Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experiments on deformation behaviour of functionally graded NiTi structures

Identifieur interne : 001340 ( Pmc/Corpus ); précédent : 001339; suivant : 001341

Experiments on deformation behaviour of functionally graded NiTi structures

Auteurs : Bashir S. Shariat ; Qinglin Meng ; Abdus S. Mahmud ; Zhigang Wu ; Reza Bakhtiari ; Junsong Zhang ; Fakhrodin Motazedian ; Hong Yang ; Gerard Rio ; Tae-Hyun Nam ; Yinong Liu

Source :

RBID : PMC:5496460

Abstract

Functionally graded NiTi structures benefit from the combination of the smart properties of NiTi and those of functionally graded structures. This article provides experimental data for thermomechanical deformation behaviour of microstructurally graded, compositionally graded and geometrically graded NiTi alloy components, related to the research article entitled “Functionally graded shape memory alloys: design, fabrication and experimental evaluation” (Shariat et al., 2017) [1]. Stress–strain variation of microstructurally graded NiTi wires is presented at different heat treatment conditions and testing temperatures. The complex 4-way shape memory behaviour of a compositionally graded NiTi strip during one complete thermal cycle is demonstrated. The effects of geometrical design on pseudoelastic behaviour of geometrically graded NiTi plates over tensile loading cycles are presented on the stress–strain diagrams.


Url:
DOI: 10.1016/j.dib.2017.06.017
PubMed: 28706965
PubMed Central: 5496460

Links to Exploration step

PMC:5496460

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Experiments on deformation behaviour of functionally graded NiTi structures</title>
<author>
<name sortKey="Shariat, Bashir S" sort="Shariat, Bashir S" uniqKey="Shariat B" first="Bashir S." last="Shariat">Bashir S. Shariat</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meng, Qinglin" sort="Meng, Qinglin" uniqKey="Meng Q" first="Qinglin" last="Meng">Qinglin Meng</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mahmud, Abdus S" sort="Mahmud, Abdus S" uniqKey="Mahmud A" first="Abdus S." last="Mahmud">Abdus S. Mahmud</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0010">School of Mechanical Engineering, University Sains Malaysia, 11800 Gelugor, Penang, Malaysia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Zhigang" sort="Wu, Zhigang" uniqKey="Wu Z" first="Zhigang" last="Wu">Zhigang Wu</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bakhtiari, Reza" sort="Bakhtiari, Reza" uniqKey="Bakhtiari R" first="Reza" last="Bakhtiari">Reza Bakhtiari</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Junsong" sort="Zhang, Junsong" uniqKey="Zhang J" first="Junsong" last="Zhang">Junsong Zhang</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Motazedian, Fakhrodin" sort="Motazedian, Fakhrodin" uniqKey="Motazedian F" first="Fakhrodin" last="Motazedian">Fakhrodin Motazedian</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Hong" sort="Yang, Hong" uniqKey="Yang H" first="Hong" last="Yang">Hong Yang</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rio, Gerard" sort="Rio, Gerard" uniqKey="Rio G" first="Gerard" last="Rio">Gerard Rio</name>
<affiliation>
<nlm:aff id="aff0015">Laboratoire d’Ingénierie des Matériaux de Bretagne, Université de Bretagne Sud, Université Européenne de Bretagne, BP 92116, 56321 Lorient cedex, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nam, Tae Hyun" sort="Nam, Tae Hyun" uniqKey="Nam T" first="Tae-Hyun" last="Nam">Tae-Hyun Nam</name>
<affiliation>
<nlm:aff id="aff0020">School of Materials Science and Engineering & RIGET, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701, Republic of Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yinong" sort="Liu, Yinong" uniqKey="Liu Y" first="Yinong" last="Liu">Yinong Liu</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28706965</idno>
<idno type="pmc">5496460</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496460</idno>
<idno type="RBID">PMC:5496460</idno>
<idno type="doi">10.1016/j.dib.2017.06.017</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">001340</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001340</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Experiments on deformation behaviour of functionally graded NiTi structures</title>
<author>
<name sortKey="Shariat, Bashir S" sort="Shariat, Bashir S" uniqKey="Shariat B" first="Bashir S." last="Shariat">Bashir S. Shariat</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meng, Qinglin" sort="Meng, Qinglin" uniqKey="Meng Q" first="Qinglin" last="Meng">Qinglin Meng</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mahmud, Abdus S" sort="Mahmud, Abdus S" uniqKey="Mahmud A" first="Abdus S." last="Mahmud">Abdus S. Mahmud</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0010">School of Mechanical Engineering, University Sains Malaysia, 11800 Gelugor, Penang, Malaysia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Zhigang" sort="Wu, Zhigang" uniqKey="Wu Z" first="Zhigang" last="Wu">Zhigang Wu</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bakhtiari, Reza" sort="Bakhtiari, Reza" uniqKey="Bakhtiari R" first="Reza" last="Bakhtiari">Reza Bakhtiari</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Junsong" sort="Zhang, Junsong" uniqKey="Zhang J" first="Junsong" last="Zhang">Junsong Zhang</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Motazedian, Fakhrodin" sort="Motazedian, Fakhrodin" uniqKey="Motazedian F" first="Fakhrodin" last="Motazedian">Fakhrodin Motazedian</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Hong" sort="Yang, Hong" uniqKey="Yang H" first="Hong" last="Yang">Hong Yang</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rio, Gerard" sort="Rio, Gerard" uniqKey="Rio G" first="Gerard" last="Rio">Gerard Rio</name>
<affiliation>
<nlm:aff id="aff0015">Laboratoire d’Ingénierie des Matériaux de Bretagne, Université de Bretagne Sud, Université Européenne de Bretagne, BP 92116, 56321 Lorient cedex, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nam, Tae Hyun" sort="Nam, Tae Hyun" uniqKey="Nam T" first="Tae-Hyun" last="Nam">Tae-Hyun Nam</name>
<affiliation>
<nlm:aff id="aff0020">School of Materials Science and Engineering & RIGET, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701, Republic of Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yinong" sort="Liu, Yinong" uniqKey="Liu Y" first="Yinong" last="Liu">Yinong Liu</name>
<affiliation>
<nlm:aff id="aff0005">Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Data in Brief</title>
<idno type="eISSN">2352-3409</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Functionally graded NiTi structures benefit from the combination of the smart properties of NiTi and those of functionally graded structures. This article provides experimental data for thermomechanical deformation behaviour of microstructurally graded, compositionally graded and geometrically graded NiTi alloy components, related to the research article entitled “Functionally graded shape memory alloys: design, fabrication and experimental evaluation” (Shariat et al., 2017)
<xref rid="bib1" ref-type="bibr">[1]</xref>
. Stress–strain variation of microstructurally graded NiTi wires is presented at different heat treatment conditions and testing temperatures. The complex 4-way shape memory behaviour of a compositionally graded NiTi strip during one complete thermal cycle is demonstrated. The effects of geometrical design on pseudoelastic behaviour of geometrically graded NiTi plates over tensile loading cycles are presented on the stress–strain diagrams.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Shariat, B S" uniqKey="Shariat B">B.S. Shariat</name>
</author>
<author>
<name sortKey="Meng, Q" uniqKey="Meng Q">Q. Meng</name>
</author>
<author>
<name sortKey="Mahmud, A S" uniqKey="Mahmud A">A.S. Mahmud</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z. Wu</name>
</author>
<author>
<name sortKey="Bakhtiari, R" uniqKey="Bakhtiari R">R. Bakhtiari</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Motazedian, F" uniqKey="Motazedian F">F. Motazedian</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Rio, G" uniqKey="Rio G">G. Rio</name>
</author>
<author>
<name sortKey="Nam, T H" uniqKey="Nam T">T.-h Nam</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahmud, A S" uniqKey="Mahmud A">A.S. Mahmud</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Nam, T H" uniqKey="Nam T">T.H. Nam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shariat, B S" uniqKey="Shariat B">B.S. Shariat</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Rio, G" uniqKey="Rio G">G. Rio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, Q" uniqKey="Meng Q">Q. Meng</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Shariat, B S" uniqKey="Shariat B">B.S. Shariat</name>
</author>
<author>
<name sortKey="Nam, T H" uniqKey="Nam T">T.-h Nam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shariat, B S" uniqKey="Shariat B">B.S. Shariat</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Meng, Q" uniqKey="Meng Q">Q. Meng</name>
</author>
<author>
<name sortKey="Rio, G" uniqKey="Rio G">G. Rio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Mccormick, P G" uniqKey="Mccormick P">P.G. McCormick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Otsuka, K" uniqKey="Otsuka K">K. Otsuka</name>
</author>
<author>
<name sortKey="Ren, X" uniqKey="Ren X">X. Ren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frenzel, J" uniqKey="Frenzel J">J. Frenzel</name>
</author>
<author>
<name sortKey="George, E P" uniqKey="George E">E.P. George</name>
</author>
<author>
<name sortKey="Dlouhy, A" uniqKey="Dlouhy A">A. Dlouhy</name>
</author>
<author>
<name sortKey="Somsen, C" uniqKey="Somsen C">C. Somsen</name>
</author>
<author>
<name sortKey="Wagner, M F X" uniqKey="Wagner M">M.F.X. Wagner</name>
</author>
<author>
<name sortKey="Eggeler, G" uniqKey="Eggeler G">G. Eggeler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, Q" uniqKey="Meng Q">Q. Meng</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z. Wu</name>
</author>
<author>
<name sortKey="Bakhtiari, R" uniqKey="Bakhtiari R">R. Bakhtiari</name>
</author>
<author>
<name sortKey="Shariat, B S" uniqKey="Shariat B">B.S. Shariat</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Nam, T H" uniqKey="Nam T">T.-h Nam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shariat, B S" uniqKey="Shariat B">B.S. Shariat</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Rio, G" uniqKey="Rio G">G. Rio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shariat, B S" uniqKey="Shariat B">B.S. Shariat</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Rio, G" uniqKey="Rio G">G. Rio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bakhtiari, R" uniqKey="Bakhtiari R">R. Bakhtiari</name>
</author>
<author>
<name sortKey="Shariat, B S" uniqKey="Shariat B">B.S. Shariat</name>
</author>
<author>
<name sortKey="Motazedian, F" uniqKey="Motazedian F">F. Motazedian</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z. Wu</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="other">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Data Brief</journal-id>
<journal-id journal-id-type="iso-abbrev">Data Brief</journal-id>
<journal-title-group>
<journal-title>Data in Brief</journal-title>
</journal-title-group>
<issn pub-type="epub">2352-3409</issn>
<publisher>
<publisher-name>Elsevier</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28706965</article-id>
<article-id pub-id-type="pmc">5496460</article-id>
<article-id pub-id-type="publisher-id">S2352-3409(17)30261-5</article-id>
<article-id pub-id-type="doi">10.1016/j.dib.2017.06.017</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Data Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Experiments on deformation behaviour of functionally graded NiTi structures</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Shariat</surname>
<given-names>Bashir S.</given-names>
</name>
<email>bashir.samsamshariat@uwa.edu.au</email>
<email>bashirsamsam@yahoo.com</email>
<xref rid="aff0005" ref-type="aff">a</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Meng</surname>
<given-names>Qinglin</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mahmud</surname>
<given-names>Abdus S.</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
<xref rid="aff0010" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Zhigang</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bakhtiari</surname>
<given-names>Reza</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Junsong</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Motazedian</surname>
<given-names>Fakhrodin</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Hong</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rio</surname>
<given-names>Gerard</given-names>
</name>
<xref rid="aff0015" ref-type="aff">c</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nam</surname>
<given-names>Tae-hyun</given-names>
</name>
<xref rid="aff0020" ref-type="aff">d</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Yinong</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
</contrib>
</contrib-group>
<aff id="aff0005">
<label>a</label>
Laboratory for Functional Materials, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia</aff>
<aff id="aff0010">
<label>b</label>
School of Mechanical Engineering, University Sains Malaysia, 11800 Gelugor, Penang, Malaysia</aff>
<aff id="aff0015">
<label>c</label>
Laboratoire d’Ingénierie des Matériaux de Bretagne, Université de Bretagne Sud, Université Européenne de Bretagne, BP 92116, 56321 Lorient cedex, France</aff>
<aff id="aff0020">
<label>d</label>
School of Materials Science and Engineering & RIGET, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701, Republic of Korea</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author.
<email>bashir.samsamshariat@uwa.edu.au</email>
<email>bashirsamsam@yahoo.com</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>10</day>
<month>6</month>
<year>2017</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="collection">
<month>8</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="epub">
<day>10</day>
<month>6</month>
<year>2017</year>
</pub-date>
<volume>13</volume>
<fpage>562</fpage>
<lpage>568</lpage>
<history>
<date date-type="received">
<day>24</day>
<month>3</month>
<year>2017</year>
</date>
<date date-type="rev-recd">
<day>8</day>
<month>5</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>6</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© 2017 The Authors</copyright-statement>
<copyright-year>2017</copyright-year>
<license license-type="CC BY" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).</license-p>
</license>
</permissions>
<abstract id="ab0010">
<p>Functionally graded NiTi structures benefit from the combination of the smart properties of NiTi and those of functionally graded structures. This article provides experimental data for thermomechanical deformation behaviour of microstructurally graded, compositionally graded and geometrically graded NiTi alloy components, related to the research article entitled “Functionally graded shape memory alloys: design, fabrication and experimental evaluation” (Shariat et al., 2017)
<xref rid="bib1" ref-type="bibr">[1]</xref>
. Stress–strain variation of microstructurally graded NiTi wires is presented at different heat treatment conditions and testing temperatures. The complex 4-way shape memory behaviour of a compositionally graded NiTi strip during one complete thermal cycle is demonstrated. The effects of geometrical design on pseudoelastic behaviour of geometrically graded NiTi plates over tensile loading cycles are presented on the stress–strain diagrams.</p>
</abstract>
<kwd-group id="keys0005">
<title>Keywords</title>
<kwd>Shape memory alloy (SMA)</kwd>
<kwd>NiTi</kwd>
<kwd>Martensitic transformation</kwd>
<kwd>Functionally graded material (FGM)</kwd>
<kwd>Pseudoelasticity</kwd>
<kwd>Heat treatment</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s0005">
<title>Specifications Table</title>
<p>
<table-wrap id="t0005" position="float">
<alt-text id="at0025">Table</alt-text>
<table frame="hsides" rules="groups">
<tbody>
<tr>
<td>Subject area</td>
<td>Materials science and engineering</td>
</tr>
<tr>
<td>More specific subject area</td>
<td>Mechanics of materials</td>
</tr>
<tr>
<td>Type of data</td>
<td>Graph, figure, video</td>
</tr>
<tr>
<td>How data was acquired</td>
<td>Instron universal testing machine, heating and cooling devices, sputtering device, digital camera</td>
</tr>
<tr>
<td>Data format</td>
<td>Analysed</td>
</tr>
<tr>
<td>Experimental factors</td>
<td>Heat treatment temperature and testing temperature were carefully controlled.</td>
</tr>
<tr>
<td>Experimental features</td>
<td>Tensile tests were conducted at isothermal condition.</td>
</tr>
<tr>
<td>Data source location</td>
<td>The University of Western Australia, Perth, Australia.</td>
</tr>
<tr>
<td>Data accessibility</td>
<td>The data is with this article.</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="s0010">
<title>
<bold>Value of the data</bold>
</title>
<p>
<list list-type="simple">
<list-item id="u0005">
<label></label>
<p>The data provides insights into design of shape memory components for optimum performance and a more complete picture of the experimental evidences available.</p>
</list-item>
<list-item id="u0010">
<label></label>
<p>The data can be used to design 1D microstructurally graded NiTi components with desired stress and temperature controlling windows.</p>
</list-item>
<list-item id="u0015">
<label></label>
<p>The data provides a procedure to create 2D compositionally graded NiTi structures which can exhibit unique fishtail-like deformation behaviour with enlarged temperature controlling window.</p>
</list-item>
<list-item id="u0020">
<label></label>
<p>The data provides some basic designs for creating geometrically graded shape memory structures that can be used for various engineering applications which require enlarged stress controlling window.</p>
</list-item>
</list>
</p>
</sec>
<sec id="s0015">
<label>1</label>
<title>Data</title>
<p>Microstructurally graded NiTi wires have been created by means of graded temperature annealing and aging. The stress–strain diagrams of such shape memory components were obtained using tensile testing machine at various testing temperatures. Compositionally graded NiTi strips were created using sputtering deposition of a thin Ni layer and then diffusion annealing to encourage ingression of Ni through the thickness of the NiTi structure. After tensile deformation, the NiTi strips were subjected to heating and cooling cycles and the shape changes of the strip samples were recorded using a digital camera. Geometrically graded plates were created using electrical discharge machining. The deformation behaviours of a linearly tapered sample and parabolicly tapered samples under tensile loading cycles were acquired.</p>
</sec>
<sec id="s0020">
<label>2</label>
<title>Microstructurally graded NiTi</title>
<p>Microstructurally graded NiTi refers to the NiTi alloy that contains variation in microstructural characteristics, such as dislocation density, grain size and degree of crystallization within the body of the alloy
<xref rid="bib1" ref-type="bibr">[1]</xref>
. This variation can be achieved by variation in heat treatment condition, such as annealing or aging temperature, and can be applied to NiTi wires along their length
<xref rid="bib2" ref-type="bibr">[2]</xref>
,
<xref rid="bib3" ref-type="bibr">[3]</xref>
and NiTi plates across their thickness
<xref rid="bib4" ref-type="bibr">[4]</xref>
,
<xref rid="bib5" ref-type="bibr">[5]</xref>
. It is known that the transformation properties, i.e. transformation temperature, stress and strain, are affected by heat treatment condition
<xref rid="bib6" ref-type="bibr">[6]</xref>
.
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
(a) shows the variation of austenite (A) to martensite (M) transformation stress and strain of Ti-50.5 at%Ni alloy with respect to annealing temperature.
<fig id="f0005">
<label>Fig. 1</label>
<caption>
<p>Microstructurally graded Ti-50.5 at%Ni wire created by graded annealing; (a): the effect of annealing temperature on transformation properties, (b): temperature distribution profile of the tube furnace, (c): deformation behaviour at different testing temperatures.</p>
</caption>
<alt-text id="at0005">Fig. 1</alt-text>
<graphic xlink:href="gr1"></graphic>
</fig>
</p>
<sec id="s0025">
<label>2.1</label>
<title>Graded annealing</title>
<p>Annealing after cold working negates the effect of cold work, through recovery and recrystallization
<xref rid="bib7" ref-type="bibr">[7]</xref>
. Here, Ti-50.5 at%Ni wires of 1.2 mm in diameter were used. The wires were initially solution treated at 1123 K for 1 h to eradicate any effect of prior treatments including cold working and ageing. The wires were then rolled at room temperature to 50% elongation in length. The microstructural gradient along the length of the wires was created using a tube furnace with temperature distribution profile shown in
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
(b). The wires of 100 mm in length were heat treated for 1 h within a temperature field of 630–810 K along the whole gauge length as illustrated in
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
(b).
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
(c) shows the tensile deformation behaviour of the wire segments of 70 mm in length taken from the low temperature end of the heat treated wires, i.e. the annealing temperature range was 630–783 K. The tensile tests were carried out using an Instron testing machine at several testing temperatures. The deformation was conducted in water for elevated temperatures using a liquid bath. The strain rate was ~3×10
<sup>−4</sup>
/s. This strain rate was low enough to ignore the thermal effect associated with the latent heat of the martensitic phase transformation. A fresh sample was used for each test to avoid the effect of deformation cycles. As see in
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
(c), the deformation at 303 K showed a clear presence of R-phase transformation at the early stage of deformation. The level of stress–strain curve over stress-induced transformation increased and the recovery of transformation strain improved as the testing temperature increased. Samples deformed at 323 K and 333 K exhibited good pseudoelasticity. At 333 K, the stress windows of 210 MPa and 320 MPa over forward and reverse transformations, respectively, were achieved.</p>
</sec>
<sec id="s0030">
<label>2.2</label>
<title>Graded aging</title>
<p>Ageing is applied mostly to nickel-rich alloys of >50.5 at%Ni for improving the pseudoelasticity. Ageing is affected by several parameters including alloy composition, ageing temperature and ageing time, as well as the solution treatment conditions of the alloys. Here, Ti-50.8 at%Ni wires of 0.8 mm in diameter were used. The wires were initially solution treated at 1123 K for 1 h in argon to eliminate the effects of all prior treatments.
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
(a) shows the deformation behaviour of those wires after isothermal ageing at different temperatures ranging from 573 K to 773 K for 2 h. The aging temperature is shown on each curve. The samples were deformed in tension at 295 K. It is seen that by the increase of aging temperature, the stress plateau level decreased and the samples exhibited less pseudoelasticity.
<fig id="f0010">
<label>Fig. 2</label>
<caption>
<p>Deformation behaviour of Ti-50.8 at%Ni wires under tension; (a): isothermally aged samples at different aging temperature, (b): graded aged samples at different testing temperatures.</p>
</caption>
<alt-text id="at0010">Fig. 2</alt-text>
<graphic xlink:href="gr2"></graphic>
</fig>
</p>
<p>Graded ageing can be done by either temperature gradient or time gradient. Here, the tensile experimental data for Ti-50.8 at%Ni wires aged over temperature gradient is presented. The wires were aged within a temperature gradient of 573–773 K along their length. The aging time was fixed at 2 h.
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
(b) shows the tensile deformation behaviour of such microstructurally graded wires at different testing temperatures. The testing temperature is shown close to each curve. Also shown in this figure is the deformation behaviour of the solution treated sample, tested at 295 K. As observed, the microstructurally graded samples exhibited stress gradient over transformation stages unlike the solution treated sample.</p>
</sec>
</sec>
<sec id="s0035">
<label>3</label>
<title>Compositionally graded NiTi</title>
<p>Compositionally graded NiTi refers to the NiTi alloy that has variation in composition, i.e. Ni and Ti contents, within the body of the alloy. It is known that martensitic transformation in NiTi is sensitive to alloy composition
<xref rid="bib8" ref-type="bibr">[8]</xref>
. The compositional gradient can be achieved through the thickness direction of 2D NiTi structures, such as NiTi thin plates and films
<xref rid="bib9" ref-type="bibr">[9]</xref>
.</p>
<p>In this experiment, a Ti-50.07 at%Ni sheet of 0.22 mm in thickness was used. Strips of 40 mm×5 mm were prepared from the NiTi sheet. The samples were annealed at 1123 K for 1 h in vacuum. Then, a Ni thin film of ~500 nm in thickness was deposited on the samples by means of DC magnetron sputtering under argon protection. The coated samples were then annealed at 1223 K in vacuum for 3 h to encourage diffusion of Ni into the NiTi plate. This provided a composition range of 50.07–50.8 at%Ni across the thickness direction of the strip specimens. Various levels of tensile deformation can be applied to the compositionally graded samples before the application of thermal cycles. Here, we present the experimental data for deformation behaviour of a sample during one complete thermal cycle after tensile deformation to 15%. The shape change of the strip during one cooling and heating cycle (a fishtail-like motion) was recorded by a digital camera and is presented as a video component, which accompanies the electronic version of this manuscript. To access this video component, simply click on the image visible below (
<xref rid="ec0005" ref-type="fig">online version only</xref>
).
<fig id="ec0005">
<label>Video S1</label>
<caption>
<p>Fishtail-like deformation behaviour of a pre-strained compositionally graded NiTi strip over one thermal cycle. A video clip is available online.</p>
</caption>
<alternatives>
<media xlink:href="mmc1.flv"></media>
<graphic xlink:href="alt1"></graphic>
</alternatives>
</fig>
</p>
<p>
<xref rid="f0015" ref-type="fig">Fig. 3</xref>
shows the collection of images of that sample at different temperatures during the 20th thermal cycle. As observed, upon cooling from 315 K to 283 K, the strip progressively bended in the counter clockwise direction to a maximum curvature. Then, as the temperature was further decreased to 223 K, the strip bended back in the clockwise direction. This behaviour repeated upon heating. The strip first bended in the counter clockwise direction upon increase of temperature up to 298 K and reached to the maximum curvature. Then, it gradually curved back as heated to 345 K. This experiment presents a unique 4-way shape change during one thermal cycle.
<fig id="f0015">
<label>Fig. 3</label>
<caption>
<p>Collection of images showing macroscopic deformation behaviour of a pre-strained compositionally graded NiTi strip over one thermal cycle.</p>
</caption>
<alt-text id="at0015">Fig. 3</alt-text>
<graphic xlink:href="gr3"></graphic>
</fig>
</p>
</sec>
<sec id="s0040">
<label>4</label>
<title>Geometrically graded NiTi</title>
<p>Geometrically graded NiTi refers to the NiTi component, in which the structure geometry is purposely graded. This provides nonuniform transformation initiation in the structure, resulting in the global stress–strain variation to deviate from the original flat stress plateau. The geometrical gradient can be created along the loading direction
<xref rid="bib10" ref-type="bibr">[10]</xref>
,
<xref rid="bib11" ref-type="bibr">[11]</xref>
or perpendicular to the loading direction
<xref rid="bib12" ref-type="bibr">[12]</xref>
.</p>
<p>In this section, we present the experimental data on macroscopic deformation behaviour of 2D geometrically graded NiTi structures under tension. The geometrical gradient is along the loading direction. A thin Ti-50.8 at%Ni plate of 0.1 mm in thickness was used for fabricating the geometrically graded strips with linear or parabolic edge condition by electrical discharge machining.
<xref rid="f0020" ref-type="fig">Fig. 4</xref>
shows the deformation behaviour of such structures under tensile testing at 303 K. Here, the nominal stress is defined as the uniaxial force
<inline-formula>
<mml:math id="M1" altimg="si0001.gif" overflow="scroll">
<mml:mi>F</mml:mi>
</mml:math>
</inline-formula>
divided by the maximum cross-sectional area, which corresponds to the maximum width
<inline-formula>
<mml:math id="M2" altimg="si0002.gif" overflow="scroll">
<mml:mi>b</mml:mi>
</mml:math>
</inline-formula>
. The nominal strain is defined as the total elongation divided by the initial length. The width ratio
<inline-formula>
<mml:math id="M3" altimg="si0003.gif" overflow="scroll">
<mml:mi>α</mml:mi>
</mml:math>
</inline-formula>
is defined as the minimum width
<inline-formula>
<mml:math id="M4" altimg="si0004.gif" overflow="scroll">
<mml:mi>a</mml:mi>
</mml:math>
</inline-formula>
divided by the maximum width
<inline-formula>
<mml:math id="M5" altimg="si0002.gif" overflow="scroll">
<mml:mi>b</mml:mi>
</mml:math>
</inline-formula>
.
<xref rid="f0020" ref-type="fig">Fig. 4</xref>
(a) shows the global stress–strain behaviour of a linearly tapered sample with the minimum width at the middle and the gauge length equal to 30 mm and
<inline-formula>
<mml:math id="M6" altimg="si0005.gif" overflow="scroll">
<mml:mrow>
<mml:mi>α</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>/</mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:math>
</inline-formula>
under tensile loading cycles. Stress window of ~200 MPa was observed over forward transformation stage with perfect pseudoelastic behaviour over ~8% of strain.
<xref rid="f0020" ref-type="fig">Fig. 4</xref>
(b) shows the experimental data for samples with concave parabolic edges and
<inline-formula>
<mml:math id="M7" altimg="si0005.gif" overflow="scroll">
<mml:mrow>
<mml:mi>α</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>/</mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:math>
</inline-formula>
with two different gauge lengths. The black dashed curve and the red solid curve represent the global stress–strain variation of the samples with the gauge length 20 mm and 30 mm, respectively.
<fig id="f0020">
<label>Fig. 4</label>
<caption>
<p>Deformation behaviour of geometrically graded Ti-50.8 at%Ni strips under tension; (a): linearly tapered, (b): parabolicly tapered.</p>
</caption>
<alt-text id="at0020">Fig. 4</alt-text>
<graphic xlink:href="gr4"></graphic>
</fig>
</p>
</sec>
</body>
<back>
<ref-list id="bibliog0005">
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal" id="sbref1">
<person-group person-group-type="author">
<name>
<surname>Shariat</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Mahmud</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Bakhtiari</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Motazedian</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rio</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>T.-h</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Functionally graded shape memory alloys: design, fabrication and experimental evaluation</article-title>
<source>Mater. Des.</source>
<volume>124</volume>
<year>2017</year>
<fpage>225</fpage>
<lpage>237</lpage>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal" id="sbref2">
<person-group person-group-type="author">
<name>
<surname>Mahmud</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>T.H.</given-names>
</name>
</person-group>
<article-title>Design of functionally graded NiTi by heat treatment</article-title>
<source>Phys. Scr.</source>
<volume>T129</volume>
<year>2007</year>
<fpage>222</fpage>
<lpage>226</lpage>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="journal" id="sbref3">
<person-group person-group-type="author">
<name>
<surname>Shariat</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Rio</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Thermomechanical modelling of microstructurally graded shape memory alloys</article-title>
<source>J. Alloy. Compd.</source>
<volume>541</volume>
<issue>0</issue>
<year>2012</year>
<fpage>407</fpage>
<lpage>414</lpage>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<element-citation publication-type="journal" id="sbref4">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shariat</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>T.-h</given-names>
</name>
</person-group>
<article-title>Functionally graded NiTi strips prepared by laser surface anneal</article-title>
<source>Acta Mater.</source>
<volume>60</volume>
<year>2012</year>
<fpage>1658</fpage>
<lpage>1668</lpage>
</element-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="journal" id="sbref5">
<person-group person-group-type="author">
<name>
<surname>Shariat</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Rio</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Analytical modelling of functionally graded NiTi shape memory alloy plates under tensile loading and recovery of deformation upon heating</article-title>
<source>Acta Mater.</source>
<volume>61</volume>
<issue>9</issue>
<year>2013</year>
<fpage>3411</fpage>
<lpage>3421</lpage>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal" id="sbref6">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>McCormick</surname>
<given-names>P.G.</given-names>
</name>
</person-group>
<article-title>Thermodynamic analysis of the martensitic transformation in NiTi - I. Effect of heat treatment on transformation behaviour</article-title>
<source>Acta Mater.</source>
<volume>42</volume>
<issue>7</issue>
<year>1994</year>
<fpage>2401</fpage>
<lpage>2406</lpage>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<element-citation publication-type="journal" id="sbref7">
<person-group person-group-type="author">
<name>
<surname>Otsuka</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Physical metallurgy of Ti–Ni-based shape memory alloys</article-title>
<source>Prog. Mater. Sci.</source>
<volume>50</volume>
<issue>5</issue>
<year>2005</year>
<fpage>511</fpage>
<lpage>678</lpage>
</element-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal" id="sbref8">
<person-group person-group-type="author">
<name>
<surname>Frenzel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>George</surname>
<given-names>E.P.</given-names>
</name>
<name>
<surname>Dlouhy</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Somsen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>M.F.X.</given-names>
</name>
<name>
<surname>Eggeler</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Influence of Ni on martensitic phase transformations in NiTi shape memory alloys</article-title>
<source>Acta Mater.</source>
<volume>58</volume>
<issue>9</issue>
<year>2010</year>
<fpage>3444</fpage>
<lpage>3458</lpage>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal" id="sbref9">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Bakhtiari</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shariat</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>T.-h</given-names>
</name>
</person-group>
<article-title>A unique “fishtail-like” four-way shape memory effect of compositionally graded NiTi</article-title>
<source>Scr. Mater.</source>
<volume>127</volume>
<year>2017</year>
<fpage>84</fpage>
<lpage>87</lpage>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="journal" id="sbref10">
<person-group person-group-type="author">
<name>
<surname>Shariat</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Rio</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Hystoelastic deformation behaviour of geometrically graded NiTi shape memory alloys</article-title>
<source>Mater. Des.</source>
<volume>50</volume>
<year>2013</year>
<fpage>879</fpage>
<lpage>885</lpage>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal" id="sbref11">
<person-group person-group-type="author">
<name>
<surname>Shariat</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Rio</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Mathematical modelling of pseudoelastic behaviour of tapered NiTi bars</article-title>
<source>J. Alloy. Compd.</source>
<volume>577</volume>
<issue>Suppl 1</issue>
<year>2013</year>
<fpage>S76</fpage>
<lpage>S82</lpage>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="journal" id="sbref12">
<person-group person-group-type="author">
<name>
<surname>Bakhtiari</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shariat</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Motazedian</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Complex transformation field created by geometrical gradient design of NiTi shape memory alloy</article-title>
<source>Funct. Mater. Lett.</source>
<volume>10</volume>
<issue>1</issue>
<year>2017</year>
<fpage>1740011</fpage>
</element-citation>
</ref>
</ref-list>
<ack id="ack0005">
<title>Acknowledgements</title>
<p>We wish to acknowledge the financial support to this work from the
<funding-source id="gs1">Australian Research Council</funding-source>
in Grants DE150101795 and DP160105066.</p>
</ack>
<fn-group>
<fn id="s0060" fn-type="supplementary-material">
<label>Transparency document</label>
<p>Transparency data associated with this article can be found in the online version at
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.dib.2017.06.017" id="ir0055">http://dx.doi.org/10.1016/j.dib.2017.06.017</ext-link>
.</p>
</fn>
</fn-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001340 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001340 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5496460
   |texte=   Experiments on deformation behaviour of functionally graded NiTi structures
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28706965" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024