Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001092 ( Pmc/Corpus ); précédent : 0010919; suivant : 0010930 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice</title>
<author>
<name sortKey="Delahaye, Nicolas F" sort="Delahaye, Nicolas F" uniqKey="Delahaye N" first="Nicolas F" last="Delahaye">Nicolas F. Delahaye</name>
<affiliation>
<nlm:aff id="I1">Laboratoire de Pharmacogénétique des maladies parasitaires-EA864, Université de la Méditerranée, IFR48, Marseille, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I6">Institut Gustave Roussy, Villejuif, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coltel, Nicolas" sort="Coltel, Nicolas" uniqKey="Coltel N" first="Nicolas" last="Coltel">Nicolas Coltel</name>
<affiliation>
<nlm:aff id="I2">Université de la Méditerranée-IFR48, CNRS-UMR 6020-Immunopathology group, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Puthier, Denis" sort="Puthier, Denis" uniqKey="Puthier D" first="Denis" last="Puthier">Denis Puthier</name>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barbier, Mathieu" sort="Barbier, Mathieu" uniqKey="Barbier M" first="Mathieu" last="Barbier">Mathieu Barbier</name>
<affiliation>
<nlm:aff id="I1">Laboratoire de Pharmacogénétique des maladies parasitaires-EA864, Université de la Méditerranée, IFR48, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benech, Philippe" sort="Benech, Philippe" uniqKey="Benech P" first="Philippe" last="Benech">Philippe Benech</name>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Joly, Florence" sort="Joly, Florence" uniqKey="Joly F" first="Florence" last="Joly">Florence Joly</name>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Iraqi, Fuad A" sort="Iraqi, Fuad A" uniqKey="Iraqi F" first="Fuad A" last="Iraqi">Fuad A. Iraqi</name>
<affiliation>
<nlm:aff id="I4">Tel-Aviv University, Department of human microbiology, Sackler Faculty of Medicine, Ramat-Aviv, Tel-Aviv 69978, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grau, Georges E" sort="Grau, Georges E" uniqKey="Grau G" first="Georges E" last="Grau">Georges E. Grau</name>
<affiliation>
<nlm:aff id="I2">Université de la Méditerranée-IFR48, CNRS-UMR 6020-Immunopathology group, Marseille, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">University of Sydney, Department of Pathology, Faculty of Medicine and Bosch Institute, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Catherine" sort="Nguyen, Catherine" uniqKey="Nguyen C" first="Catherine" last="Nguyen">Catherine Nguyen</name>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rihet, Pascal" sort="Rihet, Pascal" uniqKey="Rihet P" first="Pascal" last="Rihet">Pascal Rihet</name>
<affiliation>
<nlm:aff id="I1">Laboratoire de Pharmacogénétique des maladies parasitaires-EA864, Université de la Méditerranée, IFR48, Marseille, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18062806</idno>
<idno type="pmc">2246131</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246131</idno>
<idno type="RBID">PMC:2246131</idno>
<idno type="doi">10.1186/1471-2164-8-452</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">001092</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001092</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice</title>
<author>
<name sortKey="Delahaye, Nicolas F" sort="Delahaye, Nicolas F" uniqKey="Delahaye N" first="Nicolas F" last="Delahaye">Nicolas F. Delahaye</name>
<affiliation>
<nlm:aff id="I1">Laboratoire de Pharmacogénétique des maladies parasitaires-EA864, Université de la Méditerranée, IFR48, Marseille, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I6">Institut Gustave Roussy, Villejuif, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coltel, Nicolas" sort="Coltel, Nicolas" uniqKey="Coltel N" first="Nicolas" last="Coltel">Nicolas Coltel</name>
<affiliation>
<nlm:aff id="I2">Université de la Méditerranée-IFR48, CNRS-UMR 6020-Immunopathology group, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Puthier, Denis" sort="Puthier, Denis" uniqKey="Puthier D" first="Denis" last="Puthier">Denis Puthier</name>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barbier, Mathieu" sort="Barbier, Mathieu" uniqKey="Barbier M" first="Mathieu" last="Barbier">Mathieu Barbier</name>
<affiliation>
<nlm:aff id="I1">Laboratoire de Pharmacogénétique des maladies parasitaires-EA864, Université de la Méditerranée, IFR48, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benech, Philippe" sort="Benech, Philippe" uniqKey="Benech P" first="Philippe" last="Benech">Philippe Benech</name>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Joly, Florence" sort="Joly, Florence" uniqKey="Joly F" first="Florence" last="Joly">Florence Joly</name>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Iraqi, Fuad A" sort="Iraqi, Fuad A" uniqKey="Iraqi F" first="Fuad A" last="Iraqi">Fuad A. Iraqi</name>
<affiliation>
<nlm:aff id="I4">Tel-Aviv University, Department of human microbiology, Sackler Faculty of Medicine, Ramat-Aviv, Tel-Aviv 69978, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grau, Georges E" sort="Grau, Georges E" uniqKey="Grau G" first="Georges E" last="Grau">Georges E. Grau</name>
<affiliation>
<nlm:aff id="I2">Université de la Méditerranée-IFR48, CNRS-UMR 6020-Immunopathology group, Marseille, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">University of Sydney, Department of Pathology, Faculty of Medicine and Bosch Institute, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Catherine" sort="Nguyen, Catherine" uniqKey="Nguyen C" first="Catherine" last="Nguyen">Catherine Nguyen</name>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rihet, Pascal" sort="Rihet, Pascal" uniqKey="Rihet P" first="Pascal" last="Rihet">Pascal Rihet</name>
<affiliation>
<nlm:aff id="I1">Laboratoire de Pharmacogénétique des maladies parasitaires-EA864, Université de la Méditerranée, IFR48, Marseille, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R) and CM-susceptible (CM-S) mice, upon infection by
<italic>Plasmodium berghei </italic>
ANKA (PbA). We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays.</p>
</sec>
<sec>
<title>Results</title>
<p>Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c), and in CM-S (CBA/J and C57BL/6) mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Genomics</journal-id>
<journal-title>BMC Genomics</journal-title>
<issn pub-type="epub">1471-2164</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18062806</article-id>
<article-id pub-id-type="pmc">2246131</article-id>
<article-id pub-id-type="publisher-id">1471-2164-8-452</article-id>
<article-id pub-id-type="doi">10.1186/1471-2164-8-452</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice</article-title>
</title-group>
<contrib-group>
<contrib id="A1" contrib-type="author">
<name>
<surname>Delahaye</surname>
<given-names>Nicolas F</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I6">6</xref>
<email>nicolasdelahaye@yahoo.fr</email>
</contrib>
<contrib id="A2" contrib-type="author">
<name>
<surname>Coltel</surname>
<given-names>Nicolas</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>nicolas.coltel@medecine.univ-mrs.fr</email>
</contrib>
<contrib id="A3" contrib-type="author">
<name>
<surname>Puthier</surname>
<given-names>Denis</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>puthier@tagc.univ-mrs.fr</email>
</contrib>
<contrib id="A4" contrib-type="author">
<name>
<surname>Barbier</surname>
<given-names>Mathieu</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>mat.barbier@wanadoo.fr</email>
</contrib>
<contrib id="A5" contrib-type="author">
<name>
<surname>Benech</surname>
<given-names>Philippe</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>philippe.benech@gensodi.com</email>
</contrib>
<contrib id="A6" contrib-type="author">
<name>
<surname>Joly</surname>
<given-names>Florence</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>florence.joly@yahoo.fr</email>
</contrib>
<contrib id="A7" contrib-type="author">
<name>
<surname>Iraqi</surname>
<given-names>Fuad A</given-names>
</name>
<xref ref-type="aff" rid="I4">4</xref>
<email>fuadi@post.tau.ac.il</email>
</contrib>
<contrib id="A8" contrib-type="author">
<name>
<surname>Grau</surname>
<given-names>Georges E</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<xref ref-type="aff" rid="I5">5</xref>
<email>ggrau@med.usyd.edu.au</email>
</contrib>
<contrib id="A9" contrib-type="author">
<name>
<surname>Nguyen</surname>
<given-names>Catherine</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>nguyen@tagc.univ-mrs.fr</email>
</contrib>
<contrib id="A10" corresp="yes" contrib-type="author">
<name>
<surname>Rihet</surname>
<given-names>Pascal</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I3">3</xref>
<email>rihet@luminy.univ-mrs.fr</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Laboratoire de Pharmacogénétique des maladies parasitaires-EA864, Université de la Méditerranée, IFR48, Marseille, France</aff>
<aff id="I2">
<label>2</label>
Université de la Méditerranée-IFR48, CNRS-UMR 6020-Immunopathology group, Marseille, France</aff>
<aff id="I3">
<label>3</label>
INSERM ERM 206-TAGC, Université de la Méditerranée, IFR137, Marseille, France</aff>
<aff id="I4">
<label>4</label>
Tel-Aviv University, Department of human microbiology, Sackler Faculty of Medicine, Ramat-Aviv, Tel-Aviv 69978, Israel</aff>
<aff id="I5">
<label>5</label>
University of Sydney, Department of Pathology, Faculty of Medicine and Bosch Institute, Australia</aff>
<aff id="I6">
<label>6</label>
Institut Gustave Roussy, Villejuif, France</aff>
<pub-date pub-type="collection">
<year>2007</year>
</pub-date>
<pub-date pub-type="epub">
<day>6</day>
<month>12</month>
<year>2007</year>
</pub-date>
<volume>8</volume>
<fpage>452</fpage>
<lpage>452</lpage>
<ext-link ext-link-type="uri" xlink:href="http://www.biomedcentral.com/1471-2164/8/452"></ext-link>
<history>
<date date-type="received">
<day>14</day>
<month>9</month>
<year>2007</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>12</month>
<year>2007</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2007 Delahaye et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2007</copyright-year>
<copyright-holder>Delahaye et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0"></ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
<pmc-comment> Delahaye F Nicolas nicolasdelahaye@yahoo.fr Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice 2007BMC Genomics 8(1): 452-. (2007)1471-2164(2007)8:1<452>urn:ISSN:1471-2164</pmc-comment>
</license>
</permissions>
<abstract>
<sec>
<title>Background</title>
<p>Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R) and CM-susceptible (CM-S) mice, upon infection by
<italic>Plasmodium berghei </italic>
ANKA (PbA). We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays.</p>
</sec>
<sec>
<title>Results</title>
<p>Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c), and in CM-S (CBA/J and C57BL/6) mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Malaria is a disease affecting millions of people worldwide. Cerebral malaria (CM) is one of the most severe complications and is a major cause of death. Both host and parasite genetic factors play important roles in the outcome of malaria infection. Epidemiological data, candidate gene studies, and genetic linkage studies clearly support the existence of a genetic contribution to susceptibility to human malaria [
<xref ref-type="bibr" rid="B1">1</xref>
]. In parallel with human studies, malaria susceptibility genes have been mapped in mouse models, and the role of some genes has been demonstrated [
<xref ref-type="bibr" rid="B2">2</xref>
]. It is clear, however, that a number of malaria susceptibility genes remain to be identified. These include genes, whose expression is likely deregulated upon malaria infection.</p>
<p>Transcriptional profiling may provide new tools for identifying the key genes that govern host responses against pathogens. Recently, several reports have described gene expression changes that accompany the host response against Plasmodium
<italic>spp. </italic>
Microarrays have been analyzed from mice [
<xref ref-type="bibr" rid="B3">3</xref>
-
<xref ref-type="bibr" rid="B5">5</xref>
], rhesus monkey [
<xref ref-type="bibr" rid="B6">6</xref>
] and humans [
<xref ref-type="bibr" rid="B7">7</xref>
], upon infection by Plasmodium
<italic>spp </italic>
A parallel can be observed in the regulation of genes involved in immune responses, glycolysis, and erythropoiesis. These data suggested that variation in host gene expression may be associated with resistance or susceptibility to malaria.</p>
<p>Recently, we investigated brain gene expression patterns in well-defined genetically CM-resistant (CM-R) and CM-susceptible mice (CM-S) by use of cDNA microarrray [
<xref ref-type="bibr" rid="B8">8</xref>
]. We identified a set of genes that perfectly discriminates between CM-R and CM-S mice at the time of CM onset. This indicates that gene expression analysis using microarray tools may be useful for the identification of candidate genes that are potentially responsible for resistance or susceptibility to CM. Nevertheless, an important issue was to identify genes whose expression differ between CM-R and CM-S mice before the time of CM onset to identify early events that may participate in malaria pathogenesis. In this report, we present an analysis of genes differentially expressed in brains from CM-R and CM-S mice prior to infection, and at the early and late stages of infection with
<italic>Plasmodium berghei </italic>
ANKA (PbA). Data analysis reveals that molecules belonging to several biological processes were preferentially and differentially expressed between CM-R and CM-S mice, and that a number of gene expression changes occurred at the early and late stages of infection. Herein, we discuss new working hypotheses on this basis.</p>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Identification of genes regulated in brains by PbA infection</title>
<p>The ANOVA of microarray data revealed significant gene expression changes over the course of infection in BALB/c (n = 25) mice, CBA/J mice (n = 16), and in C57BL/6 mice (n = 20). We calculated empirical
<italic>P </italic>
values for each gene, and we considered
<italic>P </italic>
< 0.05 significant. On this basis, we selected 174, 210, and 342 genes for BALB/c mice, CBA/J mice, and C57BL/6 mice, respectively.</p>
<p>To further compare uninfected mice with infected mice, we performed a Welch t test and we applied a Bonferroni correction to account for multiple tests performed (Figure
<xref ref-type="fig" rid="F1">1</xref>
). Figure
<xref ref-type="fig" rid="F2">2</xref>
shows the number of genes whose expression was significantly altered by PbA infection. The mouse strains displayed various patterns. Strikingly, the number of genes that showed significant expression changes was higher in C57BL/6 mice than in CBA/J mice on day 2 post-infection with PbA (Figure
<xref ref-type="fig" rid="F2">2A</xref>
). The number of genes that showed significant expression changes in CBA/J mice gradually increased during infection. In contrast, the number of genes that showed significant expression changes in both C57BL/6 mice and BALB/c mice on day 2 was similar to the number of genes identified on day 7; it was, nevertheless, lower on day 5 than on days 2 and 7. As shown in Figure
<xref ref-type="fig" rid="F2">2</xref>
, most of the genes identified in C57BL/6 mice (Figure
<xref ref-type="fig" rid="F2">2B</xref>
) and in CBA/J mice (Figure
<xref ref-type="fig" rid="F2">2C</xref>
) were under-expressed, while most of the genes identified in BALB/c mice (Figure
<xref ref-type="fig" rid="F2">2D</xref>
) were over-expressed.</p>
<fig position="float" id="F1">
<label>Figure 1</label>
<caption>
<p>
<bold>Schematic outline of data analysis</bold>
. HCL: hierarchical clustering.
<sup>a </sup>
Brain gene expression prior to infection was compared with brain gene expression on days 2, 5 and 7.
<sup>b </sup>
Brain gene expression in CM-R mice was compared with that in CM-S mice at each time point. As represented by dashed arrows, we considered the whole data set (n = 2012 genes) to carry out multiple testing correction.</p>
</caption>
<graphic xlink:href="1471-2164-8-452-1"></graphic>
</fig>
<fig position="float" id="F2">
<label>Figure 2</label>
<caption>
<p>
<bold>Distribution of genes regulated by PbA infection according to the time of infection.</bold>
The genes whose expression was significantly altered by PbA infection were identified by using pair-wise Welch t tests with a Bonferroni correction.
<bold>A</bold>
. The number of genes with significant changes is shown at each time point for each mouse strain.
<bold>B</bold>
,
<bold>C </bold>
and
<bold>D</bold>
. The number of genes significantly up- (positive values) and down-regulated (negative values) is shown at each time point for each mouse strain.</p>
</caption>
<graphic xlink:href="1471-2164-8-452-2"></graphic>
</fig>
<p>A Venn diagram summarizes the number of overlapping genes with significant differential expression at different time points (Figure
<xref ref-type="fig" rid="F3">3</xref>
). Most of the genes identified on day 2 were no longer identified on day 7 in C57BL/6 mice and in BALB/c mice. As shown in Figure
<xref ref-type="fig" rid="F3">3A–B</xref>
and
<xref ref-type="fig" rid="F3">3E–F</xref>
, 42 of 53 and 31 of 36 genes with differential expression on day 2 did not show differential expression on days 5 and 7 in C57BL/6 and BALB/c mice, respectively. In contrast, 10 of 14 genes regulated by PbA infection on day 2 were also regulated on days 5 and 7 in CBA/J mice (Figure
<xref ref-type="fig" rid="F3">3C–D</xref>
), indicating that C57BL/6 mice and CBA/J mice partly differ in their transcriptional response over the course of infection.</p>
<fig position="float" id="F3">
<label>Figure 3</label>
<caption>
<p>
<bold>Overlapping genes with significant differential expression at different time points during PbA infection.</bold>
This Venn diagrams show the number of overlapping genes with significant expression changes on days 2, 5, and 7 post-infection with PbA, for C57BL/6 mice (
<bold>A </bold>
and
<bold>B</bold>
), CBA/J mice (
<bold>C </bold>
and
<bold>D</bold>
) and BALB/c mice (
<bold>E </bold>
and
<bold>F</bold>
). Genes that are either induced or suppressed by infection are distinguished for each strain: the number of genes induced is shown in
<bold>A</bold>
,
<bold>C</bold>
, and
<bold>E</bold>
, while the number of genes suppressed is shown in
<bold>B</bold>
,
<bold>D</bold>
, and
<bold>F</bold>
.</p>
</caption>
<graphic xlink:href="1471-2164-8-452-3"></graphic>
</fig>
</sec>
<sec>
<title>Microarray analysis discriminates between CM-R and CM-S mice according to the time after infection</title>
<p>We searched for genes showing differential expression between mouse strains before infection. The ANOVA identified 125 genes without multiple test correction (data not shown), and 7 genes with Bonferroni multiple test correction at the level of 5%: 1700023B02Rik, Acot8, Gpd2, Sec11c, Ngly1, Zfp346 and Tln2. These results revealed a minor natural variation in gene expression between mouse strains. Nevertheless, we took into account this natural variation in further analyses to search for transcriptional changes. Thus, the individual gene expression level in infected mice was adjusted for the gene expression level in uninfected mice for each mouse strain.</p>
<p>To focus on transcriptional changes associated with resistance or susceptibility, we searched for a set of genes that discriminated between CM-R mice (BALB/c) and CM-S mice (C57BL/6 and CBA/J). To this end, we used the multi-class Significant Analysis of Microarrays (SAM) procedure, and we applied a false discovery rate of 0% (Figure
<xref ref-type="fig" rid="F1">1</xref>
). The analysis yielded a set of 327 genes [see Additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
], which was used to perform unsupervised hierarchical clustering (Figure
<xref ref-type="fig" rid="F4">4A</xref>
). Interestingly, the expression of several genes was induced in CM-R mice or suppressed in CM-S mice as a result of infection, while the expression of other genes was suppressed in CM-R mice and induced in CM-S mice [see Additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
]. This led to successfully classify CM-R and CM-S mice according to the time after infection (Figure
<xref ref-type="fig" rid="F4">4B</xref>
) and to determine five clusters (Figure
<xref ref-type="fig" rid="F4">4A</xref>
). Clusters A and C fully grouped CM-R mice (BALB/c) versus CM-S mice (C57BL/6 and CBA/J) whatever the time after infection. Genes of cluster A were over-expressed in CM-S mice compared to CM-R mice, while genes of cluster C were under-expressed in CM-S mice compared to CM-R mice. Clusters B and D also grouped CM-R mice versus CM-S mice. Nevertheless, clusters B and D discriminated between C57BL/6 and CBA/J mice, indicating differential gene expression between the two CM-S strains at early time points of infection. Genes of clusters B and D were over-expressed in CBA/J mice on day 2 post-infection compared to C57BL/6 mice, and in C57BL/6 on days 2 and 5 post-infection compared to CBA/J mice, respectively. At late stage of infection, genes of clusters B and D showed similar gene expression between the two CM-S strains, and were under-expressed in CM-S mice compared to CM-R mice. Cluster E discriminated mice at early and late stage of infection. Nevertheless, genes of cluster E were over-expressed in CM-S mice compared to CM-R mice indicating an interval between the response of CM-S and the response of CM-R mice.</p>
<fig position="float" id="F4">
<label>Figure 4</label>
<caption>
<p>
<bold>Hierarchical classification of mouse-strain-specific and CM-R/CM-S genes according to the time of infection</bold>
.
<bold>A</bold>
. Hierarchical clustering of the 58 brain tissue samples, using expression levels of 327 significant genes differentially expressed between the mouse strains at early and late stages of infection. This set of genes was extracted from the full data set (n = 2012) by use of a SAM procedure and a false discovery rate of 0%. Each row represents a gene and each column represents a sample. Red and green indicate expression levels above and below the median, respectively. Grey indicates missing data. Dendograms of samples (above matrix) and genes (to the left of matrix) represent overall similarities in gene expression profiles.
<bold>B</bold>
. Dendogram of samples representing the results of the same global hierarchical clustering applied to the 58 brain tissue samples. Clustering of technical replicates (CBA/J-5, C57BL6-20 and BALB/c-13) is shown: the samples taken from a CBA/J mouse on day 2, a C57L/6 mouse on day 7, and a BALB/c mouse on day 7 were run on 5, 2, and 2 microarrays, respectively. Samples taken from mice on days 2, 5, 7, 9, and 15 post-infection are coded D2, D5, D7, D9, and D15, respectively.</p>
</caption>
<graphic xlink:href="1471-2164-8-452-4"></graphic>
</fig>
<p>To analyze functional annotations related to CM, we sought biological process Gene Ontology (GO) terms and KEGG pathways for the 327 genes that discriminated between CM-R mice (BALB/c) and CM-S mice (C57BL/6 and CBA/J). The analysis of biological process GO terms of gene clusters showed an over-representation of some GO terms. In particular, the GO terms related to the "defense response" category, such as the "immune response" or the "inflammatory response" GO terms were strongly over-represented in cluster E (Table
<xref ref-type="table" rid="T1">1</xref>
). Similarly, most of the genes grouped in cluster E were found to be involved in KEGG pathways related to immune responses, such as "cytokine-cytokine receptor interaction" or "natural killer cell mediated cytotoxicity". The analysis of other clusters did not reveal, however, a strong over-representation of particular GO terms, suggesting that these clusters were heterogeneous. In particular, clusters B and C contained 38 and 207 genes with heterogeneous GO categories. This was further supported by the analysis of KEGG pathways, which pointed out a number of different pathways, such as metabolic energy pathways ("glycolysis/gluconeogenesis" and "oxidative phosphorylation"), immune responses ("cytokine-cytokine receptor interaction" and "antigen processing and presentation"), haematopoiesis, ("hematopoietic cell lineage"), cytoskeleton pathways ("regulation of active cytoskeleton"), or pathways related to brain function ("neurodegenerative disorders" and "axon guidance") (Figure
<xref ref-type="fig" rid="F5">5</xref>
).</p>
<table-wrap position="float" id="T1">
<label>Table 1</label>
<caption>
<p>Enrichment of the 327 genes differentially expressed
<sup>a </sup>
in Gene Ontology terms</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="left">Cluster, GO term</td>
<td align="left">Fisher exact test
<sup>b</sup>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Cluster A</td>
<td></td>
</tr>
<tr>
<td align="left"> Defense response
<sup>c</sup>
</td>
<td align="left">0.043</td>
</tr>
<tr>
<td align="left">Cluster B</td>
<td></td>
</tr>
<tr>
<td align="left"> ...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">Cluster C</td>
<td></td>
</tr>
<tr>
<td align="left"> Positive regulation of cell activation
<sup>c</sup>
</td>
<td align="left">0.0024</td>
</tr>
<tr>
<td align="left"> Positive regulation of lymphocyte</td>
<td align="left">0.0024</td>
</tr>
<tr>
<td align="left"> activation
<sup>c</sup>
</td>
<td></td>
</tr>
<tr>
<td align="left"> Positive regulation of cellular</td>
<td align="left">0.006</td>
</tr>
<tr>
<td align="left"> physiological process
<sup>c</sup>
</td>
<td></td>
</tr>
<tr>
<td align="left"> Regulation of phosphorylation
<sup>c</sup>
</td>
<td align="left">0.008</td>
</tr>
<tr>
<td align="left"> Cell death</td>
<td align="left">0.013</td>
</tr>
<tr>
<td align="left"> Positive regulation of immune response</td>
<td align="left">0.015</td>
</tr>
<tr>
<td align="left"> Positive regulation of cellular</td>
<td align="left">0.036</td>
</tr>
<tr>
<td align="left"> biosynthesis</td>
<td></td>
</tr>
<tr>
<td align="left"> Cytokines and inflammatory response</td>
<td align="left">0.049</td>
</tr>
<tr>
<td align="left">Cluster D</td>
<td></td>
</tr>
<tr>
<td align="left"> ...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">Cluster E</td>
<td></td>
</tr>
<tr>
<td align="left"> Defense response</td>
<td align="left">0.0000001
<sup>d</sup>
</td>
</tr>
<tr>
<td align="left"> Immune response</td>
<td align="left">0.000004
<sup>d</sup>
</td>
</tr>
<tr>
<td align="left"> Response to pest/pathogen/parasite</td>
<td align="left">0.0000051
<sup>d</sup>
</td>
</tr>
<tr>
<td align="left"> Inflammatory response</td>
<td align="left">0.0027</td>
</tr>
<tr>
<td align="left"> Response to stress</td>
<td align="left">0.0028</td>
</tr>
<tr>
<td align="left"> Response to wounding</td>
<td align="left">0.003</td>
</tr>
<tr>
<td align="left"> Chemotaxis</td>
<td align="left">0.0054</td>
</tr>
<tr>
<td align="left"> Response to external stimulus</td>
<td align="left">0.011</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a </sup>
This set of genes was extracted from the full data set (n = 2012) by use of a SAM procedure and a false discovery rate of 0%.</p>
<p>
<sup>b </sup>
Significant results with a Fischer exact test (P < 0.05).</p>
<p>
<sup>c </sup>
GO terms that were also over-represented in the set of 177 significant CM genes.</p>
<p>
<sup>d </sup>
Significant results with the Benjamini multi-testing correction (P < 0.05).</p>
</table-wrap-foot>
</table-wrap>
<fig position="float" id="F5">
<label>Figure 5</label>
<caption>
<p>
<bold>View of biological functional annotation repartition of the genes grouped in clusters B and C</bold>
. The KEGG pathways, in which the genes were known to be involved, are shown. Of the 245 genes of the clusters B and C, 80 were annotated. We represented only the KEGG pathways that contained at least three genes.</p>
</caption>
<graphic xlink:href="1471-2164-8-452-5"></graphic>
</fig>
<p>We specifically searched for genes with significant differential expression between CM-R and CM-S mice. Thus, we used the Welch t test to compare BALB/c mice (CM-R mice) on the one hand and CBA/J mice and C57BL/6 mice (CM-S mice) on the other hand (Figure
<xref ref-type="fig" rid="F1">1</xref>
). We tested the 327 genes identified by the SAM multi-class procedure, but we considered the whole data set (n = 2012 genes) to carry out multiple testing correction. Among the 327 genes, 177 genes were further found to be differentially expressed between CM-R mice and CM-S mice (Table
<xref ref-type="table" rid="T2">2</xref>
). Among the 177 genes, 104, 56, and 84 genes showed significant differential expression on days 2, 5, and 7, respectively, and 11, 17, 138, and 11 were grouped in clusters A, B, C and E, respectively. The number of co-occurring genes with differential expression between CM-R and CM-S mice detected at different times is displayed in Figure
<xref ref-type="fig" rid="F6">6</xref>
. Eighteen of 177 genes were up-regulated in CM-S mice compared to CM-R mice, while 158 of 177 genes were up-regulated in CM-R mice compared to CM-S mice. Only one gene showed a complicated picture: Fyco1 was down-regulated in CBA/J and C57BL/6 mice (CM-S mice) mice on day 2, and in CBA/J mice on day 5, while it was up-regulated in C57BL/6 mice on day 5. Table
<xref ref-type="table" rid="T3">3</xref>
show the most represented KEGG pathways, which included pathways related to metabolism, erythropoiesis, immune responses, neuronal development, and neurodegenerative disorders.</p>
<table-wrap position="float" id="T2">
<label>Table 2</label>
<caption>
<p>
<italic>C</italic>
M-specific genes obtained by use of the Welch t test and a Bonferroni correction</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="left">ID
<sup>a</sup>
</td>
<td align="left">Cluster</td>
<td align="left">Symbol
<sup>b</sup>
</td>
<td align="left">Name</td>
<td align="left">Chr
<sup>c</sup>
</td>
<td align="left" colspan="3">Welch t test
<sup>d</sup>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG083931">BG083931</ext-link>
</td>
<td align="left">A</td>
<td align="left">Slc25a11</td>
<td align="left">Solute carrier family 25 (mitochondrial carrier; oxoglutarate carrier), member 11</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="718084">718084</ext-link>
</td>
<td align="left">A</td>
<td align="left">Dfy</td>
<td align="left">Duffy blood group</td>
<td align="left">1</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG064714">BG064714</ext-link>
</td>
<td align="left">A</td>
<td align="left">Slc3a2</td>
<td align="left">Solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2</td>
<td align="left">19</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573549">573549</ext-link>
</td>
<td align="left">A</td>
<td align="left">Mrps34</td>
<td align="left">Mitochondrial ribosomal protein S34</td>
<td align="left">17</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="641184">641184</ext-link>
</td>
<td align="left">A</td>
<td align="left">Cdc37l1</td>
<td align="left">Cell division cycle 37 homolog (S. cerevisiae)-like</td>
<td align="left">19</td>
<td align="left">D2</td>
<td align="left">D5
<sup>e</sup>
</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="641058">641058</ext-link>
</td>
<td align="left">A</td>
<td align="left">Nfkbia</td>
<td align="left">Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, alpha</td>
<td align="left">12</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG086014">BG086014</ext-link>
</td>
<td align="left">A</td>
<td align="left">Hmgn1</td>
<td align="left">High mobility group nucleosomal binding domain 1</td>
<td align="left">16</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="639606">639606</ext-link>
</td>
<td align="left">A</td>
<td align="left">E030041M21Rik</td>
<td align="left">RIKEN cDNA E030041M21 gene</td>
<td align="left">10</td>
<td align="left">D2
<sup>f</sup>
</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="636468">636468</ext-link>
</td>
<td align="left">A</td>
<td align="left">Epb4.1l3</td>
<td align="left">Erythrocyte protein band 4.1-like 3</td>
<td align="left">17</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG084377">BG084377</ext-link>
</td>
<td align="left">A</td>
<td align="left">Stat3</td>
<td align="left">Signal transducer and activator of transcription 3</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="582660">582660</ext-link>
</td>
<td align="left">A</td>
<td align="left">Tagap1</td>
<td align="left">T-cell activation GTPase activating protein 1</td>
<td align="left">17</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573243">573243</ext-link>
</td>
<td align="left">B</td>
<td align="left">Ddi2</td>
<td align="left">DNA-damage inducible protein 2</td>
<td align="left">4</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG071164">BG071164</ext-link>
</td>
<td align="left">B</td>
<td align="left">2310008M10Rik</td>
<td align="left">RIKEN cDNA 2310008M10 gene</td>
<td align="left">3</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG070859">BG070859</ext-link>
</td>
<td align="left">B</td>
<td align="left">Nipbl</td>
<td align="left">Nipped-B homolog (Drosophila)</td>
<td align="left">15</td>
<td align="left">...</td>
<td align="left">D5
<sup>e</sup>
</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="639002">639002</ext-link>
</td>
<td align="left">B</td>
<td align="left">Mlx</td>
<td align="left">MAX-like protein X</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG072955">BG072955</ext-link>
</td>
<td align="left">B</td>
<td align="left">Myo5a</td>
<td align="left">Myosin Va</td>
<td align="left">9</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="575433">575433</ext-link>
</td>
<td align="left">B</td>
<td align="left">Ptger1</td>
<td align="left">Prostaglandin E receptor 1 (subtype EP1), 42 kD</td>
<td align="left">8</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087138">BG087138</ext-link>
</td>
<td align="left">B</td>
<td align="left">Itsn2</td>
<td align="left">Intersectin 2</td>
<td align="left">12</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG078795">BG078795</ext-link>
</td>
<td align="left">B</td>
<td align="left">Hspa5</td>
<td align="left">Heat shock 70 kD protein 5 (glucose-regulated protein)</td>
<td align="left">2</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG064608">BG064608</ext-link>
</td>
<td align="left">B</td>
<td align="left">Calr</td>
<td align="left">Calreticulin</td>
<td align="left">8</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087169">BG087169</ext-link>
</td>
<td align="left">B</td>
<td align="left">P4hb</td>
<td align="left">Protein disulfide isomerase associated 6</td>
<td align="left">12</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="764825">764825</ext-link>
</td>
<td align="left">B</td>
<td align="left">Reln</td>
<td align="left">Reelin</td>
<td align="left">5</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1263789">1263789</ext-link>
</td>
<td align="left">B</td>
<td align="left">Cxcl12</td>
<td align="left">Chemokine (C-X-C motif) ligand 12</td>
<td align="left">6</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="441212">441212</ext-link>
</td>
<td align="left">B</td>
<td align="left">Atp6v1g2</td>
<td align="left">ATPase, H+ transporting, lysosomal 13 kD, V1 subunit G isoform 2</td>
<td align="left">17</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="577991">577991</ext-link>
</td>
<td align="left">B</td>
<td align="left">Zdhhc6</td>
<td align="left">Zinc finger, DHHC domain containing 6</td>
<td align="left">19</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1263101">1263101</ext-link>
</td>
<td align="left">B</td>
<td align="left">Hmgcs1</td>
<td align="left">3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1</td>
<td align="left">13</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573257">573257</ext-link>
</td>
<td align="left">B</td>
<td align="left">Pcgf3</td>
<td align="left">Polycomb group ring finger 3</td>
<td align="left">5</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="436894">436894</ext-link>
</td>
<td align="left">B</td>
<td align="left">Fabp7</td>
<td align="left">Fatty acid binding protein 7, brain</td>
<td align="left">10</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG076809">BG076809</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rps18</td>
<td align="left">Ribosomal protein S18</td>
<td align="left">17</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG085025">BG085025</ext-link>
</td>
<td align="left">C</td>
<td align="left">Dab1</td>
<td align="left">Disabled homolog 1 (Drosophila)</td>
<td align="left">4</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="718873">718873</ext-link>
</td>
<td align="left">C</td>
<td align="left">S100a10</td>
<td align="left">S100 calcium binding protein A10 (calpactin)</td>
<td align="left">3</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="576647">576647</ext-link>
</td>
<td align="left">C</td>
<td align="left">Chchd1</td>
<td align="left">Coiled-coil-helix-coiled-coil-helix domain containing 1</td>
<td align="left">14</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG063799">BG063799</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ak3l1</td>
<td align="left">Adenylate kinase 3 alpha-like 1</td>
<td align="left">4</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG077012">BG077012</ext-link>
</td>
<td align="left">C</td>
<td align="left">Cdc6</td>
<td align="left">Cell division cycle 6 homolog (S. cerevisiae)</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG077054">BG077054</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ncbp2</td>
<td align="left">Nuclear cap binding protein subunit 2, 20 kDa</td>
<td align="left">16</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG062969">BG062969</ext-link>
</td>
<td align="left">C</td>
<td align="left">Hnrpdl</td>
<td align="left">Heterogeneous nuclear ribonucleoprotein D-like</td>
<td align="left">5</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="576635">576635</ext-link>
</td>
<td align="left">C</td>
<td align="left">Vcam1</td>
<td align="left">Vascular cell adhesion molecule 1</td>
<td align="left">3</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="402711">402711</ext-link>
</td>
<td align="left">C</td>
<td align="left">Crybb1</td>
<td align="left">Crystallin, beta B1</td>
<td align="left">5</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG080965">BG080965</ext-link>
</td>
<td align="left">C</td>
<td align="left">Prkcbp1</td>
<td align="left">Protein kinase C binding protein 1</td>
<td align="left">2</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG074422">BG074422</ext-link>
</td>
<td align="left">C</td>
<td align="left">Itgb1</td>
<td align="left">Integrin beta 1 (fibronectin receptor beta)</td>
<td align="left">8</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG084605">BG084605</ext-link>
</td>
<td align="left">C</td>
<td align="left">Bpgm</td>
<td align="left">2,3-bisphosphoglycerate mutase</td>
<td align="left">6</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG078316">BG078316</ext-link>
</td>
<td align="left">C</td>
<td align="left">Sfxn1</td>
<td align="left">Sideroflexin 1</td>
<td align="left">13</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG076061">BG076061</ext-link>
</td>
<td align="left">C</td>
<td align="left">Lyar</td>
<td align="left">Ly1 antibody reactive clone</td>
<td align="left">5</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG077320">BG077320</ext-link>
</td>
<td align="left">C</td>
<td align="left">Mrps10</td>
<td align="left">Mitochondrial ribosomal protein S10</td>
<td align="left">17</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG077670">BG077670</ext-link>
</td>
<td align="left">C</td>
<td align="left">Gnai2</td>
<td align="left">Guanine nucleotide binding protein, alpha inhibiting 2</td>
<td align="left">9</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="406838">406838</ext-link>
</td>
<td align="left">C</td>
<td align="left">Foxo3a</td>
<td align="left">Forkhead box O3a</td>
<td align="left">10</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG072299">BG072299</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ramp2</td>
<td align="left">Receptor (calcitonin) activity modifying protein 2</td>
<td align="left">19</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1224916">1224916</ext-link>
</td>
<td align="left">C</td>
<td align="left">Atxn7</td>
<td align="left">Ataxin 7</td>
<td align="left">14</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1395654">1395654</ext-link>
</td>
<td align="left">C</td>
<td align="left">Batf</td>
<td align="left">Basic leucine zipper transcription factor, ATF-like</td>
<td align="left">12</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087349">BG087349</ext-link>
</td>
<td align="left">C</td>
<td align="left">Aldh1b1</td>
<td align="left">Aldehyde dehydrogenase 1 family, member B1</td>
<td align="left">4</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="596637">596637</ext-link>
</td>
<td align="left">C</td>
<td align="left">Stab2</td>
<td align="left">Stabilin 2</td>
<td align="left">10</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="596064">596064</ext-link>
</td>
<td align="left">C</td>
<td align="left">Cd5</td>
<td align="left">CD5 antigen</td>
<td align="left">19</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573880">573880</ext-link>
</td>
<td align="left">C</td>
<td align="left">Nfyc</td>
<td align="left">Nuclear transcription factor-Y gamma</td>
<td align="left">4</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1226020">1226020</ext-link>
</td>
<td align="left">C</td>
<td align="left">Unknown</td>
<td align="left">Unknown</td>
<td align="left">...</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="400157">400157</ext-link>
</td>
<td align="left">C</td>
<td align="left">Uqcrq</td>
<td align="left">Ubiquinol-cytochrome c reductase binding protein</td>
<td align="left">11</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG086406">BG086406</ext-link>
</td>
<td align="left">C</td>
<td align="left">Agtr2</td>
<td align="left">Angiotensin II receptor, type 2</td>
<td align="left">X</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="582804">582804</ext-link>
</td>
<td align="left">C</td>
<td align="left">Cys1</td>
<td align="left">Cystin 1</td>
<td align="left">12</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="576480">576480</ext-link>
</td>
<td align="left">C</td>
<td align="left">Igf2bp3</td>
<td align="left">Insulin-like growth factor 2 mRNA binding protein 3</td>
<td align="left">6</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="464586">464586</ext-link>
</td>
<td align="left">C</td>
<td align="left">Srr</td>
<td align="left">Serine racemase</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="575610">575610</ext-link>
</td>
<td align="left">C</td>
<td align="left">2700085E05Rik</td>
<td align="left">RIKEN cDNA 2700085E05 gene</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="575040">575040</ext-link>
</td>
<td align="left">C</td>
<td align="left">Sel1h</td>
<td align="left">Sel1 (suppressor of lin-12) 1 homolog (C. elegans)</td>
<td align="left">12</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087165">BG087165</ext-link>
</td>
<td align="left">C</td>
<td align="left">Herc4</td>
<td align="left">Hect domain and RLD 4</td>
<td align="left">10</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG073254">BG073254</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rbmxrt</td>
<td align="left">RNA binding motif protein, X chromosome retrogene</td>
<td align="left">8</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG073981">BG073981</ext-link>
</td>
<td align="left">C</td>
<td align="left">Gtpbp8</td>
<td align="left">GTP-binding protein 8 (putative)</td>
<td align="left">16</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573285">573285</ext-link>
</td>
<td align="left">C</td>
<td align="left">Lrriq2</td>
<td align="left">Leucine-rich repeats and IQ motif containing 2</td>
<td align="left">16</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="372621">372621</ext-link>
</td>
<td align="left">C</td>
<td align="left">Icam5</td>
<td align="left">Intercellular adhesion molecule 5, telencephalin</td>
<td align="left">9</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1428894">1428894</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ptpns1</td>
<td align="left">Protein tyrosine phosphatase, non-receptor type substrate 1</td>
<td align="left">2</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG076772">BG076772</ext-link>
</td>
<td align="left">C</td>
<td align="left">Gpd2</td>
<td align="left">Glycerol phosphate dehydrogenase 2, mitochondrial</td>
<td align="left">2</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="752149">752149</ext-link>
</td>
<td align="left">C</td>
<td align="left">Stk16</td>
<td align="left">Serine/threonine kinase 16</td>
<td align="left">1</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573328">573328</ext-link>
</td>
<td align="left">C</td>
<td align="left">Thrsp</td>
<td align="left">Thyroid hormone responsive SPOT14 homolog (Rattus)</td>
<td align="left">7</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087431">BG087431</ext-link>
</td>
<td align="left">C</td>
<td align="left">Sec31a</td>
<td align="left">SEC31 homolog A (S. cerevisiae)</td>
<td align="left">5</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087401">BG087401</ext-link>
</td>
<td align="left">C</td>
<td align="left">Brd7</td>
<td align="left">Bromodomain-containing 7</td>
<td align="left">8</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1361813">1361813</ext-link>
</td>
<td align="left">C</td>
<td align="left">Mmachc</td>
<td align="left">Methylmalonic aciduria cblC type, with homocystinuria</td>
<td align="left">4</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG076501">BG076501</ext-link>
</td>
<td align="left">C</td>
<td align="left">Sfrs6</td>
<td align="left">Splicing factor, arginine/serine-rich 6</td>
<td align="left">2</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1243669">1243669</ext-link>
</td>
<td align="left">C</td>
<td align="left">Aldoa</td>
<td align="left">Aldolase 1, A isoform</td>
<td align="left">7</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="476643">476643</ext-link>
</td>
<td align="left">C</td>
<td align="left">Sez6l</td>
<td align="left">Seizure related 6 homolog like</td>
<td align="left">5</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG075757">BG075757</ext-link>
</td>
<td align="left">C</td>
<td align="left">Cd81</td>
<td align="left">CD 81 antigen</td>
<td align="left">7</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="574496">574496</ext-link>
</td>
<td align="left">C</td>
<td align="left">Usp19</td>
<td align="left">Ubiquitin specific peptidase 19</td>
<td align="left">9</td>
<td align="left">D2</td>
<td align="left">D5
<sup>f</sup>
</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG065688">BG065688</ext-link>
</td>
<td align="left">C</td>
<td align="left">Uba52</td>
<td align="left">Ubiquitin A-52 residue ribosomal protein fusion product 1</td>
<td align="left">8</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG078688">BG078688</ext-link>
</td>
<td align="left">C</td>
<td align="left">Dtnb</td>
<td align="left">Dystrobrevin, beta</td>
<td align="left">12</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG086001">BG086001</ext-link>
</td>
<td align="left">C</td>
<td align="left">Sv2a</td>
<td align="left">Synaptic vesicle glycoprotein 2 a</td>
<td align="left">3</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG073641">BG073641</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rpl27</td>
<td align="left">Ribosomal protein L27</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087402">BG087402</ext-link>
</td>
<td align="left">C</td>
<td align="left">Hnrpu</td>
<td align="left">Heterogeneous nuclear ribonucleoprotein U</td>
<td align="left">1</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="595925">595925</ext-link>
</td>
<td align="left">C</td>
<td align="left">Sell</td>
<td align="left">Selectin, lymphocyte</td>
<td align="left">1</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1345776">1345776</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rbm14</td>
<td align="left">RNA binding motif protein 14</td>
<td align="left">19</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG077327">BG077327</ext-link>
</td>
<td align="left">C</td>
<td align="left">Gins4</td>
<td align="left">GINS complex subunit 4 (Sld5 homolog)</td>
<td align="left">8</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="387319">387319</ext-link>
</td>
<td align="left">C</td>
<td align="left">Zfp346</td>
<td align="left">Zinc finger protein 346</td>
<td align="left">13</td>
<td align="left">D2
<sup>e</sup>
</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AW546565">AW546565</ext-link>
</td>
<td align="left">C</td>
<td align="left">Exosc7</td>
<td align="left">Exosome component 7</td>
<td align="left">9</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG072456">BG072456</ext-link>
</td>
<td align="left">C</td>
<td align="left">Pih1d1</td>
<td align="left">PIH1 domain containing 1</td>
<td align="left">7</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG074521">BG074521</ext-link>
</td>
<td align="left">C</td>
<td align="left">Npm1</td>
<td align="left">Nucleophosmin 1</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG085278">BG085278</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rpl22</td>
<td align="left">Ribosomal protein L22</td>
<td align="left">4</td>
<td align="left">D2
<sup>e</sup>
</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1445843">1445843</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ahcyl1</td>
<td align="left">S-adenosylhomocysteine hydrolase-like 1</td>
<td align="left">3</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087592">BG087592</ext-link>
</td>
<td align="left">C</td>
<td align="left">Fbxw7</td>
<td align="left">F-box and WD-40 domain protein 7, archipelago homolog (Drosophila)</td>
<td align="left">3</td>
<td align="left">D2</td>
<td align="left">D5
<sup>e</sup>
</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG064589">BG064589</ext-link>
</td>
<td align="left">C</td>
<td align="left">Atp6v1a1</td>
<td align="left">ATPase, H+ transporting, lysosomal 70 kD, V1 subunit A, isoform 1</td>
<td align="left">16</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="441227">441227</ext-link>
</td>
<td align="left">C</td>
<td align="left">Abtb1</td>
<td align="left">Ankyrin repeat and BTB (POZ) domain containing 1</td>
<td align="left">6</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="386911">386911</ext-link>
</td>
<td align="left">C</td>
<td align="left">Trim29</td>
<td align="left">Tripartite motif protein 29</td>
<td align="left">9</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087083">BG087083</ext-link>
</td>
<td align="left">C</td>
<td align="left">Serinc3</td>
<td align="left">Serine incorporator 3</td>
<td align="left">2</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="372340">372340</ext-link>
</td>
<td align="left">C</td>
<td align="left">Myod1</td>
<td align="left">Myogenic differentiation 1</td>
<td align="left">7</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG081915">BG081915</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ube3a</td>
<td align="left">Ubiquitin protein ligase E3A</td>
<td align="left">7</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573124">573124</ext-link>
</td>
<td align="left">C</td>
<td align="left">Mrrf</td>
<td align="left">Mitochondrial ribosome recycling factor</td>
<td align="left">2</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573230">573230</ext-link>
</td>
<td align="left">C</td>
<td align="left">4930455C21Rik</td>
<td align="left">RIKEN cDNA 4930455C21 gene</td>
<td align="left">16</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1243507">1243507</ext-link>
</td>
<td align="left">C</td>
<td align="left">Unknown</td>
<td align="left">Unknown</td>
<td align="left">...</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG065706">BG065706</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rabl3</td>
<td align="left">RAB, member of RAS oncogene family-like 3</td>
<td align="left">16</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG078879">BG078879</ext-link>
</td>
<td align="left">C</td>
<td align="left">Cox4i1</td>
<td align="left">Cytochrome c oxidase, subunit IVa</td>
<td align="left">8</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG088493">BG088493</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ptplad1</td>
<td align="left">Protein tyrosine phosphatase-like A domain containing 1</td>
<td align="left">9</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1378435">1378435</ext-link>
</td>
<td align="left">C</td>
<td align="left">Acad8</td>
<td align="left">acyl-Coenzyme A dehydrogenase family, member 8</td>
<td align="left">9</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1429286">1429286</ext-link>
</td>
<td align="left">C</td>
<td align="left">1600002K03Rik</td>
<td align="left">RIKEN cDNA 1600002K03 gene</td>
<td align="left">10</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG078872">BG078872</ext-link>
</td>
<td align="left">C</td>
<td align="left">Pfkfb2</td>
<td align="left">6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2</td>
<td align="left">1</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="420477">420477</ext-link>
</td>
<td align="left">C</td>
<td align="left">Col13a1</td>
<td align="left">Procollagen, type XIII, alpha 1</td>
<td align="left">10</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="402631">402631</ext-link>
</td>
<td align="left">C</td>
<td align="left">Crebl1</td>
<td align="left">cAMP responsive element binding protein-like 1</td>
<td align="left">17</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1445700">1445700</ext-link>
</td>
<td align="left">C</td>
<td align="left">4930506M07Rik</td>
<td align="left">RIKEN cDNA 4930506M07 gene</td>
<td align="left">19</td>
<td align="left">D2
<sup>e</sup>
</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="575274">575274</ext-link>
</td>
<td align="left">C</td>
<td align="left">Nvl</td>
<td align="left">Nuclear VCP-like</td>
<td align="left">1</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="574369">574369</ext-link>
</td>
<td align="left">C</td>
<td align="left">Il4</td>
<td align="left">Interleukin 4</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG071511">BG071511</ext-link>
</td>
<td align="left">C</td>
<td align="left">Suclg1</td>
<td align="left">Succinate-CoA ligase, GDP-forming, alpha subunit</td>
<td align="left">6</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573178">573178</ext-link>
</td>
<td align="left">C</td>
<td align="left">Igfbp7</td>
<td align="left">Insulin-like growth factor binding protein 7</td>
<td align="left">5</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="574126">574126</ext-link>
</td>
<td align="left">C</td>
<td align="left">Dnaja3</td>
<td align="left">DnaJ (Hsp40) homolog, subfamily A, member 3</td>
<td align="left">16</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1226596">1226596</ext-link>
</td>
<td align="left">C</td>
<td align="left">Fem1c</td>
<td align="left">fem-1 homolog c (C.elegans)</td>
<td align="left">18</td>
<td align="left">D2
<sup>e</sup>
</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087153">BG087153</ext-link>
</td>
<td align="left">C</td>
<td align="left">Bckdha</td>
<td align="left">Branched chain ketoacid dehydrogenase E1, alpha polypeptide</td>
<td align="left">7</td>
<td align="left">D2
<sup>e</sup>
</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="402019">402019</ext-link>
</td>
<td align="left">C</td>
<td align="left">Golga7</td>
<td align="left">Golgi autoantigen, golgin subfamily a, 7</td>
<td align="left">8</td>
<td align="left">D2
<sup>e</sup>
</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="574168">574168</ext-link>
</td>
<td align="left">C</td>
<td align="left">Prosc</td>
<td align="left">Proline synthetase co-transcribed</td>
<td align="left">8</td>
<td align="left">D2
<sup>e</sup>
</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG073436">BG073436</ext-link>
</td>
<td align="left">C</td>
<td align="left">Atp5b</td>
<td align="left">ATP synthase, H+ transporting mitochondrial F1 complex, beta subunit</td>
<td align="left">10</td>
<td align="left">D2
<sup>e</sup>
</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="574027">574027</ext-link>
</td>
<td align="left">C</td>
<td align="left">Med19</td>
<td align="left">Mediator of RNA polymerase II transcription, subunit 19 homolog (yeast)</td>
<td align="left">2</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1243989">1243989</ext-link>
</td>
<td align="left">C</td>
<td align="left">Mfhas1</td>
<td align="left">Malignant fibrous histiocytoma amplified sequence 1</td>
<td align="left">8</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="373233">373233</ext-link>
</td>
<td align="left">C</td>
<td align="left">Itgb5</td>
<td align="left">Integrin beta 5</td>
<td align="left">16</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG085816">BG085816</ext-link>
</td>
<td align="left">C</td>
<td align="left">Spna2</td>
<td align="left">Alpha-spectrin 2, brain</td>
<td align="left">2</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1446130">1446130</ext-link>
</td>
<td align="left">C</td>
<td align="left">2410166I05Rik</td>
<td align="left">RIKEN cDNA 2410166I05 gene</td>
<td align="left">4</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1263575">1263575</ext-link>
</td>
<td align="left">C</td>
<td align="left">Stard4</td>
<td align="left">StAR-related lipid transfer (START) domain containing 4</td>
<td align="left">18</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1852943">1852943</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ankrd17</td>
<td align="left">Gene trap ankyrin repeat</td>
<td align="left">5</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="389112">389112</ext-link>
</td>
<td align="left">C</td>
<td align="left">Palm</td>
<td align="left">Paralemmin</td>
<td align="left">10</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="619816">619816</ext-link>
</td>
<td align="left">C</td>
<td align="left">Smad5</td>
<td align="left">MAD homolog 5 (Drosophila)</td>
<td align="left">13</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="641790">641790</ext-link>
</td>
<td align="left">C</td>
<td align="left">BC023814</td>
<td align="left">cDNA sequence BC023814</td>
<td align="left">3</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1329743">1329743</ext-link>
</td>
<td align="left">C</td>
<td align="left">S3–12</td>
<td align="left">Plasma membrane associated protein, S3–12</td>
<td align="left">17</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="653795">653795</ext-link>
</td>
<td align="left">C</td>
<td align="left">Il4ra</td>
<td align="left">Interleukin 4 receptor, alpha</td>
<td align="left">7</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="640435">640435</ext-link>
</td>
<td align="left">C</td>
<td align="left">Igsf3</td>
<td align="left">Immunoglobulin superfamily, member 3</td>
<td align="left">3</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="387990">387990</ext-link>
</td>
<td align="left">C</td>
<td align="left">0610040D20Rik</td>
<td align="left">RIKEN cDNA 0610040D20 gene</td>
<td align="left">9</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG075962">BG075962</ext-link>
</td>
<td align="left">C</td>
<td align="left">Peci</td>
<td align="left">Peroxisomal delta3, delta2-enoyl-Coenzyme A isomerase</td>
<td align="left">13</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG086412">BG086412</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rpl31</td>
<td align="left">Ribosomal protein L31</td>
<td align="left">1</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG075914">BG075914</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rps9</td>
<td align="left">Ribosomal protein S9</td>
<td align="left">7</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="639852">639852</ext-link>
</td>
<td align="left">C</td>
<td align="left">Bsg</td>
<td align="left">Basigin</td>
<td align="left">10</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573106">573106</ext-link>
</td>
<td align="left">C</td>
<td align="left">Slc25a1</td>
<td align="left">Solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1</td>
<td align="left">16</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="574123">574123</ext-link>
</td>
<td align="left">C</td>
<td align="left">Suds3</td>
<td align="left">Suppressor of defective silencing 3 homolog (S. cerevisiae)</td>
<td align="left">5</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG088819">BG088819</ext-link>
</td>
<td align="left">C</td>
<td align="left">1810043G02Rik</td>
<td align="left">RIKEN cDNA 1810043G02 gene</td>
<td align="left">10</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG088858">BG088858</ext-link>
</td>
<td align="left">C</td>
<td align="left">1810044A24Rik</td>
<td align="left">RIKEN cDNA 1810044A24 gene</td>
<td align="left">15</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG078275">BG078275</ext-link>
</td>
<td align="left">C</td>
<td align="left">C230096C10Rik</td>
<td align="left">RIKEN cDNA C230096C10 gene</td>
<td align="left">4</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573120">573120</ext-link>
</td>
<td align="left">C</td>
<td align="left">2310035K24Rik</td>
<td align="left">RIKEN cDNA 2310035K24 gene</td>
<td align="left">2</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG076791">BG076791</ext-link>
</td>
<td align="left">C</td>
<td align="left">Eef1d</td>
<td align="left">Eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)</td>
<td align="left">15</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087946">BG087946</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ubtf</td>
<td align="left">Transcription factor UBF</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">D5
<sup>f</sup>
</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="372316">372316</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ly6h</td>
<td align="left">Lymphocyte antigen 6 complex, locus H</td>
<td align="left">15</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1243611">1243611</ext-link>
</td>
<td align="left">C</td>
<td align="left">Tmem23</td>
<td align="left">Transmembrane protein 23</td>
<td align="left">19</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="574299">574299</ext-link>
</td>
<td align="left">C</td>
<td align="left">2700059D21Rik</td>
<td align="left">RIKEN cDNA 2700059D21 gene</td>
<td align="left">4</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG064820">BG064820</ext-link>
</td>
<td align="left">C</td>
<td align="left">Sae1</td>
<td align="left">SUMO1 activating enzyme subunit 1</td>
<td align="left">7</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG071827">BG071827</ext-link>
</td>
<td align="left">C</td>
<td align="left">Ppm1b</td>
<td align="left">Protein phosphatase 1B, magnesium dependent, beta isoform</td>
<td align="left">17</td>
<td align="left">D2</td>
<td align="left">D5
<sup>f</sup>
</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG086606">BG086606</ext-link>
</td>
<td align="left">C</td>
<td align="left">Txndc12</td>
<td align="left">Thioredoxin domain containing 12 (endoplasmic reticulum)</td>
<td align="left">4</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG085962">BG085962</ext-link>
</td>
<td align="left">C</td>
<td align="left">Gsn</td>
<td align="left">Gelsolin</td>
<td align="left">2</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="575308">575308</ext-link>
</td>
<td align="left">C</td>
<td align="left">Dus3l</td>
<td align="left">Dihydrouridine synthase 3-like (S. cerevisiae)</td>
<td align="left">17</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="573228">573228</ext-link>
</td>
<td align="left">C</td>
<td align="left">Fyco1</td>
<td align="left">FYVE and coiled-coil domain containing 1</td>
<td align="left">9</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG081532">BG081532</ext-link>
</td>
<td align="left">C</td>
<td align="left">Sfpq</td>
<td align="left">Splicing factor proline/glutamine rich (polypyrimidine tract binding protein associated)</td>
<td align="left">4</td>
<td align="left">D2</td>
<td align="left">D5
<sup>f</sup>
</td>
<td align="left">D7
<sup>f</sup>
</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG072614">BG072614</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rps16</td>
<td align="left">Ribosomal protein S16</td>
<td align="left">7</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG078928">BG078928</ext-link>
</td>
<td align="left">C</td>
<td align="left">Stmn3</td>
<td align="left">Stathmin-like 3</td>
<td align="left">2</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1226306">1226306</ext-link>
</td>
<td align="left">C</td>
<td align="left">Cd274</td>
<td align="left">CD274 antigen</td>
<td align="left">19</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AW544628">AW544628</ext-link>
</td>
<td align="left">C</td>
<td align="left">Itgb1</td>
<td align="left">Integrin beta 1 (fibronectin receptor beta)</td>
<td align="left">8</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG087322">BG087322</ext-link>
</td>
<td align="left">C</td>
<td align="left">Rps6ka2</td>
<td align="left">Ribosomal protein S6 kinase, 90 kD, polypeptide 2</td>
<td align="left">17</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="641964">641964</ext-link>
</td>
<td align="left">C</td>
<td align="left">Cd4</td>
<td align="left">CD4 antigen</td>
<td align="left">6</td>
<td align="left">D2</td>
<td align="left">D5
<sup>f</sup>
</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG071505">BG071505</ext-link>
</td>
<td align="left">C</td>
<td align="left">Slc28a3</td>
<td align="left">Solute carrier family 28 (sodium-coupled nucleoside transporter), member 3</td>
<td align="left">13</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG088775">BG088775</ext-link>
</td>
<td align="left">C</td>
<td align="left">Znhit3</td>
<td align="left">Zinc finger, HIT type 3</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG069977">BG069977</ext-link>
</td>
<td align="left">C</td>
<td align="left">Pmm1</td>
<td align="left">Phosphomannomutase 1</td>
<td align="left">15</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="574022">574022</ext-link>
</td>
<td align="left">E</td>
<td align="left">1200015M12Rik</td>
<td align="left">RIKEN cDNA 1200015M12 gene</td>
<td align="left">3</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG086286">BG086286</ext-link>
</td>
<td align="left">E</td>
<td align="left">Cirbp</td>
<td align="left">Cold inducible RNA binding protein</td>
<td align="left">10</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="598493">598493</ext-link>
</td>
<td align="left">E</td>
<td align="left">Ifit3</td>
<td align="left">Interferon-induced protein with tetratricopeptide repeats 3</td>
<td align="left">19</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="617022">617022</ext-link>
</td>
<td align="left">"</td>
<td align="left">"</td>
<td align="left">"</td>
<td align="left">"</td>
<td align="left">"</td>
<td align="left">"</td>
<td align="left">"</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1329893">1329893</ext-link>
</td>
<td align="left">E</td>
<td align="left">2600010E01Rik</td>
<td align="left">RIKEN cDNA 2600010E01 gene</td>
<td align="left">2</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG076479">BG076479</ext-link>
</td>
<td align="left">E</td>
<td align="left">Ctla2a</td>
<td align="left">Cytotoxic T lymphocyte-associated protein 2 alpha</td>
<td align="left">13</td>
<td align="left">...</td>
<td align="left">D5
<sup>f</sup>
</td>
<td align="left">D7</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG088327">BG088327</ext-link>
</td>
<td align="left">E</td>
<td align="left">Sf3b1</td>
<td align="left">Splicing factor 3b, subunit 1, 155 kDa</td>
<td align="left">1</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="BG076355">BG076355</ext-link>
</td>
<td align="left">E</td>
<td align="left">Stat3</td>
<td align="left">Signal transducer and activator of transcription 3</td>
<td align="left">11</td>
<td align="left">D2</td>
<td align="left">...</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="643048">643048</ext-link>
</td>
<td align="left">E</td>
<td align="left">Gbp6</td>
<td align="left">Guanylate binding protein 6</td>
<td align="left">3</td>
<td align="left">...</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="638199">638199</ext-link>
</td>
<td align="left">E</td>
<td align="left">H2-T22</td>
<td align="left">Histocompatibility 2, T region locus 22</td>
<td align="left">17</td>
<td align="left">D2</td>
<td align="left">D5
<sup>f</sup>
</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="638232">638232</ext-link>
</td>
<td align="left">E</td>
<td align="left">Jundm2</td>
<td align="left">Jun dimerization protein 2</td>
<td align="left">12</td>
<td align="left">D2</td>
<td align="left">D5</td>
<td align="left">...</td>
</tr>
<tr>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="1394984">1394984</ext-link>
</td>
<td align="left">E</td>
<td align="left">Rps14</td>
<td align="left">Ribosomal protein S14</td>
<td align="left">18</td>
<td align="left">...</td>
<td align="left">...</td>
<td align="left">D7</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a </sup>
Clone ID or GenBank accession no.</p>
<p>
<sup>b </sup>
The genes
<italic>Il4ra </italic>
and
<italic>Ifit3 </italic>
were duplicates (the same clone for the gene
<italic>Il4ra </italic>
and two different clones for the gene
<italic>Ifit3</italic>
). Thus, there were 177 genes identified.</p>
<p>
<sup>c </sup>
Chromosomal localization.</p>
<p>
<sup>d </sup>
The days for which the Welch t test was significant (<0.0001) after Bonferroni correction are mentioned.</p>
<p>
<sup>e </sup>
Significant difference was observed only between BALB/c and C57BL/6.</p>
<p>
<sup>f </sup>
Significant difference was observed only between BALB/c and CBA/J.</p>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="T3">
<label>Table 3</label>
<caption>
<p>Functional KEGG annotation of genes associated with resistance or susceptibility to CM</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="left">KEGG pathways
<sup>a</sup>
</td>
<td align="left">Percentage of significant CM genes
<sup>b</sup>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Ribosome</td>
<td align="right">13.3</td>
</tr>
<tr>
<td align="left">Cell adhesion molecules (CAMs)</td>
<td align="right">10.0</td>
</tr>
<tr>
<td align="left">Antigen processing and presentation</td>
<td align="right">8.3</td>
</tr>
<tr>
<td align="left">Oxidative phosphorylation</td>
<td align="right">6.7</td>
</tr>
<tr>
<td align="left">Hematopoietic cell lineage</td>
<td align="right">6.7</td>
</tr>
<tr>
<td align="left">Leukocyte transendothelial migration</td>
<td align="right">6.7</td>
</tr>
<tr>
<td align="left">ECM-receptor interaction</td>
<td align="right">6.7</td>
</tr>
<tr>
<td align="left">Cytokine-cytokine receptor interaction</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">Glycolysis/Gluconeogenesis</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">Fructose and mannose metabolism</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">Regulation of actin cytoskeleton</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">T cell receptor signaling pathway</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">Jak-STAT signalling pathway</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">Axon guidance</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">Valine, leucine and isoleucine degradation</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">Focal adhesion</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">Tight junction</td>
<td align="right">5.0</td>
</tr>
<tr>
<td align="left">MAPK signaling pathway</td>
<td align="right">3.3</td>
</tr>
<tr>
<td align="left">B cell receptor signaling pathway</td>
<td align="right">3.3</td>
</tr>
<tr>
<td align="left">Tryptophan metabolism</td>
<td align="right">3.3</td>
</tr>
<tr>
<td align="left">Propanoate metabolism</td>
<td align="right">3.3</td>
</tr>
<tr>
<td align="left">Butanoate metabolism</td>
<td align="right">3.3</td>
</tr>
<tr>
<td align="left">Bile acid biosynthesis</td>
<td align="right">3.3</td>
</tr>
<tr>
<td align="left">Fatty acid metabolism</td>
<td align="right">3.3</td>
</tr>
<tr>
<td align="left">Adipocytokine signaling pathway</td>
<td align="right">3.3</td>
</tr>
<tr>
<td align="left">Neuroactive ligand-receptor interaction</td>
<td align="right">3.3</td>
</tr>
<tr>
<td align="left">Neurodegenerative Disorders</td>
<td align="right">3.3</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a </sup>
Only the KEGG pathways that contained at least two genes were represented.</p>
<p>
<sup>b </sup>
Of the 177 significant CM genes, 60 genes were annotated.</p>
</table-wrap-foot>
</table-wrap>
<fig position="float" id="F6">
<label>Figure 6</label>
<caption>
<p>
<bold>Genes differentially expressed between CM-R and CM-S mice on days 2, 5, and 7.</bold>
The number of genes up-regulated in CM-S mice compared to CM-R mice (
<bold>A</bold>
), and the number of genes up-regulated in CM-R mice compared to CM-S mice (
<bold>B</bold>
) are shown.</p>
</caption>
<graphic xlink:href="1471-2164-8-452-6"></graphic>
</fig>
<p>We further analyzed the expression of genes involved in neuronal development or in neurodegenerative disorders using immunochemistry. Thus, we studied the expression of
<italic>reelin </italic>
(
<italic>Reln</italic>
), which is involved in neurogenesis, and we searched for the presence of β-amyloid protein, which is involved in Alzheimer's disease. We detected RELN only in brains of BALB/c mice at days 5 and 7, while we showed the presence of β-amyloid only in brains of CBA/J and C57BL/6 mice at days 5 and 7 (Table
<xref ref-type="table" rid="T4">4</xref>
).</p>
<table-wrap position="float" id="T4">
<label>Table 4</label>
<caption>
<p>Protein expression in brain of CM-R and CM-S mice upon malaria infection</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td></td>
<td align="center" colspan="3">d0/d2</td>
<td align="center" colspan="3">D5</td>
<td align="center" colspan="3">d7</td>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td align="center">BALB/c</td>
<td align="center">CBA/J</td>
<td align="center">C57BL/6</td>
<td align="center">BALB/c</td>
<td align="center">CBA/J</td>
<td align="center">C57BL/6</td>
<td align="center">BALB/c</td>
<td align="center">CBA/J</td>
<td align="center">C57BL/6</td>
</tr>
<tr>
<td colspan="10">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">Reelin</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">++</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">+++</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td align="left">β-Amyloid</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">+</td>
<td align="center">+</td>
<td align="center">-</td>
<td align="center">++</td>
<td align="center">++</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>n = 3, at least 25 brain fields analysed per mouse.</p>
<p>-: no positive vessel</p>
<p>+: from 1 to 5 postive areas/vessels per field</p>
<p>++: from 6 to 10 postive areas/vessels per field</p>
<p>+++: > 10 positive areas/vessels per field</p>
<p>d0/d2: results were similar for both day 0 and day 2.</p>
</table-wrap-foot>
</table-wrap>
<p>Overall, our gene expression analysis revealed marked changes in metabolic energy pathways, the inflammatory response, and pathways related to neurogenesis and neurodegenerative disorders in CM-S mice versus CM-R mice.</p>
</sec>
</sec>
<sec>
<title>Discussion</title>
<p>In the present study, we have searched for genes and physiological pathways potentially involved in CM. To this aim, we performed a longitudinal analysis of differentially expressed genes in brains from well-defined genetically CM-R (BALB/c) and CM-S (C57BL/6, and CBA/J) mice at early and late stages of infection. The present study shows that PbA strongly altered gene expression in these mice. In particular, gene expression was deeply altered at the time of CM onset, confirming our previous study [
<xref ref-type="bibr" rid="B8">8</xref>
]. Here, we show that a number of genes were over-expressed in CM-R mice at the early stage of infection, suggesting that CM-R mice mount an early protective transcriptional response. In this way, we found an association of resistance to CM with an increase in the expression of a number of genes on day 2 post-infection (Figure
<xref ref-type="fig" rid="F4">4</xref>
and Table
<xref ref-type="table" rid="T2">2</xref>
). In contrast, a number of genes were found to be under-expressed in C57BL/6 mice at the early stage of infection, while few genes were found to be regulated in CBA/J mice at the same time (Figure
<xref ref-type="fig" rid="F2">2</xref>
). Also, CBA/J mice appeared to mount a gradual response that may be involved in CM pathogenesis, while C57BL/6 mice may mount two waves of transcriptional responses both of them potentially implicated in malaria pathogenesis. These observations are consistent with other reports suggesting that CM mediators partly differ between C57BL/6 and CBA/J mice [
<xref ref-type="bibr" rid="B8">8</xref>
-
<xref ref-type="bibr" rid="B10">10</xref>
]. Nevertheless, both CBA/J and C57BL/6 mice showed a pronounced up-regulation of genes involved in either interferon-associated response or in glycolysis at the late stage, and a down-regulation of genes involved in erythropoiesis both at early and late stages, as previously described [
<xref ref-type="bibr" rid="B3">3</xref>
].</p>
<p>To identify genes with significant transcriptional changes associated with CM, we performed, on the whole data set, a multi-class SAM procedure with a very stringent false discovery rate followed by a Welch t test with a Bonferroni correction. In other words, we applied a two-filtering procedure to decrease the number of "false positive" genes. To account for natural variation between mouse strains, we adjusted gene expression level in infected mice for gene expression level in uninfected mice. Thus, we identified a number of genes differentially regulated between CM-R and CM-S mice. The 327 most differentially expressed genes identified by the SAM analysis allowed the complete discrimination between CM-R and CM-S mice according to the time of infection. The same result was obtained with the subset of 177 genes identified by the Welch t test (data not shown). This further confirms our previous study that investigated gene expression at the time of CM onset [
<xref ref-type="bibr" rid="B8">8</xref>
].</p>
<p>EASE analysis of either the 327 genes or the 177 genes revealed that some of the most represented biological process categories were related to the "defense response", such as the "response to parasite" or the "inflammatory response" terms. This was further supported by the results of the KEGG pathway analysis. In addition, genes were found to be involved in KEGG pathways related to metabolism, such as "oxidative phosphorylation", "glycolysis/gluconeogenesis", or "tryptophan metabolism". The analysis of functional annotation also revealed GO terms and KEGG pathways related to brain, such as the "axon guidance" and the "neurodegenerative disorders" KEGG pathways.</p>
<p>Overall, the analysis of functional annotation is consistent with the view that mouse CM is characterized among others by the deregulation of both immune response and glucose metabolism [
<xref ref-type="bibr" rid="B11">11</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
]. This leads to an abnormal increase in the inflammatory response and to hypoglycemia and acidosis in CM-S mice [
<xref ref-type="bibr" rid="B11">11</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
]. In addition, our data provide evidence of an intrinsic deficiency in oxidative phosphorylation, and the functional annotations related to brain disease suggest the role of genes expressed by brain cells in resistance or susceptibility to CM. Thus, despite a number of genes identified by our microarray analysis, which may highlight highly complex interactions between the parasite and the host, several major features of the transcriptional profile can be deduced.</p>
<p>First, PbA infection affects the expression of genes involved in metabolic energy pathways. The expression of
<italic>Uqcrq, Cox4i1, Ndufb8, Atp6v1g2 </italic>
and
<italic>Atp5b </italic>
involved in oxidative phosphorylation was upregulated in CM-R mice on day 2 post-infection [see Additional file
<xref ref-type="supplementary-material" rid="S2">2</xref>
], suggesting that cerebral oxidative metabolism may be stimulated by PbA infection in CM-R mice. In contrast, these genes were downregulated in C57BL/6 mice on day 2 post-infection and in CBA/J mice on day 7 post-infection, while only
<italic>Ndufb8 </italic>
was downregulated in CBA/J mice on day 2 post-infection. These transcriptional changes were associated with CM. A similar pattern was observed for
<italic>Hmgcs1 </italic>
involved in ketone metabolism. In the same way, lower NAD+/NADH levels and decreased mitochondrial function have been observed in CM-S mice by others [
<xref ref-type="bibr" rid="B12">12</xref>
,
<xref ref-type="bibr" rid="B13">13</xref>
]. These observations may be related to hypoxia and hypoglycemia, which reflect the low level of metabolic energy substrates. Alternatively, our data are consistent with the "cytopathic hypoxia" hypothesis, which rather proposes an adequate oxygen supply but an abnormal oxygen use [
<xref ref-type="bibr" rid="B14">14</xref>
]. Also, the low level of oxidative phosphorylation gene expression and ketone bodies pathway genes that we detected in the brain of CM-S mice suggests that cerebral oxidative metabolism may be inhibited even without oxygen delivery being impaired.</p>
<p>This metabolic disturbance also leads to lactate production and acidosis. In addition, this leads to an accumulation of ADP, which favors platelet aggregation [
<xref ref-type="bibr" rid="B15">15</xref>
]. Interestingly, platelet aggregation is known to be stimulated by PAF acether and inhibited by AMPc, the expression of which is inhibited by LIS1 (PAFAH1B1) and PDE4B, respectively [
<xref ref-type="bibr" rid="B16">16</xref>
,
<xref ref-type="bibr" rid="B17">17</xref>
]. Overall, the lower expression of
<italic>Pafah1b1 </italic>
in CM-S mice compared to CM-R mice [
<xref ref-type="bibr" rid="B8">8</xref>
], the higher expression of
<italic>Pde4b </italic>
in CM-S mice compared to CM-R mice, and the metabolic disturbance leading to an accumulation of ADP may participate in the platelet aggregation process in the cerebral microvasculature of CM-S mice.</p>
<p>Second, it is likely that the inflammatory response plays a major role in CM pathogenesis. In particular, a surge of IFNγ production at 3 to 4 days p.i. was demonstrated to be essential for murine CM, and this may be due to the absence of regulation in IFNγ pathways at early stages in PbA infection [
<xref ref-type="bibr" rid="B18">18</xref>
-
<xref ref-type="bibr" rid="B20">20</xref>
]. IFNγ is a proinflammatory cytokine typically produced by Th1 lymphocytes, and it is thought that the Th2 response protects from CM [
<xref ref-type="bibr" rid="B11">11</xref>
]. In this way, our microarray analysis showed that
<italic>IL4 </italic>
and
<italic>IL4R </italic>
were over-expressed in CM-R mice from day 2. Similarly,
<italic>Dnaja3, Foxo3a</italic>
, and
<italic>Ptpns1 </italic>
that inhibit the activity of NF-kB [
<xref ref-type="bibr" rid="B21">21</xref>
-
<xref ref-type="bibr" rid="B23">23</xref>
] had lower expression levels in CM-S mice than in CM-R mice, while
<italic>Nfkbia</italic>
, a marker of the NF-kB signalling pathway involved in inflammation [
<xref ref-type="bibr" rid="B24">24</xref>
], was over-expressed in CM-S mice. In addition,
<italic>C1qa </italic>
and
<italic>Pde4b </italic>
that are involved in the inflammatory response [
<xref ref-type="bibr" rid="B17">17</xref>
,
<xref ref-type="bibr" rid="B25">25</xref>
] were found to be over-expressed in CM-S mice compared to CM-R mice.
<italic>S100a10 </italic>
that inhibits the activity of phospholipase A2 [
<xref ref-type="bibr" rid="B26">26</xref>
], and
<italic>Bcl6 </italic>
that inhibits the production of MIP-alpha and IP-10 [
<xref ref-type="bibr" rid="B27">27</xref>
] were under-expressed in CM-S mice compared to CM-R mice. Blood cells are known to be involved in the inflammatory response due to malarial infection. Indeed, CD4+ and CD8+ T lymphocytes, platelets, monocytes have been shown to cooperate in the cerebral microvasculature, and this causes inflammation, endothelial cell damage, and hemorrhages [
<xref ref-type="bibr" rid="B9">9</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B28">28</xref>
-
<xref ref-type="bibr" rid="B30">30</xref>
]. In addition,
<italic>Gzmb</italic>
, whose expression was up-regulated in CM-S mice [
<xref ref-type="bibr" rid="B8">8</xref>
], encodes granzyme B in cytotoxic T lymphocytes, and is thought to be involved in the breakdown of the blood-brain barrier [
<xref ref-type="bibr" rid="B31">31</xref>
]. The influence of immune responses on the blood-brain barrier may be partly reflected by changes in expression of genes involved in either cytoskeletal and tight-junction pathways or cell adhesion pathways in CM-S mice.</p>
<p>It has been also suggested that glial cells actively participate in the local inflammatory response caused by malarial infection [
<xref ref-type="bibr" rid="B32">32</xref>
]. In this way, glial cells that have been shown to be activated on day 3 post-infection by PbA can produce C1q components [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B33">33</xref>
]. The NF-kB signalling pathway has been demonstrated in these cells [
<xref ref-type="bibr" rid="B34">34</xref>
]. Interestingly,
<italic>Cd200 </italic>
that is implicated in the control of the activation of glial cells was strongly under-expressed in the CBA/J CM-S mice [
<xref ref-type="bibr" rid="B35">35</xref>
]. Besides, the expression of
<italic>IL4 </italic>
and
<italic>IL4R </italic>
was shown to be higher in CM-R mice than in CM-S mice. Since IL-4 induces apoptosis in activated glial cells that express IL-4R [
<xref ref-type="bibr" rid="B36">36</xref>
], IL-4 may contribute to the down-regulation of brain inflammation in CM-R mice.</p>
<p>Third, genes involved in the neuroprotection/neurotoxicity balance and/or in neurogenesis may protect the host against CM. This hypothesis is based on changes in tryptophan metabolism caused by PbA infection. Sanni et al (1998) showed an increase of the activity of indoleamine 2,3-dioxygenase whose expression is induced by TNF and IFNγ [
<xref ref-type="bibr" rid="B37">37</xref>
]. This leads to an increase of the ratio quinolinic acid/kynurenic acid, and to neuro-excitotoxic damage associated with CM. In humans, high levels of quinolinic acid have been associated with CM [
<xref ref-type="bibr" rid="B38">38</xref>
]. Interestingly, genes involved in tryptophan metabolism, such as
<italic>Ube3a, Prnt3</italic>
, and
<italic>Aldh1b1</italic>
, were differentially regulated between CM-R and CM-S mice. The expression of these genes was enhanced by infection in CM-R mice. In addition, genes having a neuroprotective role, such
<italic>Agtr2</italic>
,
<italic>Bag1</italic>
,
<italic>Csnk1a1 </italic>
and
<italic>Reln </italic>
[
<xref ref-type="bibr" rid="B39">39</xref>
-
<xref ref-type="bibr" rid="B42">42</xref>
], were shown to be over-expressed in CM-R mice compared to CM-S mice. Indeed,
<italic>Rtn3 </italic>
and
<italic>Creb1 </italic>
that are markers of neuronal survival [
<xref ref-type="bibr" rid="B43">43</xref>
,
<xref ref-type="bibr" rid="B44">44</xref>
], were also over-expressed in CM-R mice. Besides,
<italic>Reln </italic>
and
<italic>Dab1</italic>
, which were over-expressed in CM-R mice, are known to be involved in neurogenesis [
<xref ref-type="bibr" rid="B45">45</xref>
,
<xref ref-type="bibr" rid="B46">46</xref>
]. Similarly,
<italic>Pafah1b1 </italic>
whose expression was associated with resistance to CM [
<xref ref-type="bibr" rid="B8">8</xref>
] is involved in the
<italic>Reln </italic>
pathway [
<xref ref-type="bibr" rid="B46">46</xref>
]. This suggests that CM-S mice are deficient in neurogenesis, and that they cannot repair neuronal damages. In contrast, CM-R mice might be able to repair such damage (Figure
<xref ref-type="fig" rid="F7">7</xref>
).</p>
<fig position="float" id="F7">
<label>Figure 7</label>
<caption>
<p>
<bold>Schematic diagram showing the possible effects of the reelin pathway in protection from CM</bold>
. Reelin (RELN) is an extracellular matrix serine protease expressed in some neurons, such as GABAergic interneurons, which inhibit excitotoxic neurotransmission [45]. RELN that is secreted into the extracellular space acts by paracrine and autocrine mechanisms. RELN interacts with very low-density lipoprotein receptors (VLDLR) and apolipoprotein E type 2 receptors (ApoER2) leading to tyrosine phosphorylation of the adaptor protein Disabled-1 (DAB1) by the SRC family kinases (SRC) [42]. DAB1 activation, in turn, activates PI3K/Akt signalling, which has been implicated in neuronal migration during development and adulthood. In addition, phosphorylated DAB1 interacts with LIS1, a protein encoded by
<italic>Pafah1b1</italic>
, which associates with microtubules and modulates neuronal migration [46]. LIS1 may be required for regulating crucial steps of reelin-dependent neuronal positioning. In parallel, phosphorylated DAB1 inhibits glycogen synthase kinase 3β (GSK3β), a kinase known to phosphorylate Tau protein at multiple sites. Therefore, the activation of RELN pathway diminishes the level of hyperphosphorylated Tau protein, which is a biomarker of brain injury. In particular, hyperphosphorylated Tau protein is a component of the neurofibrillary tangles involved in Alzheimer's disease.
<italic>Reln</italic>
,
<italic>Dab1 </italic>
and
<italic>Pafah1b1 </italic>
were shown to be over-expressed in CM-R mice compared to CM-S mice. The activation of RELN signalling may inhibit excitotoxic neurotransmission and Tau phosphorylation, and may activate neurogenesis in CM-R mice. This may lead to diminished brain injury and to increased brain injury repair. Solid arrows represent influences on the activity of proteins or physiological mechanisms. Dashed arrows represent impaired effects on the activity of proteins or physiological mechanisms. Negative signs indicate inhibition, and positive signs indicate activation.</p>
</caption>
<graphic xlink:href="1471-2164-8-452-7"></graphic>
</fig>
<p>So far, little research has been conducted on the issue of neuroprotective responses in CM. Interestingly, the
<italic>Reln </italic>
pathway that inhibits the phosphorylation of the protein Tau has been recently proposed as a protective mechanism against Alzheimer'disease [
<xref ref-type="bibr" rid="B47">47</xref>
]. In addition, decreased ribosomal RNA levels and decreased rates for protein synthesis have been recently described in Alzheimer'disease [
<xref ref-type="bibr" rid="B48">48</xref>
], while we showed the down-regulation of several genes encoding ribosomal proteins in CM-S mice. In the same way, Medana et al (2002) detected β-amyloid precursor protein in humans with CM [
<xref ref-type="bibr" rid="B49">49</xref>
], and we report here the β-amyloid protein in brains of CM-S mice but not in CM-R mice. This result is consistent with the down-regulation of
<italic>Arc, Itm2b, Bsg, Rtn3</italic>
, and
<italic>Il4 </italic>
in CM-S mice, and with the up-regulation of
<italic>Pde4b </italic>
in CM-S mice. Indeed,
<italic>Itm2b, Bsg, Rtn3</italic>
, and
<italic>Il4 </italic>
inhibit the production of the β-amyloid protein [
<xref ref-type="bibr" rid="B50">50</xref>
-
<xref ref-type="bibr" rid="B53">53</xref>
]. Besides, the β-amyloid protein inhibits the expression of
<italic>Arc</italic>
, while it increases the expression of
<italic>Pde4b </italic>
[
<xref ref-type="bibr" rid="B25">25</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
]. These observations suggest that cerebral malaria and Alzheimer'disease share some common mechanisms of pathogenesis.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>In this study, we have confirmed that gene-expression profiling discriminates between CM-R and CM-S mice, and we have identified genes whose expression showed consistent differential expression between CM-R and CM-S mice at early and late stages of infection. The analysis of gene functional annotation reveals several major features. First, it indicated that brain metabolic energy metabolism was early and deeply disturbed in CM-S mice, suggesting that high lactate production may be due rather to metabolic disturbance than to deficient oxygen supply. Second, the influence of inflammatory response on CM was also clearly detected, and our data are consistent with an active role of microglial cells in local inflammation. Third, the outcome of infection may critically depend on either cerebral tissue protective responses or brain repair capacity. Overall, our microarray analysis may give a global overview of critical events occurring in CM-S mice compared to CM-R mice. Searching for polymorphisms that alter the expression of genes identified should help in determining the genetic control of cerebral malaria. This analysis also revealed some promising areas for exploration that may both provide new insight into the key events that govern CM pathogenesis and the development of therapeutic strategies. In particular, novel neuroprotective therapies may be proposed as adjuncts to anti-malarial therapy.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Mouse strains and phenotyping</title>
<p>Six to 8 weeks old BALB/c (CM-R strain), C57BL/6J and CBA/J (CM-S strains) female, were obtained from IFFA CREDO (Ch. River Lab, France) and kept in our facilities. Three mice from each strain were not infected, and 22 BALB/c, 17 C57BL/6J, and 15 CBA/J were infected by i.p. injection of 10
<sup>6 </sup>
<italic>PbA </italic>
parasitized erythrocytes. The frozen stabilates were obtained with an uncloned line, and were prepared from CBA/J day 7-infected mice [
<xref ref-type="bibr" rid="B30">30</xref>
]. The parasite was conserved as stabilates of 10
<sup>7 </sup>
parasitized erythrocytes stored in liquid nitrogen in Alsever's solution containing 10% glycerol. Parasitemia was monitored daily by blood smear. No difference was observed between mouse strains. Parasitemia was 0.8%±0.9, 4.5%±2.2, and 8.7%±5.3 on days 2, 5, and 7 post-infection, respectively. The CM-S mice developed a neurological syndrome (mono-, hemi-, para-, or tetraplegia, ataxia, deviation of the head, and convulsions), which occurred 6 to 7 days after parasite inoculation with a cumulative mortality of 100%. The CM-R mice did not present neurologic lesions and died during the 3
<sup>rd </sup>
or the 4
<sup>th </sup>
week of infection, with severe anaemia and hyperparasitemia [
<xref ref-type="bibr" rid="B9">9</xref>
]. The parasitemia of CM-R mice was 16.6%±8.9 and 62.8%±25.7 on days 9 and 15, respectively.</p>
</sec>
<sec>
<title>Organ sampling</title>
<p>Brains were taken from CM-R and CM-S mice before and after infection. Brains from three uninfected mice were taken for each strain. Three, 4, and 6 CBA/J were analyzed on days 2, 5, and 7 post-infection, respectively, while 4, 4, and 9 C57BL/6 were analyzed on days 2, 5, and 7 post-infection, respectively. Brains from 3, 4, 5, 5, and 5 BALB/c mice were taken on days 2, 5, 7, 9 and 15 post-infection. Brains were completely removed and were cut into two parts: one part was frozen in RNALater (Qiagen, TM) until RNA analysis, and the other part was embedded in Tissue Tek (Leica), snap frozen in liquid nitrogen, and kept at -80°C until histopathological analysis of cryosections.</p>
</sec>
<sec>
<title>Immunochemistry</title>
<p>For immunostaining, frozen sections were incubated for 45 minutes with primary monoclonal antibodies directed against murine Reelin and β-Amyloid peptide (Santa Cruz, Tebu Bio) after saturation with appropriate serum. After washing, sections were incubated for 45 minutes with biotinylated polyclonal antibodies, followed by the addition of HRPO-avidin (anti-rat or anti-hamster ABC kits; Vector, Peterborough, England). Color reaction was obtained by the addition of Novared (AbCys). Slides were counterstained with Mayer's hematoxylin before permanent mounting with Entellan (Merck, Brussels, Belgium). Slides were pictured at 200 magnification using an Eclipse 800 microscope (Nikon, Champignysur- Marne, France) and a digital camera; labelling was then analyzed by quantitative digitalized image analysis using Lucia software (Nikon). At least 3 brains were sampled for each time point and each mouse strain and image analysis was performed on an average of 25 microphotographs per mouse.</p>
</sec>
<sec>
<title>RNA isolation and cDNA microarray hybridizations</title>
<p>Total RNA from brains was extracted using TRIzol reagent (Gibco-BRL, Life Technologies). The quality of RNA was confirmed on a formaldehyde agarose gel, and the concentration of RNA was determined by reading absorbance at 260/280 nm. RNA from 2 CBA/J mice had an inadequate quality, and was not further processed. Each mRNA sample extracted from an individual brain was run on a single microarray. In addition, three samples were run on several microarrays, and were considered as technical replicates: samples from CBA/J, C57BL/6, and BALB/c mice were run on 5, 2, and 2 microarrays, respectively. All microarray procedures were done at our microarray core facility [
<xref ref-type="bibr" rid="B55">55</xref>
]. cDNA microarrays were designed and prepared as described [
<xref ref-type="bibr" rid="B56">56</xref>
]. Briefly, the microarrays used in this study were composed of 8388 sequences. The following cDNA libraries were used: the NIA Mouse 15 K cDNA clone set, 2NbMT (thymus), NbMLN (lymph node), and 3NbMS (spleen). Detailed descriptions of these cDNA libraries are available at the UniGene database website (2NbMT: Lib.544, 3NbMS: Lib.553, NbMLN: Lib.567, NIA 15 K: Lib.8622) [
<xref ref-type="bibr" rid="B57">57</xref>
]. PCR amplification was performed as previously described [
<xref ref-type="bibr" rid="B56">56</xref>
], and PCR products were spotted onto nylon membranes (Hybond-N+, Amersham) with a MicroGrid II arrayer (Affymetrix, Santa Clara, CA). About 10% of the genes included in this clone set are represented by two or more different cDNA clones, providing internal controls to assess the reproducibility of gene expression measurements. Microarrays were hybridized with
<sup>33</sup>
P-labelled probes, first with an oligonucleotide sequence common to all spotted PCR products (5'-TCACACAGGAAACAGCTATGAC-3'), then after stripping, with complex probes made from 5 μg of retrotranscribed total RNA. Probe preparations, hybridizations and washes were carried out as described previously [
<xref ref-type="bibr" rid="B56">56</xref>
]. After 48 h hybridization, arrays were scanned with a FUJI BAS5000 machine at 25 μm resolution. Hybridization signals were quantified using ArrayGauge software (Fuji Ltd, Tokyo, Japan).</p>
</sec>
<sec>
<title>Microarray data analysis</title>
<p>All images were carefully inspected, and spots with overestimated intensities due to neighborhood effects were manually excluded. The data were filtered such that only spots with intensities that were two times greater than the median background in either microarray were used in the analysis, and the signal intensities were then corrected to take into account the amount of spotted DNA and the variability of experimental conditions, as described [
<xref ref-type="bibr" rid="B58">58</xref>
]. Of the 8388 spotted clones, we selected the clones that had detectable expression levels in at least 80% of the experiments (n = 2012). Unsupervised hierarchical clustering investigated relationships between samples and relationships between genes. It was applied to data log-transformed and median-centred using the Cluster and TreeView programs (average linkage clustering using Pearson's correlation as similarity metric) [
<xref ref-type="bibr" rid="B59">59</xref>
].</p>
<p>Microarray data were statistically analyzed using the TIGR MeV (MultiExperiment Viewer) v3.1 software [
<xref ref-type="bibr" rid="B60">60</xref>
]. Figure
<xref ref-type="fig" rid="F1">1</xref>
shows an outline of data analysis. A one-way ANOVA and SAM (Significant Analysis of Microarrays) procedures were applied to look for time-, strain-, and CM-R/CM-S-specific variation in gene expression in the full data set. One-way ANOVA and Welch t-statistics were used to analyze gene expression changes upon infection for each mouse strain. The values on days 2, 5, 7, 9 and 15 post-infection were compared to values on day 0 before infection. To search for gene expression changes associated with CM, a multi-class SAM procedure and a Welch t test were performed on the log2 ratios of infected vs uninfected samples. For each gene, the level of gene expression in each sample taken from an infected mouse was divided by the median of gene expression levels in samples taken from three uninfected mice. This calculation was done for each mouse strain. Multiple test corrections were performed [
<xref ref-type="bibr" rid="B61">61</xref>
].</p>
<p>The Expression Analysis Systematic Explorer (EASE) was used to search for common biological themes within gene lists generated by our microarray analysis [
<xref ref-type="bibr" rid="B62">62</xref>
]. EASE assigns identified genes to Gene Ontology (GO) terms, and tests whether specific biological pathways were over-represented within specific gene clusters. A score based on Fisher Exact test reports the probability that the prevalence of a particular theme within a cluster is due to chance alone given the prevalence of that theme in the population of all genes under study. In addition, we checked whether the genes were included in a KEGG pathway [
<xref ref-type="bibr" rid="B63">63</xref>
].</p>
<p>All data are MIAME compliant and have been loaded into ArrayExpress database [
<xref ref-type="bibr" rid="B64">64</xref>
]. The ArrayExpress accession number of this experiment is E-MEXP-1018.</p>
</sec>
</sec>
<sec>
<title>Abbreviations</title>
<p>CM: Cerebral Malaria</p>
<p>CM-S: Cerebral Malaria-Susceptible mice</p>
<p>CM-R: Cerebral Malaria-Resistant mice</p>
<p>PbA:
<italic>Plasmodium berghei </italic>
ANKA</p>
<p>GO: Gene Ontology</p>
<p>SAM: Significant Analysis of Microarrays</p>
<p>RELN: Reelin</p>
</sec>
<sec>
<title>Competing interests</title>
<p>The author(s) declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>NFD participated in the design of the study, the injection of parasitized erythrocytes, the sample preparation, and the analysis of the data, carried out microarray experiments, and prepared the figures. NC participated in sample preparation and carried out imunochemistry experiments. DP, FJ, and CN designed and produced the microarrays. DP participated in the statistical analysis, and CN contributed to study design. MB participated in microarray hybridizations. PB and GG participated in the interpretation of data that concerned genes involved in the inflammatory response. NFD and PR carried out a systematic analysis of the functional annotation of genes identified. FAI and GG participated in the design of animal studies. PR conceived and coordinated the study, and wrote the manuscript. All authors read and approved the final manuscript.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="S1">
<caption>
<title>Additional File 1</title>
<p>The full list of the 327 genes that discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice.</p>
</caption>
<media xlink:href="1471-2164-8-452-S1.xls" mimetype="application" mime-subtype="vnd.ms-excel">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="S2">
<caption>
<title>Additional File 2</title>
<p>The graphical representation of expression profiles of genes involved in oxidative phosphorylation in CM-S and CM-R mice.</p>
</caption>
<media xlink:href="1471-2164-8-452-S2.pdf" mimetype="application" mime-subtype="pdf">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<sec>
<title>Acknowledgements</title>
<p>We thank Béatrice Loriod and Geneviève Victorero for technical support and advice. We also thank Frédéric Foucault for helpful discussions, and Andrew Mitchell for critical reading of the manuscript. We acknowledge the technical support of Marseille-Nice genopole.</p>
<p>Financial support: French Ministry of Research and Technology (PAL+ Program); Fondation pour la Recherche Médicale; PACA Conseil Régional; Conseil Général des Bouches du Rhône. NFD was supported by a studentship from the Fondation pour la Recherche Médicale. MB and NC are supported by a studentship from the French Ministry of Research and Technology.</p>
</sec>
</ack>
<ref-list>
<ref id="B1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwiatkowski</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>How malaria has affected the human genome and what human genetics can teach us about malaria</article-title>
<source>Am J Hum Genet</source>
<year>2005</year>
<volume>77</volume>
<fpage>171</fpage>
<lpage>192</lpage>
<pub-id pub-id-type="pmid">16001361</pub-id>
<pub-id pub-id-type="doi">10.1086/432519</pub-id>
</citation>
</ref>
<ref id="B2">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fortin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Stevenson</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Gros</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Complex genetic control of susceptibility to malaria in mice</article-title>
<source>Genes Immun</source>
<year>2002</year>
<volume>3</volume>
<fpage>177</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="pmid">12058252</pub-id>
<pub-id pub-id-type="doi">10.1038/sj.gene.6363841</pub-id>
</citation>
</ref>
<ref id="B3">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sexton</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Good</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>D'Ombrain</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Buckingham</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Schofield</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria</article-title>
<source>J Infect Dis</source>
<year>2004</year>
<volume>189</volume>
<fpage>1245</fpage>
<lpage>1256</lpage>
<pub-id pub-id-type="pmid">15031794</pub-id>
<pub-id pub-id-type="doi">10.1086/382596</pub-id>
</citation>
</ref>
<ref id="B4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaecher</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yadava</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vahey</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ockenhouse</surname>
<given-names>CF</given-names>
</name>
</person-group>
<article-title>Genome-wide expression profiling in malaria infection reveals transcriptional changes associated with lethal and nonlethal outcomes</article-title>
<source>Infect Immun</source>
<year>2005</year>
<volume>73</volume>
<fpage>6091</fpage>
<lpage>6100</lpage>
<pub-id pub-id-type="pmid">16113330</pub-id>
<pub-id pub-id-type="doi">10.1128/IAI.73.9.6091-6100.2005</pub-id>
</citation>
</ref>
<ref id="B5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lovegrove</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Pena-Castillo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mohammad</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Liles</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Kain</surname>
<given-names>KC</given-names>
</name>
</person-group>
<article-title>Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria</article-title>
<source>BMC Genomics</source>
<year>2006</year>
<volume>7</volume>
<fpage>295</fpage>
<pub-id pub-id-type="pmid">17118208</pub-id>
<pub-id pub-id-type="doi">10.1186/1471-2164-7-295</pub-id>
</citation>
</ref>
<ref id="B6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ylostalo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Randall</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Metzger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Krogstad</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Cogswell</surname>
<given-names>FB</given-names>
</name>
</person-group>
<article-title>Transcriptome profiles of host gene expression in a monkey model of human malaria</article-title>
<source>J Infect Dis</source>
<year>2005</year>
<volume>191</volume>
<fpage>400</fpage>
<lpage>409</lpage>
<pub-id pub-id-type="pmid">15633100</pub-id>
<pub-id pub-id-type="doi">10.1086/426868</pub-id>
</citation>
</ref>
<ref id="B7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Griffiths</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Shafi</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Popper</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Hemingway</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Kortok</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Wathen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rockett</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Mott</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Newton</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Marsh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Relman</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Kwiatkowski</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>Genomewide analysis of the host response to malaria in Kenyan children</article-title>
<source>J Infect Dis</source>
<year>2005</year>
<volume>191</volume>
<fpage>1599</fpage>
<lpage>1611</lpage>
<pub-id pub-id-type="pmid">15838786</pub-id>
<pub-id pub-id-type="doi">10.1086/429297</pub-id>
</citation>
</ref>
<ref id="B8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delahaye</surname>
<given-names>NF</given-names>
</name>
<name>
<surname>Coltel</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Puthier</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Flori</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Houlgatte</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Iraqi</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Grau</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Rihet</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Gene-Expression Profiling Discriminates between Cerebral Malaria (CM)-Susceptible Mice and CM-Resistant Mice</article-title>
<source>J Infect Dis</source>
<year>2006</year>
<volume>193</volume>
<fpage>312</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="pmid">16362897</pub-id>
<pub-id pub-id-type="doi">10.1086/498579</pub-id>
</citation>
</ref>
<ref id="B9">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lucas</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Grau</surname>
<given-names>GE</given-names>
</name>
</person-group>
<article-title>Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans</article-title>
<source>Clin Microbiol Rev</source>
<year>2001</year>
<volume>14</volume>
<fpage>810</fpage>
<lpage>20, table of contents</lpage>
<pub-id pub-id-type="pmid">11585786</pub-id>
<pub-id pub-id-type="doi">10.1128/CMR.14.4.810-820.2001</pub-id>
</citation>
</ref>
<ref id="B10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Engwerda</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Mynott</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Sawhney</surname>
<given-names>S</given-names>
</name>
<name>
<surname>De Souza</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Bickle</surname>
<given-names>QD</given-names>
</name>
<name>
<surname>Kaye</surname>
<given-names>PM</given-names>
</name>
</person-group>
<article-title>Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria</article-title>
<source>J Exp Med</source>
<year>2002</year>
<volume>195</volume>
<fpage>1371</fpage>
<lpage>1377</lpage>
<pub-id pub-id-type="pmid">12021316</pub-id>
<pub-id pub-id-type="doi">10.1084/jem.20020128</pub-id>
</citation>
</ref>
<ref id="B11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hunt</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Grau</surname>
<given-names>GE</given-names>
</name>
</person-group>
<article-title>Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria</article-title>
<source>Trends Immunol</source>
<year>2003</year>
<volume>24</volume>
<fpage>491</fpage>
<lpage>499</lpage>
<pub-id pub-id-type="pmid">12967673</pub-id>
<pub-id pub-id-type="doi">10.1016/S1471-4906(03)00229-1</pub-id>
</citation>
</ref>
<ref id="B12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rae</surname>
<given-names>C</given-names>
</name>
<name>
<surname>McQuillan</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Parekh</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Bubb</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Weiser</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Balcar</surname>
<given-names>VJ</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>NH</given-names>
</name>
</person-group>
<article-title>Brain gene expression, metabolism, and bioenergetics: interrelationships in murine models of cerebral and noncerebral malaria</article-title>
<source>Faseb J</source>
<year>2004</year>
<volume>18</volume>
<fpage>499</fpage>
<lpage>510</lpage>
<pub-id pub-id-type="pmid">15003995</pub-id>
<pub-id pub-id-type="doi">10.1096/fj.03-0543com</pub-id>
</citation>
</ref>
<ref id="B13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanni</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Rae</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Maitland</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Stocker</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>NH</given-names>
</name>
</person-group>
<article-title>Is ischemia involved in the pathogenesis of murine cerebral malaria?</article-title>
<source>Am J Pathol</source>
<year>2001</year>
<volume>159</volume>
<fpage>1105</fpage>
<lpage>1112</lpage>
<pub-id pub-id-type="pmid">11549603</pub-id>
</citation>
</ref>
<ref id="B14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fink</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Bench-to-bedside review: Cytopathic hypoxia</article-title>
<source>Crit Care</source>
<year>2002</year>
<volume>6</volume>
<fpage>491</fpage>
<lpage>499</lpage>
<pub-id pub-id-type="pmid">12493070</pub-id>
<pub-id pub-id-type="doi">10.1186/cc1824</pub-id>
</citation>
</ref>
<ref id="B15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kunapuli</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Dorsam</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Quinton</surname>
<given-names>TM</given-names>
</name>
</person-group>
<article-title>Platelet purinergic receptors</article-title>
<source>Curr Opin Pharmacol</source>
<year>2003</year>
<volume>3</volume>
<fpage>175</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="pmid">12681240</pub-id>
<pub-id pub-id-type="doi">10.1016/S1471-4892(03)00007-9</pub-id>
</citation>
</ref>
<ref id="B16">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hattori</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aoki</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Arai</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>PAF and PAF acetylhydrolase in the nervous system</article-title>
<source>J Lipid Mediat Cell Signal</source>
<year>1996</year>
<volume>14</volume>
<fpage>99</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="pmid">8906551</pub-id>
<pub-id pub-id-type="doi">10.1016/0929-7855(96)00514-7</pub-id>
</citation>
</ref>
<ref id="B17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ariga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Neitzert</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Nakae</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mottin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bertrand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pruniaux</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Conti</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Nonredundant function of phosphodiesterases 4D and 4B in neutrophil recruitment to the site of inflammation</article-title>
<source>J Immunol</source>
<year>2004</year>
<volume>173</volume>
<fpage>7531</fpage>
<lpage>7538</lpage>
<pub-id pub-id-type="pmid">15585880</pub-id>
</citation>
</ref>
<ref id="B18">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grau</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Heremans</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Piguet</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Pointaire</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lambert</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Billiau</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vassalli</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1989</year>
<volume>86</volume>
<fpage>5572</fpage>
<lpage>5574</lpage>
<pub-id pub-id-type="pmid">2501793</pub-id>
<pub-id pub-id-type="doi">10.1073/pnas.86.14.5572</pub-id>
</citation>
</ref>
<ref id="B19">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitchell</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Hee</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Potter</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>NH</given-names>
</name>
</person-group>
<article-title>Early cytokine production is associated with protection from murine cerebral malaria</article-title>
<source>Infect Immun</source>
<year>2005</year>
<volume>73</volume>
<fpage>5645</fpage>
<lpage>5653</lpage>
<pub-id pub-id-type="pmid">16113282</pub-id>
<pub-id pub-id-type="doi">10.1128/IAI.73.9.5645-5653.2005</pub-id>
</citation>
</ref>
<ref id="B20">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Kossodo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Grau</surname>
<given-names>GE</given-names>
</name>
</person-group>
<article-title>Profiles of cytokine production in relation with susceptibility to cerebral malaria</article-title>
<source>J Immunol</source>
<year>1993</year>
<volume>151</volume>
<fpage>4811</fpage>
<lpage>4820</lpage>
<pub-id pub-id-type="pmid">8409439</pub-id>
</citation>
</ref>
<ref id="B21">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cenciarelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Parks</surname>
<given-names>WP</given-names>
</name>
<name>
<surname>Cheng-Mayer</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>HTLV-1 Tax-associated hTid-1, a human DnaJ protein, is a repressor of Ikappa B kinase beta subunit</article-title>
<source>J Biol Chem</source>
<year>2002</year>
<volume>277</volume>
<fpage>20605</fpage>
<lpage>20610</lpage>
<pub-id pub-id-type="pmid">11927590</pub-id>
<pub-id pub-id-type="doi">10.1074/jbc.M201204200</pub-id>
</citation>
</ref>
<ref id="B22">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hron</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a</article-title>
<source>Immunity</source>
<year>2004</year>
<volume>21</volume>
<fpage>203</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="pmid">15308101</pub-id>
<pub-id pub-id-type="doi">10.1016/j.immuni.2004.06.016</pub-id>
</citation>
</ref>
<ref id="B23">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neznanov</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Neznanova</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kondratov</surname>
<given-names>RV</given-names>
</name>
<name>
<surname>Burdelya</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kandel</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>O'Rourke</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Ullrich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gudkov</surname>
<given-names>AV</given-names>
</name>
</person-group>
<article-title>Dominant negative form of signal-regulatory protein-alpha (SIRPalpha /SHPS-1) inhibits tumor necrosis factor-mediated apoptosis by activation of NF-kappa B</article-title>
<source>J Biol Chem</source>
<year>2003</year>
<volume>278</volume>
<fpage>3809</fpage>
<lpage>3815</lpage>
<pub-id pub-id-type="pmid">12446684</pub-id>
<pub-id pub-id-type="doi">10.1074/jbc.M210698200</pub-id>
</citation>
</ref>
<ref id="B24">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blais</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Rivest</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Inhibitory action of nitric oxide on circulating tumor necrosis factor-induced NF-kappaB activity and COX-2 transcription in the endothelium of the brain capillaries</article-title>
<source>J Neuropathol Exp Neurol</source>
<year>2001</year>
<volume>60</volume>
<fpage>893</fpage>
<lpage>905</lpage>
<pub-id pub-id-type="pmid">11556546</pub-id>
</citation>
</ref>
<ref id="B25">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sebastiani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Morissette</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lagace</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Boule</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ouellette</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>McLaughlin</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Lacombe</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gervais</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Tremblay</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>The cAMP-specific phosphodiesterase 4B mediates Abeta-induced microglial activation</article-title>
<source>Neurobiol Aging</source>
<year>2006</year>
<volume>27</volume>
<fpage>691</fpage>
<lpage>701</lpage>
<pub-id pub-id-type="pmid">15993984</pub-id>
<pub-id pub-id-type="doi">10.1016/j.neurobiolaging.2005.03.024</pub-id>
</citation>
</ref>
<ref id="B26">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Donato</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type</article-title>
<source>Biochim Biophys Acta</source>
<year>1999</year>
<volume>1450</volume>
<fpage>191</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="pmid">10395934</pub-id>
<pub-id pub-id-type="doi">10.1016/S0167-4889(99)00058-0</pub-id>
</citation>
</ref>
<ref id="B27">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shaffer</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Boldrick</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Staudt</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control</article-title>
<source>Immunity</source>
<year>2000</year>
<volume>13</volume>
<fpage>199</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="pmid">10981963</pub-id>
<pub-id pub-id-type="doi">10.1016/S1074-7613(00)00020-0</pub-id>
</citation>
</ref>
<ref id="B28">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hermsen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>van de Wiel</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mommers</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sauerwein</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Eling</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Depletion of CD4+ or CD8+ T-cells prevents Plasmodium berghei induced cerebral malaria in end-stage disease</article-title>
<source>Parasitology</source>
<year>1997</year>
<volume>114 ( Pt 1)</volume>
<fpage>7</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">9011069</pub-id>
<pub-id pub-id-type="doi">10.1017/S0031182096008293</pub-id>
</citation>
</ref>
<ref id="B29">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yanez</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Manning</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Cooley</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Weidanz</surname>
<given-names>WP</given-names>
</name>
<name>
<surname>van der Heyde</surname>
<given-names>HC</given-names>
</name>
</person-group>
<article-title>Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria</article-title>
<source>J Immunol</source>
<year>1996</year>
<volume>157</volume>
<fpage>1620</fpage>
<lpage>1624</lpage>
<pub-id pub-id-type="pmid">8759747</pub-id>
</citation>
</ref>
<ref id="B30">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grau</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Piguet</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Engers</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Louis</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Vassalli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lambert</surname>
<given-names>PH</given-names>
</name>
</person-group>
<article-title>L3T4+ T lymphocytes play a major role in the pathogenesis of murine cerebral malaria</article-title>
<source>J Immunol</source>
<year>1986</year>
<volume>137</volume>
<fpage>2348</fpage>
<lpage>2354</lpage>
<pub-id pub-id-type="pmid">3093572</pub-id>
</citation>
</ref>
<ref id="B31">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Potter</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chan-Ling</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Mansour</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Maluish</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>NH</given-names>
</name>
</person-group>
<article-title>Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria</article-title>
<source>Int J Parasitol</source>
<year>2006</year>
<volume>36</volume>
<fpage>485</fpage>
<lpage>496</lpage>
<pub-id pub-id-type="pmid">16500656</pub-id>
<pub-id pub-id-type="doi">10.1016/j.ijpara.2005.12.005</pub-id>
</citation>
</ref>
<ref id="B32">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medana</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Chaudhri</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Chan-Ling</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>NH</given-names>
</name>
</person-group>
<article-title>Central nervous system in cerebral malaria: 'Innocent bystander' or active participant in the induction of immunopathology?</article-title>
<source>Immunol Cell Biol</source>
<year>2001</year>
<volume>79</volume>
<fpage>101</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="pmid">11264703</pub-id>
<pub-id pub-id-type="doi">10.1046/j.1440-1711.2001.00995.x</pub-id>
</citation>
</ref>
<ref id="B33">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lynch</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Willis</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Nolan</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Roscher</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fowler</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Weihe</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Schwaeble</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>Microglial activation and increased synthesis of complement component C1q precedes blood-brain barrier dysfunction in rats</article-title>
<source>Mol Immunol</source>
<year>2004</year>
<volume>40</volume>
<fpage>709</fpage>
<lpage>716</lpage>
<pub-id pub-id-type="pmid">14644096</pub-id>
<pub-id pub-id-type="doi">10.1016/j.molimm.2003.08.009</pub-id>
</citation>
</ref>
<ref id="B34">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patrizio</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Tumor necrosis factor reduces cAMP production in rat microglia</article-title>
<source>Glia</source>
<year>2004</year>
<volume>48</volume>
<fpage>241</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="pmid">15390118</pub-id>
<pub-id pub-id-type="doi">10.1002/glia.20074</pub-id>
</citation>
</ref>
<ref id="B35">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neumann</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Control of glial immune function by neurons</article-title>
<source>Glia</source>
<year>2001</year>
<volume>36</volume>
<fpage>191</fpage>
<lpage>199</lpage>
<pub-id pub-id-type="pmid">11596127</pub-id>
<pub-id pub-id-type="doi">10.1002/glia.1108</pub-id>
</citation>
</ref>
<ref id="B36">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>DY</given-names>
</name>
<name>
<surname>Joe</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SU</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>BK</given-names>
</name>
</person-group>
<article-title>Neuroprotective role of microglia expressing interleukin-4</article-title>
<source>J Neurosci Res</source>
<year>2005</year>
<volume>81</volume>
<fpage>397</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="pmid">15948189</pub-id>
<pub-id pub-id-type="doi">10.1002/jnr.20483</pub-id>
</citation>
</ref>
<ref id="B37">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanni</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Tattam</surname>
<given-names>BN</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Chaudhri</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stocker</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>NH</given-names>
</name>
</person-group>
<article-title>Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria</article-title>
<source>Am J Pathol</source>
<year>1998</year>
<volume>152</volume>
<fpage>611</fpage>
<lpage>619</lpage>
<pub-id pub-id-type="pmid">9466588</pub-id>
</citation>
</ref>
<ref id="B38">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dobbie</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Crawley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Waruiru</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Marsh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Surtees</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Cerebrospinal fluid studies in children with cerebral malaria: an excitotoxic mechanism?</article-title>
<source>Am J Trop Med Hyg</source>
<year>2000</year>
<volume>62</volume>
<fpage>284</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="pmid">10813486</pub-id>
</citation>
</ref>
<ref id="B39">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Culman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hortnagl</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gerova</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Timm</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Blume</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zimmermann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Seidel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dirnagl</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Unger</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury</article-title>
<source>Faseb J</source>
<year>2005</year>
<volume>19</volume>
<fpage>617</fpage>
<lpage>619</lpage>
<pub-id pub-id-type="pmid">15665034</pub-id>
<pub-id pub-id-type="doi">10.1096/fj.04-2555com</pub-id>
</citation>
</ref>
<ref id="B40">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ganesan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dohm</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Krajewski</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Bahr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wouters</surname>
<given-names>FS</given-names>
</name>
<name>
<surname>Kermer</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Interaction of BAG1 and Hsp70 mediates neuroprotectivity and increases chaperone activity</article-title>
<source>Mol Cell Biol</source>
<year>2005</year>
<volume>25</volume>
<fpage>3715</fpage>
<lpage>3725</lpage>
<pub-id pub-id-type="pmid">15831476</pub-id>
<pub-id pub-id-type="doi">10.1128/MCB.25.9.3715-3725.2005</pub-id>
</citation>
</ref>
<ref id="B41">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chergui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Svenningsson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Greengard</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Physiological role for casein kinase 1 in glutamatergic synaptic transmission</article-title>
<source>J Neurosci</source>
<year>2005</year>
<volume>25</volume>
<fpage>6601</fpage>
<lpage>6609</lpage>
<pub-id pub-id-type="pmid">16014721</pub-id>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1082-05.2005</pub-id>
</citation>
</ref>
<ref id="B42">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Reelin, lipoprotein receptors and synaptic plasticity</article-title>
<source>Nat Rev Neurosci</source>
<year>2006</year>
<volume>7</volume>
<fpage>850</fpage>
<lpage>859</lpage>
<pub-id pub-id-type="pmid">17053810</pub-id>
<pub-id pub-id-type="doi">10.1038/nrn2009</pub-id>
</citation>
</ref>
<ref id="B43">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Scala</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dupuis</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gaiddon</surname>
<given-names>C</given-names>
</name>
<name>
<surname>De Tapia</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jokic</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gonzalez de Aguilar</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Raul</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Ludes</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Loeffler</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Tissue specificity and regulation of the N-terminal diversity of reticulon 3</article-title>
<source>Biochem J</source>
<year>2005</year>
<volume>385</volume>
<fpage>125</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="pmid">15350194</pub-id>
</citation>
</ref>
<ref id="B44">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mantamadiotis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lemberger</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bleckmann</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Kern</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kretz</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Martin Villalba</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tronche</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kellendonk</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gau</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kapfhammer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Otto</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Schutz</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Disruption of CREB function in brain leads to neurodegeneration</article-title>
<source>Nat Genet</source>
<year>2002</year>
<volume>31</volume>
<fpage>47</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">11967539</pub-id>
<pub-id pub-id-type="doi">10.1038/ng882</pub-id>
</citation>
</ref>
<ref id="B45">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Won</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>XO</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Reelin-deficient mice show impaired neurogenesis and increased stroke size</article-title>
<source>Exp Neurol</source>
<year>2006</year>
<volume>198</volume>
<fpage>250</fpage>
<lpage>259</lpage>
<pub-id pub-id-type="pmid">16438965</pub-id>
<pub-id pub-id-type="doi">10.1016/j.expneurol.2005.12.008</pub-id>
</citation>
</ref>
<ref id="B46">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assadi</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Beffert</surname>
<given-names>U</given-names>
</name>
<name>
<surname>McNeil</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Renfro</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Quattrocchi</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Antalffy</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Sheldon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Armstrong</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Wynshaw-Boris</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Herz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>D'Arcangelo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>GD</given-names>
</name>
</person-group>
<article-title>Interaction of reelin signaling and Lis1 in brain development</article-title>
<source>Nat Genet</source>
<year>2003</year>
<volume>35</volume>
<fpage>270</fpage>
<lpage>276</lpage>
<pub-id pub-id-type="pmid">14578885</pub-id>
<pub-id pub-id-type="doi">10.1038/ng1257</pub-id>
</citation>
</ref>
<ref id="B47">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deutsch</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Rosse</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Deutsch</surname>
<given-names>LH</given-names>
</name>
</person-group>
<article-title>Faulty regulation of tau phosphorylation by the reelin signal transduction pathway is a potential mechanism of pathogenesis and therapeutic target in Alzheimer's disease</article-title>
<source>Eur Neuropsychopharmacol</source>
<year>2006</year>
<volume>16</volume>
<fpage>547</fpage>
<lpage>551</lpage>
<pub-id pub-id-type="pmid">16504486</pub-id>
<pub-id pub-id-type="doi">10.1016/j.euroneuro.2006.01.006</pub-id>
</citation>
</ref>
<ref id="B48">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Markesbery</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>JN</given-names>
</name>
</person-group>
<article-title>Ribosome dysfunction is an early event in Alzheimer's disease</article-title>
<source>J Neurosci</source>
<year>2005</year>
<volume>25</volume>
<fpage>9171</fpage>
<lpage>9175</lpage>
<pub-id pub-id-type="pmid">16207876</pub-id>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3040-05.2005</pub-id>
</citation>
</ref>
<ref id="B49">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medana</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Hien</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Mai</surname>
<given-names>NT</given-names>
</name>
<name>
<surname>Bethell</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Phu</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Farrar</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Esiri</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>White</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>GD</given-names>
</name>
</person-group>
<article-title>Axonal injury in cerebral malaria</article-title>
<source>Am J Pathol</source>
<year>2002</year>
<volume>160</volume>
<fpage>655</fpage>
<lpage>666</lpage>
<pub-id pub-id-type="pmid">11839586</pub-id>
</citation>
</ref>
<ref id="B50">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsuda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Giliberto</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>P</given-names>
</name>
<name>
<surname>McGowan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Pickford</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ghiso</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Frangione</surname>
<given-names>B</given-names>
</name>
<name>
<surname>D'Adamio</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>The familial dementia BRI2 gene binds the Alzheimer gene amyloid-beta precursor protein and inhibits amyloid-beta production</article-title>
<source>J Biol Chem</source>
<year>2005</year>
<volume>280</volume>
<fpage>28912</fpage>
<lpage>28916</lpage>
<pub-id pub-id-type="pmid">15983050</pub-id>
<pub-id pub-id-type="doi">10.1074/jbc.C500217200</pub-id>
</citation>
</ref>
<ref id="B51">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Walian</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Jap</surname>
<given-names>BK</given-names>
</name>
</person-group>
<article-title>CD147 is a regulatory subunit of the gamma-secretase complex in Alzheimer's disease amyloid beta-peptide production</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2005</year>
<volume>102</volume>
<fpage>7499</fpage>
<lpage>7504</lpage>
<pub-id pub-id-type="pmid">15890777</pub-id>
<pub-id pub-id-type="doi">10.1073/pnas.0502768102</pub-id>
</citation>
</ref>
<ref id="B52">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Qahwash</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>XY</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation</article-title>
<source>Nat Med</source>
<year>2004</year>
<volume>10</volume>
<fpage>959</fpage>
<lpage>965</lpage>
<pub-id pub-id-type="pmid">15286784</pub-id>
<pub-id pub-id-type="doi">10.1038/nm1088</pub-id>
</citation>
</ref>
<ref id="B53">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iribarren</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>IL-4 inhibits the expression of mouse formyl peptide receptor 2, a receptor for amyloid beta1-42, in TNF-alpha-activated microglia</article-title>
<source>J Immunol</source>
<year>2005</year>
<volume>175</volume>
<fpage>6100</fpage>
<lpage>6106</lpage>
<pub-id pub-id-type="pmid">16237106</pub-id>
</citation>
</ref>
<ref id="B54">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dickey</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Mason</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Diamond</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Guzowski</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Amyloid suppresses induction of genes critical for memory consolidation in APP + PS1 transgenic mice</article-title>
<source>J Neurochem</source>
<year>2004</year>
<volume>88</volume>
<fpage>434</fpage>
<lpage>442</lpage>
<pub-id pub-id-type="pmid">14690531</pub-id>
</citation>
</ref>
<ref id="B55">
<citation citation-type="other">
<article-title>TAGC website</article-title>
<ext-link ext-link-type="uri" xlink:href="http://tagc.univ-mrs.fr/"></ext-link>
</citation>
</ref>
<ref id="B56">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puthier</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Joly</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Irla</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Saade</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Victorero</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Loriod</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A general survey of thymocyte differentiation by transcriptional analysis of knockout mouse models</article-title>
<source>J Immunol</source>
<year>2004</year>
<volume>173</volume>
<fpage>6109</fpage>
<lpage>6118</lpage>
<pub-id pub-id-type="pmid">15528347</pub-id>
</citation>
</ref>
<ref id="B57">
<citation citation-type="other">
<article-title>UniGene database website - Library browser</article-title>
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/UniGene/lbrowse2.cgi?TAXID_10090"></ext-link>
</citation>
</ref>
<ref id="B58">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bertucci</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Salas</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Eysteries</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nasser</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Finetti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ginestier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Charafe-Jauffret</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Loriod</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bachelart</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Montfort</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Victorero</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Viret</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ollendorff</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Fert</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Giovaninni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Delpero</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Viens</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Monges</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Birnbaum</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Houlgatte</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters</article-title>
<source>Oncogene</source>
<year>2004</year>
<volume>23</volume>
<fpage>1377</fpage>
<lpage>1391</lpage>
<pub-id pub-id-type="pmid">14973550</pub-id>
<pub-id pub-id-type="doi">10.1038/sj.onc.1207262</pub-id>
</citation>
</ref>
<ref id="B59">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eisen</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Spellman</surname>
<given-names>PT</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>PO</given-names>
</name>
<name>
<surname>Botstein</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Cluster analysis and display of genome-wide expression patterns</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1998</year>
<volume>95</volume>
<fpage>14863</fpage>
<lpage>14868</lpage>
<pub-id pub-id-type="pmid">9843981</pub-id>
<pub-id pub-id-type="doi">10.1073/pnas.95.25.14863</pub-id>
</citation>
</ref>
<ref id="B60">
<citation citation-type="other">
<article-title>TIGR MeV (MultiExperiment Viewer) v3.1 software</article-title>
<ext-link ext-link-type="uri" xlink:href="http://www.tm4.org/mev.html"></ext-link>
</citation>
</ref>
<ref id="B61">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benjamini</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hochberg</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Controlling the False Discovery Rate: a practical and powerful approach to multiple testing</article-title>
<source>J Royal Stat Soc Ser B</source>
<year>1995</year>
<volume>57</volume>
<fpage>289</fpage>
<lpage>300</lpage>
</citation>
</ref>
<ref id="B62">
<citation citation-type="other">
<article-title>Expression Analysis Systematic Explorer (EASE)</article-title>
<ext-link ext-link-type="uri" xlink:href="http://david.abcc.ncifcrf.gov"></ext-link>
</citation>
</ref>
<ref id="B63">
<citation citation-type="other">
<article-title>Kyoto Encyclopedia of Genes and Genomes (KEGG)</article-title>
<ext-link ext-link-type="uri" xlink:href="http://www.genome.jp/kegg"></ext-link>
</citation>
</ref>
<ref id="B64">
<citation citation-type="other">
<article-title>ArrayExpress database</article-title>
<ext-link ext-link-type="uri" xlink:href="http://www.ebi.ac.uk/arrayexpress"></ext-link>
</citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001092  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001092  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024