Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0013879 ( Pmc/Corpus ); précédent : 0013878; suivant : 0013880 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamics of range margins for metapopulations under climate change</title>
<author>
<name sortKey="Anderson, B J" sort="Anderson, B J" uniqKey="Anderson B" first="B. J." last="Anderson">B. J. Anderson</name>
<affiliation>
<nlm:aff id="aff1">
<institution>UKPopNet, Department of Biology (Area 18), University of York</institution>
<addr-line>PO Box 373, York YO10 5YW, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akcakaya, H R" sort="Akcakaya, H R" uniqKey="Akcakaya H" first="H. R." last="Akçakaya">H. R. Akçakaya</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Ecology and Evolution, Stony Brook University</institution>
<addr-line>Stony Brook, NY 11794, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Araujo, M B" sort="Araujo, M B" uniqKey="Araujo M" first="M. B." last="Araújo">M. B. Araújo</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences</institution>
<addr-line>CSIC, C/José Gutierrez Abascal, 2, Madrid 28006, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fordham, D A" sort="Fordham, D A" uniqKey="Fordham D" first="D. A." last="Fordham">D. A. Fordham</name>
<affiliation>
<nlm:aff id="aff4">
<institution>School of Earth and Environmental Sciences, Research Institute for Climate Change and Sustainability, University of Adelaide</institution>
<addr-line>South Australia, 5005, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martinez Meyer, E" sort="Martinez Meyer, E" uniqKey="Martinez Meyer E" first="E." last="Martinez-Meyer">E. Martinez-Meyer</name>
<affiliation>
<nlm:aff id="aff5">
<institution>Department of Zoology, Instituto de Biología, Universidad Nacional Autónoma de México</institution>
<addr-line>Avenida Universidad 3000, Mexico City 04510, Mexico</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Thuiller, W" sort="Thuiller, W" uniqKey="Thuiller W" first="W." last="Thuiller">W. Thuiller</name>
<affiliation>
<nlm:aff id="aff6">
<institution>Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université J. Fourier</institution>
<addr-line>BP 53, 38041 Grenoble Cedex 9, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brook, B W" sort="Brook, B W" uniqKey="Brook B" first="B. W." last="Brook">B. W. Brook</name>
<affiliation>
<nlm:aff id="aff4">
<institution>School of Earth and Environmental Sciences, Research Institute for Climate Change and Sustainability, University of Adelaide</institution>
<addr-line>South Australia, 5005, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19324811</idno>
<idno type="pmc">2677226</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677226</idno>
<idno type="RBID">PMC:2677226</idno>
<idno type="doi">10.1098/rspb.2008.1681</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">001387</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001387</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Dynamics of range margins for metapopulations under climate change</title>
<author>
<name sortKey="Anderson, B J" sort="Anderson, B J" uniqKey="Anderson B" first="B. J." last="Anderson">B. J. Anderson</name>
<affiliation>
<nlm:aff id="aff1">
<institution>UKPopNet, Department of Biology (Area 18), University of York</institution>
<addr-line>PO Box 373, York YO10 5YW, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akcakaya, H R" sort="Akcakaya, H R" uniqKey="Akcakaya H" first="H. R." last="Akçakaya">H. R. Akçakaya</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Ecology and Evolution, Stony Brook University</institution>
<addr-line>Stony Brook, NY 11794, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Araujo, M B" sort="Araujo, M B" uniqKey="Araujo M" first="M. B." last="Araújo">M. B. Araújo</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences</institution>
<addr-line>CSIC, C/José Gutierrez Abascal, 2, Madrid 28006, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fordham, D A" sort="Fordham, D A" uniqKey="Fordham D" first="D. A." last="Fordham">D. A. Fordham</name>
<affiliation>
<nlm:aff id="aff4">
<institution>School of Earth and Environmental Sciences, Research Institute for Climate Change and Sustainability, University of Adelaide</institution>
<addr-line>South Australia, 5005, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martinez Meyer, E" sort="Martinez Meyer, E" uniqKey="Martinez Meyer E" first="E." last="Martinez-Meyer">E. Martinez-Meyer</name>
<affiliation>
<nlm:aff id="aff5">
<institution>Department of Zoology, Instituto de Biología, Universidad Nacional Autónoma de México</institution>
<addr-line>Avenida Universidad 3000, Mexico City 04510, Mexico</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Thuiller, W" sort="Thuiller, W" uniqKey="Thuiller W" first="W." last="Thuiller">W. Thuiller</name>
<affiliation>
<nlm:aff id="aff6">
<institution>Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université J. Fourier</institution>
<addr-line>BP 53, 38041 Grenoble Cedex 9, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brook, B W" sort="Brook, B W" uniqKey="Brook B" first="B. W." last="Brook">B. W. Brook</name>
<affiliation>
<nlm:aff id="aff4">
<institution>School of Earth and Environmental Sciences, Research Institute for Climate Change and Sustainability, University of Adelaide</institution>
<addr-line>South Australia, 5005, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the Royal Society B: Biological Sciences</title>
<idno type="ISSN">0962-8452</idno>
<idno type="eISSN">1471-2954</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For
<italic>Romerolagus diazi</italic>
(volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For
<italic>Lepus timidus</italic>
(European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the
<italic>northern</italic>
range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change
<italic>slower</italic>
, rather than faster, on the
<italic>southern</italic>
range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Proc Biol Sci</journal-id>
<journal-id journal-id-type="publisher-id">RSPB</journal-id>
<journal-title>Proceedings of the Royal Society B: Biological Sciences</journal-title>
<issn pub-type="ppub">0962-8452</issn>
<issn pub-type="epub">1471-2954</issn>
<publisher>
<publisher-name>The Royal Society</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19324811</article-id>
<article-id pub-id-type="pmc">2677226</article-id>
<article-id pub-id-type="publisher-id">rspb20081681</article-id>
<article-id pub-id-type="doi">10.1098/rspb.2008.1681</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Dynamics of range margins for metapopulations under climate change</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Anderson</surname>
<given-names>B.J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Akçakaya</surname>
<given-names>H.R.</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Araújo</surname>
<given-names>M.B.</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fordham</surname>
<given-names>D.A.</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Martinez-Meyer</surname>
<given-names>E.</given-names>
</name>
<xref ref-type="aff" rid="aff5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Thuiller</surname>
<given-names>W.</given-names>
</name>
<xref ref-type="aff" rid="aff6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brook</surname>
<given-names>B.W.</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<institution>UKPopNet, Department of Biology (Area 18), University of York</institution>
<addr-line>PO Box 373, York YO10 5YW, UK</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<institution>Department of Ecology and Evolution, Stony Brook University</institution>
<addr-line>Stony Brook, NY 11794, USA</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<institution>Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences</institution>
<addr-line>CSIC, C/José Gutierrez Abascal, 2, Madrid 28006, Spain</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<institution>School of Earth and Environmental Sciences, Research Institute for Climate Change and Sustainability, University of Adelaide</institution>
<addr-line>South Australia, 5005, Australia</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<institution>Department of Zoology, Instituto de Biología, Universidad Nacional Autónoma de México</institution>
<addr-line>Avenida Universidad 3000, Mexico City 04510, Mexico</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<institution>Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université J. Fourier</institution>
<addr-line>BP 53, 38041 Grenoble Cedex 9, France</addr-line>
</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
Author for correspondence (
<email>barry.brook@adelaide.edu.au</email>
)</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>25</day>
<month>2</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="ppub">
<day>22</day>
<month>4</month>
<year>2009</year>
</pub-date>
<volume>276</volume>
<issue>1661</issue>
<fpage>1415</fpage>
<lpage>1420</lpage>
<history>
<date date-type="received">
<day>29</day>
<month>9</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>12</month>
<year>2008</year>
</date>
</history>
<permissions>
<copyright-statement>© 2009 The Royal Society</copyright-statement>
<copyright-year>2009</copyright-year>
</permissions>
<abstract>
<p>We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For
<italic>Romerolagus diazi</italic>
(volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For
<italic>Lepus timidus</italic>
(European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the
<italic>northern</italic>
range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change
<italic>slower</italic>
, rather than faster, on the
<italic>southern</italic>
range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics.</p>
</abstract>
<kwd-group>
<kwd>range limits</kwd>
<kwd>global warming</kwd>
<kwd>extinction risk</kwd>
<kwd>population dynamics</kwd>
<kwd>elevation</kwd>
<kwd>latitude</kwd>
</kwd-group>
</article-meta>
</front>
<floats-wrap>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>Predicted status of the
<italic>R. diazi</italic>
metapopulation: (
<italic>a</italic>
) female abundance, (
<italic>b</italic>
) number of occupied patches and (
<italic>c</italic>
) cumulative probability of decline to fewer than 1000 females. For each diagnostic, two scenarios are presented: dynamic climate change (black line) and a static climate (grey line). Error bars, based on 10 000 stochastic model iterations, are presented for every 10th year only with the two scenarios offset by 1 year for clarity.</p>
</caption>
<graphic xlink:href="rspb20081681f01"></graphic>
</fig>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Predicted status of the
<italic>L. timidus</italic>
metapopulation within Great Britain: (
<italic>a</italic>
) female abundance, (
<italic>b</italic>
) number of occupied patches and (
<italic>c</italic>
) cumulative probability of declining to less than 10% of the initial abundance. For each diagnostic, two scenarios are presented: dynamic climate change (black line) and a static climate (grey line). Error bars, based on 10 000 stochastic model iterations, are presented for every 10th year only with the two scenarios offset by 1 year for clarity.</p>
</caption>
<graphic xlink:href="rspb20081681f02"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Predicted changes for the
<italic>R. diazi</italic>
metapopulation in: (
<italic>a</italic>
) total area (solid lines) and core area (dashed lines) of all occupied patches; and (
<italic>b</italic>
) mean (dashed lines) and minimum (solid lines) elevation. Two scenarios are shown: the dynamic climate change scenario (black) and the stable climate scenario (grey). Isolated points (his) represent an estimate of the historical area and elevation, respectively.</p>
</caption>
<graphic xlink:href="rspb20081681f03"></graphic>
</fig>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Predicted shifts in latitude for
<italic>L. timidus</italic>
under three different dispersal scenarios: (
<italic>a</italic>
<italic>c</italic>
) low, (
<italic>d</italic>
<italic>f</italic>
) medium and (
<italic>g</italic>
<italic>i</italic>
) high. Trends are shown for: (
<italic>a</italic>
,
<italic>d</italic>
,
<italic>g</italic>
) the northern range limit (weighted mean latitude of the northern 10% of the population); (
<italic>b</italic>
,
<italic>e</italic>
,
<italic>h</italic>
) the core centroid of the population (weighted mean latitude of whole population); (
<italic>c</italic>
,
<italic>f</italic>
,
<italic>i</italic>
) the southern range limit (weighted mean latitude of the southern 10% of the population). For each range margin and the population as a whole, two scenarios are presented: dynamic climate change (black line) and a static climate (grey line). Values represent deviations from initial values. Dot-dashed line represents 2010 values.</p>
</caption>
<graphic xlink:href="rspb20081681f04"></graphic>
</fig>
</floats-wrap>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0013879 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0013879 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024