz</name>
</author>
<author>
<name sortKey="Sellmeyer, De" uniqKey="Sellmeyer D">DE Sellmeyer</name>
</author>
<author>
<name sortKey="Ensrud, Ke" uniqKey="Ensrud K">KE Ensrud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strotmeyer, Es" uniqKey="Strotmeyer E">ES Strotmeyer</name>
</author>
<author>
<name sortKey="Cauley, Ja" uniqKey="Cauley J">JA Cauley</name>
</author>
<author>
<name sortKey="Schwartz, Av" uniqKey="Schwartz A">AV Schwartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonds, De" uniqKey="Bonds D">DE Bonds</name>
</author>
<author>
<name sortKey="Larson, Jc" uniqKey="Larson J">JC Larson</name>
</author>
<author>
<name sortKey="Schwartz, Av" uniqKey="Schwartz A">AV Schwartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melton, Lj" uniqKey="Melton L">LJ Melton</name>
</author>
<author>
<name sortKey="Leibson, Cl" uniqKey="Leibson C">CL Leibson</name>
</author>
<author>
<name sortKey="Achenbach, Sj" uniqKey="Achenbach S">SJ Achenbach</name>
</author>
<author>
<name sortKey="Therneau, Tm" uniqKey="Therneau T">TM Therneau</name>
</author>
<author>
<name sortKey="Khosla, S" uniqKey="Khosla S">S Khosla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janghorbani, M" uniqKey="Janghorbani M">M Janghorbani</name>
</author>
<author>
<name sortKey="Van Dam, Rm" uniqKey="Van Dam R">RM Van Dam</name>
</author>
<author>
<name sortKey="Willett, Wc" uniqKey="Willett W">WC Willett</name>
</author>
<author>
<name sortKey="Hu, Fb" uniqKey="Hu F">FB Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burghardt, Aj" uniqKey="Burghardt A">AJ Burghardt</name>
</author>
<author>
<name sortKey="Issever, As" uniqKey="Issever A">AS Issever</name>
</author>
<author>
<name sortKey="Schwartz, Av" uniqKey="Schwartz A">AV Schwartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petit, Ma" uniqKey="Petit M">MA Petit</name>
</author>
<author>
<name sortKey="Paudel, Ml" uniqKey="Paudel M">ML Paudel</name>
</author>
<author>
<name sortKey="Taylor, Bc" uniqKey="Taylor B">BC Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melton, Lj" uniqKey="Melton L">LJ Melton</name>
</author>
<author>
<name sortKey="Riggs, Bl" uniqKey="Riggs B">BL Riggs</name>
</author>
<author>
<name sortKey="Leibson, Cl" uniqKey="Leibson C">CL Leibson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwartz, Av" uniqKey="Schwartz A">AV Schwartz</name>
</author>
<author>
<name sortKey="Vittinghoff, E" uniqKey="Vittinghoff E">E Vittinghoff</name>
</author>
<author>
<name sortKey="Bauer, Dc" uniqKey="Bauer D">DC Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferron, M" uniqKey="Ferron M">M Ferron</name>
</author>
<author>
<name sortKey="Wei, J" uniqKey="Wei J">J Wei</name>
</author>
<author>
<name sortKey="Yoshizawa, T" uniqKey="Yoshizawa T">T Yoshizawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Nk" uniqKey="Lee N">NK Lee</name>
</author>
<author>
<name sortKey="Sowa, H" uniqKey="Sowa H">H Sowa</name>
</author>
<author>
<name sortKey="Hinoi, E" uniqKey="Hinoi E">E Hinoi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sivakumaran, S" uniqKey="Sivakumaran S">S Sivakumaran</name>
</author>
<author>
<name sortKey="Agakov, F" uniqKey="Agakov F">F Agakov</name>
</author>
<author>
<name sortKey="Theodoratou, E" uniqKey="Theodoratou E">E Theodoratou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Styrkarsdottir, U" uniqKey="Styrkarsdottir U">U Styrkarsdottir</name>
</author>
<author>
<name sortKey="Halldorsson, Bv" uniqKey="Halldorsson B">BV Halldorsson</name>
</author>
<author>
<name sortKey="Gretarsdottir, S" uniqKey="Gretarsdottir S">S Gretarsdottir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Styrkarsdottir, U" uniqKey="Styrkarsdottir U">U Styrkarsdottir</name>
</author>
<author>
<name sortKey="Halldorsson, Bv" uniqKey="Halldorsson B">BV Halldorsson</name>
</author>
<author>
<name sortKey="Gretarsdottir, S" uniqKey="Gretarsdottir S">S Gretarsdottir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rivadeneira, F" uniqKey="Rivadeneira F">F Rivadeneira</name>
</author>
<author>
<name sortKey="Styrkarsdottir, U" uniqKey="Styrkarsdottir U">U Styrkársdottir</name>
</author>
<author>
<name sortKey="Estrada, K" uniqKey="Estrada K">K Estrada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richards, Jb" uniqKey="Richards J">JB Richards</name>
</author>
<author>
<name sortKey="Rivadeneira, F" uniqKey="Rivadeneira F">F Rivadeneira</name>
</author>
<author>
<name sortKey="Inouye, M" uniqKey="Inouye M">M Inouye</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Ad" uniqKey="Johnson A">AD Johnson</name>
</author>
<author>
<name sortKey="Handsaker, Re" uniqKey="Handsaker R">RE Handsaker</name>
</author>
<author>
<name sortKey="Pulit, Sl" uniqKey="Pulit S">SL Pulit</name>
</author>
<author>
<name sortKey="Nizzari, Mm" uniqKey="Nizzari M">MM Nizzari</name>
</author>
<author>
<name sortKey="O Onnell, Cj" uniqKey="O Onnell C">CJ O’Donnell</name>
</author>
<author>
<name sortKey="De Bakker, Pi" uniqKey="De Bakker P">PI de Bakker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richards, Jb" uniqKey="Richards J">JB Richards</name>
</author>
<author>
<name sortKey="Kavvoura, Fk" uniqKey="Kavvoura F">FK Kavvoura</name>
</author>
<author>
<name sortKey="Rivadeneira, F" uniqKey="Rivadeneira F">F Rivadeneira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voight, Bf" uniqKey="Voight B">BF Voight</name>
</author>
<author>
<name sortKey="Scott, Lj" uniqKey="Scott L">LJ Scott</name>
</author>
<author>
<name sortKey="Steinthorsdottir, V" uniqKey="Steinthorsdottir V">V Steinthorsdottir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dupuis, J" uniqKey="Dupuis J">J Dupuis</name>
</author>
<author>
<name sortKey="Langenberg, C" uniqKey="Langenberg C">C Langenberg</name>
</author>
<author>
<name sortKey="Prokopenko, I" uniqKey="Prokopenko I">I Prokopenko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soranzo, N" uniqKey="Soranzo N">N Soranzo</name>
</author>
<author>
<name sortKey="Sanna, S" uniqKey="Sanna S">S Sanna</name>
</author>
<author>
<name sortKey="Wheeler, E" uniqKey="Wheeler E">E Wheeler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saxena, R" uniqKey="Saxena R">R Saxena</name>
</author>
<author>
<name sortKey="Hivert, Mf" uniqKey="Hivert M">MF Hivert</name>
</author>
<author>
<name sortKey="Langenberg, C" uniqKey="Langenberg C">C Langenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matthews, Dr" uniqKey="Matthews D">DR Matthews</name>
</author>
<author>
<name sortKey="Hosker, Jp" uniqKey="Hosker J">JP Hosker</name>
</author>
<author>
<name sortKey="Rudenski, As" uniqKey="Rudenski A">AS Rudenski</name>
</author>
<author>
<name sortKey="Naylor, Ba" uniqKey="Naylor B">BA Naylor</name>
</author>
<author>
<name sortKey="Treacher, Df" uniqKey="Treacher D">DF Treacher</name>
</author>
<author>
<name sortKey="Turner, Rc" uniqKey="Turner R">RC Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyholt, Dr" uniqKey="Nyholt D">DR Nyholt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Ji, L" uniqKey="Ji L">L Ji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willer, Cj" uniqKey="Willer C">CJ Willer</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Abecasis, Gr" uniqKey="Abecasis G">GR Abecasis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folkersen, L" uniqKey="Folkersen L">L Folkersen</name>
</author>
<author>
<name sortKey="Van Hooft, F" uniqKey="Van Hooft F">F van’t Hooft</name>
</author>
<author>
<name sortKey="Chernogubova, E" uniqKey="Chernogubova E">E Chernogubova</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchini, J" uniqKey="Marchini J">J Marchini</name>
</author>
<author>
<name sortKey="Howie, B" uniqKey="Howie B">B Howie</name>
</author>
<author>
<name sortKey="Myers, S" uniqKey="Myers S">S Myers</name>
</author>
<author>
<name sortKey="Mcvean, G" uniqKey="Mcvean G">G McVean</name>
</author>
<author>
<name sortKey="Donnelly, P" uniqKey="Donnelly P">P Donnelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Speliotes, Ek" uniqKey="Speliotes E">EK Speliotes</name>
</author>
<author>
<name sortKey="Willer, Cj" uniqKey="Willer C">CJ Willer</name>
</author>
<author>
<name sortKey="Berndt, Si" uniqKey="Berndt S">SI Berndt</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shamsadin, R" uniqKey="Shamsadin R">R Shamsadin</name>
</author>
<author>
<name sortKey="Adham, Im" uniqKey="Adham I">IM Adham</name>
</author>
<author>
<name sortKey="Von Beust, G" uniqKey="Von Beust G">G von Beust</name>
</author>
<author>
<name sortKey="Engel, W" uniqKey="Engel W">W Engel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekholm, E" uniqKey="Ekholm E">E Ekholm</name>
</author>
<author>
<name sortKey="Hankenson, Kd" uniqKey="Hankenson K">KD Hankenson</name>
</author>
<author>
<name sortKey="Uusitalo, H" uniqKey="Uusitalo H">H Uusitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaido, T" uniqKey="Kaido T">T Kaido</name>
</author>
<author>
<name sortKey="Yebra, M" uniqKey="Yebra M">M Yebra</name>
</author>
<author>
<name sortKey="Cirulli, V" uniqKey="Cirulli V">V Cirulli</name>
</author>
<author>
<name sortKey="Rhodes, C" uniqKey="Rhodes C">C Rhodes</name>
</author>
<author>
<name sortKey="Diaferia, G" uniqKey="Diaferia G">G Diaferia</name>
</author>
<author>
<name sortKey="Montgomery, Am" uniqKey="Montgomery A">AM Montgomery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaido, T" uniqKey="Kaido T">T Kaido</name>
</author>
<author>
<name sortKey="Yebra, M" uniqKey="Yebra M">M Yebra</name>
</author>
<author>
<name sortKey="Cirulli, V" uniqKey="Cirulli V">V Cirulli</name>
</author>
<author>
<name sortKey="Montgomery, Am" uniqKey="Montgomery A">AM Montgomery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turner, Rc" uniqKey="Turner R">RC Turner</name>
</author>
<author>
<name sortKey="Holman, Rr" uniqKey="Holman R">RR Holman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patsenker, E" uniqKey="Patsenker E">E Patsenker</name>
</author>
<author>
<name sortKey="Stickel, F" uniqKey="Stickel F">F Stickel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, L" uniqKey="Kang L">L Kang</name>
</author>
<author>
<name sortKey="Ayala, Je" uniqKey="Ayala J">JE Ayala</name>
</author>
<author>
<name sortKey="Lee Young, Rs" uniqKey="Lee Young R">RS Lee-Young</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balint, E" uniqKey="Balint E">E Balint</name>
</author>
<author>
<name sortKey="Szabo, P" uniqKey="Szabo P">P Szabo</name>
</author>
<author>
<name sortKey="Marshall, Cf" uniqKey="Marshall C">CF Marshall</name>
</author>
<author>
<name sortKey="Sprague, Sm" uniqKey="Sprague S">SM Sprague</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botolin, S" uniqKey="Botolin S">S Botolin</name>
</author>
<author>
<name sortKey="Mccabe, Lr" uniqKey="Mccabe L">LR McCabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vestergaard, P" uniqKey="Vestergaard P">P Vestergaard</name>
</author>
<author>
<name sortKey="Rejnmark, L" uniqKey="Rejnmark L">L Rejnmark</name>
</author>
<author>
<name sortKey="Mosekilde, L" uniqKey="Mosekilde L">L Mosekilde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gregorio, F" uniqKey="Gregorio F">F Gregorio</name>
</author>
<author>
<name sortKey="Cristallini, S" uniqKey="Cristallini S">S Cristallini</name>
</author>
<author>
<name sortKey="Santeusanio, F" uniqKey="Santeusanio F">F Santeusanio</name>
</author>
<author>
<name sortKey="Filipponi, P" uniqKey="Filipponi P">P Filipponi</name>
</author>
<author>
<name sortKey="Fumelli, P" uniqKey="Fumelli P">P Fumelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwartz, Av" uniqKey="Schwartz A">AV Schwartz</name>
</author>
<author>
<name sortKey="Sellmeyer, De" uniqKey="Sellmeyer D">DE Sellmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glauber, Hs" uniqKey="Glauber H">HS Glauber</name>
</author>
<author>
<name sortKey="Vollmer, Wm" uniqKey="Vollmer W">WM Vollmer</name>
</author>
<author>
<name sortKey="Nevitt, Mc" uniqKey="Nevitt M">MC Nevitt</name>
</author>
<author>
<name sortKey="Ensrud, Ke" uniqKey="Ensrud K">KE Ensrud</name>
</author>
<author>
<name sortKey="Orwoll, Es" uniqKey="Orwoll E">ES Orwoll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vazquez, G" uniqKey="Vazquez G">G Vazquez</name>
</author>
<author>
<name sortKey="Duval, S" uniqKey="Duval S">S Duval</name>
</author>
<author>
<name sortKey="Jacobs, Dr" uniqKey="Jacobs D">DR Jacobs</name>
</author>
<author>
<name sortKey="Silventoinen, K" uniqKey="Silventoinen K">K Silventoinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polasek, O" uniqKey="Polasek O">O Polasek</name>
</author>
<author>
<name sortKey="Marusi, A" uniqKey="Marusi A">A Marusić</name>
</author>
<author>
<name sortKey="Rotim, K" uniqKey="Rotim K">K Rotim</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, Hy" uniqKey="Yuan H">HY Yuan</name>
</author>
<author>
<name sortKey="Chiou, Jj" uniqKey="Chiou J">JJ Chiou</name>
</author>
<author>
<name sortKey="Tseng, Wh" uniqKey="Tseng W">WH Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sever, Ps" uniqKey="Sever P">PS Sever</name>
</author>
<author>
<name sortKey="Dahlof, B" uniqKey="Dahlof B">B Dahlof</name>
</author>
<author>
<name sortKey="Poulter, Nr" uniqKey="Poulter N">NR Poulter</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Diabetes</journal-id>
<journal-id journal-id-type="iso-abbrev">Diabetes</journal-id>
<journal-id journal-id-type="hwp">diabetes</journal-id>
<journal-id journal-id-type="pmc">diabetes</journal-id>
<journal-id journal-id-type="publisher-id">Diabetes</journal-id>
<journal-title-group>
<journal-title>Diabetes</journal-title>
</journal-title-group>
<issn pub-type="ppub">0012-1797</issn>
<issn pub-type="epub">1939-327X</issn>
<publisher>
<publisher-name>American Diabetes Association</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22698912</article-id>
<article-id pub-id-type="pmc">3402303</article-id>
<article-id pub-id-type="publisher-id">1515</article-id>
<article-id pub-id-type="doi">10.2337/db11-1515</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Genetics/Genomes/Proteomics/Metabolomics</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Impact of Common Variation in Bone-Related Genes on Type 2 Diabetes and Related Traits</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Billings</surname>
<given-names>Liana K.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hsu</surname>
<given-names>Yi-Hsiang</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ackerman</surname>
<given-names>Rachel J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dupuis</surname>
<given-names>Josée</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Voight</surname>
<given-names>Benjamin F.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rasmussen-Torvik</surname>
<given-names>Laura J.</given-names>
</name>
<xref ref-type="aff" rid="aff9">
<sup>9</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hercberg</surname>
<given-names>Serge</given-names>
</name>
<xref ref-type="aff" rid="aff10">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lathrop</surname>
<given-names>Mark</given-names>
</name>
<xref ref-type="aff" rid="aff11">
<sup>11</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Barnes</surname>
<given-names>Daniel</given-names>
</name>
<xref ref-type="aff" rid="aff12">
<sup>12</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Langenberg</surname>
<given-names>Claudia</given-names>
</name>
<xref ref-type="aff" rid="aff12">
<sup>12</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hui</surname>
<given-names>Jennie</given-names>
</name>
<xref ref-type="aff" rid="aff13">
<sup>13</sup>
</xref>
<xref ref-type="aff" rid="aff14">
<sup>14</sup>
</xref>
<xref ref-type="aff" rid="aff15">
<sup>15</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fu</surname>
<given-names>Mao</given-names>
</name>
<xref ref-type="aff" rid="aff16">
<sup>16</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bouatia-Naji</surname>
<given-names>Nabila</given-names>
</name>
<xref ref-type="aff" rid="aff17">
<sup>17</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lecoeur</surname>
<given-names>Cecile</given-names>
</name>
<xref ref-type="aff" rid="aff17">
<sup>17</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>An</surname>
<given-names>Ping</given-names>
</name>
<xref ref-type="aff" rid="aff18">
<sup>18</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Magnusson</surname>
<given-names>Patrik K.</given-names>
</name>
<xref ref-type="aff" rid="aff19">
<sup>19</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Surakka</surname>
<given-names>Ida</given-names>
</name>
<xref ref-type="aff" rid="aff20">
<sup>20</sup>
</xref>
<xref ref-type="aff" rid="aff21">
<sup>21</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ripatti</surname>
<given-names>Samuli</given-names>
</name>
<xref ref-type="aff" rid="aff20">
<sup>20</sup>
</xref>
<xref ref-type="aff" rid="aff21">
<sup>21</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Christiansen</surname>
<given-names>Lene</given-names>
</name>
<xref ref-type="aff" rid="aff22">
<sup>22</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dalgård</surname>
<given-names>Christine</given-names>
</name>
<xref ref-type="aff" rid="aff23">
<sup>23</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Folkersen</surname>
<given-names>Lasse</given-names>
</name>
<xref ref-type="aff" rid="aff24">
<sup>24</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Grundberg</surname>
<given-names>Elin</given-names>
</name>
<xref ref-type="aff" rid="aff25">
<sup>25</sup>
</xref>
<xref ref-type="aff" rid="aff26">
<sup>26</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<collab>the MAGIC Investigators</collab>
<xref ref-type="fn" rid="fn2">*</xref>
</contrib>
<contrib contrib-type="author">
<collab>the DIAGRAM + Consortium</collab>
<xref ref-type="fn" rid="fn2">*</xref>
</contrib>
<contrib contrib-type="author">
<collab>the MuTHER Consortium</collab>
<xref ref-type="fn" rid="fn2">*</xref>
</contrib>
<contrib contrib-type="author">
<collab>the ASCOT Investigators</collab>
<xref ref-type="fn" rid="fn2">*</xref>
</contrib>
<contrib contrib-type="author">
<collab>the GEFOS Consortium</collab>
<xref ref-type="aff" rid="aff27">
<sup>27</sup>
</xref>
<xref ref-type="fn" rid="fn2">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Eriksson</surname>
<given-names>Per</given-names>
</name>
<xref ref-type="aff" rid="aff24">
<sup>24</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kaprio</surname>
<given-names>Jaakko</given-names>
</name>
<xref ref-type="aff" rid="aff20">
<sup>20</sup>
</xref>
<xref ref-type="aff" rid="aff28">
<sup>28</sup>
</xref>
<xref ref-type="aff" rid="aff29">
<sup>29</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ohm Kyvik</surname>
<given-names>Kirsten</given-names>
</name>
<xref ref-type="aff" rid="aff30">
<sup>30</sup>
</xref>
<xref ref-type="aff" rid="aff31">
<sup>31</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pedersen</surname>
<given-names>Nancy L.</given-names>
</name>
<xref ref-type="aff" rid="aff19">
<sup>19</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Borecki</surname>
<given-names>Ingrid B.</given-names>
</name>
<xref ref-type="aff" rid="aff18">
<sup>18</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Province</surname>
<given-names>Michael A.</given-names>
</name>
<xref ref-type="aff" rid="aff19">
<sup>19</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Balkau</surname>
<given-names>Beverley</given-names>
</name>
<xref ref-type="aff" rid="aff32">
<sup>32</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Froguel</surname>
<given-names>Philippe</given-names>
</name>
<xref ref-type="aff" rid="aff17">
<sup>17</sup>
</xref>
<xref ref-type="aff" rid="aff33">
<sup>33</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shuldiner</surname>
<given-names>Alan R.</given-names>
</name>
<xref ref-type="aff" rid="aff16">
<sup>16</sup>
</xref>
<xref ref-type="aff" rid="aff34">
<sup>34</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Palmer</surname>
<given-names>Lyle J.</given-names>
</name>
<xref ref-type="aff" rid="aff35">
<sup>35</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wareham</surname>
<given-names>Nick</given-names>
</name>
<xref ref-type="aff" rid="aff12">
<sup>12</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Meneton</surname>
<given-names>Pierre</given-names>
</name>
<xref ref-type="aff" rid="aff36">
<sup>36</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Johnson</surname>
<given-names>Toby</given-names>
</name>
<xref ref-type="aff" rid="aff37">
<sup>37</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pankow</surname>
<given-names>James S.</given-names>
</name>
<xref ref-type="aff" rid="aff38">
<sup>38</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Karasik</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Meigs</surname>
<given-names>James B.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kiel</surname>
<given-names>Douglas P.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Florez</surname>
<given-names>Jose C.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
<aff id="aff1">
<sup>1</sup>
Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts</aff>
<aff id="aff2">
<sup>2</sup>
Department of Medicine, Harvard Medical School, Boston, Massachusetts</aff>
<aff id="aff3">
<sup>3</sup>
Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, Massachusetts</aff>
<aff id="aff4">
<sup>4</sup>
Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts</aff>
<aff id="aff5">
<sup>5</sup>
Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, Massachusetts</aff>
<aff id="aff6">
<sup>6</sup>
Framingham Heart Study, Framingham, Massachusetts</aff>
<aff id="aff7">
<sup>7</sup>
Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts</aff>
<aff id="aff8">
<sup>8</sup>
Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts</aff>
<aff id="aff9">
<sup>9</sup>
Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois</aff>
<aff id="aff10">
<sup>10</sup>
INSERM, National Institute of Agronomic Research, University of Paris, Bobigny, France</aff>
<aff id="aff11">
<sup>11</sup>
National Genotyping Center, Atomic Energy Commission, Institute of Genomics, Evry, France</aff>
<aff id="aff12">
<sup>12</sup>
Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K.</aff>
<aff id="aff13">
<sup>13</sup>
Molecular Genetics, PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia, Australia</aff>
<aff id="aff14">
<sup>14</sup>
School of Population Health and School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia</aff>
<aff id="aff15">
<sup>15</sup>
Busselton Population Medical Research Foundation, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia</aff>
<aff id="aff16">
<sup>16</sup>
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</aff>
<aff id="aff17">
<sup>17</sup>
National Center for Scientific Research, UMR 8199, Genomics and Metabolic Diseases, Lille Pasteur Institute, Lille Nord de France University, Lille, France</aff>
<aff id="aff18">
<sup>18</sup>
Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri</aff>
<aff id="aff19">
<sup>19</sup>
Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden</aff>
<aff id="aff20">
<sup>20</sup>
Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland</aff>
<aff id="aff21">
<sup>21</sup>
Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland</aff>
<aff id="aff22">
<sup>22</sup>
Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark</aff>
<aff id="aff23">
<sup>23</sup>
Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark</aff>
<aff id="aff24">
<sup>24</sup>
Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden</aff>
<aff id="aff25">
<sup>25</sup>
Wellcome Trust Sanger Institute, Hinxton, U.K.</aff>
<aff id="aff26">
<sup>26</sup>
Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K.</aff>
<aff id="aff27">
<sup>27</sup>
Erasmus Medical College (Coordinating Center), Rotterdam, the Netherlands</aff>
<aff id="aff28">
<sup>28</sup>
Unit for Child and Adolescent Mental Health, National Institute for Health and Welfare, Helsinki, Finland</aff>
<aff id="aff29">
<sup>29</sup>
Department of Public Health, University of Helsinki, Helsinki, Finland</aff>
<aff id="aff30">
<sup>30</sup>
Institute of Regional Health Services Research, University of Southern Denmark, Odense, Denmark</aff>
<aff id="aff31">
<sup>31</sup>
Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark</aff>
<aff id="aff32">
<sup>32</sup>
INSERM, CESP Center for Research in Epidemiology and Health of Populations, U1018, Epidemiology of Diabetes, Obesity and Chronic Kidney Disease Over the Life Course, INSERM, Villejuif, France and Université Paris-Sud 11, UMRS 1018, Villejuif, France</aff>
<aff id="aff33">
<sup>33</sup>
Genomic Medicine, Hammersmith Hospital, Imperial College London, London, U.K.</aff>
<aff id="aff34">
<sup>34</sup>
Geriatrics Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland</aff>
<aff id="aff35">
<sup>35</sup>
Ontario Institute for Cancer Research, Toronto, Ontario, Canada</aff>
<aff id="aff36">
<sup>36</sup>
Cordeliers Center of Research, INSERM, Paris, France</aff>
<aff id="aff37">
<sup>37</sup>
Clinical Pharmacology and the Genome Centre, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.</aff>
<aff id="aff38">
<sup>38</sup>
Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Corresponding author: Jose C. Florez,
<email>jcflorez@partners.org</email>
.</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>8</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>17</day>
<month>7</month>
<year>2012</year>
</pub-date>
<volume>61</volume>
<issue>8</issue>
<fpage>2176</fpage>
<lpage>2186</lpage>
<history>
<date date-type="received">
<day>27</day>
<month>10</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>09</day>
<month>3</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>© 2012 by the American Diabetes Association.</copyright-statement>
<copyright-year>2012</copyright-year>
<license license-type="creative-commons">
<license-p>Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">http://creativecommons.org/licenses/by-nc-nd/3.0/</ext-link>
for details.</license-p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="2176.pdf"></self-uri>
<abstract>
<p>Exploring genetic pleiotropy can provide clues to a mechanism underlying the observed epidemiological association between type 2 diabetes and heightened fracture risk. We examined genetic variants associated with bone mineral density (BMD) for association with type 2 diabetes and glycemic traits in large well-phenotyped and -genotyped consortia. We undertook follow-up analysis in ∼19,000 individuals and assessed gene expression. We queried single nucleotide polymorphisms (SNPs) associated with BMD at levels of genome-wide significance, variants in linkage disequilibrium (
<italic>r</italic>
<sup>2</sup>
> 0.5), and BMD candidate genes. SNP rs6867040, at the
<italic>ITGA1</italic>
locus, was associated with a 0.0166 mmol/L (0.004) increase in fasting glucose per C allele in the combined analysis. Genetic variants in the
<italic>ITGA1</italic>
locus were associated with its expression in the liver but not in adipose tissue.
<italic>ITGA1</italic>
variants appeared among the top loci associated with type 2 diabetes, fasting insulin, β-cell function by homeostasis model assessment, and 2-h post–oral glucose tolerance test glucose and insulin levels.
<italic>ITGA1</italic>
has demonstrated genetic pleiotropy in prior studies, and its suggested role in liver fibrosis, insulin secretion, and bone healing lends credence to its contribution to both osteoporosis and type 2 diabetes. These findings further underscore the link between skeletal and glucose metabolism and highlight a locus to direct future investigations.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Studies show that adults with type 2 diabetes have a higher fracture rate than those without diabetes (
<xref ref-type="bibr" rid="B1">1</xref>
<xref ref-type="bibr" rid="B5">5</xref>
). A meta-analysis of 16 studies revealed a 1.7 (95% CI 1.3–2.2) relative risk of hip fracture for people with diabetes compared with those without diabetes (
<xref ref-type="bibr" rid="B6">6</xref>
). The higher fracture rate persisted even after considering factors including, but not limited to, falls, impaired vision, and weight (
<xref ref-type="bibr" rid="B4">4</xref>
). Quantitative computed tomography studies show increased bone porosity in individuals with type 2 diabetes, suggesting that bone integrity is compromised and thereby causing increased bone fragility (
<xref ref-type="bibr" rid="B7">7</xref>
<xref ref-type="bibr" rid="B9">9</xref>
), but it remains unclear what may be causing the decreased bone integrity. Despite the generally increased bone mineral density (BMD) of individuals with type 2 diabetes (
<xref ref-type="bibr" rid="B1">1</xref>
), for the same BMD measurement, people with type 2 diabetes have a higher risk of fracture (
<xref ref-type="bibr" rid="B10">10</xref>
). Basic science studies reveal further evidence of a link between bone-derived hormones and glucose regulation. Mice lacking osteocalcin, an osteoblast-specific secreted molecule, have glucose intolerance (
<xref ref-type="bibr" rid="B11">11</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
).</p>
<p>The relationship between osteoporosis and type 2 diabetes raised by these epidemiological studies, and intriguing new molecular data, hint to a common mechanism implicated in the pathogenesis of both disorders. Discovering genetic determinants that exhibit genetic pleiotropy (defined as one gene influencing multiple phenotypic traits) may point to a common underlying mechanism. Approximately 16.9% of the genes in the National Human Genome Research Institute’s catalog of published genome-wide association studies (GWASs) are estimated to be pleiotropic (
<xref ref-type="bibr" rid="B13">13</xref>
). GWASs reveal genetic variants that are associated with BMD (a quantitative endophenotype for osteoporosis and a surrogate for fracture risk) (
<xref ref-type="bibr" rid="B10">10</xref>
,
<xref ref-type="bibr" rid="B14">14</xref>
<xref ref-type="bibr" rid="B18">18</xref>
). Some of these loci are also associated with traits seemingly unrelated to BMD (
<xref ref-type="table" rid="T1">Table 1</xref>
). However, common genetic variants influencing BMD have not been studied systematically for association with type 2 diabetes and other glycemic traits.</p>
<table-wrap id="T1" position="float">
<label>TABLE 1</label>
<caption>
<p>BMD loci associated with non–BMD related traits and disease in GWASs</p>
</caption>
<graphic xlink:href="2176tbl1"></graphic>
</table-wrap>
<p>We therefore performed a comprehensive evaluation of the influence of BMD-related genetic loci on diabetes-related phenotypes. After examining an extensive list of BMD-related single nucleotide polymorphisms (SNPs) for association with type 2 diabetes and quantitative glycemic traits in large GWAS meta-analysis datasets, our top SNPs were selected for in silico replication in additional cohorts,
<italic>cis-</italic>
gene expression analyses, and BMI association. In this study, we aimed to underscore the genetic determinants that are shared between osteoporosis and type 2 diabetes and provide clues into a common mechanism that may contribute to both diseases. Furthermore, through this systematic exploration, we have generated testable hypotheses for replication by independent cohorts and experimental follow-up.</p>
<sec id="s1">
<title>RESEARCH DESIGN AND METHODS</title>
<sec id="s2">
<title>SNP selection.</title>
<p>In total, 1,778 SNPs were collated for association with type 2 diabetes and glycemic traits (
<xref ref-type="fig" rid="F1">Fig. 1</xref>
). The SNP selection is described below.</p>
<fig id="F1" fig-type="figure" position="float">
<label>FIG. 1.</label>
<caption>
<p>Study schema. A staged approach was used to examine BMD-related SNPs for association with type 2 diabetes and related traits. BMD-related SNPs were collated from BMD GWASs (
<xref ref-type="bibr" rid="B14">14</xref>
<xref ref-type="bibr" rid="B17">17</xref>
), nearby SNPs (±50 kb) in moderate-to-high LD (
<italic>r</italic>
<sup>2</sup>
> 0.5), and SNPs from candidate genes (±20 kb) identified in GEFOS (
<xref ref-type="bibr" rid="B20">20</xref>
). A total of 1,778 SNPs were tested for association with type 2 diabetes in DIAGRAM+ (
<xref ref-type="bibr" rid="B21">21</xref>
) and seven glycemic traits in MAGIC (
<xref ref-type="bibr" rid="B22">22</xref>
,
<xref ref-type="bibr" rid="B24">24</xref>
). Thirteen SNPs were taken forward for follow-up in a replication cohort (
<italic>N</italic>
= 19,417),
<italic>cis</italic>
-eQTL analysis in liver and adipose tissue, and association with BMI.</p>
</caption>
<graphic xlink:href="2176fig1"></graphic>
</fig>
<p>A total of 35 SNPs initially were selected based on BMD GWASs in populations of European ancestry (
<xref ref-type="bibr" rid="B14">14</xref>
<xref ref-type="bibr" rid="B17">17</xref>
). If multiple SNPs were listed for one gene per trait, SNPs were kept for analysis if the correlation was low (pairwise linkage disequilibrium [LD]
<italic>r</italic>
<sup>2</sup>
< 0.5); if
<italic>r</italic>
<sup>2</sup>
≥ 0.5, only the SNP with the lowest
<italic>P</italic>
value was kept unless the study indicated that multiple correlated SNPs had a high degree of explanatory power of the variance for the trait. We removed rs6696981 (
<italic>ZBTB40</italic>
), rs4879055 and rs6929137 (
<italic>ESR1</italic>
), rs6993813 and rs6469804 (
<italic>TNFRSF11</italic>
), rs9594759 (
<italic>RANKL</italic>
), rs1107748 (
<italic>SOST</italic>
), rs2566755 (
<italic>GPR177</italic>
), and rs7781370 (
<italic>FLJ42280</italic>
) (
<xref ref-type="bibr" rid="B14">14</xref>
,
<xref ref-type="bibr" rid="B15">15</xref>
,
<xref ref-type="bibr" rid="B17">17</xref>
). The final list of 26 BMD genome wide–associated SNPs was examined for association with type 2 diabetes and glycemic traits (
<xref ref-type="table" rid="T2">Table 2</xref>
).</p>
<table-wrap id="T2" position="float">
<label>TABLE 2</label>
<caption>
<p>Twenty-six BMD-associated loci for association with diabetes and quantitative glycemic traits</p>
</caption>
<graphic xlink:href="2176tbl2a"></graphic>
<graphic xlink:href="2176tbl2b"></graphic>
</table-wrap>
<p>Since the index SNP may not be the causal variant and other genetic variants in the region may have a stronger influence on the traits examined, we tested the region around the index variant by selecting SNPs in moderate-to-strong LD (
<italic>r</italic>
<sup>2</sup>
> 0.5). We chose variants in moderate-to-strong LD, rather than all of the variants in this region, to base our exploration on variants with a higher prior probability of true association and reduce the multiple testing burden. All SNPs that were 50 kilobases (kb) upstream and downstream from and in moderate-to-strong LD with the 26 BMD-related SNPs were tested for association with type 2 diabetes and glycemic traits. These SNPs were identified using SNP Annotation and Proxy Search, SNAP (
<ext-link ext-link-type="uri" xlink:href="http://www.broadinstitute.org/mpg/snap/">http://www.broadinstitute.org/mpg/snap/</ext-link>
) (
<xref ref-type="bibr" rid="B19">19</xref>
) (
<ext-link ext-link-type="uri" xlink:href="http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1515/-/DC1">Supplementary Table 1</ext-link>
).</p>
<p>In addition to selecting the 26 SNPs associated at genome-wide significance with BMD and the surrounding region, we selected candidate genes that were found to be associated (
<italic>P</italic>
< 2.39 × 10
<sup>−6</sup>
after Bonferroni correction) with BMD in the GEFOS (Genetic Factors for Osteoporosis) Consortium (
<xref ref-type="bibr" rid="B20">20</xref>
). This article identifies nine candidate genes, including
<italic>ESR1</italic>
,
<italic>LRP4</italic>
,
<italic>ITGA1</italic>
,
<italic>LRP5</italic>
,
<italic>SOST</italic>
,
<italic>SPP1</italic>
,
<italic> TNFRSF11A (RANK)</italic>
,
<italic>TNRFSF11B</italic>
, and
<italic>TNFSF11</italic>
(
<italic>RANKL</italic>
). For each gene, we identified all SNPs within and 20 kb upstream and downstream of any transcript of the gene. All SNPs within those boundaries that were genotyped or imputed in the consortia were tested for association with type 2 diabetes and glycemic traits (
<ext-link ext-link-type="uri" xlink:href="http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1515/-/DC1">Supplementary Table 1</ext-link>
).</p>
</sec>
<sec id="s3">
<title>Study populations.</title>
<p>We tested SNPs in the DIAGRAM+ (Diabetes Genetics Replication and Meta-analysis) Consortium (
<xref ref-type="bibr" rid="B21">21</xref>
) for association with type 2 diabetes and in MAGIC (Meta-Analyses of Glucose and Insulin-Related Traits Consortium) (
<xref ref-type="bibr" rid="B22">22</xref>
<xref ref-type="bibr" rid="B24">24</xref>
) for association with seven glycemic quantitative traits. These traits included fasting glucose, fasting insulin, homeostasis model assessments of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) (
<xref ref-type="bibr" rid="B25">25</xref>
), hemoglobin A1C (HbA
<sub>1c</sub>
), and glucose and insulin levels 2 h post–glucose load (2-h glucose and 2-h insulin). The DIAGRAM+ Consortium combined case-control data from eight type 2 diabetes GWASs with up to 42,542 case and 98,912 control subjects of European ancestry (
<xref ref-type="bibr" rid="B21">21</xref>
). MAGIC combined data from multiple GWASs that identified loci that affect quantitative glycemic traits. Its discovery sample included up to 46,186 individuals from 17 population-based cohorts and 4 case-control studies (
<xref ref-type="bibr" rid="B22">22</xref>
<xref ref-type="bibr" rid="B24">24</xref>
). It is noteworthy that the Framingham Heart Study (FHS), Diabetes Epidemiology: Collaborative Analysis of Diagnostic Criteria in Europe (deCODE) Study, Erasmus Rucphen Family Study, and TwinsUK Study provided data to both MAGIC and the BMD datasets from where the genome-wide–associated SNPs were selected. Using FHS as a representative cohort of European descent that contained both BMD and glycemic values, we found phenotypic correlations,
<italic>r</italic>
of 0.11–0.16, between bone (femoral neck and lumbar spine BMD) and glycemic traits (glucose and insulin). Since the phenotypic correlation is low, we would not necessarily expect to see a genetic association solely based on the fact that a small portion of the participants were assessed for both traits. In addition, examining the associations using meta-analyses of large consortia, rather than in the subset of overlapping participants, provides a more powerful approach.</p>
<p>The study protocols were approved by the institutional review board of the respective cohorts’ institutions, and informed consent was obtained from each subject prior to participation.</p>
</sec>
<sec id="s4">
<title>Testing for association.</title>
<p>After the collation of the index, LD-based, and gene-based BMD-related SNPs, we tested 1,778 unique SNPs for association with type 2 diabetes and glycemic traits. We obtained effect estimates and
<italic>P</italic>
values from GWAS meta-analyses provided by DIAGRAM+ and MAGIC. We determined which SNPs to examine in follow-up studies by calculating a significance threshold for each group of SNPs selected (index, LD-based, and gene-based). We used a Bonferroni correction for the estimated number of independent tests after taking LD into account determined using a method proposed by Nyholt (
<xref ref-type="bibr" rid="B26">26</xref>
) and Li and Ji (
<xref ref-type="bibr" rid="B27">27</xref>
). For our primary analyses, we used a stricter threshold by accounting for the number of traits tested. We evaluated 26 BMD SNPs for association with type 2 diabetes and seven glycemic traits (26 tests multiplied by 8 traits = 208), yielding thresholds to declare statistical significance at
<italic>P</italic>
= 2.4 × 10
<sup>−4</sup>
(0.05/208 tests). For the LD- and gene-based secondary analyses, we corrected for the number of independent SNPs tested but not for the number of traits examined. The
<italic>P</italic>
value threshold for the 513 LD-based SNPs (188 independent tests) was 2.6 × 10
<sup>−4</sup>
and for the 1,318 candidate gene–based SNPs (651 independent tests), 7.7 × 10
<sup>−5</sup>
. A study-wide
<italic>P</italic>
value of 6.0 × 10
<sup>−5</sup>
for 1,778 total SNPs (830 independent tests) determined significance for the combined meta-analysis (described below).</p>
</sec>
<sec id="s5">
<title>Follow-up strategy.</title>
<p>To follow up the BMD-related SNPs associated with type 2 diabetes and glycemic traits, we combined in silico GWAS data from 12 additional cohorts of 19,417 nondiabetic participants (Amish Family Diabetes Study, Atherosclerosis Risk in Communities Study [ARIC], Anglo-Scandinavian Cardiac Outcomes Trial [ASCOT], Busselton Health Study [BHS], Data From the Epidemiological Study on the Insulin Resistance Syndrome [DESIR] Study, French Obese Study, Family Heart Study [FamHS], Fenland Study, Finnish Twins Study, Swedish Twins Study, GEMINAKAR Study, and [the Supplémentation en Vitamines et Minéraux Antioxydants [SU.VI.MAX Study]) (detailed in
<ext-link ext-link-type="uri" xlink:href="http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1515/-/DC1">Supplementary Table 2</ext-link>
). We then combined the discovery and replication meta-analysis results for overall association using METAL (
<xref ref-type="bibr" rid="B28">28</xref>
).</p>
<p>Follow-up SNPs were examined by
<italic>cis</italic>
-expression quantitative trait loci (eQTL) analysis in metabolically relevant tissues, liver, and adipose. Liver tissue samples came from the Advanced Study of Aortic Pathology (ASAP) cohort of 211 healthy adults undergoing aortic valve surgery. Each biopsy was taken in RNAlater (Ambion, Austin, TX). RNA quality was analyzed with an Agilent 2100 bioanalyzer (Agilent Technologies, Inc., Palo Alto, CA), and quantity was measured by NanoDrop (Thermo Scientific, Waltham, MA). RNA was purified using the RNeasy Mini kit (QIAGEN, Hilden, Germany), including treatment with RNasefree DNase set (QIAGEN) according to the manufacturer’s instructions. Expression profiling was done on the Affymetrix GeneChip Human Exon 1.0 ST array (Affymetrix, Inc., Santa Clara, CA). Expression data were preprocessed using the robust multiarray analysis algorithm with quantile normalization, log2 transformation, and the “extended” set of meta probe sets. Genotyping of the DNA samples was done using Illumina 610wQuad arrays (Illumina, Inc., San Diego, CA). SNPs were imputed using MACH 1.0 software with a readability strength quality score ≥0.6. Each SNP was encoded as 0, 1, or 2 depending on genotype, and a linear regression model was fitted (
<xref ref-type="bibr" rid="B29">29</xref>
).</p>
<p>Adipose tissue samples came from the Multiple Tissue Human Expression Resource (MuTHER) (
<xref ref-type="bibr" rid="B30">30</xref>
) of 776 healthy female adult twins. RNA was extracted from homogenized subcutaneous adipose tissue samples using TRIzol Reagent (Invitrogen, Grand Island, NY) according to protocol provided by the manufacturer. RNA quality was assessed with the Agilent 2100 BioAnalyzer, and the concentrations were determined using NanoDrop ND-1000 (Thermo Scientific). Whole-genome expression profiling of the samples was performed using the Illumina Human HT-12 V3 BeadChips according to the protocol supplied by the manufacturer. Log2-transformed expression signals were normalized separately per tissue as follows: quantile normalization was performed across technical replicates of each individual followed by quantile normalization across all individuals. Subject DNA was genotyped using a combination of Illumina arrays (HumanHap300, HumanHap610Q, 1M-Duo, and 1.2MDuo 1M). Untyped HapMap2 (
<ext-link ext-link-type="uri" xlink:href="http://hapmap.ncbi.nlm.nih.gov">http://hapmap.ncbi.nlm.nih.gov</ext-link>
) SNPs were imputed using the IMPUTE software package (version 2) (
<xref ref-type="bibr" rid="B31">31</xref>
). Association between all SNPs (minor allele frequency [MAF] >5%, IMPUTE INFO >0.8) within a gene or within 1 MB of the gene transcription start or end site and normalized expression values were performed using the polygenic linear model incorporating a kinship matrix in GenABEL followed by the ProbABEL mmscore score test with imputed genotypes. Age and experimental batch were included as cofactors.</p>
<p>We also tested SNPs that were associated with fasting glucose for association with BMI using in silico GWAS data from the GIANT (the Genetic Investigation of Anthropometric Traits) Consortium (
<xref ref-type="bibr" rid="B32">32</xref>
) and for association with femoral neck and lumbar spine BMD in GEFOS (
<xref ref-type="bibr" rid="B16">16</xref>
).</p>
</sec>
</sec>
<sec sec-type="results" id="s6">
<title>RESULTS</title>
<p>A total of 26 SNPs associated with BMD at genome-wide levels of significance were tested for association with type 2 diabetes and seven continuous glycemic parameters. None of the SNPs reached the a priori
<italic> P</italic>
value threshold of 2.4 × 10
<sup>−4</sup>
using conservative Bonferroni correction. Three SNPs were nominally associated (
<italic>P</italic>
< 0.05) with two diabetes-related traits: the hip BMD-raising allele (G) of SNP rs87939 (
<italic>CTNNB1</italic>
) was nominally associated with lower fasting insulin and lower HOMA-IR, the hip BMD-raising allele (A) of SNP rs1366594 (
<italic>MEF2C</italic>
) was associated with higher fasting insulin and higher HOMA-IR, and the spine BMD-raising allele (A) of SNP rs1999805 (
<italic>ESR1</italic>
) was associated with lower fasting insulin and lower HOMA-IR (
<xref ref-type="table" rid="T2">Table 2</xref>
).</p>
<p>We examined 513 SNPs in moderate-to-strong LD (
<italic>r</italic>
<sup>2</sup>
≥ 0.5) with the BMD index SNPs for association with type 2 diabetes and glycemic traits. None of the SNPs reached our prespecified
<italic>P</italic>
value threshold (
<italic>P</italic>
= 2.6 × 10
<sup>−4</sup>
). The G allele at SNP rs2070852 (
<italic>ARHGAP1</italic>
), a near-perfect proxy for the index SNP rs7932354 (T) (
<italic>r</italic>
<sup>2</sup>
= 0.96), was associated with higher fasting glucose (β = 0.0104 mmol/L [SE 0.004],
<italic>P</italic>
= 9.0 × 10
<sup>−3</sup>
) (as would be predicted by the nominal association of the index SNP with the same trait). The minor alleles of three SNPs, rs4081640, rs2371445, and rs2371446, in strong LD (
<italic>r</italic>
<sup>2</sup>
> 0.8) with the index SNP rs487939 (
<italic>CTNNB1)</italic>
, were associated with lower fasting insulin (−0.016 [0.005],
<italic>P <</italic>
0.002) and HOMA-IR (−0.016 [0.005],
<italic>P <</italic>
0.005) at slightly higher levels of significance compared with the index SNP. Likewise, the major alleles of three SNPs at
<italic>ESR1</italic>
(rs3020348, rs3020349, and rs2982554) were associated with lower fasting insulin (−0.01 [0.004],
<italic>P <</italic>
0.01) at a slightly higher level of significance than the index SNP rs1999805 (
<italic>r</italic>
<sup>2</sup>
> 0.9). No other SNPs correlated with the BMD-related index SNPs achieved significance levels <0.01 (
<ext-link ext-link-type="uri" xlink:href="http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1515/-/DC1">Supplementary Table 1</ext-link>
).</p>
<p>We examined 1,318 SNPs from nine BMD candidate genes for association with type 2 diabetes and glycemic traits (
<ext-link ext-link-type="uri" xlink:href="http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1515/-/DC1">Supplementary Table 1</ext-link>
). Thirteen SNPs at the locus
<italic>ITGA1</italic>
were associated with fasting glucose at significance levels below our prespecified (Bonferroni-corrected) threshold of 7.7 × 10
<sup>−5</sup>
, of which 8 were below the study-wide significance threshold (
<xref ref-type="table" rid="T3">Table 3</xref>
and
<xref ref-type="fig" rid="F2">Fig. 2</xref>
). By assembling an in silico replication sample of 19,417 individuals, we achieved >75% power (α = 0.05) to detect 1 SD difference in fasting glucose. Therefore, the top 13
<italic>ITGA1</italic>
SNPs were examined for association with fasting glucose in the 12 additional cohorts. The major C allele of SNP rs6867040 was nominally associated with higher fasting glucose (
<italic>P</italic>
= 0.03) in a directionally consistent manner. None of the 13 SNPs reached genome-wide significance (
<italic>P</italic>
< 5 × 10
<sup>−8</sup>
) in the combined meta-analysis (
<xref ref-type="table" rid="T3">Table 3</xref>
). It is notable that variants in this locus,
<italic>ITGA1</italic>
, were noted to be among the top 10 most significant associations for five additional traits: type 2 diabetes, fasting insulin, HOMA-B, and 2-h glucose and insulin levels (
<xref ref-type="table" rid="T4">Table 4</xref>
).</p>
<table-wrap id="T3" position="float">
<label>TABLE 3</label>
<caption>
<p>SNPs in
<italic>ITGA1</italic>
associated with fasting glucose Stage 1 and taken forward for replication</p>
</caption>
<graphic xlink:href="2176tbl3"></graphic>
</table-wrap>
<fig id="F2" fig-type="figure" position="float">
<label>FIG. 2.</label>
<caption>
<p>SNPs at BMD-associated
<italic>ITGA1</italic>
associated with fasting glucose. Thirteen SNPs (red diamonds) in
<italic>ITGA1</italic>
were associated with fasting glucose levels (
<italic>P</italic>
< 7.7 × 10
<sup>−5</sup>
) in the MAGIC discovery cohorts, with 1 SNP (rs6867040) replicating at nominal significance (
<italic>P</italic>
< 0.05) in 12 replication cohorts. SNP rs13179969 (blue diamond) (
<italic>ITGA1</italic>
) was associated with lumbar spine BMD in GEFOS at 9.6 × 10
<sup>−7</sup>
(
<xref ref-type="bibr" rid="B20">20</xref>
). This SNP is not associated with fasting glucose in MAGIC. LD is indicated by size of the diamond.</p>
</caption>
<graphic xlink:href="2176fig2"></graphic>
</fig>
<table-wrap id="T4" position="float">
<label>TABLE 4</label>
<caption>
<p>Top 10 BMD-related SNPs, direction of effect, and level of significance for association with type 2 diabetes and glycemic traits</p>
</caption>
<graphic xlink:href="2176tbl4"></graphic>
</table-wrap>
<p>To investigate the mechanism by which
<italic>ITGA1</italic>
might influence type 2 diabetes and related traits, we examined the effect of these 13 SNPs on
<italic>cis-</italic>
gene expression of
<italic>ITGA1</italic>
in liver and adipose tissue using eQTL analysis.
<italic>ITGA1</italic>
expression was measured in adipose tissue using a 50–base pair probe (chromosome 5:52,284,986–52,285,035) available on the Illumina array and in liver tissue with a set of probes covering the length of the
<italic>ITGA1</italic>
region (including the gene
<italic>PELO</italic>
) on the Affymetrix array. The major allele of six SNPs was associated with increased expression (β ranged from 0.089 to 0.107 [SE 0.043–0.044]) of
<italic>ITGA1/PELO</italic>
in liver tissue at
<italic>P</italic>
< 0.05, but no SNPs were associated with
<italic>ITGA1</italic>
expression in adipose tissue (
<xref ref-type="table" rid="T5">Table 5</xref>
). Of note, in adipose tissue, the major alleles of the 13 SNPs were highly associated with lower
<italic>PELO</italic>
expression (effect estimates ∼0.05 [SE ∼0.01], lowest
<italic>P</italic>
< 2.0 × 10
<sup>−4</sup>
). To determine whether
<italic>PELO</italic>
or
<italic>ITGA1</italic>
gene expression was driving the association seen in liver tissue of the
<italic>ITGA1</italic>
expression, we examined probes for each exon individually. We noted that for all of the genetic variants, the SNPs appeared to have a stronger association with the
<italic>ITGA1</italic>
-specific probes than
<italic>PELO</italic>
-specific probes (an example figure of one of the SNPs, rs10512997, is provided in the
<ext-link ext-link-type="uri" xlink:href="http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1515/-/DC1">Supplementary Data</ext-link>
).
<italic>ITGA1</italic>
and
<italic>PELO</italic>
are both expressed in liver, adipose, and pancreatic islets, although
<italic>ITGA1</italic>
appears to have higher expression in these tissues (
<ext-link ext-link-type="uri" xlink:href="http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1515/-/DC1">Supplementary Data</ext-link>
).</p>
<table-wrap id="T5" position="float">
<label>TABLE 5</label>
<caption>
<p>Association of
<italic>ITGA1</italic>
genetic variation with
<italic>ITGA1</italic>
RNA expression and BMI</p>
</caption>
<graphic xlink:href="2176tbl5"></graphic>
</table-wrap>
<p>We examined 13 SNPs in
<italic>ITGA1</italic>
for association with BMI in the GIANT Consortium and BMD in the GEFOS Consortium. The major allele of seven SNPs was associated with higher BMI at
<italic>P</italic>
< 0.05 (
<xref ref-type="table" rid="T5">Table 5</xref>
). None of these SNPs were associated with femoral neck and lumbar spine BMD, although they trended toward lowering BMD.</p>
</sec>
<sec sec-type="discussion" id="s7">
<title>DISCUSSION</title>
<p>By exploring genetic pleiotropy, we revealed a locus that may provide clues to a mechanism underlying the observed epidemiological association between type 2 diabetes and heightened fracture risk. We compiled a comprehensive list of BMD-related SNPs composed of genetic variants associated with BMD at levels of genome-wide significance, variants in moderate-to-strong LD with the index SNPs, and SNPs in BMD candidate genes. By examining these BMD-related SNPs for association with type 2 diabetes and glycemic traits, we discovered that SNPs in the
<italic>ITGA1</italic>
locus, a BMD candidate gene, are suggestively associated with fasting glucose at study-wide levels of significance. The major alleles of these 13 highly correlated SNPs (CEU HapMap [Utah residents with ancestry from northern and western Europe]
<italic>r</italic>
<sup>2</sup>
> 0.7) consistently raised fasting glucose in the discovery and replication stages. In addition, genetic variants of
<italic>ITGA1</italic>
appear among the top 10 genetic variants for association with five additional traits: type 2 diabetes, fasting insulin levels, HOMA-B, 2-h glucose levels, and 2-h insulin levels. The major alleles at these SNPs appear to be associated with higher
<italic>ITGA1</italic>
expression in the liver and higher BMI. We highlight that genetic variation in
<italic>ITGA1</italic>
may not only explain increased bone fragility but also contribute to fasting glucose levels.</p>
<p>
<italic>ITGA1</italic>
encodes the α-1 subunit integrin, which heterodimerizes to form the α1β1-integrin cell surface receptor for laminin and collagen. Integrins are transmembrane glycoproteins involved in cell adhesion to the extracellular matrix. They are also signaling molecules for regulation of apoptosis, gene expression, cell proliferation, invasion and metastasis, and angiogenesis (
<xref ref-type="bibr" rid="B33">33</xref>
). Less is known about the
<italic>PELO</italic>
gene in humans, which overlaps the
<italic>ITGA1</italic>
sequence at the 5′ end (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
) and has been more extensively studied in
<italic>Drosophila.</italic>
Human and
<italic>Drosophila</italic>
homologs share 70% sequence identity.
<italic>PELO</italic>
is thought to be involved in mitosis and meiosis (e.g., spermatogenesis) in many tissues (
<xref ref-type="bibr" rid="B34">34</xref>
), but its involvement in bone and glucose disease is unknown.</p>
<p>The
<italic>ITGA1</italic>
locus was initially chosen for our study because it was found to contain an intronic SNP, rs13179969, whose G major allele had been associated with lower lumbar spine BMD at levels of study-wide significance (
<italic>P</italic>
= 9.6 × 10
<sup>−7</sup>
) (
<xref ref-type="bibr" rid="B20">20</xref>
). This SNP was not associated with fasting glucose in our study, nor is it in strong LD with the 13 SNPs followed up in this study (
<italic>r</italic>
<sup>2</sup>
< 0.05, HapMap CEU) (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
). Despite low LD between these SNPs, they point to a locus,
<italic>ITGA1</italic>
, in which in vivo and in vitro models have a suggested role in both bone disease and glucose homeostasis. Null
<italic>ITGA1</italic>
mice have impaired fracture healing and cartilage remodeling (
<xref ref-type="bibr" rid="B35">35</xref>
), although it is not yet clear what role this gene product has on BMD or bone structure in animal models. Furthermore, integrins have been examined in an effort to culture and expand human β-cells for human transplantation ex vivo (
<xref ref-type="bibr" rid="B36">36</xref>
). The α1β1-integrins appear to play a role in β-cell insulin secretion, migration, and mesenchymal transformation (
<xref ref-type="bibr" rid="B37">37</xref>
).</p>
<p>The mechanism by which
<italic>ITGA1</italic>
may influence fasting glucose is not entirely clear. Fasting glucose is an estimate of hepatic glucose production after an overnight fast and can indicate hepatic and peripheral insulin resistance (
<xref ref-type="bibr" rid="B38">38</xref>
). Our follow-up gene expression studies suggest that
<italic>ITGA1</italic>
genetic variation may affect fasting glucose via the liver rather than adipose tissue. We found that the major alleles of six of the SNPs tested were correlated with increased hepatic expression of
<italic>ITGA1</italic>
(
<italic>P <</italic>
0.05
<italic>).</italic>
In addition, the same top three SNPs were associated with both type 2 diabetes and 2-h insulin level, suggesting that the mechanism may involve insulin resistance. Some studies suggest a role of integrins in insulin resistance (
<xref ref-type="bibr" rid="B39">39</xref>
). Integrins are thought to play a key role in the evolution of liver fibrosis brought on by inflammation as seen in insulin resistance–associated nonalcoholic steatohepatitis (
<xref ref-type="bibr" rid="B39">39</xref>
).</p>
<p>In mice, the influence of
<italic>ITGA1</italic>
and
<italic>ITGA2</italic>
(encoding the α-2 component of α2β1-integrin) on the effect of inflammation on insulin resistance in muscle induced by a high-fat diet has been examined recently (
<xref ref-type="bibr" rid="B40">40</xref>
). The high-fat diet induced extracellular matrix changes by increasing collagen accumulation in muscle. The
<italic>itga2</italic>
<sup>−/−</sup>
mice on a high-fat diet had lower basal glucose than
<italic>itga2
<sup>+/+</sup>
</italic>
mice, suggesting that the extracellular matrix–integrin signaling plays a role in insulin resistance in muscle. The same observation was not seen for
<italic>itga1
<sup>−/−</sup>
</italic>
and
<italic>itga1
<sup>+/+</sup>
</italic>
mice. Given our study’s gene expression findings and the role of integrins in the liver in response to inflammation and insulin resistance, further investigation of the liver in
<italic>itga1</italic>
null mice in response to inflammation could reveal more information about the role of
<italic>ITGA1</italic>
in hepatic glucose production. Ultimately, our study remains hypothesis generating and highlights a novel locus that links BMD and fasting glucose that warrants further investigation.</p>
<p>This study suggests that
<italic>ITGA1</italic>
may exhibit genetic pleiotropy through its association with BMD and fasting glucose. True pleiotropy is difficult to confirm, especially if a causal relationship exists between fasting glucose and BMD, as such a finding suggests the possibility of a mediating effect of one phenotype on the other. The evidence of such a causal relationship between fasting glucose and bone density is not completely consistent. Although in vitro studies show that chronic hyperglycemia may impair osteoblast function (
<xref ref-type="bibr" rid="B41">41</xref>
,
<xref ref-type="bibr" rid="B42">42</xref>
), clinical studies demonstrate that individuals with type 2 diabetes have lower bone turnover (
<xref ref-type="bibr" rid="B43">43</xref>
), which usually indicates a more optimal skeletal state. On the other hand, those with poorly controlled diabetes have been shown to have improvement in BMD measured by bone densitometry after 1 year of tightened control (
<xref ref-type="bibr" rid="B44">44</xref>
). Therefore, it is not possible to clearly establish a direct link between hyperglycemia and BMD (
<xref ref-type="bibr" rid="B45">45</xref>
). Likewise, if there was a common intermediate phenotype driving the relationship between BMD and fasting glucose, then our findings may not indicate true genetic pleiotropy. BMI could be considered a potential intermediate phenotype because it is correlated with both type 2 diabetes pathogenesis and BMD (
<xref ref-type="bibr" rid="B46">46</xref>
,
<xref ref-type="bibr" rid="B47">47</xref>
). We examined the
<italic>ITGA1</italic>
-related SNPs for association with BMI in the GIANT Consortium (
<xref ref-type="bibr" rid="B32">32</xref>
). Several of the variants reached a nominal level of significance (lowest
<italic>P</italic>
= 0.007) for association with BMI (
<xref ref-type="table" rid="T4">Table 4</xref>
<bold>)</bold>
. These data suggest that
<italic>ITGA1</italic>
may act on BMD or fasting glucose through the intermediate phenotype of BMI. Although the
<italic>ITGA1</italic>
locus has not been associated with BMI in the past, the intronic SNP rs7723398 (
<italic>r</italic>
<sup>2</sup>
< 0.3 per CEU with the SNPs followed up in this study) has been found to be associated with another anthropometric trait, brachial circumference (
<italic>P</italic>
= 9.7 × 10
<sup>−6</sup>
<italic>)</italic>
, in a Croatian population (
<xref ref-type="bibr" rid="B48">48</xref>
).</p>
<p>The strengths of our study include the comprehensive bone-related SNP selection from recently published GWAS data and the ability to test them in very large, well-phenotyped type 2 diabetes and glycemic traits consortia. We were able to replicate our findings from the discovery phase in an additional ∼19,000 individuals. We also followed up the genetic variants with eQTL analysis and other related traits. Our results may help explain the, as yet not quite well understood, epidemiological link between type 2 diabetes and bone disease. This study has highlighted the necessity to examine genetic variants not reaching the genome-wide significance threshold because this may uncover potential findings buried in the
<italic>P</italic>
value distribution. Given that the MAGIC discovery dataset has been published since the completion of our analyses, further studies like ours can be pursued (
<ext-link ext-link-type="uri" xlink:href="http://www.magicinvestigators.org">www.magicinvestigators.org</ext-link>
). Furthermore, the BMD-related locus that was associated with fasting glucose was selected from a candidate gene study. This illustrates the importance of examining candidate genes in discovering genetic pleiotropy rather than solely examining loci associated at levels of genome-wide significance.</p>
<p>We are limited by having chosen SNPs from GWASs examining only BMD. Even though BMD is predictive of fracture in people with type 2 diabetes (
<xref ref-type="bibr" rid="B10">10</xref>
), studies show that individuals with type 2 diabetes have a higher risk of fracture despite higher BMD in general (
<xref ref-type="bibr" rid="B4">4</xref>
). By examining genetic variants related to BMD only, we may miss the non–BMD related genetic contribution to fracture risk. In addition, our findings do not explain the observed paradox of generally higher BMD and yet higher fracture risk among people with type 2 diabetes (
<xref ref-type="bibr" rid="B4">4</xref>
). A direct genetic test of this paradox using
<italic>ITGA1</italic>
SNPs is not possible because the SNPs that influence fasting glucose and BMD at this locus are not correlated. In addition, a follow-up study examining fracture-related genetic variants for association with type 2 diabetes and glycemic traits will be warranted when large fracture GWASs become available. In a similar manner, the examination of glycemia-related SNPs for association with BMD and fracture phenotypes may further explain the relationship between bone disease and type 2 diabetes, and these studies are currently under way.</p>
<p>Despite the large sample size, none of the SNPs reached genome-wide significance in the combined analysis. We may need a larger sample size to determine if the
<italic>ITGA1</italic>
SNPs that were associated with fasting glucose will replicate in other populations and attain genome-wide significance because our replication sample may have been too small to detect the association found in the discovery stage. We estimate that we need an additional 12,000 participants to see an association between the
<italic>ITGA1</italic>
SNPs and fasting glucose at the same effect sizes seen in the discovery stage. Fortunately, ongoing deployment of the custom-made Metabo-Chip (comprising >200,000 SNPs related to cardiovascular disease, obesity, and type 2 diabetes) across many thousands of samples with relevant phenotypes may provide sufficient power to uncover novel associations at genome-wide significance levels. The
<italic>ITGA1</italic>
SNPs rs6881900 and rs10940273, found to be associated with fasting glucose in our study, are present in the Metabo-Chip. This provides an exciting opportunity to understand the relationship of
<italic>ITGA1</italic>
with glycemic traits, as well as other metabolic phenotypes in cardiovascular disease and obesity.</p>
<p>In sum, we have identified a new locus candidate,
<italic>ITGA1</italic>
, influencing both fasting glucose and BMD, that may begin to explain the genetic contribution to the epidemiological observations linking type 2 diabetes and osteoporosis. The ongoing analysis of Metabo-Chip genotypes across large samples will help determine if
<italic>ITGA1</italic>
proves to be a new locus associated with fasting glucose at levels of genome-wide significance. New insights into the genetic pleiotropy of both disease states may further underscore the link between skeletal and glucose metabolism, highlight the complexity of this relationship, provide a focus for future investigations, raise awareness for adverse effects in one system while treating another, and reveal potential targets for disease therapies in both diseases.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplementary Data</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_61_8_2176__index.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="supp_db11-1515_DB111515SupplementaryData1.pdf"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_db11-1515_DB111515SupplementaryData2.xls"></media>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn id="fn1" fn-type="supplementary-material">
<p>This article contains Supplementary Data online at
<ext-link ext-link-type="uri" xlink:href="http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1515/-/DC1">http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1515/-/DC1</ext-link>
.</p>
</fn>
<fn id="fn2">
<p>*A complete list of the MAGIC Investigators, the DIAGRAM + Consortium, the MuTHER Consortium, and the GEFOS Consortium can be found in the Supplementary Data online. A complete list of the ASCOT Investigators can be found in ref. 51.</p>
</fn>
</fn-group>
<ack>
<title>ACKNOWLEDGMENTS</title>
<p>L.K.B. has received support from National Research Service Award Institutional Training Grant T32 DK-007028-35 to the Massachusetts General Hospital, National Institutes of Health (NIH) Loan Repayment Award National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) 1-L30-DK-089944-01, the Endocrine Society Lilly Endocrine Scholars Award, and a Doris Duke Charitable Foundation Distinguished Scientist Clinical Award to David Altshuler. Y.-H.H. was supported by NIH/National Institute of Arthritis and Musculoskeletal and Skin (NIAMS) Grant R21-AR-056405. J.D. has received support from NIDDK R01-DK-078616. J.B.M. was supported by NIDDK R01-DK-078616 and NIDDK K24-DK-080140. D.P.K. has received support from NIAMS and National Institute on Aging Grant R01-AR/AG-41398. J.C.F. was supported by NIDDK R01-DK-078616 and a Doris Duke Charitable Foundation Clinical Scientist Development Award.</p>
<p>J.C.F. has received consulting honoraria from Novartis, Eli Lilly, and Pfizer. No other potential conflicts of interest relevant to this article were reported.</p>
<p>L.K.B. wrote the manuscript and researched data. Y.-H.H. researched data, contributed to discussion, and reviewed and edited the manuscript. R.J.A. formatted the tables and reviewed and edited the manuscript. J.D. performed the meta-analysis and reviewed and edited the manuscript. B.F.V., L.J.R.-T., S.H., M.L., D.B., C.La., J.H., M.F., N.B.-N., C.Le., P.A., P.K.M., I.S., S.R., L.C., C.D., J.K., K.O.K., N.L.P., I.B.B., M.A.P., B.B., P.F., A.R.S., L.J.P., N.W., P.M., T.J., and J.S.P. researched and provided data from their respective cohorts and reviewed and edited the manuscript. L.F., E.G., and P.E. researched and provided eQTL analysis and reviewed and edited the manuscript. D.K., J.B.M., and D.P.K. contributed to discussion and reviewed and edited the manuscript. J.C.F. contributed to discussion and wrote the manuscript. L.K.B. is the guarantor of this work and, as such, had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.</p>
<p>Parts of this study were presented in abstract form at the International Congress of Human Genetics Meeting, Montreal, Quebec, Canada, 12 October 2011.</p>
<p>The authors would like to thank Denis Rybin at Boston University School of Public Health for creating Fig. 2. The authors acknowledge the contribution of the GIANT Consortium, which provided summary statistics for the association between selected SNPs and BMI. Individual cohort acknowledgments are as follows: GEFOS Consortium (
<ext-link ext-link-type="uri" xlink:href="http://www.gefos.org">www.gefos.org</ext-link>
) is funded by the European Commission (HEALTH-F2-2008-201865-GEFOS). ARIC is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute (NHLBI) contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01-HL-087641, R01-HL-59367, and R01-HL-086694, National Human Genome Research Institute contract U01-HG-004402, and NIH contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure of the ARIC study was partly supported by Grant UL1-RR-025005, a component of the NIH and NIH Roadmap for Medical Research. The Fenland Study is funded by the Wellcome Trust and the Medical Research Council. The authors are grateful to all the volunteers for their time and help and to the general practitioners and practice staff for help with recruitment. The authors thank the Fenland Study Investigators, Fenland Study Co-ordination Team and the Epidemiology Field, Data, and Technical Teams. Biochemical assays were performed by the National Institute for Health Research, Cambridge Biomedical Research Centre, Core Biochemistry Assay Laboratory, and the Cambridge University Hospitals National Health Service Foundation Trust, Department of Clinical Biochemistry. The BHS acknowledges the generous support for the 1994/1995 follow-up study from Healthway, Western Australia, and the numerous Busselton community volunteers who assisted with data collection and the study participants from the Shire of Busselton. The BHS is supported by the Great Wine Estates of the Margaret River region of Western Australia. The AMISH Cohort was supported by NIH research grants U01-HL-72515, R01-DK-04261, and R01-AG-18728; University of Maryland General Clinical Research Center Grant M01-RR-16500; the Mid-Atlantic Nutrition and Obesity Research Center (P30-DK-072488); the Baltimore Diabetes Research and Training Center (P60-DK-079637); and the Baltimore Veterans Administration Medical Center Geriatric Research and Education Clinical Center. French genetic studies (DESIR and French Obese) were supported in part by the Conseil Regional Nord-Pas-de-Calais: Fonds européen de développement économique et regional, Genome Quebec–Genome Canada and the British Medical Research Council. The authors acknowledge INSERM (employer of N.B.-N.). FamHS work was supported in part by NIH grants 5-R01-HL-08770003 and 5-R01-HL-08821502 from the NHLBI (to M.A.P.) and 5-R01-DK-07568102 and 5-R01-DK-06833603 from NIDDK (to I.B.B.). The GenomeEUtwin project is supported by the European Commission under the program Quality of Life and Management of the Living Resources of Fifth Framework Programme (no. QLG2-CT-2002-01254) and the European Community’s Seventh Framework Programme (FP7/2007-2013), ENGAGE Consortium, Grant Agreement HEALTH-F4-2007- 201413. The Swedish Twin Cohort would like to acknowledge the Swedish Research Council and the Swedish Foundation for Strategic Research. The Finnish Twin Cohort would like to acknowledge the Center of Excellence in Complex Disease Genetics of the Academy of Finland. The GEMINAKAR study was supported by the Danish Medical Research Council, the Danish Heart Association, the Danish Diabetes Association, and GenomeEUtwin. The FHS component of this work was supported by the NHLBI’s FHS (Contract N01-HC-25195), its contract with Affymetrix, Inc. for genotyping services (Contract N02-HL-6-4278), and the resources of the FHS SNP Health Association Resource (SHARe) project, the Boston University Linux Cluster for Genetic Analysis (LinGA) funded by the NIH National Center for Research Resources Shared Instrumentation Grant 1-S10-RR-163736-01A1, and the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. The ASAP study liver eQTL data were supported by the Swedish Research Council (12660), the Swedish Heart-Lung Foundation, the European Commission (FAD, Health-F2-2008-200647), and a donation by Fredrik Lundberg.</p>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="B1">
<label>1</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vestergaard</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis</article-title>
.
<source>Osteoporos Int</source>
<year>2007</year>
;
<volume>18</volume>
:
<fpage>427</fpage>
<lpage>444</lpage>
<pub-id pub-id-type="pmid">17068657</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<label>2</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwartz</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Sellmeyer</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Ensrud</surname>
<given-names>KE</given-names>
</name>
<etal></etal>
<collab>Study of Osteoporotic Features Research Group</collab>
</person-group>
<article-title>Older women with diabetes have an increased risk of fracture: a prospective study</article-title>
.
<source>J Clin Endocrinol Metab</source>
<year>2001</year>
;
<volume>86</volume>
:
<fpage>32</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="pmid">11231974</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<label>3</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strotmeyer</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Cauley</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>AV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study</article-title>
.
<source>Arch Intern Med</source>
<year>2005</year>
;
<volume>165</volume>
:
<fpage>1612</fpage>
<lpage>1617</lpage>
<pub-id pub-id-type="pmid">16043679</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<label>4</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonds</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Larson</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>AV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study</article-title>
.
<source>J Clin Endocrinol Metab</source>
<year>2006</year>
;
<volume>91</volume>
:
<fpage>3404</fpage>
<lpage>3410</lpage>
<pub-id pub-id-type="pmid">16804043</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<label>5</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melton</surname>
<given-names>LJ</given-names>
<suffix>3rd</suffix>
</name>
<name>
<surname>Leibson</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Achenbach</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Therneau</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Khosla</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Fracture risk in type 2 diabetes: update of a population-based study</article-title>
.
<source>J Bone Miner Res</source>
<year>2008</year>
;
<volume>23</volume>
:
<fpage>1334</fpage>
<lpage>1342</lpage>
<pub-id pub-id-type="pmid">18348689</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<label>6</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janghorbani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Van Dam</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Willett</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>FB</given-names>
</name>
</person-group>
<article-title>Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture</article-title>
.
<source>Am J Epidemiol</source>
<year>2007</year>
;
<volume>166</volume>
:
<fpage>495</fpage>
<lpage>505</lpage>
<pub-id pub-id-type="pmid">17575306</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<label>7</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burghardt</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Issever</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>AV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus</article-title>
.
<source>J Clin Endocrinol Metab</source>
<year>2010</year>
;
<volume>95</volume>
:
<fpage>5045</fpage>
<lpage>5055</lpage>
<pub-id pub-id-type="pmid">20719835</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<label>8</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petit</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Paudel</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>BC</given-names>
</name>
<etal></etal>
<collab>Osteoporotic Fractures in Men (MrOs) Study Group</collab>
</person-group>
<article-title>Bone mass and strength in older men with type 2 diabetes: the Osteoporotic Fractures in Men Study</article-title>
.
<source>J Bone Miner Res</source>
<year>2010</year>
;
<volume>25</volume>
:
<fpage>285</fpage>
<lpage>291</lpage>
<pub-id pub-id-type="pmid">19594301</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<label>9</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melton</surname>
<given-names>LJ</given-names>
<suffix>3rd</suffix>
</name>
<name>
<surname>Riggs</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Leibson</surname>
<given-names>CL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A bone structural basis for fracture risk in diabetes</article-title>
.
<source>J Clin Endocrinol Metab</source>
<year>2008</year>
;
<volume>93</volume>
:
<fpage>4804</fpage>
<lpage>4809</lpage>
<pub-id pub-id-type="pmid">18796521</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<label>10</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwartz</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Vittinghoff</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>DC</given-names>
</name>
<etal></etal>
<collab>Study of Osteoporotic Fractures (SOF) Research Group</collab>
<collab>Osteoporotic Fractures in Men (MrOS) Research Group</collab>
<collab>Health, Aging, and Body Composition (Health ABC) Research Group</collab>
</person-group>
<article-title>Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes</article-title>
.
<source>JAMA</source>
<year>2011</year>
;
<volume>305</volume>
:
<fpage>2184</fpage>
<lpage>2192</lpage>
<pub-id pub-id-type="pmid">21632482</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<label>11</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferron</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yoshizawa</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism</article-title>
.
<source>Cell</source>
<year>2010</year>
;
<volume>142</volume>
:
<fpage>296</fpage>
<lpage>308</lpage>
<pub-id pub-id-type="pmid">20655470</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<label>12</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Sowa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hinoi</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Endocrine regulation of energy metabolism by the skeleton</article-title>
.
<source>Cell</source>
<year>2007</year>
;
<volume>130</volume>
:
<fpage>456</fpage>
<lpage>469</lpage>
<pub-id pub-id-type="pmid">17693256</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<label>13</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sivakumaran</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Agakov</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Theodoratou</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Abundant pleiotropy in human complex diseases and traits</article-title>
.
<source>Am J Hum Genet</source>
<year>2011</year>
;
<volume>89</volume>
:
<fpage>607</fpage>
<lpage>618</lpage>
<pub-id pub-id-type="pmid">22077970</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<label>14</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Styrkarsdottir</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Halldorsson</surname>
<given-names>BV</given-names>
</name>
<name>
<surname>Gretarsdottir</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multiple genetic loci for bone mineral density and fractures</article-title>
.
<source>N Engl J Med</source>
<year>2008</year>
;
<volume>358</volume>
:
<fpage>2355</fpage>
<lpage>2365</lpage>
<pub-id pub-id-type="pmid">18445777</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<label>15</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Styrkarsdottir</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Halldorsson</surname>
<given-names>BV</given-names>
</name>
<name>
<surname>Gretarsdottir</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>New sequence variants associated with bone mineral density</article-title>
.
<source>Nat Genet</source>
<year>2009</year>
;
<volume>41</volume>
:
<fpage>15</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">19079262</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<label>16</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rivadeneira</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Styrkársdottir</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Estrada</surname>
<given-names>K</given-names>
</name>
<etal></etal>
<collab>Genetic Factors for Osteoporosis (GEFOS) Consortium</collab>
</person-group>
<article-title>Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies</article-title>
.
<source>Nat Genet</source>
<year>2009</year>
;
<volume>41</volume>
:
<fpage>1199</fpage>
<lpage>1206</lpage>
<pub-id pub-id-type="pmid">19801982</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<label>17</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richards</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Rivadeneira</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Inouye</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study</article-title>
.
<source>Lancet</source>
<year>2008</year>
;
<volume>371</volume>
:
<fpage>1505</fpage>
<lpage>1512</lpage>
<pub-id pub-id-type="pmid">18455228</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<label>18</label>
<mixed-citation publication-type="other">Hsu YH, Zillikens MC, Wilson SG, et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility loci for osteoporosis-related traits. PLoS Genet 2010;6:e1000977</mixed-citation>
</ref>
<ref id="B19">
<label>19</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Handsaker</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Pulit</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Nizzari</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>O’Donnell</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>de Bakker</surname>
<given-names>PI</given-names>
</name>
</person-group>
<article-title>SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap</article-title>
.
<source>Bioinformatics</source>
<year>2008</year>
;
<volume>24</volume>
:
<fpage>2938</fpage>
<lpage>2939</lpage>
<pub-id pub-id-type="pmid">18974171</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<label>20</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richards</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Kavvoura</surname>
<given-names>FK</given-names>
</name>
<name>
<surname>Rivadeneira</surname>
<given-names>F</given-names>
</name>
<etal></etal>
<collab>Genetic Factors for Osteoporosis Consortium</collab>
</person-group>
<article-title>Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture</article-title>
.
<source>Ann Intern Med</source>
<year>2009</year>
;
<volume>151</volume>
:
<fpage>528</fpage>
<lpage>537</lpage>
<pub-id pub-id-type="pmid">19841454</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<label>21</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Voight</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Steinthorsdottir</surname>
<given-names>V</given-names>
</name>
<etal></etal>
<collab>MAGIC investigators</collab>
<collab>GIANT Consortium</collab>
</person-group>
<article-title>Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis</article-title>
.
<source>Nat Genet</source>
<year>2010</year>
;
<volume>42</volume>
:
<fpage>579</fpage>
<lpage>589</lpage>
<pub-id pub-id-type="pmid">20581827</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<label>22</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dupuis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Langenberg</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Prokopenko</surname>
<given-names>I</given-names>
</name>
<etal></etal>
<collab>DIAGRAM Consortium</collab>
<collab>GIANT Consortium</collab>
<collab>Global BPgen Consortium</collab>
<collab>Anders Hamsten on behalf of Procardis Consortium</collab>
<collab>MAGIC investigators</collab>
</person-group>
<article-title>New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk</article-title>
.
<source>Nat Genet</source>
<year>2010</year>
;
<volume>42</volume>
:
<fpage>105</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="pmid">20081858</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<label>23</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soranzo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sanna</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wheeler</surname>
<given-names>E</given-names>
</name>
<etal></etal>
<collab>WTCCC</collab>
</person-group>
<article-title>Common variants at 10 genomic loci influence hemoglobin A
<sub>1</sub>
(C) levels via glycemic and nonglycemic pathways [corrected in: Diabetes 2011;60:1050–1051]</article-title>
.
<source>Diabetes</source>
<year>2010</year>
;
<volume>59</volume>
:
<fpage>3229</fpage>
<lpage>3239</lpage>
<pub-id pub-id-type="pmid">20858683</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<label>24</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saxena</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hivert</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Langenberg</surname>
<given-names>C</given-names>
</name>
<etal></etal>
<collab>GIANT consortium</collab>
<collab>MAGIC investigators</collab>
</person-group>
<article-title>Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge</article-title>
.
<source>Nat Genet</source>
<year>2010</year>
;
<volume>42</volume>
:
<fpage>142</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="pmid">20081857</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<label>25</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matthews</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Hosker</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Rudenski</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Naylor</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Treacher</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>RC</given-names>
</name>
</person-group>
<article-title>Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man</article-title>
.
<source>Diabetologia</source>
<year>1985</year>
;
<volume>28</volume>
:
<fpage>412</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="pmid">3899825</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<label>26</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nyholt</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other</article-title>
.
<source>Am J Hum Genet</source>
<year>2004</year>
;
<volume>74</volume>
:
<fpage>765</fpage>
<lpage>769</lpage>
<pub-id pub-id-type="pmid">14997420</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<label>27</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix</article-title>
.
<source>Heredity (Edinb)</source>
<year>2005</year>
;
<volume>95</volume>
:
<fpage>221</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="pmid">16077740</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<label>28</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Willer</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Abecasis</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>METAL: fast and efficient meta-analysis of genomewide association scans</article-title>
.
<source>Bioinformatics</source>
<year>2010</year>
;
<volume>26</volume>
:
<fpage>2190</fpage>
<lpage>2191</lpage>
<pub-id pub-id-type="pmid">20616382</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<label>29</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Folkersen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>van’t Hooft</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Chernogubova</surname>
<given-names>E</given-names>
</name>
<etal></etal>
<collab>BiKE and ASAP study groups</collab>
</person-group>
<article-title>Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease [corrected in: Circ Cardiovasc Genet 2010;3:e5]</article-title>
.
<source>Circ Cardiovasc Genet</source>
<year>2010</year>
;
<volume>3</volume>
:
<fpage>365</fpage>
<lpage>373</lpage>
<pub-id pub-id-type="pmid">20562444</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<label>30</label>
<mixed-citation publication-type="other">Nica AC, Parts L, Glass D, et al.; MuTHER Consortium. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet 2011;7:e1002003</mixed-citation>
</ref>
<ref id="B31">
<label>31</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchini</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Howie</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>S</given-names>
</name>
<name>
<surname>McVean</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Donnelly</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A new multipoint method for genome-wide association studies by imputation of genotypes</article-title>
.
<source>Nat Genet</source>
<year>2007</year>
;
<volume>39</volume>
:
<fpage>906</fpage>
<lpage>913</lpage>
<pub-id pub-id-type="pmid">17572673</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<label>32</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Speliotes</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Willer</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Berndt</surname>
<given-names>SI</given-names>
</name>
<etal></etal>
<collab>MAGIC</collab>
<collab>Procardis Consortium</collab>
</person-group>
<article-title>Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index</article-title>
.
<source>Nat Genet</source>
<year>2010</year>
;
<volume>42</volume>
:
<fpage>937</fpage>
<lpage>948</lpage>
<pub-id pub-id-type="pmid">20935630</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<label>33</label>
<mixed-citation publication-type="other">
<italic>Holland-Frei Cancer Medicine</italic>
6th ed. Hamilton, ON, Canada, BC Decker, 2003</mixed-citation>
</ref>
<ref id="B34">
<label>34</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shamsadin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Adham</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>von Beust</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Engel</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Molecular cloning, expression and chromosome location of the human pelota gene PELO</article-title>
.
<source>Cytogenet Cell Genet</source>
<year>2000</year>
;
<volume>90</volume>
:
<fpage>75</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">11060452</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<label>35</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ekholm</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hankenson</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Uusitalo</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Diminished callus size and cartilage synthesis in alpha 1 beta 1 integrin-deficient mice during bone fracture healing</article-title>
.
<source>Am J Pathol</source>
<year>2002</year>
;
<volume>160</volume>
:
<fpage>1779</fpage>
<lpage>1785</lpage>
<pub-id pub-id-type="pmid">12000729</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<label>36</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaido</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yebra</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cirulli</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Rhodes</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Diaferia</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Impact of defined matrix interactions on insulin production by cultured human beta-cells: effect on insulin content, secretion, and gene transcription</article-title>
.
<source>Diabetes</source>
<year>2006</year>
;
<volume>55</volume>
:
<fpage>2723</fpage>
<lpage>2729</lpage>
<pub-id pub-id-type="pmid">17003336</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<label>37</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaido</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yebra</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cirulli</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha1beta1</article-title>
.
<source>J Biol Chem</source>
<year>2004</year>
;
<volume>279</volume>
:
<fpage>53762</fpage>
<lpage>53769</lpage>
<pub-id pub-id-type="pmid">15485856</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<label>38</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turner</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Holman</surname>
<given-names>RR</given-names>
</name>
</person-group>
<article-title>Insulin rather than glucose homoeostasis in the pathophysiology of diabetes</article-title>
.
<source>Lancet</source>
<year>1976</year>
;
<volume>1</volume>
:
<fpage>1272</fpage>
<lpage>1274</lpage>
<pub-id pub-id-type="pmid">73696</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<label>39</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patsenker</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Stickel</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Role of integrins in fibrosing liver diseases</article-title>
.
<source>Am J Physiol Gastrointest Liver Physiol</source>
<year>2011</year>
;
<volume>301</volume>
:
<fpage>G425</fpage>
<lpage>G434</lpage>
<pub-id pub-id-type="pmid">21659620</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<label>40</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ayala</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Lee-Young</surname>
<given-names>RS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin alpha2beta1 in mice</article-title>
.
<source>Diabetes</source>
<year>2011</year>
;
<volume>60</volume>
:
<fpage>416</fpage>
<lpage>426</lpage>
<pub-id pub-id-type="pmid">21270253</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<label>41</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balint</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Szabo</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Marshall</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Sprague</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Glucose-induced inhibition of in vitro bone mineralization</article-title>
.
<source>Bone</source>
<year>2001</year>
;
<volume>28</volume>
:
<fpage>21</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="pmid">11165939</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<label>42</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botolin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>McCabe</surname>
<given-names>LR</given-names>
</name>
</person-group>
<article-title>Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways</article-title>
.
<source>J Cell Biochem</source>
<year>2006</year>
;
<volume>99</volume>
:
<fpage>411</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="pmid">16619259</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<label>43</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vestergaard</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rejnmark</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mosekilde</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Are antiresorptive drugs effective against fractures in patients with diabetes?</article-title>
<source>Calcif Tissue Int</source>
<year>2011</year>
;
<volume>88</volume>
:
<fpage>209</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="pmid">21161194</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<label>44</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gregorio</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cristallini</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Santeusanio</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Filipponi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Fumelli</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes?</article-title>
<source>Diabetes Res Clin Pract</source>
<year>1994</year>
;
<volume>23</volume>
:
<fpage>43</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">8013262</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<label>45</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwartz</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Sellmeyer</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>Diabetes, fracture, and bone fragility</article-title>
.
<source>Curr Osteoporos Rep</source>
<year>2007</year>
;
<volume>5</volume>
:
<fpage>105</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="pmid">17925191</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<label>46</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glauber</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Vollmer</surname>
<given-names>WM</given-names>
</name>
<name>
<surname>Nevitt</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Ensrud</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Orwoll</surname>
<given-names>ES</given-names>
</name>
</person-group>
<article-title>Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density</article-title>
.
<source>J Clin Endocrinol Metab</source>
<year>1995</year>
;
<volume>80</volume>
:
<fpage>1118</fpage>
<lpage>1123</lpage>
<pub-id pub-id-type="pmid">7714079</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<label>47</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vazquez</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Duval</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jacobs</surname>
<given-names>DR</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Silventoinen</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis</article-title>
.
<source>Epidemiol Rev</source>
<year>2007</year>
;
<volume>29</volume>
:
<fpage>115</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="pmid">17494056</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<label>48</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Polasek</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Marusić</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rotim</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association study of anthropometric traits in Korcula Island, Croatia</article-title>
.
<source>Croat Med J</source>
<year>2009</year>
;
<volume>50</volume>
:
<fpage>7</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="pmid">19260139</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<label>49</label>
<mixed-citation publication-type="webpage">Hindorff LA, MacArthur J (European Bioinformatics Institute), Wise A, et al. A Catalog of Published Genome-Wide Association Studies. Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.genome.gov/gwasstudies">www.genome.gov/gwasstudies</ext-link>
Accessed 23 August 2011</mixed-citation>
</ref>
<ref id="B50">
<label>50</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Chiou</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>WH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization</article-title>
.
<source>Nucleic Acids Res</source>
<year>2006</year>
;
<volume>34</volume>
(
<issue>Web Server issue</issue>
):W635–641
<pub-id pub-id-type="pmid">16845089</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<label>51</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sever</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Dahlof</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Poulter</surname>
<given-names>NR</given-names>
</name>
<etal></etal>
</person-group>
<article-title> Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet </article-title>
<volume>361</volume>
:
<fpage>1149</fpage>
<lpage>1158</lpage>
,
<year>2003</year>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002421  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002421  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024